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Percolation and depinning transitions in cut-and-paste models of adaptation
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We show that a cut-and-paste model to mimic a trial-and-error process of adaptation displays two
pairs of percolation and depinning transitions, one for persistence and the other for efficiency. The
percolation transition signals the onset of a property and the depinning transition, the growth of
the same property. Despite its simplicity, the cut-and-paste model is qualitatively the same as the
Minority Game. A majority cut-and-paste model is also introduced, to mimic the spread of a trend.
When both models are iterated, the majority model reaches a frozen state while the minority model
converges towards an alternate state. We show that a transition from the frozen to the alternate
state occurs in the limit of a non-adaptive system.
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I. INTRODUCTION

The art of representing complex systems with simple
models is based on abstracting towards an ideal system,
keeping only the relevant features. Trying to keep the
essential and discarding the superfluous. This approach
has been successfully applied in physics, with the Ising
model as paradigm of simplicity [1], and is now being
exported to a variety of research fields, for instance with
the growth of random networks [2], the repetitions of an-
cestors in genealogical trees [3] or the behaviour of flocks
of birds [4]. As an example, the Bak-Sneppen model [5]
allows one to simulate the dynamics of the natural co-
evolution of many interacting species with a few lines of
programming code, and the results compare well with
empirical data.

Another example is the Minority Game [6], which rep-
resents the competition for scarce resources by reduc-
ing the dynamics to the search for minority between two
groups. Developed in the framework of financial markets,
it is usual to consider that this model represents agents
having to guess whether buying or selling is the best
choice for the next round of transactions. We present
the Minority Game in greater detail in Sec. II, and show
that eventhough it appears to be very simple, it requires a
certain level of complexity to represent many agents com-
peting against one another. This complexity has been
just enough to prevent the discovery of an exact solu-
tion to the model. In fact, all analytical approaches of
the model [7–9] depend at some point on rather intricate
calculations. To avoid these complications, in this paper
we analyse a macroscopic model based on the dynamics
of the Minority Game, without modeling explicitly the
microscopic dynamics of interacting agents [10].

This work has three basic motivations. First, micro-
scopic quantities are rarely accessible in real life sys-
tems. Hence, it seems natural to investigate how mi-
croscopic models relate to some macroscopic dynamics.
Second, the purpose of the Minority Game is oversimpli-
fied, guessing a minority group, but appears surprisingly
out of reach of exact analytical solutions. We analyze

here a much simpler model, which displays similar tran-
sitions and is exactly solvable. Third, we hope that, by
introducing complexity step by step in our simple exactly
solvable model, a better understanding of microscopic
models will be achieved.

II. THE MINORITY GAME

The Minority Game is a generic model of competition
for scarce resources, with applications to financial mar-
kets. A set of N agents compete recursively to be in
the minority group amongst buyers and sellers. They
have to decide which action to choose between buying
or selling at each time step. It is assumed that being in
the minority group allows them to shop around and get
a better deal. Each agent analyzes the outcome of the
game for the m previous time steps, the history of the
system, and uses one of her s strategies to make her next
decision. She ranks her strategies according to their pre-
vious record of forecasting the minority group, regardless
of whether these strategies where used or not. An agent
always uses her strategy with the highest success rate for
predictions.

If it is assumed that the agents in the minority group
are rewarded with a point and that the others get noth-
ing, the system is most efficient whenever there are as
many buyers as sellers. Here, efficiency would refer to
the number of points given in any round of transactions,
with N/2 as an upper limit. Hence, the deviation of the
size of the two groups from N/2 is a direct measure of the
lack of efficiency of the system or the lack of coordination
between agents. There are many different measures for
these deviations but the one most commonly used is the
variance, defined as

σ2 =
N
∑

X=0

F (X)

(

X − N

2

)2

(1)

where F (X) is the probability of having X buyers. If
the agents were guessing at random between buying and
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selling, we would expect σ2
rand = N/4. It is an impor-

tant property of the Minority Game that σ2 can either be
greater than or less than σ2

rand, depending on the particu-
lar choice of the model’s three parameters, (N, m, s). Re-
member that these are the number of agents, the length
of the history and the number of strategies an agent has
at her disposal, respectively. Using α = 2m/N , it is pos-
sible to make all the different values of σ2 for one value
of s collapse on a single curve, as shown in Fig. 1 for
s = 2.
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FIG. 1. Variance σ2 of the number of agents making one
choice divided by the number of agents N , as a function of α
for agents with two strategies at their disposal. The horizontal
dashed lines refers to the expected result for random systems,
σ2/N = 1/4.

