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Introduction
Recent technological advancement in molecular biology –

especially microarray analysis – on whole genome RNA

expression facilitates new discoveries in basic biology,

pharmacology and medicine. The gene expression profile

of a cell determines its phenotype, function and response to

the environment. Quantitative measurement of gene

expression can potentially provide clues about the

mechanisms of gene regulation and interaction, and at the

abstract level about biochemical pathways and the cellular

function of a cell. Furthermore, comparison between genes

expressed in diseased tissue and the normal counterpart will

further our understanding in the disease pathology, and also

help to identify genes or groups of genes as targets for

potential therapeutic intervention.

Although mRNA is not the ultimate product of a gene,

transcription is the first step in gene regulation, and this

information is important for understanding gene regulatory

networks. Obtaining measurements of mRNA is

considerably cheaper, and can be more easily carried out in

a high-throughput manner, compared to direct

measurements of the protein levels. There may not be strong

evidence to suggest a correlation between the mRNA and

abundance of proteins in a cell; but absence of mRNA in a

cell is likely to imply a low level of the respective protein.

Thus, the qualitative estimation of a proteome can be based

on the quantitative measurement of the transcriptome

(Brazma and Vilo 2000).

Gene expression data can be obtained by high-

throughput technologies such as microarray and

oligonucleotide chips under various experimental

conditions, at different developmental stages or in different

tissues. The data are usually organised in a matrix of n rows

and m columns, which is known as a gene expression profile.

The rows represent genes (usually genes of the whole

genome), and the columns represent the samples (eg various

tissues, developmental stages and treatments). One can carry

out two straightforward studies by comparing the genes (n

rows) or comparing the samples (m columns) of the matrix

(Figure 1). If we find that two rows are similar, we can

hypothesise that the two genes are co-regulated and possibly

functionally related. These analyses may facilitate our

understanding of gene regulation, metabolic and signalling

pathways, the genetic mechanisms of disease, and the

response to drug treatments.

Considering the amount and complexity of the gene

expression data, it is impossible for an expert to compute

and compare the n × m gene expression matrix manually
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(where n is usually greater than 5000 and m is more than

10). Thus, machine learning and other artificial intelligence

techniques have been widely used to classify or characterise

gene expression data (Golub et al 1999; Ben-dor et al 2000;

Brazma and Vilo 2000; Brown et al 2000; Li and Wong

2002; Shipp et al 2002). This is due to the nature of machine

learning approaches in that they perform well in domains

where there is a large amount of data but little theory – this

is exactly the situation in analysing gene expression profiles.

Machine learning is the sub-field of artificial intelligence

which focuses on methods to construct computer programs

that learn from experience with respect to some class of

tasks and a performance measure (Mitchell 1997). Machine

learning methods are suitable for molecular biology data

due to the learning algorithm’s ability to construct classifiers/

hypotheses that can explain complex relationships in the

data. Generally, there are two types of learning schemes in

machine learning: supervised learning, where the output has

been given and labelled a priori or the learner has some

prior knowledge of the data; and unsupervised learning,

where no prior information is given to the learner regarding

the data or the output. Ensemble machine learning is a

method that combines individual classifiers in some way to

classify new instances.

The objective of this study is to investigate the

performance of ensemble machine learning in classifying

gene expression data on cancer classification problems. This

paper outlines the materials and methods used in this study,

presents the results and discusses the observation from the

results. The final section summarises this study.

Materials and methods
The challenge of the treatment of cancer has been to target

specific therapies to pathogenetically distinct tumour types,

in order to maximise efficacy and minimise toxicity (Golub

et al 1999). Cancer classification has been the central topic

of research in cancer treatment. The conventional approach

for cancer classification is primarily based on the

morphological appearance of the tumour. The limitations

for this approach are the strong bias in identifying the tumour

by experts and also the difficulties in differentiating between

cancer subtypes. This is due to most cancers being highly

related to the specific biological insights such as responses

to different clinical treatments. It therefore makes biological

sense to perform cancer classification at the genotype level

compared to the phenotypic observation. Due to the large

amount of gene expression data available on various

cancerous samples, it is important to construct classifiers

that have high predictive accuracy in classifying cancerous

samples based on their gene expression profiles. Besides

being accurate, the classifier needs to provide explanations

to the biologists/clinicians about the relationship between

the selected discriminative genes. We have employed

decision trees in this study due to the easy interpretation of

the final classifiers, compared to other ‘black-box’

approaches (eg artificial neural networks).

