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Abstract

Protein structure classification represents an important process in understanding the associa-
tions between sequence and structure as well as possible functional and evolutionary relationships.
Recent structural genomics initiatives and other high-throughput experiments have populated the
biological databases at a rapid pace. The amount of structural data has made traditional methods
such as manual inspection of the protein structure become impossible. Machine learning has been
widely applied to bioinformatics and has gained a lot of success in this research area. This work
proposes a novel ensemble machine learning method that improves the coverage of the classifiers
under the multi-class imbalanced sample sets by integrating knowledge induced from different base
classifiers, and we illustrate this idea in classifying multi-class SCOP protein fold data. We have
compared our approach with PART and show that our method improves the sensitivity of the
classifier in protein fold classification. Furthermore, we have extended this method to learning over
multiple data types, preserving the independence of their corresponding data sources, and show
that our new approach performs at least as well as the traditional technique over a single joined
data source. These experimental results are encouraging, and can be applied to other bioinfor-
matics problems similarly characterised by multi-class imbalanced data sets held in multiple data
sources.

Keywords: ensemble machine learning, multi-class protein fold classification, imbalanced data, learn-
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1 Introduction
Classification and prediction of biological entities has long been a central research theme in bioinfor-
matics. In recent years, increasing quantities of high-throughput biological data have become available
that can be used to understand the relationship between the protein sequence, structure, and func-
tion. These data have been distributed and maintained in different databases by different research
groups. The problem is that each of these database resources contains a different subset of a set of
specific biological knowledge that can only answer questions (queries) within its own domain but not
questions that span domain boundaries [26]. The current release of the Protein Data Bank (PDB,
Aug 2003) contains more than 22,000 proteins with experimentally determined 3D structures. The
number of these protein structures is increasing rapidly as a result of several international structural
genomics initiatives, but there is still a huge gap when compared to the over 1 million (PIR, July 2003)
known protein sequences. Elucidating the similarities (or differences) between protein structures is
very important in understanding the relationship between protein sequence, structure and function,
and for the analysis of possible evolutionary relationships.

Experimental protein structure determination is expensive and time consuming, and therefore so-
phisticated computational methods have been developed and applied to detect, search for and compare
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remote protein homology (at the sequence level) in the hope that knowledge can be transferred to the
new unknown protein (e.g. inference about function). Most computational tools developed in protein
fold prediction are primarily based on sequence similarity searches. If a new protein sequence (with
an unknown structure) has high sequence similarity with a protein (with a known structure), then the
new protein may share a similar fold with this structure. These approaches have improved the pre-
diction accuracy that is capable of detecting proteins that have high sequence similarity [14] but have
failed to perform well with low sequence similarities for closely related structures. Machine learning is
one such computational approach that has been widely used in the development of automatic protein
structure classification and prediction ([1, 24] and references from therin).

One of the aims of structural genomics is to enhance the understanding of the relationship between
an amino acid sequence and its corresponding protein fold. Symbolic machine learning has been widely
applied to protein fold recognition especially in deriving rules to assist human experts in understanding
“folding rules” [6, 17, 25, 29]. Although statistical learning methods (e.g. neural networks, support
vector machines) consistently exhibit better performance than symbolic machine learning techniques
(e.g. decision trees, rule-based systems), the resulting complex models are very hard to interpret
and therefore do not easily lead to new “insights” into this problem. One of the advantages of
using symbolic machine learning approaches for this purpose is the generation human understandable
classifiers (rules) from some biological background knowledge that can explain the relationship between
sequence and structure.

