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Abstract. BioModel Engineering is the science of designing, construct-
ing and analyzing computational models of biological systems. It is in-
spired by concepts from software engineering and computing science.

This paper illustrates a major theme in BioModel Engineering, namely
that identifying a quantitative model of a dynamic system means build-
ing the structure, finding an initial state, and parameter fitting. In our
approach, the structure is obtained by piecewise construction of models
from modular parts, the initial state is obtained by analysis of the struc-
ture and parameter fitting comprises determining the rate parameters of
the kinetic equations. We illustrate this with an example in the area of
intracellular signalling pathways.

1 Introduction

BioModel Engineering takes place at the interface of computing science, math-
ematics, engineering and biology, and provides a systematic approach for de-
signing, constructing and analyzing computational models of biological systems.
Some of its central concepts are inspired by efficient software engineering strate-
gies. BioModel Engineering does not aim at engineering biological systems per
se, but rather aims at describing their structure and behavior, in particular
at the level of intracellular molecular processes, using computational tools and
techniques in a principled way.

In this paper we present some techniques for the systematic construction of
models of biochemical systems from constituent building blocks, and how such
models can be tuned to exhibit some desired behaviour, applying our approach to
a signal transduction pathway. Our presentation is aimed at computing scientists
and software engineers who want to learn how their skills can be successfully
applied in modern systems biology.

After a brief introduction of the biological context, this paper illustrates
a major theme in BioModel Engineering, namely that identifying a (qualita-
tive) model means (1) finding the structure, (2) obtaining an initial state and
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(3) parameter fitting. In our approach, the structure is obtained by piecewise
construction of models from modular parts, the initial state which describes
concentrations of species or numbers of molecules is obtained by analysis of the
structure and parameter fitting comprises determining the rate parameters of
the kinetic equations by reference to trusted data.

2 Biochemical Context

There are many networks of interacting components known to exist as part
of the machinery of living organisms. Biochemical networks can be metabolic,
regulatory or signal transduction networks.

In this paper we focus on signal transduction, which is the mechanism which
enables a cell to sense changes in its environment and to make appropriate re-
sponses. The basis of this mechanism is the conversion of one kind of signal into
another. Extracellular signaling molecules are detected at the cell membrane by
being bound to specific trans-membrane receptors that face outwards from the
membrane and trigger intracellular events, which may eventually effect tran-
scriptional activities in the nucleus. The eventual outcome is an alteration in
cellular activity including changes in the gene expression profiles of the respond-
ing cells. These events, and the molecules that they involve, are referred to as
(intracellular) “signalling pathways”; they contribute to the control of processes
such as proliferation, cell growth, movement, apoptosis, and inter-cellular com-
munication. Many signal transduction processes are “signalling cascades” which
comprise a series of enzymatic reactions in which the product of one reaction
acts as the catalytic enzyme for the next. The effect can be amplification of
the original signal, although in some cases, for example the MAP kinase cas-
cade, the signal gain is modest [SEJGM02], suggesting that a main purpose is
regulation [KCG05] which may be achieved by positive and negative feedback
loops [BF00], although there may be some feedback redundancy with respect to
receptor internalisation [OSG+08].

3 Modelling using building blocks based on enzymatic
reactions

Formally, a quantitative model of a biochemical pathway can be described by a
tuple < T,M,K,R > where T is the topology (biochemical species and their con-
nectivities), M an initial state describing concentrations or molecular numbers
of species, K a set of kinetic equations and R a set of kinetic rate parameters.
A qualitative model comprises at least the topology T with optionally an initial
state.

In this section we discuss how signal transduction cascades can be modelled
in a modular fashion using a building-block approach, which will generate the
topology T and set of kinetic equations K of a model. We have shown in previous
work [BGHO08] how building-block based construction can be achieved using
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both a qualitative approach – Qualitative Petri nets, and quantitative approaches
– Continuous Petri Nets and Ordinary Differential Equations (ODEs), but in
this review we restrict our discussions to ODEs. In the following sections we
will introduce techniques to generate an initial state, or in Petri net terminology
marking and obtain a set of rate parameters for the model.

