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Dimensional crossover in fragmentation
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Abstract

Experiments in which thick clay plates and glass rods are frac-

tured have revealed different behavior of fragment mass distribution

function in the small and large fragment regions. In this paper we

explain this behavior using non-extensive Tsallis statistics and show

how the crossover between the two regions is caused by the change in

the fragments’ dimensionality during the fracture process: We obtain

a physical criterion for the position of this crossover and an expression

for the change in the power law exponent between the small and large

fragment regions. These predictions are in good agreement with the

experiments on thick clay plates.
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Experiments on plate fragmentation [1] have revealed two regions of be-

havior in the fragment size distribution function (FSDF). The crossover be-

tween the regions scales with the width of the plate. In these experiments

(and also in [2] where an analogous behavior was observed in the breaking of

glass rods) the transition from one kind of behavior to another is assigned to

a dimensional crossover, as was also pointed out in [3]. It seems physically

clear that a dimensional dependence exists in the fragmentation of objects. A

long thin glass rod must reveal a different behavior for fracture than a “thick

cylinder” of the same material, as the small fragments produced from the

fracture of glass rods appear to be approximately cylindrical. Also, a plate

should manifest a different behavior for fracture than a “three-dimensional”

fragment for which all dimensions are similar.

In [3] it was shown that no crossover was present for fragmentation of three-

dimensional objects. This was confirmed in [4] where experiments with falling

mercury drops, which always preserve their spherical shape, were reported.

Dimensional dependence and multiscaling in fragmentation have received at-

tention in [5, 6] with ad hoc models built to describe the dimensional depen-

dence of FSDF and its multifractality.

On the other hand attempts have been made to obtain the FSDF start-

ing from first principles, i.e., the maximum entropy principle [7, 8]. As the

maximum entropy principle is universal, it has an almost unlimited range

of applications, and consequently some of the properties of FSDF observed

in experiments, such as scaling and multifractality, are expected to be re-

vealed. However, no dimensional crossover was found in either [7] or [8]. In

our opinion this is due to the assumption that not just the maximum en-
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tropy principle, but the formula for the Boltzmann-Gibbs (BG) entropy of a

system, are valid for the description of fracture phenomena. The formula for

the BG entropy is:

S = −k
W∑
i=1

pi log pi,

where pi is the probability of finding the system in the microscopic state i,

k is Boltzmann’s constant and W is the total number of microstates.

This formula has been shown to be restricted to the domain of validity of

BG statistics, which seem to describe nature when the effective microscopic

interactions and the microscopic memory are short ranged [9]. The process

of shock fragmentation, specially when energies are high enough, leads to

the existence of long range correlations between all parts of the object being

fragmented. Then the use of the above formula to describe fragmentation

processes seems to be inadequate. From here it can be concluded that the

use of statistics able to describe long-range and long-memory interactions

can be useful in the description of fracture processes.

In this work we report the deduction of the FSDF and its dimensional

crossover from the maximum entropy principle using as a starting point Tsal-

lis entropy [9]:

Sq = k
1 −

∫
∞

0 pq(x)dx

q − 1
. (1)

The integral runs over all admissible values of the magnitude x and p(x)dx

is the probability of the system being in a state between x and x + dx.k is

the Boltzmann constant and q a real number (the entropic index).The Tsallis
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entropy Sq reduces to the BG entropy for q = 1 so recovering Boltzmann-

Gibbs statistics.

Dealing with the case of fracture x could well describe the mass (volume)

of the fragments. The statistics based on this entropy have been used to

describe a number of non-equilibrium processes and phenomena for which

BG statistics is not appropriate. (see [9]), although it seems to be still far

from having shown all its capabilities.

Let us extremize Sq

k
with appropriate constraints. If we denote the volume

of a fragment by V and some typical volume characteristic of the distribution

by Vm, we can define a dimensionless volume v = V
Vm

. The normalization

condition reads ∫
∞

0

p(v)dv = 1. (2)

The other condition to be imposed is mass conservation. But as the sys-

tem is finite, this condition will lead to a very sharp decay in the asymptotic

behavior of the fragment size distribution function (FSDF) for large sizes of

the fragments. Consequently, we will impose a more general condition, like

the “q-conservation” of the mass, in the form:

∫
∞

0

vpq(v)dv = 1, (3)

which reduces to the “classical” mass conservation when q = 1.