The SCOP database [20] is a manually derived comprehensive hierarchical classification of known
protein structures, organised according to their evolutionary and structural relationships. The database
is divided into four hierarchical levels: Class, Fold, Superfamily and Family. For SCOP 1.61 (Nov
2002), the 44327 protein domains were classified into 701 folds, resulting in an average of 64 domains
per fold. The number of domains per fold varies in SCOP, where some of the folds are highly popu-
lated (e.g. TIM barrels) while some of the folds contain only a few examples (e.g. the HSP40/DnaJ
peptide-binding fold only contains one protein). Thus, when performing learning over the SCOP folds,
the common one-versus-others approach (two-class problem) results in learning with an imbalanced
data set. This imbalanced proportion of examples in each fold contributes to the poor performance
of classical machine learning techniques (e.g. decision trees). Existing machine learning approaches
tend to produce a strong discriminatory classifier (high accuracy) with very low sensitivity (also called
completeness) when learning on these types of problems.

Our work is motivated by Ding and Dubchak’s [9] analysis where they applied support vector
machines and neural networks to construct one-versus-others and all-versus-all methods for classifying
multi-class SCOP fold from sequence data. As observed in their paper, the classical learning methods
perform badly due to the imbalanced proportion of the data or the so-called well-known “False Posi-
tives” problem [9]. Furthermore, the protein sequence data types may be distributed in different data
sources. This is a common characteristic of Bioinformatics where it is often necessary to use data from
a variety of independently curated and maintained databases. Applying learning techniques to infer
over the multiple data sources remains one of the research challenges in both the machine learning [21]
and bioinformatics communities [26].

We investigate the following problems in the context of classifying multi-class SCOP folds:
1. Can we improve the coverage of classifiers when learning from imbalanced data sets, where the
protein examples from one class heavily outnumber those from the other classes (e.g. the negative
examples are over 95%)?
2. Can we maintain the independence of different protein sequence data sources, but at the same time
exploit the information induced from these data types by combining at the pattern level?

We have devised eKISS (ensemble Knowledge for Imbalance Sample Sets), an ensemble learning
method to solve these types of problems. The objective of eKISS is to generate one-verus-others clas-
sifiers which are capable of learning over multi-class examples under the skewed normal distribution of
the training examples, as well as providing explanation to the user. In addition, we have extended our
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method to learn over multiple data types, whilst preserving the independence of their corresponding
data sources, and we show that our new approach performs at least as well as the traditional technique
over a single joined data source.

The organisation of this paper is as follows: section 2 provides the machine learning background
and related work for our approach; section 3 describes the eKISS framework; section 4 presents the
training and test sets used in this study; section 5 describes the experimental designs of this work;
section 6 discusses the results and the last section concludes this paper.

2 Machine Learning Background

2.1 Problem Formulation and Notations

For a multi-class supervised classification problem, a set of training data (positive and negative exam-
ples) in the form of {x, y | x ∈features, y ∈ classes} is provided to the learner. The learner’s task is to
induce a set of rules that can discriminate positive examples (E+) from negative ones (E−), and thus
propose a classification for new instances. The common approach of treating multi-class learning is
to transform the K classes into a set of two-class problems, which is also known as one-versus-others
(OvsO) method. This approach faces one serious problem when learning over multi class problems:
when we transform the K classes into K two-class problems, the positive examples of a class C1 will
be under-represented compared to the large number of negative examples for class C2,. . .,CK . The
presence of a large amount of negative examples in the training data poses several pitfalls for classical
machine learning systems.

The major problem of applying discriminative classical machine learning techniques in this situa-
tion is that they either generate a trivial rejector classifier, which classifies everything as a negative
class (due to the negative examples being the majority class), or they overfit the positive examples
(minority class) by generating large decision trees or highly complex neural networks. Most discrim-
inative learning approaches apply recursive partitioning of the instance space into regions labelled
with the majority class in that region. Furthermore, the heuristic of stopping and pruning for the
partitioning procedure is constructed to avoid ‘overfitting’ the training examples and is solely based
on the overall accuracy or the overall error rate of the classifier, representing a weak measurement
under the imbalanced data. This heuristic, known as Occam’s razor in the machine learning literature,
suggests that a learning algorithm should prefer “simpler” to more “complex” classifiers in order to
avoid overfitting the training examples. Wolpert’s “No-free-lunch” (NFL) theorems point out that all
such heuristics fail as often as they succeed in supervised learning problems [33]. Hence, most clas-
sical machine learning methods suffer the above drawbacks and perform poorly under the two-class
imbalanced data situation. This scenario is described as the “curse of imbalanced data” in machine
learning terminology [18].