In Fig. 1, we distinguish three different ‘phases’ ac-
cording to the value of σ2, crowded antipersistent for
α < α∗, cooperative antipersistent for α∗ < α < αc and
cooperative persistent for α > αc. The crowded to coop-
erative transition at α∗ ≈ 0.21 for s = 2 corresponds to
the transition from σ2 greater than σ2

rand to σ2 less than
this value. In simple terms, it means that for α < α∗, the
agents would be better off not adapting because they are
doing worse than just guessing at random. For α > α∗,
the adaptation process improves the global wealth of the
system. The other special point, at αc ≈ 0.45 for s = 2,
is at the minimum of σ2. If σ2 measures the system effi-
ciency, it corresponds to the best the agents can achieve.
However, it has been shown [7] that the adaptive be-
haviour of the agents in the Minority Game is based on
an analysis of the system persistence rather than its effi-
ciency. To understand this notion of persistence, it suf-
fices to remember that the Minority Game is based on
guessing the minority choice. If for a particular history,
selling remains the minority choice, the system is persis-
tent for this history, while if systematically, buying and
selling are alternatively the minority choice, the system
is antipersistent. As we will show, the minimum in σ2

does not correspond to the antipersistent-persistent tran-
sition. From now on, we will use the notation αap for the
antipersistent-persistent transition and αc for the mini-
mum of the variance.

As we have seen, the Minority Game is based on a

simple idea, guessing the minority choice, but it can
be rather complex in its formulation, because it implies
modeling the microscopic behaviour of N agents. One
can identify three main streams for current research; an
analogy with spin glasses [7], challenged by a different
dynamical formulation [8] and a crowd-anticrowd model
[9]. The first two methods are conceptually attractive be-
cause of the clear analogy with methods borrowed from
physics, and the nice physical picture of the antiper-
sistent to persistent transition. The major restrictions
are that Ref. [7] fails to reproduce quantitatively the
α < αap behaviour of σ2 and for both Refs. [7,8], that
the final ‘solution’ is an implicit equation to be solved
numerically. The latter approach by Johnson and co-
workers [9] is interesting because of its own picture of the
crowd-anticrowd interactions and more importantly, for
the accurate reproduction of numerical simulations of the
model. This approach has the limitation that the solution
has equations involving summations that are not analyt-
ically tractable, and again need to be performed numer-
ically to obtain explicit comparisons with the model.

N
2

0 1 0 1 0 1

N
2

0 1

-

α∗

α
αc

When there is

no information:

The agents guess

at random

between 0 or 1.

Here, 0 wins.

The agents can adapt in three different

ways to the previous information.

Which way will be chosen, depends on α:

(a) (b) (c)

FIG. 2. Schematic explanation for Fig. 1. The different
possible adaptations to the situation on the top of the figure
are (a) crowded antipersisent, (b) cooperative antipersistent
and (c) cooperative persistent.

In fact, it is possible to give a very basic picture to ex-
plain Fig. 1. Consider the beginning of the game where
agents are guessing at random between buying (0) or sell-
ing (1) because they don’t have any information before
playing. This corresponds to the higher part of Fig. 2,
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where we have schematically represented the two choices
by two boxes, and the population in each box is repre-
sented by the dashed area. In the top of Fig. 2, we have
represented an example where 0 is the winning choice.
Agents can react in three different ways to this informa-
tion. First, they can over-react and you will find most
of them in box 0 at a later time, case (a). This cor-
responds to what we called the crowded antipersistent
phase, which appears for α < α∗. Second, another pos-
sible reaction is that agents over-react in the sense that
the majority of them again pick choice 0, but less than
just a random choice between 0 and 1. This is illustrated
as case (b), and it corresponds to the antipersistent, co-
operative phase, with α∗ < α < αc. Third and finally,
agents react, but not enough of them are able to switch
to 0, so that 0 remains the best choice for succeeding
time steps, as illustrated in case (c). This is a persistent,
cooperative phase.

From the previous simple analysis, one sees that the
important factor in the Minority Game is the degree of
freedom left to the agents. If agents are free to adapt,
they act very badly because they all react the same way,
while if they have no freedom at all, they seem to act
randomly, while in fact they just keep on doing exactly
the same thing. Between these two extremes, there ex-
ists a balance where agents can be over-reacting or under-
reacting, but still do better than just guessing at random.
It is the object of this paper to consider a simple model
to study this delicate balance between freedom and re-
striction of adaptation.