The basic building block of any biological dynamic system is the enzymatic
reaction: the conversion of a substrate into a product catalysed by an enzyme.
Such enzymatic reactions can be used to describe metabolic conversions, the
activation of signalling molecules and even transport reactions between various
subcellular compartments. Enzymes greatly accelerate reactions in one direction
(often by factors of at least 106), and most reactions in biological systems do not
occur at perceptible rates in the absence of enzymes. We can illustrate a simple
enzymatic reaction involving one substrate A, one product B, and an enzyme E
by

A
E−→ B . (1)

3.1 Basic kinetic descriptions

In general, there are two ways to describe the kinetics of enzymatic reactions:
Michaelis-Menten and Mass-action.

Michaelis-Menten

The Michaelis-Menten equation for the basic enzymatic reaction is given in
Equation MM

V = Vmax × [A]
KM + [A]

(MM)

where V is the reaction velocity, Vmax is the maximum reaction velocity, and
KM , the Michaelis constant , is the concentration of the substrate at which the
reaction rate is half its maximum value. The concentration of the substrate A
is represented by [A] in this rate equation. With the total enzyme concentration
[ET ] and the equation

kcat =
Vmax
[ET ]

(2)

we are able to write the differential equations describing the consumption of the
substrate and production of the product as:

d[A]
dt

= −d[B]
dt

= −kcat× [ET ]× [A]
(KM + [A])

(3)

The Michaelis-Menten equation only holds at the initial stage of a reaction
before the concentration of the product is appreciable, and makes the following
assumptions:
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1. The concentration of product is (close to) zero.
2. No product reverts to the initial substrate.
3. The concentration of the enzyme is much less than the concentration of the

substrate, i.e. [E]� [A].

Although these are reasonable assumptions for enzyme assays in a test tube,
assumptions 1 and 2 do not hold for most metabolic pathways in vivo, and none
of the assumptions is correct for cellular signalling pathways.

Mass-action

A more detailed description using Mass-action kinetics can be given by taking
into account the mechanism by which the enzyme acts, namely by forming a
complex with the substrate, modifying the substrate to form the product, and
a disassociation occurring to release the product, i.e. A+E � AE → B+E. In
order to take into account the kinetic properties of many enzymes, we associate
rate constants with each reaction. Thus the enzyme E can combine with the
substrate A to form the A|E complex with rate constant k1. The A|E complex
can dissociate to E and A with rate constant k2, or form the product B with
rate k3:

A+ E

k1−→
←−
k2

A|E k3−→ B + E . (MA1)

This simple mass-action model is related to the Michaelis-Menten Equa-
tion MM as described previously by the following constraints:

k2 + k3

k1
= KM (4)

where k3 = kcat = Vmax
[ET ] as in Equation 2.

We can derive a set of differential equations, see Equation 5 from the mass-
action description given in Equation MA1:

d[A]
dt = −k1 × [A]× [E] +k2 × [A|E]

d[A|E]
dt = k1 × [A]× [E] −k2 × [A|E] −k3 × [A|E]

d[B]
dt = +k3 × [A|E]

d[E]
dt = −k1 × [A]× [E] +k2 × [A|E] +k3 × [A|E]

(5)

The mass-action model described in Equation MA1 assumes that almost none
of the product reverts back to the original substrate, a condition that holds at the
initial stage of a reaction before the concentration of the product is appreciable.
This means that this type of mass-action model is a direct equivalent of the
Michaelis-Menten equation, and will face the same limitations when applied to in
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vivo signalling systems. However, the mass-action description offers much more
flexibility and thus can be easily expanded to cover more general situations, for
example Equations MA2 and MA3 below.

A+ E

k1−→
←−
k2

A|E k′3−→ B|E
k′2−→
←−
k′1

B + E (MA2)

A+ E

k1−→
←−
k2

A|E
k′3−→
←−
k′4

B|E
k′2−→
←−
k′1

B + E (MA3)

3.2 Modelling one step in a signal transduction cascade

One step in a classical signal transduction cascade comprises the phosphorylation
of a protein by an enzyme S which is termed a kinase, see Figure 1. It is the phos-
phorylated form Rp which can act as an enzyme to catalyse the phosphorylation
of a further component in the cascades, see Figure 3(a).