2.2 Related Work

Multi-class learning. Another approach for handling multi-class problems is to generate all possible
pair-wise two-class classifiers between K classes from the training examples. This approach is known
as the all-versus-all (AvsA) method in which, given K classes of training examples, the machine learn-
ing methods will generate two-class classifiers for all the K(K − 1)/2 classifiers. The unseen proteins
are classified by these classifiers; every classifier provides a vote for the class label, and the majority
voted class will be the predicted class for the new proteins. In the ideal case, the correct class will
get the maximum votes for all the class-paired classifiers. In our case, we observed that this approach
does not perform well due to the votes of the correct class being randomly distributed among other
classes. Most classifiers will be a trivial rejector which votes for a negative class. This problem is also
observed by [9] where they described the votes for the most popular voted class decreasing gradually
from maximum to minimum and simply returning the class with the highest vote. The other disad-
vantage of this approach is the large number of classifiers, which is very difficult to analyse for the
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purpose of providing insights into the protein sequence-structure relationships.

Sampling methods for imbalanced data sets. Recently, some attempts have been proposed in
the machine learning community to overcome the two-class imbalanced data set problem, which pri-
marily focus on sampling over the training examples. This is due to the analysis work by Weiss and
Provost [31] where they concluded that the natural class distribution is often not the best distribution
for learning a classifier. These sampling methods involve either (i) under-sampling - reducing the
negative class by randomly removing the negative examples from training set, or (ii) over-sampling
- increasing the positive class by replicating the positive examples. Several studies [4, 10] observed
that over-sampling with replication does not always improve the minority (positive) class prediction.
This is due to the classifier becoming very specific in the minority class decision region and leading
to overfitting the examples [4]. Drummond and Holte [10] have shown that under-sampling approach
performs better than the over-sampling method. The under-sampling approach forces the learning
algorithm to focus on different degrees of the class distribution, at the same time increasing the
presence of the minority class in the training examples, which can generate a more robust classifier.
Although these sampling approaches appear to be appealing for solving imbalanced data problems, at
the moment most of these techniques are mainly experimented in two-class problems [4, 10] as well
as on artificial/synthetic data [15]. Removing or increasing the training examples is not suitable in
this research domain due to the multi-class nature of the training examples as well as the limited
amount of real protein data. Furthermore, in the protein fold classification problem, we would like to
learn sequence-fold relationships from the sequence features by using non-redundant protein examples
with low sequence similarities. Hence, we would like to preserve all the original training examples and
propose a method that is capable of performing learning over these multi-class imbalanced data.

Learning from multiple data sources. One of the primary goals in bioinformatics is to design
tools or systems that integrate multiple data sources, to perform learning and reasoning over these
data, and to support inference and annotation mechanisms of new sequences. It is easy to imagine a
single biological database containing all the information collected from diverse data sources, but the
implementation of such unified database is non-trivial in practice. The problem is that these database
resources contain different subsets of biological knowledge, and are maintained and upgraded regularly
by different research groups [26]. There are various ways in which bioinformatics groups have tried
to integrate biological databases but they generally fall into one of these categories: (i) link integra-
tion; (ii) view integration and (iii) data warehousing [26]. Recent reviews on some technologies for
integrating biological data can be found in [26, 34]. A common and direct approach to performing
machine learning over multiple data sources is to combine all the data into a joint table and then to
apply learning techniques on this joint table to discover meaningful and/or discriminative patterns.
This approach suffers from two major problems: ignoring or destroying data variation [16, 28], and
increasing the learning time and memory size. As suggested by Stein [26], a better solution (unfortu-
nately a non-trivial one) is to maintain the scientific and political independence of these databases,
as well as allow the information that they contain to be easily integrated to enable cross-database
queries. Maintaining the independence of multiple data sources whilst performing integration at the
pattern level has motivated us to undertake this study. We would like to investigate the possibility of
performing symbolic machine learning over multiple data types and then combining the decision rules
in some way using our proposed ensemble learning method to classify protein folds.