III. THE CUT-AND-PASTE MODEL

Our model works as follows. First, an interval of unit
length is cut into two pieces of length x and 1 − x ac-
cording to a distribution f0(x), as shown in Fig. 3 (a).
This first step is considered as a random guess for a value
between 0 and 1. It is tacitly assumed that some micro-
scopic dynamics are at work to produce this first cut, but
we avoid modeling this process explicitly. It could corre-
spond, for instance, to agents having to decide whether
to buy or to sell a commodity without any previous infor-
mation on its price. x would be the fraction of buyers and
1−x, the fraction of sellers. Then, a fraction p of the big-
ger piece is cut and pasted to the smaller piece, as shown
in Fig. 3 (b) and (c), respectively. This second step
transforms the initial distribution f0(x) into an adapted
distribution f1(x), in response to the first cut. We could
say that f0(x) is a distribution of random guesses while
f1(x) is a distribution of ‘educated guesses’. For the ex-
ample of agents, after a first round of transactions, they
become aware that there are either more buyers or more
sellers, and react to this information, modifying the sup-
ply and demand equilibrium. The ideal reaction would
result in equal size pieces, or the same number of buy-
ers and sellers. The obvious problem is that there exists
no global control on systems such as financial markets to
synchronise the agents’ decisions. We assume that the

model is played several times without any correlations
between different realizations, apart from the fact that
we always start with the same distribution f0(x).

x 1 - x

p x(1-p) x 1 - x

(1-p) x p x + 1 - x

with prob f0(x)
1st cut  

2nd cut  

paste 

(a)

(b)

(c)

FIG. 3. Schematic view of the cut-and-paste model

If we compare this with the Minority Game, it is easy
to see that we have removed all the complexity of the
original model by not modeling explicitly the microscopic
dynamics. All the complexity of the Minority Game is
hidden in a macroscopic parameter p. We will show in
the next section that this allows us to solve the model
exactly.

IV. PROPERTIES

For simplicity, we consider that f0(x) = f0(1 − x),
that is, we incorporate a symmetry with respect to 1/2,
as in the Minority Game. Similarly, f1(x) = f1(1 − x),
where f1(x) is the size distribution after adaptation. This
distribution is given by

f1(x) =

∫ 1/2

0

dy f0(y)δ(y + p(1 − y) − x)

+

∫ 1

1/2

dy f0(y)δ(y(1 − p) − x) (2)

with a mean value m1 = 1/2. The magnitude of the
deviations from m1 determine the efficiency of the system
after adaptation. There are several quantities suited to
measure these deviations but they all give qualitatively
similar results, so that we choose the variance σ2

1 of f1(x),
equal to

σ2
1 = (1 − p)2σ2

0 +
p(3p − 2)

4
+ 2p(1 − p)K0. (3)

σ2
0 is the variance of f0(x), and we defined

K0 ≡
∫ 1/2

0

xf0(x) dx. (4)

As in the Minority Game, two important values of p are
p∗ determined by σ2

1(p∗) = σ2
0 and pc determined by

∂σ2
1

∂p

∣

∣

∣

∣

pc

= 0. (5)
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We obtain that

pc =
4σ2

0 − 4K0 + 1

4σ2
0 − 8K0 + 3

(6)

and p∗ = 2pc. This last relation should be general and
in fact, in the Minority Game, α∗ ≈ αc/2. We will come
back to this last relation in Sec. VII. To illustrate our
results, we show σ2

1(p) as a function of 1/p in Fig. 4
for a uniform distribution f0(x), which allows a visual
comparison with Fig. 1. For this particular choice, pc =
5/14 and p∗ = 5/7.

0

0.05

0.1

0.15

0.2

0.25

0.3

0

0.2

0.4

0.6

0.8

1

100 101

σ 12  (
  )p

Γ (  )        Π
 (  )

p
p

and

1
p

po a

pa n

po p

pa p

p*

pc
σ1

2 (  )p

Γ (  )p

Π (  )p

FIG. 4. Variance σ2

1 of f1 as a function of p (left scale),
persistence probability Π and improvment probability Γ as
functions of p (both on the right scale). The initial distri-
bution f0(x) is uniform on (0, 1). The dots (•) mark special
values of p considered in the text. The dashed horizontal line
shows the variance of f0(x).