Using the method of Lagrange multipliers we construct the function:

L(p; α1; α2) = Sq − α1

∫
∞

0

p(v)dv + α2

∫
∞

0

pq(v)vdv (4)
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The Lagrange multipliers α1 and α2 are determined by the constraints. The

extremization of L(p; α1; α2) leads to:

p(v)dv = C(1 + (q − 1)α2v)−
1

q−1 dv (5)

where the constant C is given by

C = [
q − 1

q
α1]

1

q−1

.

This is a FSDF expressed as a function of the volume of the fragments. It

is valid for 1 < q < 2. The FSDF given by Eq. 5 can describe satisfactorily

the behavior for “small” and “large” fragment sizes. Indeed, we can apply

this equation to the fragmentation of plates described in [1].

As the object to be broken has mainly a two-dimensional shape, large frag-

ments show a mass scaling with the surface of the basis of the plate, so that

if the width of the plate in units of a characteristic length of the system

is ∆ then the mass (volume) scales with the linear dimensions as v ∼ ∆l2.

This must be taken into account when calculating the element of volume dv.

Then, for large fragments we have

p+(l)dl = Cl[1 + (q − 1)α2l
2∆)]−

1

q−1 dl. (6)

The small fragments do not resemble plates but volumetric objects. This

means that the volume of the fragment scales as l3 and we have for the

distribution of small fragments:

p
−
(l)dl = Cl2[1 + (q − 1)α2l

3]−
1

q−1 dl, (7)
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From 6 and 7 we may deduce the asymptotic behavior to obtain the slope

β for small and large fragments, with the notation that the distribution

function has the asymptotic behavior p(l) ∼ l−β as in [1]. Designating the

slope for large (small) fragments by β+(β
−
) respectively, we obtain:

β+

β
−

=
3 − q

5 − 2q
, (8)

from where the values of β+

β
−

can be calculated restricting q to its range of

validity 1 < q < 2. This ratio lies in the interval 2

3
<

β+

β
−

< 1.

These values should be regarded as a coarse grained estimate, since to obtain

them we have postulated a very definite scaling of the mass with the dimen-

sionality, although it is clear that this dependence should be no more than

approximate, since the objects are not exactly “one” or “two-dimensional”.

Yet it will be seen that this simple model is good enough to describe the

behavior of the FSDF.

From [1] we may obtain that all the values of the ratio β+

β
−

in the reported

experiment satisfy this condition, going from .67 to .79. This is illustrated

in table 1

plate β
−

β+
β+

β
−

2 1.62 1.19 0.73

3 1.5 1.17 0.78

4 1.67 1.12 0.67

5 1.5 1.9 0.79
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Following the same reasoning we could predict the value of β+

β
−

for the exper-

iments reported in [2]. In this case, as reported there, it is the cumulative

number which has slope β. In that case, respecting the notation in [2], the

behavior of the distribution function p(l) should be p(l) ∼ l−β−1. We predict

that for the breaking of rods, where the crossover is from one-dimensional to

three-dimensional objects the value of the ratio should be around 3 irrespec-

tive of q. New experimental results in this case would be very welcome to

investigate our predictions.

From the present formulation we can evaluate the order of magnitude of the

crossover length with the assumption that the crossover occurs in the tran-

sition region of scaling of the mass with the dimension, i.e., the first point

where p+(l) and p
−
(l) become equal.

Then the crossover dimension is l ∼ ∆ for plates and l ∼ S
1

2 for rods, being

S the area of the basis of the rod. This criterion, which is very acceptable

physically, is directly obtained in this formulation.

So, the usefulness of Tsallis entropy to describe processes of fragmentation

has been tested in this work, where the FSDF for small and large fragments

have been obtained for fragmentation involving a change in the geometry (di-

mensionality) of the fragments. We showed analytically that the crossover

detected in the experiments can be obtained when the explicit scaling of the

mass of the fragments with the dimensionality is considered. In this respect

we have established that, as was pointed in [1], the slope is determined by

local rather than by global features of the original object. Once again, the

geometry is shown to be an important factor in this phenomenon.

We point out again that non-extensive statistics seem to have very much
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applications in non-equilibrium phenomena, a number of which are yet to be

investigated.
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1 Table caption

Table 1: Comparison of the results from [1]with predictions from 8. Observe

that all values of β+

β
−

lie in the predicted range 2

3
<

β+

β
−

< 1.
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