Basic notations
The training examples for supervised machine learning are

in the form of a set of tuples <x, y> where y is the class

label and x is the set of attributes for the instances. The

attributes for cancerous classification will be the gene

expression signals, and the class consisting of cancerous or

normal tissues. The learning algorithm is trained on the

positive E + (cancerous samples) and negative E – (normal

samples) examples to construct a classifier C(x) that

distinguishes between these examples. In the ideal case,

E + ∩ E – = ∅.

Problem formulation
The objective of this study is to construct classifiers that

can correctly classify the cancerous tissues and normal

tissues from the gene expression profiles. The learner needs

to construct a classifier to distinguish between the cancerous

samples and the normal samples. This classifier can then

be used as the basis for classifying as yet unseen clinical

samples in the future. This is a classical supervised learning

problem that applies a learning algorithm on the training

data and performs prediction on the test data. In this study,

we only consider supervised machine learning applied to

cancer classification.

Figure 1 A typical gene expression matrix where rows represent genes
(usually genes of the whole genome), and the columns represent the samples
(eg various tissues, developmental stages and treatments).
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Machine learning algorithms
We have applied single C4.5 (Quinlan 1993), Bagging and

AdaBoost decision trees to classify seven publicly

available gene expression datasets. All the learning

methods used in this study were obtained from the

WEKA machine learning package (Witten and Frank 2000)

(http://www.cs.waikato.ac.nz/~ml/weka/).

C4.5 algorithm
The decision tree algorithm is well known for its robustness

and learning efficiency with its learning time complexity

of O(n log
2
n). The output of the algorithm is a decision tree,

which can be easily represented as a set of symbolic rules

( IF … THEN …). The symbolic rules can be directly

interpreted and compared with existing biological

knowledge, providing useful information for the biologists

and clinicians.

The learning algorithm applies a divide-and-conquer

strategy (Quinlan 1993) to construct the tree. The sets of

instances are accompanied by a set of properties (attributes).

A decision tree is a tree where each node is a test on the

values of an attribute, and the leaves represent the class of

an instance that satisfies the tests. The tree will return a

‘yes’ or ‘no’ decision when the sets of instances are tested

on it. Rules can be derived from the tree by following a

path from the root to a leaf and using the nodes along the

path as preconditions for the rule, to predict the class at the

leaf. The rules can be pruned to remove unnecessary

preconditions and duplication. Figure 2 shows a decision

tree induced from colon tumour data and also the equivalent

decision rules.

Ensemble methods
We regard ensemble methods as sets of machine learning

techniques whose decisions are combined in some way to

improve the performance of the overall system. Other

terminologies found in the literature to denote similar

meanings are: multiple classifiers, multi-strategy learning,

committee, classifier fusion, combination, aggregation,

integration and so on. In this paper, we use ensemble to

refer to all the classifier combination methods. The simplest

way to combine different learning algorithms is by voting

or weighted voting.

The intuitive concept of ensemble learning is that no

single approach or system can claim to be uniformly superior

to any other, and that the integration of several single

approaches will enhance the performance of the final

classifier (eg accuracy, reliability, comprehensibility).

Hence, an ensemble classifier can have overall better

performance than the individual base classifiers. The

effectiveness of ensemble methods is highly reliant on the

independence of the error committed by the individual base

learner. The performance of ensemble methods strongly

depends on the accuracy and the diversity of the base

learners. Various studies (Breimen 1996; Bauer and Kohavi

1999; Dietterich 2000a, 2000b) have shown that decision

trees tend to generate diverse classifiers with response to

small changes in the training data and, are therefore, suitable

candidates for the base learner of an ensemble system. The

easiest approach to generate diverse base classifiers is

manipulating the training data. In this study, we investigate

bagging and boosting, the two most common ensemble

techniques.

Bagging (boostrap aggregating) was introduced by

Breimen (1996) and it aims to manipulate the training data

by randomly replacing the original T training data by N

items. The replacement training sets are known as bootstrap

replicates in which some instances may not appear while

others appear more than once. The final classifier C*(x) is

constructed by aggregating C
i
(x) where every C

i
(x) has an

equal vote. The bagging algorithm is shown in Figure 3.