However, remember that in the definition of the model,
we assume that there are no correlations between differ-
ent realizations of the model. Hence, σ2

1 represents an
average over several realizations of the model, but this
is information that is not available to anyone seeing the
game played only once. In other words, if we imagine
an agent being part of the cut-and-paste model, he could
not use σ2

1 as a measure of global efficiency. This cannot
be an interesting measure to predict if such an agent will
decide afterwards if adapting was good or not. A more
practical quantity is the probability Γ(p) of improving
on an initial guess. That is, Γ(p) is the probability that
the difference in length between the two pieces is smaller
after adaptation. Γ(p) is equal to

Γ(p) = 2

∫ (1−p)/(2−p)

0

f0(x) dx, (7)

which is a monotonically decreasing function of p, equal
to 1 when p = 0 and 0 when p = 1. Like σ2

1 , Γ(p) is not
a property directly available after one realisation of the
model, but it gives a probability about the outcome of
one such realisation. We show Γ(p) as a function of 1/p
for a uniform distribution f0(x) in Fig. 4.

Γ(p) is a simple measure of global efficiency and two
transitions can be associated with it, a percolation tran-
sition and a depinning transition. The percolation tran-
sition point is poa = 1, determined by Γ(poa) = 0. If

we imagine that, after adapting, we want to measure if
adaptation has improved coordination, poa corresponds
to the ‘onset of adaptation’, meaning that for p < poa,
it becomes possible that adaptation improves coordina-
tion. This transition is similar to a percolation transition
[11]. Unfortunately, the p > poa phase is not accessible
as poa = 1. The order parameter of the transition is Γ(p)
which scales as

Γ ∼ (poa − p)β (8)

for p less than, but close to, poa. The value of the critical
exponent β depends on the analytical form of f0(x). For
instance, for a uniform distribution, β = 1, for f(x) =
6x(1 − x), β = 2 while for f(x) = 2/

√
x, β = 1/2. As in

any percolation transition, there is no associated broken
symmetry [11]. The other transition, the adaptive to
non-adaptive transition is a depinning transition located
in pan determined by Γ(pan) = 1/2 [12]. This transition
is associated to the fact that ‘intelligent agents’ should be
able to detect if they are doing better when adapting. For
p > pan, they would conclude that on average, the answer
is no, while the answer is yes for p < pan. A simple
way to picture this transition is to consider a counter A
with the following dynamics. When the initial guess is
improved, A → A+1, otherwise A → A− 1, with A ≥ 0.
For p > pan, A stays close to 0, while for p < pan, A
is ‘depinned’ from 0 and goes away at a velocity van =
1 − 2Γ(p). This velocity, equal to 0 for p > pan, is the
order parameter of the transition [12]. For p < pan, the
symmetry between adapting or not adapting is broken.
We show Γ as a function of 1/p in Fig. 4 for a uniform
distribution f0(x). With this choice, pan = 2/3, while
poa = 1 for any choice.

A second important property of the system, after the
efficiency, is the persistence. This property is described
by the probability that the smaller piece remains the
smaller piece after adaptation, that is, the persistence
probability, Π(p), is equal to

Π(p) = 2

∫ (1−2p)/2(1−p)

0

f0(x) dx (9)

if p < 1/2, zero otherwise. The persistence, like the
efficiency, is characterized by a percolation and a depin-
ning transition. The onset of persistence occurs when
pop = 1/2, determined by Π(pop) = 0. This is a
percolation-like transition [11], with Π(p) as order pa-
rameter and no associated broken symmetry. The crit-
ical exponent β determined by Π ∼ (pop − p)β , has the
same value for this transition and the transition in effi-
ciency. For p > 1/2, we define ξ ≡ |1/2−x|−1, where x is
the smallest piece than can be obtained after adapting. ξ
compares to the largest cluster size below the percolation
threshold or to a correlation length. We find that

ξ ∼ (p − pop)
−ν (10)

with ν = 1, as in percolation [11]. The correspond-
ing depinning transition is located at pap determined by
Π(pap) = 1/2. As for the depinning transition, it is best
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understood if we keep a record of previous realisations,
with a parameter B counting the asymmetry between the
left and the right piece. When the left piece is the smaller
or the larger piece before and after adapting, B → B +1,
while B → B−1 otherwise, with the added condition that
B ≥ 0. For p > pop, B stays close to 0, while for p < pap,
B moves away from zero at a velocity vap = 1 − 2Π(p),
p = pap marking the depinning transition. This transi-
tion corresponds to a breaking of the left-right symmetry.
In the Minority Game, the depinning transition in per-
sistence has been identified using an analogy with spin
glasses [7]. For a uniform distribution, pap = 1/3. We
show Π(p) for a uniform distribution in Fig. 4.

value of p corresponding property example

pap antipersistence,persistence 1/3
pc minimum of σ2

1 5/14
pop = 1/2 onset of persistence 1/2

pan adaptive,non-adaptive 2/3
p∗ crowded-cooperative 5/7

poa = 1 onset of adaptation 1

TABLE I. Particular values of p (column 1), their meaning
(column 2) and their values for a uniform distribution f0(x)
(column 3).

