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Abstract

We study a single, motionless three-dimensional droplet growing by ad-

sorption of diffusing monomers on a 2D substrate. The diffusing monomers

are adsorbed at the aggregate perimeter of the droplet with different bound-

ary conditions. Models with both an adsorption boundary condition and

a radiation boundary condition, as well as a phenomenological model, are

considered and solved in a quasistatic approximation. The latter two models

allow particle detachment. In the short time limit, the droplet radius grows

as a power of the time with exponents of 1/4, 1/2 and 3/4 for the mod-

els with adsorption, radiation and phenomenological boundary conditions,

respectively. In the long time limit a universal growth rate as [t/ ln(t)]1/3

is observed for the radius of the droplet for all models independent of the

boundary conditions. This asymptotic behaviour was obtained by Krapivsky

[15] where a similarity variable approach was used to treat the growth of a

droplet with an adsorption boundary condition based on a quasistatic ap-

proximation. Another boundary condition with a constant flux of monomers

at the aggregate perimeter is also examined. The results exhibit a power law

growth rate with an exponent of 1/3 for all times.
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1 Introduction

There has been considerable interest in diffusive-growth processes including

growth phenomena for a droplet on a substrate. This growth phenomena in

the case where diffusion and coalescence play the major roles are common

in many areas of science and technology [1, 2]. In this process, each droplet

diffuses and grows individually and coalesces with contacting droplets. The

kinetics of these phenomenon have been studied experimentally and theoreti-

cally [3-29]. Some models have been developed to explain the kinetics of these

processes. One such model [6, 12, 15] consists of a single, motionless three

dimensional droplet formed by diffusion and adsorption of non-coalescing

monomers on a 2D substrate. In the model it is assumed that the diffusing

monomers coalesce only with large immobile growing droplet and not with

each other. In [6, 12] a static approximation was used to solve the diffusion

equation and an approximate description of the long time behaviour was

obtained. The static approach predicted an asymptotic power law growth

rate for the radius of the droplet. Because of the growth of the droplet, the

present problem involves a moving boundary. Moving boundary problems

in the context of the diffusion equation are referred to as Stefan problems

[30-32]. The only exact solutions for these problems have been found using

a similarity variable method, see for instance, [30-34] and references therein.

Using this method for a droplet of dimensionality d growing on a substrate

of the same dimensionality, an exact scaling solution can be found. In [33]

such a solution in one dimension has been derived which can be generalised

to a higher dimension. However, the problem of a 3D droplet growing on a

2D substrate, may be treated by approximate methods. A simple treatment

based on a quasistatic approximation has been presented in [15]. A simi-
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larity variable approach was used to solve the Stefan problem with moving

boundary [15]. The results predicted that the radius of the droplet increases

as [t/ ln(t)]1/3 asymptotically. The asymptotic growth law predicted by the

static approach differs from the quasistatic answer by a slowly varying log-

arithmic factor. In all the models in [6, 12, 15] an adsorption boundary

condition at the aggregate perimeter of the droplet, was considered.

In [37] a generalisation of Smoluchowski model [35, 36] for diffusional

growth of colloids, was presented. Smoluchowski [35] considered the process

of diffusional capture of particles assuming the growing aggregate is mod-

eled as a sphere. He then solved the diffusion equation with an absorbing

boundary condition at the aggregate surface of the sphere. In [37] two other

approaches were considered, a phenomenological model for the boundary

condition and a radiation boundary condition. Both approaches allowed for

incorporation of particle detachment in Smoluchowski model. Explicit ex-

pressions for the concentration and intake rate of particles were given in the

long time limit [37].

In this paper we consider a single, motionless three-dimensional droplet

growing by adsorption of diffusing monomers on a two-dimensional substrate.

The diffusing non-coalescing monomers are adsorbed at the aggregate perime-

ter of the droplet with different boundary conditions. Models with different

boundary conditions for the concentration of monomers are considered and

solved in a quasistatic approximation. For each model, the diffusion equa-

tion is solved exactly, subject to a fixed boundary. Using mass conservation

law at the aggregate perimeter of the growing droplet, we then obtain an

expression for the growth rate of the moving boundary. Explicit asymptotic

solutions in the both short and long time limits are given for the concen-

tration, total flux of monomers at the perimeter of the growing droplet and
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for the growth rate of the droplet radius. This paper is organised as follows.

In section 2, a model with an adsorption boundary condition is examined.