Freund and Schapire (1996) introduced AdaBoost

(Adaptive Boosting) method as an alternative method to

influence the training data. Initially, the algorithm assigns

every instance x
i
 with an equal weight. In each iteration i,

the learning algorithm tries to minimise the weighted error

on the training set and returns a classifier C
i
(x). The weighted

Figure 2 (A) A decision tree induced from the colon tumour data set. The
nodes represent genes, and branches represent the expression conditions. The
leaves of the tree represent the decision outcome (in this case either ‘is a
tumour tissue’ or ‘is a normal tissue’). The brace under a leaf denotes the
number of instances correctly and incorrectly classified by the leaf (TP/FP). (B)
The equivalent decision rules are derived from the decision trees.
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error of C
i
(x) is computed and applied to update the weights

on the training instances x
i
. The weight of x

i
 increases

according to its influences on the classifier’s performance

that assigns a high weight for a misclassified x
i
 and a low

weight for a correctly classified x
i
. The final classifier C*(x)

is constructed by a weighted vote of the individual C
i
(x)

according to its accuracy based on the weighted training

set. Figure 4 illustrates the AdaBoost algorithm.

Dataset
In this section, we briefly describe the gene expression

datasets used in this study. Interested readers should refer

to the references for the details of the microarray experiment

setup and methodologies in acquiring the expression data.

These datasets were obtained from the Gene Expression

Datasets Collection (http://sdmc.lit.org.sg/GEDatasets/).

The gene expression datasets are summarised in Table 1.

1. Acute lymphoblastic leukaemia (ALL) and acute myeloid

leukaemia (AML) (Golub et al 1999). The learning objective

of this gene expression data is to perform cancer subtype

classification. The data consists of two distinctive acute

leukaemias, namely AML and ALL bone marrow samples.

There are over 7129 probes from 6817 human genes for

this experiment. The training dataset consists of 38 samples

(27 ALL and 11 AML), and the test data consists of 34

samples (20 ALL and 14 AML).

2. Breast cancer outcome (van’t Veer et al 2002). The

objective of learning over this gene expression dataset is to

predict the patient clinical outcome after their initial

diagnosis for an interval of at least 5 years. The training

data contains 78 patient samples, 34 of which are from

patients who had developed distance metastases within 5

years (relapse) and 44 samples are from patients who

remained healthy after the initial diagnosis (non-relapse).

The test data consists of 12 relapse and 7 non-relapse

samples. The numbers of genes used in this study was

24 481.

3. Central nervous system (CNS) embryonal tumour

outcome (Pomeroy et al 2002). The experimental objective

of this dataset is to classify the patients who are alive after

treatment (‘survivors’) and those who succumbed to their

disease (‘failures’). This gene expression data is dataset C

in the paper, which consists of 60 patient samples (21

survivors and 39 failures). There are 7129 probes from 6817

human genes in the dataset.

4. Colon tumour (Alon et al 1999). The aim of this gene

expression experiment is to construct a classifier that can

classify colon tumour from normal colon tissues. The dataset

consists of 40 colon tumour tissues and 22 normal tissues.

There are 7129 probes from 6817 human genes in the

dataset.

5. Lung cancer (Gordon et al 2002). This set of gene

expression data consists of the lung malignant pleural

mesothelioma (MPM) and adenocarcinoma (ADCA)

samples. The learning objective of this dataset is to construct

a classifier that can distinguish between these two tumour

classes. The training data consists of 32 samples (16 MPM

and 16 ADCA) while the testing data consists of 149 samples

(15 MPM and 134 ADCA). There are 12 533 probes in this

dataset.

6. Prostate cancer (Singh et al 2002). The classification

task of this dataset is to construct a classifier that can predict

a prostate tumour from gene expression data. The training

data consists of 52 prostate tumour tissues and 50 normal

Figure 3 Bagging algorithm.

Input: Training examples <x, y>, Machine Learning Algorithm ML,
Integer j (number of iteration)

1. For each iteration i = 1…j

2. {
3. Select a subset t of size N from the original training examples T

4. The size of t is the same with the T where some instances may not

appear in it while others appear more than once (re-sampling)
5. Generates a classifier C

i
(x) from the t

6. }

7. The final classifier C*(x) is formed by aggregating the j classifiers
8. To classify an instance x, a vote for class y is recorded by every

classifier C
i
(x) = y

9. C*(x) is the class with the most votes. (Ties being resolved
arbitrarily.)

Output: C*(x)

Figure 4 AdaBoost algorithm.