S

RpR

Fig. 1. Basic enzymatic step; R – signalling protein; Rp – phosphorylated form; S –
kinase

We can model this reaction using any of the kinetic patterns introduced
in Section 3.1 e.g., the Mass-action MA1 pattern as follows, straightforwardly
adapted from Equation MA1 by renaming in Equation 6, where R is a protein
and Rp its phosphorylated form, S is a signal enzyme and R|S the complex
formed from R and S:

R+ S

k1−→
←−
k2

R|S k3−→ Rp + S (6)

In order to ensure that such a single step is not a ‘one shot’ affair (i.e. to
ensure that the substrate in the non-phosphorylated form is replenished and
not exhausted), and hence that the signal can be deactivated where necessary,
biological systems employ a phosphatase which is an enzyme promoting the de-
phosphorylation of a phosphorylated protein. This is depicted in Figure 2, which
we are going to model by our Mass-action pattern.

Using the MA1 pattern (Mass-action kinetics) we get Equation 7, where
P is a phosphatase and kn, krn are rate constants for the forward and reverse
reactions respectively. In many cases it would also be justified to model the
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P

S

RpR

Fig. 2. Basic phosphorylation–dephosphorylation step; R – signalling protein; Rp –
phosphorylated form; S – kinase; P – phosphatase

dephosphorylation as an un-catalysed first-order decay reaction, because detailed
knowledge of phosphatase concentrations, specificities, and kinetic parameters
is still lagging behind our understanding of the kinase enzymes.

R+ S

k1−→
←−
k2

R|S k3−→ Rp + S

R+ P
kr3←−− R|P

kr1←−−
−−→
kr2

Rp + P

(7)

3.3 Composing kinase cascades using building blocks

Once we have defined the building blocks, we can compose them by chaining
together basic phosphorylation–dephosphorylation steps.

Vertical and horizontal composition Composition can be performed verti-
cally as in Figure 3(a) to form a signalling cascade, where the signalling protein
in the second stage is labelled RR and its phosphorylated form is labelled RRp.
Horizontal composition is illustrated in Figure 3(b) where a double phosphoryla-
tion step is described; the double phosphorylated form of a protein is subscripted
by pp.

We can again use any of the kinetic patterns that were previously introduced
in order to derive the models. For example, using MA1 we can represent a two-
stage cascade illustrated in Figure 3(a) by the following mass-action equations,
ignoring for the sake of simplicity the dephosphorylation steps in the textual
representation. The rate constants associated with the second stage are labelled
kkn. We would not expect the dephosphorylation rate constants to be related to
the phosphorylation rate constants.
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P

RppRpR

S(b)(a) S1

R Rp

P1

RR RRp

P2P2

RRpRR

P1

RpR

S1(a)

Fig. 3. (a) Vertical composition: Cascade formed by chaining two basic
phosphorylation-dephosphorylation steps. (b) Horizontal composition: One stage cas-
cade with a single to double phosphorylation step.

R+ S1

k1−→
←−
k2

R|S1
k3−→ Rp + S1

RR+Rp

kk1−−→
←−−
kk2

RR|Rp kk3−−→ RRp +Rp

(8)

The addition of a double phosphorylation step to a cascade layer is given in
Figure 3(b), where both the single and double phosphorylation steps are catal-
ysed by the same enzyme S; likewise, the two dephosphorylation steps are usually
catalysed by the same phosphatase P . This system component can be described
by Equation 9, if we apply the mass-action kinetics MA1 and ignore again for
the sake of simplicity the dephosphorylation steps in the textual representation.
The rate constants associated with the double phosphorylation are labelled kpn.
Often, we can assume that the rate constants for the two steps of the double
phosphorylation are similar to those for the single phosphorylation.

R+ S

k1−→
←−
k2

R|S k3−→ Rp + S

Rp + S

kp1−−→
←−−
kp2

Rp|S kp3−−→ Rpp + S

(9)

3.4 Negative and positive feedback

Feedback in a signalling network can be achieved in several ways. For example,
negative feedback can be implemented at the molecular level by sequestration
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of the input signal S1 by the product of the second stage RRp. This system is
sketched in Figure 4(a), and can be achieved by combining equations 8 and 10.

Similarly, positive feedback can also be achieved by the sequestration of the
input signal S1 by the product of the second stage, under the additional condition
that the resulting S1|RRp complex is a more active enzyme than S1 alone. In
this case we add Equation 11 to equations 8 and 10. The system is sketched in
Figure 4(b).