In Table I, we summarise the six different values of
p considered here, their meaning and their values for
a uniform distribution f0(x). From this table, we can
appreciate the simple relation between the two proper-
ties of the model, persistence and efficiency. In fact, as
explained in Ref. [10], similar properties are character-
ized by Γ(peff ) = Π(ppers), which implies peff = 2ppers.
For instance, the onsets are characterized by Π(pop) =
Γ(poa) = 0. From the previous relation, one obtains the
relations poa = 2pop and pan = 2pap. Hence, a character-
istic property of persistence in the system requires twice
as much reaction from the system to have the same effect
on the system efficiency [10].

It is important to realize that in Table I, the particular
values of p do not coincide with each other. A conse-
quence of this fact is that we do not expect in general to
have the antipersistence-persistence transition point that
coincides with the minimum of the variance. For the Mi-
nority Game, the former has been found at αap ≈ 0.34,
while we mentioned that the latter is at αc ≈ 0.45, for
s = 2 strategies per agent. Moreover, it is easy to show
that using other measures of the deviations with respect
to 1/2, new distinct values of p would be obtained. For
instance, if the mean-absolute-deviation from 1/2, Eabs,
is measured instead of σ2

1 , the minimum of Eabs is not
at pc and its random value is not at p∗. This fact can
have a profound impact on the dynamics of any model
which is based on a restricted adaptation aiming to opti-
mize the efficiency. For instance, in the Minority Game,
the agents are trying to minimize the information in the
system, which is equivalent to saying that they analyze
the persistence in the system, rather than the efficiency,
as was already noted in [7].

V. A MAJORITY CUT-AND-PASTE MODEL

The Minority Game is based on the assumption that
agents are competing to guess the choice of the minority.
In Ref. [13], a model where agents are competing to guess
the choice of the majority was introduced. It was shown
that the dynamics seem not as trivial as expected, with
the agents being not very effective at acting in a coordi-
nated manner. Similarly, in the majority cut-and-paste
model, a part p of the smaller piece is added to the larger
one. If the minority cut-and-paste model is reminiscent
of trial-and-error adaptation, the majority version mod-
els the spread of a trend. It identifies for instance to
the choice of driving on the right or on the left, which
is random initially and spreads by imitation before be-
ing enforced by law. Using the notations of the previous
sections,

f1(x) =

∫ 1/2

0

dy f0(y)δ(y(1 − p) − x)

+

∫ 1

1/2

dy f0(y)δ(y + p(1 − y) − x) (11)

which is equivalent to

f1(x) =
1

1 − p
f0

(

x

1 − p

)

(12)

for 0 ≤ x ≤ (1 − p)/2,

f1(x) =
1

1 − p
f0

(

x − p

1 − p

)

(13)

for (1 + p)/2 ≤ x ≤ 1 and f1(x) = 0 for (1 − p)/2 ≤
x ≤ (1 + p)/2. This distribution is bimodal with a gap
where f1(x) = 0 for (1 − p)/2 ≤ x ≤ (1 + p)/2. As be-
fore, we suppose that f0(x) is symmetric around x = 1/2,
so that f1(x) also shares this property. As explained in
[13], the variance of f1(x) is not an adequate measure
for the system efficiency, which is better determined by
the deviation from perfect coordination. Perfect coordi-
nation is defined by the longer piece being equal to 1 or,
in other words, the disappearance of the smaller piece.
The quantity we consider is the mean deviation from 1
of the longer piece, defined by

µ2
1 ≡ 2

∫ 1

1/2

(1 − x)2f1(x)dx (14)

= 2(1 − p)2
∫ 1

1/2

(1 − x)2f0(x)dx (15)

which is monotonic in p, as expected.
Of course, the efficiency in the model is now described

by the probability of having the longer piece closer to 1
after adaptation, while the persistence is not really a rel-
evant property of the model. Nevertheless, if we consider
these properties, the model is characterized by the fact
that all the previously considered transition points are in
p = 0.
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VI. ITERATED MODELS

A. The majority cut-and-paste model

We imagine that the majority cut-and-paste model is
applied recursively, starting with a distribution f0(x),
adapting to f1(x) which becomes an ‘educated guess’,
creating f2(x), which becomes the new educated guess,
and so on. That is, after an initial random cut according
to a trial distribution f0(x), a fraction p of the smaller
piece is added to the larger one, giving a size distribution
f1(x). Then, a fraction p of the smaller piece is added to
the smaller one, creating a size distribution f2(x), and so
on n times. The size distribution after i different cuts,
fi(x) obeys the recurrence relation

fi(x) =

∫ 1/2

0

dy fi−1(y)δ(y(1 − p) − x)

+

∫ 1

1/2

dy fi−1(y)δ(y + p(1 − y) − x). (16)

We assumed that p is independent of the number of adap-
tations. The first moment of each distribution, mi, is
equal to mi = 1/2, if we assume that f0(x) = f0(1 − x),
as before.