3 Methods

In this paper, we have devised eKISS, an ensemble machine learning approach, which integrates
the classifiers generated from the both one-versus-other and all-versus-all approaches to improve the
coverage of the positive protein examples under the multi-class imbalanced data. Ensemble machine
learning can be loosely defined as a set of classifiers whose individual decisions are combined in some
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way to classify new examples [8]. Several empirical studies have shown that the performance of
ensemble machine learning approaches is better than that of single methods due to the drawbacks
discussed in the background section as well as the existing NFL theorems in the individual learning
algorithms [2, 7, 23, 27]. The ensemble approach that we have applied in eKISS differs from the
classical ones; is that instead of combining decisions from different base classifiers, we combine the
rules of the base classifiers to generate new classifiers for final decision making. Furthermore, eKISS
preserves the original distribution of the training data, making the resulting classifiers sensitive to the
imbalanced situation.

3.1 The eKISS Method

The eKISS approach consists of combining rules of base classifiers to generate new classifiers. In
this study, we have applied the PART rule-based machine learning technique to generate the base
classifiers for our ensemble learning system. PART [12] is a rule-induction algorithm that avoids global
optimisation, and generates accurate and compact rule sets by combining the paradigms of “divide-
and-conquer” (C4.5, [22]) and “separate-and-conquer” (RIPPER, [5]). PART adopts a separate-and-
conquer strategy in that it builds a rule, removes the covered instances, and continues constructing
rules recursively by generating a partial decision tree from the remaining instances. The rule generated
by PART is fewer in number and more compact compared to RIPPER and C4.5. We have performed a
one-against-others procedure to generate K two-class classifiers (K is the number of classes) and also
an all-against-all approach to produce K(K−1)/2 classifiers. We then combined these K+K(K−1)/2
base classifiers to generate one new classifier per class, called the ensemble classifiers. For this protein
fold classification problem, the ensemble could combine 25 + (25 × 24)/2 = 325 base classifiers. Since
PART is a rule-based learning system, each PART classifier contains a set of decision rules. To simplify
the presentation, we assume that each base PART classifier contains k positive decision rules, denoted
Ri1, Ri2, . . ., Rik for the base classifier number i.

Classical machine learning methods generate a classifier by performing a heuristic search through
the possible classification rules (true hypotheses) of the given instance space, trying to find rules that
can “best” approximate the true classification of the instance space. Since the heuristics employed
so far are not suitable for multi-class imbalanced data sets, the classical machine methods suffer the
“curse of learning in imbalanced data” [18] and most of the time return a near optimal trivial rejector
classifier.

The basic idea of eKISS is to consider any rule Rij as a potential candidate rule for each of the new
ensemble classifiers. The main assumption made in eKISS is that all the rules generated by the PART
learning algorithm represent possible classification rules, hence enlarging the search space. The eKISS
search strategy is to find all the rules that correctly classify the examples in the positive class, hence
improving the coverage of the positive examples under the multi-class imbalanced data situation. We
also believe these positive rules are useful for providing insights to the human expert in understanding
the relationships between protein structure and sequence information compared to a trivial rejector
classifier. Technically, a rule will be included in the new ensemble classifier of a given class if it
correctly classifies the positive examples of that class. As a decision measure, we use the normalised
confidence measurement, cf norm = (TP − 0.5)/(TP + FP(|E + |/|E − |)) as the cut-off point for rule
selection. The rules of the new classifier for class Ci are all the rules that satisfy the cut-off point. The
normalised confidence measurement derived by [22] has been applied in evaluating the goodness of the
decision rules derived from the decision trees. This measurement takes into account the ratio of the
positive and negative examples and thus produces a much more sensitive measurement for computing
the accuracy of the rules in an imbalanced data situation. Obviously, some (but not all) of the rules
of the base classifier of a class will be in the new classifier of the same class, as well as rules from
other base classifiers. In our system, cf norm represents the tuning parameter for trade-off between
the coverage of the positive examples (TP-rate) and the precision (positive predicted value). For each
class, eKISS allows the user to select the classifier that best suits his/her classification purpose by
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Figure 1: Schematic designs for the eKISS systems. (a) eKISS-ALL: the sequence data types are joined
in a single table and using eKISS learning strategy over it. CB represents the K + K(K − 1)/2 base
classifiers generated in this experiment, where K represents the 25 SCOP fold classes. Cc represents
the final classifiers generated by eKISS. (b) eKISS-Multiple: the data types are learned independently
and their corresponding n × (K + K(K − 1)/2) base classifiers are integrated to generate the final
classifiers Cc.