Input: Training examples <x, y>, Machine Learning Algorithm ML,

Integer j (number of iteration)
1. Assigns an equal weight for instance x

i

2. For each iteration i = 1…j

3. {
4. Generates a classifier C

i
(x) with minimise the weighted error over

the instances x

5. Update the weight of x
i

6. }

7. The final classifier C*(x) is formed by a weighted vote of the

individual C
i
(x) according to its accuracy on the weighted training

set

Output: C*(x)
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tissues. The testing data were obtained from a different

experiment (Welsh et al 2001) which consists of 25 tumour

samples and 9 normal samples. There are 12 600 genes and

expressed sequence tags (ESTs) in this dataset.

7. Prostate cancer outcome (Singh et al 2002). This dataset

consists of gene expression data from patients with respect

to recurrence following surgery. The training data contains

8 patients having relapsed and 13 patients having remained

relapse free (‘non-relapse’) for at least 4 years. There are

12 600 genes and ESTs in this dataset.

Methods
Step 1 Filtering: discretization of continuous-
valued attributes
Gene expression data contains a lot of ‘noise’ or irrelevant

signals, and so one of the important steps in machine

learning is to perform data cleaning or feature extraction

before the actual learning process. We employed Fayyad

and Irani’s (1993) discretization method to filter out the

noise. This algorithm recursively applies an entropy

minimisation heuristic to discretize the continuous-valued

attributes. The stopping criterion for this algorithm is based

on the minimum description length principle (MDL). This

method was found to be quite promising as a global

discretization method (Ting 1994), as Li and Wong (2002)

employed this technique to filter out the non-discriminatory

genes before performing classification on the gene

expression data. After the filtering process, we observed

that the data size reduces to 50%–98% of the actual data.

This indicates that most of the genes play an irrelevant part

in cancer classification problems. Table 2 shows the size of

the data before and after filtering, and also the percentage

of genes that are used in the actual learning process.

Step 2 Classification/prediction of positive and
negative examples
After the filtering process, we employed three different

learning algorithms to construct the classifier, namely single

C4.5, bagged C4.5 (‘bagging’) and AdaBoost C4.5

(‘boosting’). For the datasets of leukaemia, breast cancer

outcome, lung cancer and prostate cancer the learning

algorithm performs prediction on the test data. For the CNS

embryonal tumour outcome, colon tumour and prostate

cancer outcome where no test data are available, tenfold

cross-validation was performed on the training data to obtain

a statistically reliable predictive measurement.

The normal method to evaluate the robustness of the

classifier is to perform cross-validation on the classifier.

Tenfold cross-validation has been proved to be statistically

good enough in evaluating the performance of the classifier

(Witten and Frank 2000). In tenfold cross-validation, the

training set is equally divided into 10 different subsets. Nine

out of ten of the training subsets are used to train the learner,

and the tenth subset is used as the test set. The procedure is

repeated ten times, with a different subset being used as the

test set.

Step 3 Evaluation
The predictive accuracy of the classifier measures the

proportion of correctly classified instances:

TP TN
Acc

TP TN FP FN

+=
+ + +

where true positives (TP) denote the correct classifications

of positive examples; true negatives (TN) are the correct

classifications of negative examples; false positives (FP)

represent the incorrect classification of negative examples

Table 1 Summary of the gene expression data. The positive
and negative examples column represents the number of
positive and negative examples in training set, test set and the
name of the positive and negative class, respectively

Continuous Positive Negative

attributes examples examples

Dataset  (nr of genes)  (train:test:class)  (train:test:class)

ALL/AML leukaemia 7129 27:20:ALL 11:14:AML

Breast cancer outcome 24 481 34:12:relapse 44:7:non-relapse

CNS embryonal

tumour outcome 7129 21:0:survivors 39:0:failures

Colon tumour 7129 40:0:tumour 22:0:normal

Lung cancer 12 533 16:15:MPM 16:134:ADCA

Prostate cancer 12 600 52:25:tumour 50:9:normal

Prostate cancer outcome 12 600 8:0:relapse 13:0:non-relapse

Table 2 Summary of the filtered data

Before filtering After filtering Percentage of

(nr of genes) (nr of genes) important genes

Dataset continuous discrete   (%)