S1 +RRp

i1−→
←−
i2

S1|RRp (10)

R+ S1|RRp
kp1−−→
←−−
kp2

R|S1|RRp kp3−−→ Rp + S1|RRp (11)

Many other molecular mechanisms can be envisaged and are in fact observed
in biological systems. All of these can be represented using the same basic for-
malism. For example, we can model an influence of RRp on the phosphatase
P1, in which case the effects of positive and negative feedback are reversed, i.e.
sequestration of P1 by RRp can cause positive feedback – see Figure 4(c). This
can be achieved with Equations 8 and 12. Alternatively the situation where the
P1|RRp complex is more active than P1 will cause negative feedback, Figure 4(d),
and can be described by adding Equation 13 to Equations 8 and 12.

P1 +RRp

i1−→
←−
i2

P1|RRp (12)

Rp + P1|RRp
kr′1−−→
←−−
kr′2

Rp|P1|RRp kr′3−−→ R+ P1|RRp (13)

4 Deriving initial states from qualitative descriptions

Recall that a quantitative model of a biochemical pathway can be described by a
tuple comprising the topology, an initial marking or set of concentrations, a set
of kinetic equations and a set of rate parameters. Using the approach described
in the previous section we have shown how to construct an initial model with
a topology and set of kinetic equations. In this section we outline an approach
to generate the initial steady state, and in the following section we will describe
one approach to obtain a set of rate parameters.

The most abstract representation of a biochemical network is qualitative and
is minimally described by its topology, usually as a bipartite directed graph with
nodes representing biochemical entities or reactions, or in Petri net terminology
places and transitions . Petri nets are a well-established technique for represent-
ing biochemical networks, outlined e.g. in [MFD+03], [HGD08] and for a general
introduction to Petri nets see [Mur89].
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(b)

R Rp

P1

RR RRp

P2

S1(a)

R Rp

P1

RR RRp

P2

S1

(d)

R Rp

P1

RR RRp

P2

S1

R Rp

P1

RR RRp

P2

S1(c)

Fig. 4. Two-stage cascade with (a) negative feedback, (b) positive feedback; alternative
two-stage cascade with (c) negative feedback, (d) positive feedback.

The qualitative description can be further enhanced by the abstract represen-
tation of discrete quantities of species, achieved in Petri nets by the use of tokens
at places. These can represent the number of molecules, or the level of concen-
tration, of a species, and a particular arrangement of tokens over a network is
called a marking.

A P-invariant stands for a set of places, over which the weighted sum of
tokens is constant, independently of any firing. So, P-invariants represent token-
preserving sets of places. In the context of metabolic networks, P-invariants re-
flect substrate conservations, while in signal transduction networks P-invariants
often correspond to the several states of a given species (protein or protein com-
plex). A place belonging to a P-invariant is obviously bounded.

A T-invariant has two interpretations in the given biochemical context. The
entries of a T-invariant represent a multiset of transitions which by their partially
ordered firing reproduce a given marking, i.e. they occur basically one after
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the other. The partial order sequence of the firing events of the T-invariant’s
transitions may contribute to a deeper understanding of the net behaviour.

The entries of a T-invariant may also be read as the relative transition firing
rates of transitions, all of them occurring permanently and concurrently. This ac-
tivity level corresponds to the steady state behaviour [PZHK05]. Independently
of the chosen interpretation, the net representation of minimal T-invariants (the
T-invariant’s transitions plus their pre- and post-places and all arcs in between)
characterize typically minimal self-contained subnetworks with an enclosed bio-
logical meaning.

In previous work [GH06] we have shown how to systematically generate initial
markings from (unmarked) qualitative Petri net descriptions, which can then be
used in corresponding quantitative models. This work took as a concrete example
the RKIP pathway [CSK+03], which is a subset of the ERK signalling pathway.

Our approach was to systematically construct suitable initial states by P-
invariants and then to check their suitability by T-invariants, which have to be
feasible. In more detail, having initially created an unmarked place/transition
Petri net, a systematic construction of the initial marking can be made by placing
tokens on places, taking into consideration the following criteria:

– Each P-invariant needs at least one token.
– All (non-trivial) T-invariants should be feasible, meaning, the transitions,

making up the T-invariant’s multi-set can be fired in an appropriate order.
– Additionally, it is common sense to look for a minimal marking (as few tokens

as possible), which guarantees the required behaviour.
– Within a P-invariant, choose the species with the most inactive (e.g. non-

phosphorylated) or the monomeric (i.e. non-complexed) state.