modifying the cf norm value. Furthermore, in order to assist the user in selecting his/her choice of
classifiers, the system can automatically generate ROC (Receiver Operating Characteristic) curves for
each class, thus providing visualisation tool to facilitate the selection process.

3.2 Extending eKISS for Learning from Multiple Data Sources

As discussed in previous sections, the common approach to perform learning over multiple data sources
is to join these data sources in a single joined table. The eKISS method can then be applied on the
joined table, as illustrated in Figure 1(a). We refer to this approach as eKISS-ALL in the remainder
of this paper. However, it is possible to use eKISS for the basis of a new ensemble knowledge approach
in learning over multiple data sources as motivated by [26]. This approach, called eKISS-Multiple, is
illustrated in Figure 1(b). Here, we maintained each data source as an independent entity instead of
integrating them at the first instance. For each data source, one-versus-others and all-versus-all base
classifiers are generated independently. The rules of all these base classifiers are then considered as
potential candidates for the generation of the ensemble classifiers. Hence, if we have n different data
sources, the potential candidate rules will be found in n × (K + K(K − 1)/2) base classifiers, thus
expanding the total search space for the eKISS system. We show later that by enlarging the search
space in this way, more specific rules can be obtained for certain classes, hence improving the coverage
of the minority classes.

Both the eKISS approaches have been designed to increase the sensitivity (positive coverage) of the
classifiers. One would then expect the methods to have a reduced specificity (also called soundness).
As will be shown in the results, this approach is useful when the ratio E+/E− is very low, and also
when the initial classifiers yield little sensitivity. In that case, the loss of specificity is small compared
to the increase of sensitivity, yielding more useful classifiers. Obviously, for some classes the base
classifiers may be preferred to the new one.

4 Data Set

We have applied our method to the protein data set studied by Ding and Dubchak [9], which can be
obtained from http://www.nersc.gov/~cding/protein/. The original data [9] contains a training
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Table 1: Summary of the physico-chemical amino acid sequence data types used in this study.

Data types

Amino acid composition
Hydrophobicity

Polarity
Polarizability

Predicted Secondary Structure
Normalised van der Waals volume

set (Ntrain) and a test set (Ntest). This training set was extracted from the PDB select sets [13]
and comprises 313 proteins from 27 most populated SCOP folds (more than seven examples for each
fold) with all of the pair-wise sequence identities being less than 35%. The test set was extracted
from PDB 40D [19] which contains 386 representatives of the same 27 SCOP folds with sequence
similarity less than 35% (excluding the proteins in Ntrain). The features used in the learning system
are extracted from protein sequences according to the method described in Dubchak et al. [11], where
a protein sequence is represented by a set of parameter vectors on various physico-chemical and
structural properties of amino acids along the sequence. These properties are hydrophobicity, polarity,
polarizability, predicted secondary structure, normalised van der Waals volume and the amino acid
composition of the protein sequence. Each sequence properties contained 21 continuous features. Since
these properties are extracted individually from the corresponding protein sequences, one may treat
these features as different data types stored in corresponding individual data sources [9, 11]. Table 1
summarises the protein sequence properties used in this study.