ALL/AML leukaemia 7129 1038 14.56

Breast cancer outcome 24 481 834 3.41

CNS embryonal
tumour outcome 7129 74 1.04

Colon tumour 7129 135 1.89

Lung cancer 12 533 5365 42.81

Prostate cancer 12 600 3071 24.37

Prostate cancer outcome 12 600 208 1.65
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into the positive class; and false negatives (FN) are the

positive examples incorrectly classified into the negative

class. Positive predictive accuracy (PPV), or the reliability

of positive predictions of the induced classifier, is computed

by:
TP

PPV
TP FP

=
+

Sensitivity (S
n
) measures the fraction of actual positive

examples that are correctly classified:

n

TP
S

TP FN
=

+
while specificity (S

p
) measures the fraction of actual negative

examples that are correctly classified:

p

TN
S

TN FP
=

+

Results
Table 3 summarises the predictive accuracy of the

classification methods on all the data; the highlighted values

represent the highest accuracy obtained by the method.

Solely based on the predictive accuracy (Table 3) of these

methods, we observed that bagging constantly performs

better than both boosting and single C4.5. Out of the

7 classification/prediction problems, bagging wins in 3

datasets (lung cancer, prostate cancer and prostate cancer

outcome) and ties with boosting in 2 datasets (breast cancer

outcome and CNS embryonal tumour outcome). Single C4.5

wins overall the ensemble methods in the colon dataset and

ties with the ensemble methods in the ALL/AML leukaemia

dataset.

Table 3 Predictive accuracy of the classifiersa

Predictive accuracy (%)

Dataset Single C4.5 Bagging C4.5 AdaBoost C4.5

ALL/AML leukaemia 91.18a 91.18a 91.18a

Breast cancer outcome 63.16 89.47a 89.47a

CNS embryonal
tumour outcome 85.00 88.33a 88.33a

Colon tumour 95.16a 93.55 90.32

Lung cancer 92.62 93.29a 92.62

Prostate cancer 67.65 73.53a 67.65

Prostate cancer outcome 52.38 85.71a 76.19

a Denotes method that has the highest accuracy.

Figure 5 Comparison of the single C4.5, Bagging C4.5 (bagging) and AdaBoost C4.5 (boosting) Predictive accuracy (Acc) and Positive predictive value (PPV) on the
seven cancerous gene expression data.
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Figure 5 illustrates the predictive accuracy (Acc) versus

positive predictive value (PPV) of the different methods.

Figure 6 shows the sensitivity (S
n
) and specificity (S

p
) of

the methods in classifying the gene expression data. From

Figure 6, we observe that bagging method applied to prostate

cancer obtained 100% sensitivity but 0% specificity. This

is due to the fact that the bagging classifier predicts all the

test data as tumour tissues. In this specific case, the classifier

is unable to distinguish between the tumour tissues and the

normal tissues. However, considering the other two methods

(single C4.5 and AdaBoost C4.5), both obtain the same

predictive accuracy and at the same time increase the

specificity to 56% while retain a relatively good sensitivity

(72%). This shows that the latter methods (single C4.5 and

AdaBoost C4.5) perform much better compared to bagging,

and are capable of distinguishing the tumour tissues from

the normal tissues. This observation suggests that when

comparing the performance of different classifiers, one

needs to take into account the sensitivity and specificity of

a classifier, rather than just concentrating solely on its

predictive accuracy.

Discussion
The key observation from this experiment is that none of

the individual methods can claim that they are superior to

the others. This is due to the algorithms’ inherited statistical,

computational and representational limitations (Dietterich

2000a). The learning objective of these methods is to

construct a discriminative classifier, which can be viewed

as finding (or approximating) the true hypothesis from the

entire possible hypothesis space. We will refer to a true

hypothesis as a discriminatory classifier in the rest of this

paper. Every learning algorithm employs a different search

strategy to identify the true hypothesis. If the size of the

training example is too small (which is the case when

classifying microarray data), the individual learner can

induce different hypotheses with similar performances from

the search space. Thus, by averaging the different

hypotheses, the combined classifier may produce a good

approximation to the true hypotheses (the discriminative

classifier). The computational reason is to avoid local optima

of the individual search strategies. The final classifier may

Figure 6 Comparison of the single C4.5, Bagging C4.5 (bagging) and AdaBoost C4.5 (boosting) Sensitivity (S
n
) and Specificity (S