0

0.005

0.01

0.015

0.02

0.025

0 0.2 0.4 0.6 0.8 1

f i (
x)

x

FIG. 5. fi(x) for the majority model for f0(x) = 6x(1−x),
p = 0.2 and i = 0, 1 and 2. A gap of length given by Eq. (17)
is opening in the middle as i increases.

It is easy to show that the above recurrence relation
induces the opening of a gap G equal to

G = 1 − (1 − p)i, (17)

where fi(x) is equal to 0, as illustrated in Fig. 5. This
gap is centred around x = 1/2. Hence, the limit

lim
i→∞

fi(x) =
δ(x) + δ(1 − x)

2
(18)

for the majority model. Also, the mean deviation of fi(x)
from 1, µ2

i , defined like Eq. (14), is equal to

µ2
i = (1 − p)2iµ2

0, (19)

using Eq. (15) iteratively. In fact, this conclusion can be
generalized to the deviations from 1 of any order, with

µk
i ≡ 2

∫ 1

1/2

(1 − x)kfi(x)dx (20)

= (1 − p)kiµk
0 . (21)

B. The minority cut-and-paste model

The iterated minority cut-and-paste model is less triv-
ial, even if the recurrence relation for the size distribution
after i cuts

fi(x) =

∫ 1/2

0

dy fi−1(y)δ(y + p(1 − y) − x)

+

∫ 1

1/2

dy fi−1(y)δ(y(1 − p) − x), (22)

looks very similar to the majority model. For the sake
of clarity, the previous equation states that after an ini-
tial cut, according to f0(x), a fraction p of the larger
piece is cut and pasted to the smaller piece, giving a dis-
tribution f1(x); then a fraction p of the larger piece is
cut and pasted to the smaller piece, giving a distribution
f2(x); and so on n times. The effect of the transforma-
tion depends on the value of p considered, which deter-
mines the intervals where fi(x) is non zero. For p = 0,
fi−1(x) is simply not modified. For 0 < p ≤ 1/3, fi(x)
is non-zero for x ∈ (p, 1 − p), that is, the initial function
is modified and compressed on a narrower interval. For
1/3 ≤ p ≤ 1/2, the interval where fi(x) 6= 0 increases
with p, spanning from (1 − p)/2 to (1 + p)/2. Finally,
for p > 1/2, fi(x) is non-zero in two disconnected in-
tervals, each interval being of size (1 − p)/2. As a sum-
mary, for p ≤ 1/2, fi−1(x) is modified and squeezed in
a smaller interval, while for p > 1/2, fi−1(x) is modified
and split into two disconnected intervals. This process is
completely independent of the starting function f0(x).

Starting with p ≤ 1/2, let us consider separately the
cases when the smaller piece is of length less than (1 −
2p)/2(1 − p) and when it is longer than that. For the
latter, one obtains the correspondence

(

1 − 2p

2(1 − p)
,
1

2

)

→
(

1 − p

2
,
1

2

)

(23)

for the length of the smaller piece. That is, if the smaller
piece is included in the interval on the left of the previ-
ous equation after i cuts, it will be in the interval on the

right after the (i + 1)th cut. The interval on the left cor-
responds to the antipersistent points and, as it includes
the interval on the right for p ∈ (0, 1/2), as soon as the
system enters an antipersistent phase, it stays antipersis-
tent. Now, the length of a piece that has been the smaller
piece for i successive adaptations, xsmall

i , is equal to

xsmall
i = 1 − (1 − p)i(1 − xsmall

0 ). (24)
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Whenever this is greater than (1−2p)/2(1−p), the system
becomes antipersistent and, as we have just shown, it
stays antipersistent. So, the antipersistent phase is an

attractor of the dynamics. After i cuts, all pieces that
were of length greater than

xlow(i) = 1 − 1

2(1 − p)i+1
(25)

have entered the antipersistent attractor. For a given
value of p, the system has entered the attractor after

iatt =
ln 1

2

ln(1 − p)
− 1 (26)

adaptations for all initial conditions. An alternative way
of expressing this property is to look at the persistence
probability, which is equal to

Πi(p) = 2

∫ xlow

0

f(x)dx (27)

after i adaptive cuts for i < iatt, and Πi(p) = 0 other-
wise. As xlow(i) → 0 when i = iatt, Πi(p) is identically
equal to zero when i ≥ iatt. That is, the system becomes
completely antipersistent.