Before exploiting these data, we have analysed both the training and test sets and found some
interesting errors in both data sets, especially in the training set (Ntrain). The first error is the
inconsistency of the data sets. Ding and Dubchak [9] used the protein data from PDB selects as
the training set, at a time when the SCOP classification did not exist. Although [9] reclassified the
training set according to the early SCOP database, we believe that the domain definitions in SCOP
were still not well defined. Their test set was extracted from the more recent SCOP database (SCOP
1.48, Dec 1999) for which the domain definitions are well defined and which clearly contains major
changes compared to the early SCOP version used to assign the training set. We found some protein
examples in the training set which had not been assigned into domains at that time (due to the earlier
SCOP domain definitions) but were present in the test set as different chopped domains. Probably
this “dirty” data may have contributed to some poor performance of analysis [9]. At the same time,
this also shows that the domain definition has evolved in the SCOP database over time by careful
manual assignment; an automatic and intelligent system may facilitate this protein fold classification
process.

Therefore, we cleaned the data set by removing the errors from both training and testing examples.
We applied the protein fold classification according to SCOP 1.61 (Nov 2002, [20]) and Astral 1.61 [3]
with sequence identity less than 40% (Nov 2002), removing those fold classes with less than 8 examples.
After performing this cleaning stage, our protein fold data contained 582 examples distributed in 25
fold SCOP classes. We then randomly divided the data into a training set (408 protein examples) and
a test set (174 protein examples).

5 Experimental Settings

We performed two different experiments with eKISS so as to answer the objectives of this study. In
the first experiment, we joined all the sequence features into a single data source, and performed
classification on this data. This straightforward combination approach provided 125 physico-chemical
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Table 2: Average performance evaluation of eKISS-ALL (cf norm = 0.69) and OvsO-PART.

SCOP Class Method Training Set (408 protein examples) Test Set (172 protein examples)
Sn/TPR FPR PPV F1 Sn/TPR FPR PPV F1

All α eKISS 0.537 0.258 0.059 0.106 0.764 0.342 0.060 0.111
(6 folds) PART 0.068 0.025 0.043 0.053 0.045 0.035 0.046 0.045
All β eKISS 0.491 0.270 0.067 0.118 0.865 0.435 0.073 0.135
(8 folds) PART 0.025 0.034 0.016 0.019 0.008 0.042 0.009 0.009
α/β eKISS 0.471 0.262 0.063 0.111 0.531 0.321 0.044 0.081
(8 folds) PART 0.041 0.048 0.041 0.041 0.056 0.043 0.092 0.069
α + β eKISS 0.157 0.084 0.034 0.056 0.550 0.297 0.072 0.127
(2 folds) PART 0 0.063 0 undef 0 0.033 0 undef
Small proteins eKISS 1.000 0.496 0.166 0.285 1.000 0.640 0.112 0.202
(1 fold) PART 0.100 0.073 0.100 0.100 0 0.053 0 undef

and structural properties of amino acids as our learning attributes. The goal of this experiment was
two-fold. First, to evaluate eKISS in learning over multi-class imbalanced SCOP folds and to compare
it with OvsO-PART- a classical rule-based system; second, to evaluate eKISS-ALL as an approach to
perform learning over multiple data types using a single joined data source in classifying multi-class
SCOP folds

The second experiment evaluated eKISS-Multiple, where we preserved the individual data sources,
and performed base classification on each data source and then combined the rules using our approach.
This has resulted in 6 different sequence data sources each containing 21 physico-chemical and struc-
tural properties of amino acids as our learning features (Table 1). Using both experiments, we were
able to compare the performance of eKISS-Multiple with eKISS-ALL.

Standard measurements have been applied to evaluate the goodness of our classifiers compared to
OvsO-PART: true positive rate (positive coverage or sensitivity, TPR = TP/(TP+FN)), false positive
rate (FPR = FP/(FP+TN) or (1 − specificity)), positive predicted value (PPV = TP/(TP+FP)) and
F1-measure ((2TPR × PPV)/(TPR + PPV)) [30] which evaluates the trade off between sensitivity
and positive predicted value.