p
) on the seven cancerous gene

expression data.
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provide a better approximation to the true hypotheses by

performing different initial searches and combining the

outputs. Lastly, due to the limited amount of training data,

an individual classifier may not represent the true

hypothesis. Thus, through considering diverse base

classifiers, it may be possible for the final classifier to

approximate representation of the true hypotheses.

One interesting observation arising from this experiment

is the poor performance of AdaBoost C4.5. Although data

cleaning has been performed in this study, we believe that a

lot of noise still remains in the training data. This is due to

AdaBoost C4.5 trying to construct new decision trees to

eliminate the noise (or misclassified instances) in every

iteration. The AdaBoost C4.5 algorithm attempts to optimise

the representational problem for the classification task. Such

direct optimisation may lead to the risk of overfitting because

the hypothesis space for the ensemble is much larger than

the original algorithm (Dietterich 2000a). This is why

AdaBoost C4.5 performs poorly in this experiment. Similar

results were also observed by Dudoit et al (2002), and Long

and Vega (2003).

Conversely, bagging is shown to work very well in the

presence of noise. This is because the re-sampling process

captures all of the possible hypotheses, and bagging tends

to be biased hypotheses that give good accuracy on the

training data. By averaging the hypotheses from individual

classifiers, bagging increases the statistical optimisation to

the true hypothesis. Thus, in this experiment, bagging

consistently works well in classifying the cancerous

samples.

This study shows that the true hypothesis

(‘discriminatory genes’) of colon cancer is captured and

represented by a single decision tree, thus single C4.5

outperforms the ensemble methods (Figure 2).

Various empirical observations and studies have shown

that it is unusual for single learning algorithms to outperform

other learning methods in all problem domains. We carried

out empirical studies comparing the performance of 7

different single learners to 5 ensemble methods in

classifying biological data, and showed that most of the

ensemble methods perform better than an individual learner

(Tan and Gilbert 2003). Our observations agree with

previous ensemble studies in other domains where combined

methods improve the overall performance of the individual

learning algorithm.

Ensemble machine learning has been an active research

topic in machine learning but is still relatively new to the

bioinformatics community. Most of the machine learning-

oriented bioinformatics literature still largely concentrates

on single learning approaches. We believe that ensemble

learning is suitable for bioinformatics applications due to

the fact that the classifiers are induced from incomplete and

noisy biological data. This is specifically the case when

classifying microarray data where the number of examples

(biological samples) is relatively small compared to the

number of attributes (genes). On the other hand it is a hard-

problem for the single learning method to capture true

hypotheses from this type of data. Ensemble machine

learning provides another approach to capture the true

hypothesis by combining individual classifiers. These

methods have been well tested on artificial and real data

and have proved to outperform individual approaches

(Breiman 1996; Freund and Schapire 1996; Quinlan 1996;

Bauer and Kohavi 1999; Dietterich 2000b; Dudoit et al 2002;

Long and Vega 2003; Tan and Gilbert 2003). Although these

methods have been supported by theoretical studies, the only

drawback for this approach is the complexity of the final

classifier.

Conclusions
Machine learning has increasingly gained attention in

bioinformatics research. Cancer classification based on gene

expression data remains a challenging task in identifying

potential points for therapeutics intervention, understanding

tumour behaviour and also facilitating drug development.

This paper reviews ensemble methods (bagging and

boosting) and discusses why these approaches can often

perform better than a single classifier in general, and

specifically in classifying gene expression data. We have

performed a comparison of single supervised machine

learning and ensemble methods in classifying cancerous

gene expression data. Ensemble methods consistently

perform well over all the datasets in terms of their specificity,

sensitivity, positive predicted value and predictive accuracy;

and bagging tends to outperform boosting in this study. We

have also demonstrated the usefulness of employing

ensemble methods in classifying microarray data, and

presented some theoretical explanations on the performance

of ensemble methods. As a result, we suggest that ensemble

machine learning should be considered for the task of

classifying gene expression data for cancerous samples.
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