In a previous paper [GH06] we created a discrete Petri net model of the
RKIP pathway, and analysed the model to show that it enjoys several nice prop-
erties, among them boundedness, liveness, and reversibility. Moreover, the net is
covered by P-invariants and T-invariants, all of them having sensible biological
interpretation, and it fulfills several special functional properties, which have
been expressed in temporal logic. Using reachability graph analysis we identified
13 strongly connected states out of 2048 theoretically possible ones, which permit
self-reinitialization of the Petri net. From the viewpoint of the discrete model,
all these 13 states are equivalent and could be taken as an initial state resulting
in exactly the same total (discrete) system behaviour. We then transformed the
discrete Petri net into a continuous model and demonstrated empirically that in
the ODE model the 13 initial states, derived from the validated discrete model,
result in the same (continuous) steady state. Moreover, none of the other 2035
possible initial states result in a steady state close to that derived using those
identified by reachability graph analysis. This approach for steady state analysis
was also successfully applied in another case study [GHL07] to a larger model
of the core MAPK pathway created by Levchenko et al.[LBS00].
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5 Parameter estimation using model checking

Model checking is an automated technique for the analysis of reactive systems to
check whether properties, often expressed as formulas of temporal logic, hold for
a model of the system. This technique was originally developed to check models
of technical systems [Mer01], and has been more recently applied to biochemical
networks e.g. [CF03]. In previous work [DG08] we have shown in detail how
model checking based on temporal logic descriptions of behaviour can be used
in parameter estimation; in this section we summarise the main results.

Temporal logic is well-suited to formally represent semi-quantitative descrip-
tions given by biologists who are often unsure about exact values of biochemical
species over time due to the nature of the wet-lab experimental technology, and
will describe behaviour in a semi-quantitative manner. For example, “the con-
centration of the protein peaks within 2 to 5 minutes and then falls to less than
50% of the peak value within 60 minutes”. A significant challenge is how to
automatically build a model which conforms to semi-quantitative behaviour.

5.1 PLTLc

Linear-time Temporal Logic (LTL) [Pnu81] is the fragment of full Computa-
tional Tree Logic (CTL*) [CGP01] without path quantifiers, implicitly quantify-
ing universally over all paths. LTL has been introduced in a probabilistic setting
in [Bai98], and extended by numerical constraints over real value variables in
[FR07]. PLTLc combines both extensions, complemented by the filter construct
as used in Probabilistic Computational Tree Logic (PCTL) [HJ94] and Contin-
uous Stochastic Logic (CSL) [AKVR96]. We start with the LTL with numerical
constraints (LTLc) syntax:

φ ::= Xφ |Gφ | Fφ | φUφ | φRφ | φ ∨ φ | φ ∧ φ | ¬φ | φ→ φ |
value = value | value �= value | value > value| value ≥ value |
value < value | value ≤ value | true | false

Numerical constraints over free variables are defined in this logic through
the inclusion of free variables denoted by $fVariable in the definition of value.
Regular variables are read-only values which describe the behaviour of the model,
whereas free variables are instantiated during the model checking process to the
range of values for which the temporal logic property holds. Free variables are
defined to have integer domains initialised to [0 → ∞) and describe protein
concentrations, numbers of molecules and time. Constraints over free variables,
which involve equality/inequality and relational operators, restrict the domain
of the free variable.
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PLTLc enhances LTLc by the inclusion of a probability operator and fil-
ter construct, and the probabilistic interpretation of the domains for the free
variables. The top-level definition of PLTLc is:

ψ ::= P�x[ φ ] |P�x[ φ{SP} ]

where φ is an LTLc expression. SP is a State Proposition defined to be φ
without any temporal operator (X,G, F, U,R), and containing no free variables
without a loss of expressivity. Note that the square and curly brackets are part
of PLTLc. Given that � ∈ {>,≥, <,≤}, P�x is any inequality comparison of
the probability of the property holding true, for example P≥0.5. We also per-
mit the expression P=? returning the value of the probability of the property
holding true. We disallow equality testing of the probability, P=x because of the
representation of real values and the semantics of their equality.