The main conclusion of our analysis is that the system
can be persistent for a transient period, depending on
the initial conditions, but that it will eventually enter an
antipersistent phase if it is allowed to evolve ad infinitum.
This is the phase we now consider for any value of p. That
is, the left piece is the smaller and the larger alternately.
The length of the larger piece after i adaptations is equal
to

xlarge
i = p

[(i−1)/2]
∑

j=0

(1 − p)2j + (1 − p)ix0 (28)

where x0 is the size of this same piece after the first cut.
We use the notation [(i− 1)/2] = (i− 1)/2 for i odd and
i/2 − 1 for i even. The length of the larger piece con-

verges towards limi→∞ xlarge
i = 1/(2− p), independently

of the initial conditions. One could say that the system
becomes fully efficient only for a quasistatic adaptation,
meaning that the larger and the smaller pieces become
equal only when p → 0+. The size difference between
the larger and smaller piece after i adaptations, ∆xi, is
equal to

∆xi =
p

2 − p
(1 − (p − 1)i) + 2(p − 1)i

(

xlarge
0 − 1

2

)

,

(29)

which converges towards limi→∞ ∆xi = p/(2−p). Hence,
we have

lim
i→∞

fi(x) =
δ
(

x − 1
2−p

)

+ δ
(

x − (1−p)
2−p

)

2
. (30)

The variance of fi(x) is given by

σ2
i = (1 − p)2iσ2

0 +
p2(1 − (p − 1)i)2

4(2 − p)2

+
p(p − 1)i(1 − (p − 1)i)

2 − p

(

1

2
− 2K0

)

. (31)

For large i and p 6= 0, σ2
i ≃ p2/4(2− p)2, independent of

f0(x).
A simple way to mix both the minority and major-

ity cut-and-paste models is to let p take negative val-
ues. Suppose we consider the minority cut-and-paste
model. Having p < 0 simply means that the size of the
larger piece increases, which is equivalent to the majority
model. One should however be careful because, still con-
sidering the minority model, p cannot be less than 1−1/x,
where x is the length of the largest piece. Hence, such an
implementation is not very practical as it requires differ-
ent boundaries for p for different realisations. Neverthe-
less, it shows that p = 0 marks the transition from mi-
nority to majority. When the models are iterated, p = 0
marks the transition point between a frozen state and an
alternate state. This is equivalent to a transition from
a broken symmetry to a temporarily-broken symmetry.
These two different states were also found in the frame-
work of collective motion. It was shown that most mod-
els are associated to a broken symmetry [4], while one
of them displays an alternate state, with a temporarily-
broken symmetry [14]. However, no transition from one
to the other was seen before.

VII. COMPARISON WITH THE MINORITY

GAME

Strictly speaking, the basic cut-and-paste model only
compares with the Minority Game when m = 0. This
is related to the dynamics of the game which make the
agents diffuse on the edges of a 2m dimensional hyper-
cube instead of a line. Each edge corresponds to one of
the 22m

different strategies. When a game is played, this
is equivalent to cutting the cube according to one of its
2m median planes and counting the number of agents on
each side of the plane. The agents on the minority side
are winning, and the others react by trying to diffuse from
where they are to the minority side. One component of
the complexity of the diffusion process is that agents are
only given s strategies chosen at random at the beginning
of the game, so that they are jumping between uncorre-
lated locations. The other component is that they do not
know the direction of the next median plane. Hence, they
are adapting for past information, not trying to forecast
the next output of the game. Of course, we do not want
to consider the whole complexity of the original model,
our aim being to introduce something much simpler. We
want to provide a qualitative comparison between the
cut-and-paste model and the Minority Game.

In the Minority Game, an agent is able to adapt for a
particular history if, among her s strategies, she has both
buying and selling as decisions for this particular history.
With an initially random attribution of the strategies,
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the average adaptation potential of the whole system, p,
is given by

p = 1 − 1

2s−1
. (32)

This value means that an average of pN agents are effec-
tively able to make a choice for a history, while (1− p)N
agents have strategies that all make the same predictions
for this history. Unfortunately, the agents do not know
which history will come next and even if they are able to
adapt, they cannot synchronise perfectly. The random
guess distribution, f0(X), is given by

f0(X) =
N !