We applied the WEKA machine learning package [32] to generate the base classifiers for eKISS.
The eKISS ensemble system is written in Perl and the ROC curves are generated using gnuplot. We
have compared eKISS with decision trees (J48), support vector machines, and neural networks from
this package.

6 Results and Discussion

Comparison of eKISS-ALL and PART. We performed ten-fold cross-validation on the training
data and tested on the test set by comparing the performance of eKISS-ALL and OvsO-PART. Ta-
ble 2 summarises the performance of eKISS-ALL and PART on the training and test sets. From
the results, eKISS-ALL outperforms PART on 20 out of 25 classes based on the F1-measure. The
results show that eKISS increases the sensitivity and also the positive predictive accuracy compared
to PART. According to our experiments, eKISS-ALL performs better than OvsO-decision trees (20
classes), OvsO-SVM (24 classes), and artificial neural networks (21 classes). The goodness of eKISS
classifiers can be improved by tuning the cf norm values for each SCOP fold, which could lead to the
generation of better classifiers. Although our method increases the true positive rate (TPR), as a
trade-off it also increases the false positive rate (FPR). Since the objective of this study is to improve
the rule coverage when classifying protein folds, we permit the rule-set to cover some false positives as
a consequence of improving the positive coverage of classical machine learning. However, the results
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show that the increase of TP-rate is higher than the corresponding increase of the FP-rate.

Comparison of eKISS-ALL and eKISS-Multiple. Figure 2 presents the ROC curves of selected
classes generated from the test set by comparing eKISS-ALL (learning from single joined data source)
and eKISS-Multiple (learning from multiple data sources). The ROC curves represent the trade-off
between coverage (TPR on the y-axis) and the error rate (FPR on the x-axis) of a classifier. A good
classifier will be located at the top left corner of the ROC graph, illustrating that this classifier has
high coverage of true positives with few false positives. A trivial rejector will be at the bottom left
corner of the ROC graph and a trivial acceptor will be at the top right corner of the graph. The two
ROC curves in Figure 2 represent eKISS-Multiple and eKISS-ALL respectively for different cf norm
values. The higher the cf norm in both curves is shifted further to the top left corner. These ROC
curves clearly show that the eKISS-Multiple improved the classification performance of the joined data
sources because the ROCMultiple curve is constantly higher than the ROCALL curve. These figures
show that the classical machine learning tends to produce a trivial rejector under the imbalanced data
set (left bottom corner), while both eKISS approaches greatly improved the classifier’s sensitivity
under different cf norm values. These figures also show that the eKISS-Multiple perform better or at
least as good as eKISS-ALL.

As expected, the four classical machine learning methods produce a trivial rejector located at
the bottom left corner of the ROC curves (Figure 2). The same results were observed by [9] where
they found that using multiple data types and applying majority voting on the results lead to better
prediction accuracy. Our approach is different from [9] in two different ways: (i) we integrate all the
(possible) decision rules from the base classifiers in some way to construct our new classifiers rather
than the base classifiers’ decisions; (ii) our final classifiers represent all the patterns (decision rules)
learned from each individual data source compared to the classifiers formed by a majority voting
system. From this observation, obviously eKISS-Multiple performed better than PART since it is
better than eKISS-ALL which has been shown to be better than PART.

We believe that these unique features of eKISS provide better rules for understanding the rela-
tionships between the physico-chemical protein sequence properties and their corresponding fold. In
addition, the eKISS framework may be an alternative solution for database integration problems cur-
rently faced by the bioinformatics community. Instead of creating a unified data warehouse for storing
data sources from different origins, this approach allows the data sources to be stored in different
locations and perform learning each data sources individually. The integration part is performed at
the pattern (decision rule) level which is separate from the joined data level. Thus, if a data source has
been updated, the eKISS system only needs to update its patterns by performing learning over the up-
dated data source. Furthermore, using this approach, it is easy to ‘plug-in’ new protein data sources
that could enhance the classifier’s performance. For the purposes of this study, we have assumed
that data types are internally consistent; in reality this will need to be ensured by a combination of
mechanised and hand consistency checking as achieved for example by the approach of [35].