The semantics of PLTLc is defined over a finite set of finite paths through
the system’s state space – stochastic or deterministic simulations, or time series
data recorded in wet lab experiments. Let a path π be a finite sequence of states
describing the behaviour of a biochemical system, π = s0, s1, ..., sn (n <∞) and
πi be the subsequence of π starting from state si, i ≤ n, thus πi = si, si+1, ..., sn.
Each path in the set of paths can be evaluated to a boolean value as to whether
φ or φ{SP} holds. When all paths are evaluated, the number of true values
in the set over the size of the set yields the overall probability of the PLTLc
property. Hence for a stochastic model, where the set of paths is typically > 1,
the probability is in the range [0 → 1] and calculated through Monte Carlo
approximation, whereas a continuous model which contains a single path has a
probability of either 0 or 1.

5.2 Distance Metrics

The distance between a model’s behaviour M and the desired behaviour Mdes

with respect to some property ψ can be calculated using a distance metric.
Perhaps the simplest definition of the metric is the square difference between

the model’s probability of exhibiting some behavioural property ψ, P (ψ) and
desired probability Pdes(ψ):

dψ(M,Mdes) = |P (ψ)− Pdes(ψ)|2

This approach works well in the stochastic world where the model exhibits
many behaviours and the probability of the property is in the range [0 → 1].
However, in the continuous world there is a single behaviour and the probability
is either 0 or 1, thus the metric is too coarse grained to be used in a search
algorithm in the continuous world. To be useful in the search algorithm, the dis-
tance metric should return a value which indicates whether altering the current
model has caused its behaviour to be closer to the desired behaviour, therefore
providing a gradient for the search algorithm to ascend. We have defined such a
distance metric for continuous models using a residual sum of squares function
over probabilistic domains of free variables - for more details see [DG08].
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5.3 Computational System

We implemented a computational system called the Monte Carlo Model Checker
with a Genetic Algorithm, MC2(GA). The purpose of this computational sys-
tem is to estimate the parameters of a model to make it exhibit desired be-
havioural properties. A genetic algorithm is used to move models through pa-
rameter space to minimise their distance to the desired behaviour, checked using
a model checker.

Each model in our MC2(GA) system has a fixed structure and is represented
by a chromosome, which is a set of kinetic rate constant values to be estimated
(the model’s genes) within predefined ranges. The chromosome could equally
include initial concentrations/masses.

In the initial generation, a population of models is created by assigning to
each model random values within the ranges for the kinetic rate constants. Each
model in the population is evaluated to a fitness value related to the distance of
its behaviour to the desired behaviour, hence a model with a smaller distance
to the desired behaviour has a higher fitness. Our approach is to vary models’
kinetic rate constant values in order to maximise their fitness values.

5.4 Case Study: MAPK Pathway

The EGF signal transduction pathway conveys Epidermal Growth Factor signals
from the cell membrane to the nucleus via the MAP Kinase cascade [KCG05].
The core MAPK cascade can be stimulated by both Epidermal Growth Factor
(EGF) as well as Nerve Growth Factor (NGF). The reaction of the cell to EGF
stimulation is cell proliferation, however the response to NGF is cell differentia-
tion. The EGF signal transduction pathway produces transient Ras, MEK and
ERK activation whereas NGF stimulation produces sustained activation. The
underlying differences of the models describing EGF and NGF stimulation is of
key interest to biochemists.

Work reported in [BF00], which attempted to discover the quantitative dif-
ferences in initial concentrations and kinetic rate constants between models of
these pathways with fixed topology. The authors in that original paper varied
the initial concentrations and kinetic rate constants within biochemically sen-
sible ranges. Simulation was performed with the model using each parameter
value in the range and the output was manually inspected for sustained Ras,
MEK and ERK activation. A result of this work was the finding that a 40-fold
increase in the kinetic rate constant of SOS dephosphorylation can change the
behaviour of the model from transient activation to sustained activation. In our
approach, reported in [DG08] we showed that this analysis could be improved by
constructing a formal definition of the desired behaviour in temporal logic, and
using model checking of the desired behaviour to replace the manual inspection
of the simulation outputs.

Characterising the Desired Pathway Behaviour The behaviour of sus-
tained Ras, MEK and ERK activation arising from NGF stimulation observed
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in wet-lab experiment was described in rather informal statements in the original
paper [BF00].

“The level of RasGTP rapidly reaches a maximum of up to 20% of total Ras
within 2 min [then] the level of RasGTP is sustained at around 8% of total Ras.”