2NX !(N − X)!
, (33)

where X can only take integer values in (0, N). From
this distribution, one has σ2

0 = N/4 and

K0 =
N

4
− N !

2N+1
(

N−1
2

)

!2
. (34)

The variance is given by

σ2
1 =

(1 − p)2N

4
+

N2p2

4
− Np(1 − p)

N !

2N
(

N−1
2

)

!2
. (35)

We use this last relation to compare the cut-and-paste
model to the Minority Game.

According to the crowd-anticrowd theory of the Mi-
nority Game [9], v/2 < σ2/N < v for α < αc, where

v =
N

3.2m+2

(

1 − 1

22(m+1)

)

. (36)

For definiteness, we take σ2/N ≈ 3v/4. The limit α < αc

is similar to the p → 1 limit. From Eq. (35), we obtain
that

plow =
1

2
m+1

2

(

1 − 1

22(m+1)

)

(37)

when p ≈ 1. The subscript ‘low’ refers to α < αc. In
contrast, for α > αc,

σ2

N
=

1

4

(

1 − N

2m+1

)

(38)

according to the crowd-anticrowd theory [9]. Compared
with Eq. (35) in the limit p → 0, we obtain

phigh =
1

8α

(

1

2
+

N !

2N(N−1
2 )!2

)

−1

. (39)

Similarly, the subscript ‘high’ refers to α > αc.
We can check the previous analytical results by find-

ing numerically the relation between p and α. In fact,
numerical simulations of the Minority Game give σ2 as a
function of α and solving numerically Eq. (35) with re-
spect to p, we obtain p as a function of α. The function
p(α) is shown in Fig. 6. From this figure, one can appre-

10-1

100

101

10-2 10-1 100

N = 100
N = 250
N = 500
N = 1000
analytic

p

α

10-2

10-1

100

101

10-1 100 101

N = 100
N = 250
N = 500
N = 1000
analytic

α

p

FIG. 6. Variation of the fraction p of the population that is
adapting as a function of α in the Minority Game. For α < αc

(top), we present p
√

N as a function of α for N = 100 (•),
250 (+), 500 (⋄) and 1000 (◦) while for α > αc (bottom), we
present pF (N) as a function of α for the same values of N .
The factor F (N) is given in Eq. (39). The continuous lines
are the corresponding analytical expressions and the vertical
dashed line shows the transition point α = αap.

ciate that the predicted scalings are in good agreement
with the numerical simulations. We have to stress that
for N ≥ 8, there are values of σ2/N around αc which are
too small to be obtained for any value of p. That is, the
minimum of σ2 in the Minority Game is smaller than the
minimum of σ2

1 of the cut-and-paste model when N ≥ 8.
This limitation of the cut-and-paste model is related to
the fact that we only analyzed a model where a constant
ratio p of loosers are adapting whatever the outcome of
the initial random cut is. Further work could concentrate
on a more accurate relation between p and the parame-
ters of the Minority Game using the history distribution
for instance [16]. Letting p be chosen from a distribution
could also be interesting.

VIII. CONCLUSIONS

In summary, we have presented a cut-and-paste model
to mimic a trial-and-error process of adaptation. The
model depends on only one parameter, p, that encodes
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the reactibility of the system to previous information.
We show that the model displays two properties, persis-
tence and efficiency. A pair of transitions is associated
with each property. A pair is composed of a percolation
transition, corresponding to the onset of a property, and
a depinning transition, corresponding to the growth of
the same property. We identified the critical exponents
for these transitions, showing that both transitions share
the same set of exponents. The exponent of the order
parameter for the percolation transition depends on the
initial conditions. Using a very simple analogy, we are
able to propose a qualitative comparison with the Mi-
nority Game, keeping a more accurate comparison for
further research. A majority cut-and-paste model is also
introduced to model the spread of a trend. We show
that all the transition points are at p = 0. Both models
are iterated, showing that the majority model reaches a
frozen state, while the minority model converges towards
an alternate steady state. The transition from one state
to the other is achieved for p = 0, that is, in the limit of
non-adaptive systems. Our work should be relevant to
the study of adaptive systems and particularly the Mi-
nority Game. In fact, we argue that the original Minor-
ity Game is itself an intrincate formulation of this simple
mechanism, where the parameter p is a complex quan-
tity depending on the history given to the agents and the
strategy space. This paper is a contribution towards the
understanding of this complexity.

One of us (GJR) would like to thank The Leverhulme
Trust for financial support.
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