In order to verify the hypothesis that the set of rules from all the base classifier forms a useful search
space for the generation of the new classifiers, we used a set of random rules (obtained by applying
PART on a randomly generated data set). The performances of the resulting random classifiers were
clearly worse than the performance of eKISS. This observation suggested that the decision rules that
were selected to construct the eKISS classifiers are relevant in discriminating between the classes.

In general, eKISS performs well in learning from a small set of positive examples compared to the
negative examples because eKISS is capable of generating a softer boundary for the classifier. It thus
avoids problems connected with the strong discriminative boundary generated by classical learning
systems. One of the essential conditions for ensemble methods to perform better than any of its
individual classifier members is the diversity of the base classifiers. The reason for this is if several
base classifiers make the wrong prediction (no diversity), the ensemble of these classifiers will not
improve the prediction. But if the base classifiers make different predictions (diversity), the ensemble
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Figure 2: ROC curves of the eKISS system on learning over multiple sequence data types (eKISS-
Multiple) and the joined data (eKISS-ALL) compared with OvsO-PART, OvsO-SVM, neural networks
and OvsO-decision trees on the test data.

may predict correctly by considering the majority votes from the diverse base classifier’s decision.
We believe that the base classifiers of eKISS are made diverse by combining the one-against-others
and the all-against-all PART classifiers. Re-selecting the appropriate rules from these base classifiers
creates the diversity of the ensemble and hence improves the positive coverage of eKISS. Obviously,
the base classifiers for eKISS-Multiple are more diverse than eKISS-ALL since they are generated
from different data sources. We believe some of the decision rules derived from eKISS-Multiple are
more discriminative due to the fact that they represent the specific rules induced from individual data
types, thus contributing to the better performance when they are combined in an ensemble at the
latter stage.

Another interesting finding from this experiment is that the rule sets generated from eKISS are
much smaller than those of the original PART system. We would have expected eKISS rule-sets to
contain more rules compared to PART due to “collecting” additional rules from other classifiers, but
it turns out they were fewer rules. We believe that the rule-sets of eKISS are useful for classifying
protein folds and thus can assist wet experimental biologists in understanding the co-relationships
between amino acid physico-chemical properties and functions. Compared with the two statistical
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learning methods that we investigated in this study, both resulting models are hard to interpret and
the performance maybe improved by specific tuning on the available parameters (e.g. different types
of kernels for SVM and the number of nodes in neural networks).

7 Conclusion and Future Work

We have described eKISS, an ensemble method specifically designed to increase the sensitivity (pos-
itive coverage) of classifiers without losing corresponding specificity when learning over multi-class
imbalanced data sets where examples from one class heavily outnumber those from other classes. We
have applied this approach to the classification of 25 SCOP protein folds and our results show that this
approach is useful when the ratio of E+/E− is very low, and also when the initial classifiers yield little
sensitivity. In both cases, the loss of specificity is small compared to the increase in sensitivity, thus
yielding more useful classifiers. We have also shown that eKISS is capable of learning from multiple
data types, attaining as least as good performance compared with combining all data types in one
table. This approach is very useful when learning over data obtained from independently curated and
maintained databases. Furthermore, an advantage of the rules generated by eKISS compared with
those of PART is that they are shorter and provide hints for understanding the relationship between
the amino acid physico-chemical properties of a sequence and its constituted fold. The encouraging
results of this approach can be applied to a wide range of other bioinformatics problems, and we plan
to evaluate eKISS on other data sets with similar characteristics. Another extension that we would
like to explore is to create larger and diverse base classifiers by incorporating decision rules generated
from different rule-based systems that employ different inductive biases compared to PART.
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