Similar statements were made about sustained MEK and ERK activation. We
formalised these statements using semi-quantitative PLTLc such that a model
could be automatically checked for these behaviours using the MC2(PLTLc)
model checker. We formalised these statements in a way to account for biological
error by relaxing the constraints, for example that the stable level of RasGTP
is 8% to between 5% and 10%:

sustained Ras: Active Ras peaks within 2 minutes to a maximum of 20%
of total Ras and is stable between 5% and 10% from at least 15 minutes

P=? [ ( d(active Ras) > 0 ) ∧ ( d(active Ras) > 0 ) U ( time ≤ 2 ∧
active Ras ≥ 0.15∗total Ras ∧ active Ras ≤ 0.2∗total Ras ∧
d(active Ras) < 0 ∧ ( d(active Ras) < 0 ∧ time < 15 ) U ( G(
(active Ras) ≥ 0.05∗total Ras ∧ active Ras ≤ 0.10∗total Ras ) ) ) ]

where the protein RasGTP is found in isolation and in two complexes, thus active

Ras = RasGTP + Ras Raf + Ras GAP and total Ras = RasGTP + Ras Raf +

Ras GAP + RasGDP + Ras ShcGS.

Genetic Algorithm We first implemented a fitness function for use in MC2(GA)
to describe how close a model is to sustained activation. The descriptions of
sustained Ras, MEK and ERK activation given earlier were not particularly
helpful in the continuous setting due to the probability being simply 0 or 1.
A fitness function based on a description which includes free variables allows
greater expressivity using the probabilistic domains. Hence, we have rewritten
these descriptions of sustained behaviours using free variables, for example:

sustained Ras with free variables: Active Ras peaks within 2 minutes to
a maximum of 20% of total Ras and is stable between any value in $RasTail1
and any value in $RasTail2 from at least 15 minutes

P=? [ ( d(active Ras) > 0 ) ∧ ( d(active Ras) > 0 ) U ( time ≤ 2 ∧
active Ras ≥ 0.15∗total Ras ∧ active Ras ≤ 0.2∗total Ras ∧
d(active Ras) < 0 ∧ ( d(active Ras) < 0 ∧ time < 15 ) U ( G(

active Ras ≥ $RasTail1 ∧ active Ras ≤ $RasTail2 ) ) ) ]

We then applied our computational system to find novel parameter sets which
exhibit the desired behaviour. We estimated the values of a set of 16 critical pa-
rameters identified as being potential candidates for modification by individually
scanning all parameters and model checking the resulting simulation outputs.
We also applied MC2(GA) to the critical parameters without V 28, to assess
whether V 28 is crucial to achieving sustained activation. We found that if the
critical parameters are estimated with V 28, then the convergence is quicker and
the best model returned was fitter. The best model returned when estimating
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the critical parameters had fitness value 1, whereas with V 28 removed the best
model returned had a fitness value approximately 0.93.

Figure 5 shows the output of one of the best model returned when estimating
the critical parameters with and without V 28. Both behaviours showed good
similarity (visually and in terms of fitness value) to the behaviour of the NGF
signalling pathway outlined in the original paper. We also found that we can
achieve a model with fitness value 1 through a 16-fold increase of V 28, com-
pared with the original paper’s 40-fold increase, if we also vary the other critical
parameters.
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Fig. 5. The original model of the NGF signalling pathway (dotted) compared with the
best model returned when varying the critical parameters (solid) and when varying the
critical parameters without V 28 (dashed). The best model returned when varying the
critical parameters only required a 16-fold increase in V 28 to achieve fitness value 1.

6 Conclusions

In this paper we have introduced the area of BioModel Engineering which is the
science of designing, constructing and analyzing computational models of biolog-
ical systems. We have illustrated some of the essential activities which BioModel
Engineering encompasses - namely the construction of models of biological sys-
tems within a rigorous design framework, and techniques for the identification of
initial start states, and the determination of rate parameters. We have presented
these concepts in a practical manner, by way of an example in the area of intra-
cellular signalling pathways. Our method is based on a modular building-block
approach to the construction of network topology and associated biochemical
equations, combined with analytical techniques from Petri nets for the determi-
nation of suitable start-states, and a novel model checking approach to drive the
fitting of kinetic parameters.
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