In sections 3 and 4 we consider the two approaches which were introduced

in [37] to allow for particle detachment. A phenomenological model and a

model with a radiation boundary condition are considered in sections 3 and

4, respectively. Another boundary condition which assumes a constant flux

of monomers at the aggregate perimeter of the droplet, is also introduced in

section 5. Finally, in section 6 we compare the results of different approaches

and summarise our conclusions.

2 Growth Equations with Adsorption Bound-

ary Condition

Consider an immobile three-dimensional droplet which is initially surrounded

by monodisperse droplets. The droplet lies on a two-dimensional plane sub-

strate on which the monomers diffuse. Monomers have the volume V and

diffuse with the diffusion constant D. Then, the concentration of monomers

at point r and at time t, c(r, t), is described by the diffusion equation

∂c(r, t)

∂t
= D

1

r

∂

∂r

(

r
∂c(r, t)

∂r

)

(1)

for r ≥ R, where R(t) is the radius of the immobile growing droplet. The

initial conditions are given by

c(r, t = 0) = c0, (2)

which is the initial, uniform, monomer concentration and
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R(t = 0) = 0, (3)

which shows that the droplet is not present at the beginning of the process.

We consider an adsorption boundary condition at the perimeter of the droplet

c(r = R, t > 0) = 0 (4)

and assume that at infinity the concentration of the monomers is finite and

equal to c0. Concentration gradients in the neighborhood of the droplet

create a flux of monomers on the two-dimensional substrate. This flux feeds

the growth of the droplet. Therefore, the rate of increase of the droplet

volume is related to the total flux of monomers at the perimeter of the droplet

by mass conservation,

Φ(t) = λ R2
dR

dt
, (5)

where the total flux

Φ(t) = V

[

2πRD
∂c

∂r

∣

∣

∣

∣

∣

R

]

(6)

corresponds to the monomers incorporated at the perimeter of the droplet.

In (5) λ is a dimensionless factor related to the contact angle of the droplet.

In order to solve (1) with (2-4), we introduce the Laplace transform of

the concentration,

c̄(r, s) =
∫

∞

0

dt e−stc(r, t), (7)

which satisfies the equation

D
1

r

∂

∂r

(

r
∂c̄

∂r

)

= s c̄ − c0. (8)

5



Here we have already used the initial condition (2). The general solution of

this equation is given by

c̄(r, s) =
c0

s
+ A(s)K0(qr) + B(s)I0(qr), (9)

where q =
√

s/D, and K0 and I0 are Modified Bessel functions of order zero.

To have a finite solution as r → ∞, we set B(s) = 0. The boundary condition

(4) in the Laplace transform version becomes

c̄(r = R, s) = 0. (10)

Using (10) the transformed concentration and its gradient normal to the

droplet perimeter, yield

c̄(r, s) =
c0

s

[

1 −
K0(qr)

K0(qR)

]

, (11)

∂c̄(r, s)

∂r
=

c0

(Ds)1/2

K1(qr)

K0(qR)
. (12)

To find time dependent concentration and its radial gradient, we use the

Inversion theorem for (11,12). Both (11,12) have a branch point at s = 0, so

in the Inversion formula, we use a contour which does not contain any zeros

of s and K0(qR). Consequently, time dependent concentration and also total

flux at the droplet perimeter from (6), are given by

c(r, t) =
2c0

π

∫

∞

0

e−Du2t

[

J0(Ru)N0(ru) − J0(ru)N0(Ru)

J2
0 (Ru) + N2

0 (Ru)

]

du

u
, (13)

Φ(t) =
8 c0DV

π

∫

∞

0

e−Du2t 1

[J2
0 (Ru) + N2

0 (Ru)]

du

u
, (14)
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where J0 and N0 are Bessel functions of order zero. Using (5,14) a differential

equation for the growth rate of the droplet radius can be obtained

λ R2
dR

dt
=

8c0DV

π

∫

∞

0

e−Du2t 1

[J2
0 (Ru) + N2

0 (Ru)]

du

u
, (15)

which gives a general solution for R as a function of the time. We are

interested in the short and long time solutions for the concentration, the

total flux of monomers at the perimeter of the droplet and the growth rate

of the droplet radius.

For small values of the time, it is shown that the behaviours of c(r, t) and

∂c(r, t)/∂r may be determined from the behaviors of c̄(r, s) and ∂c̄(r, s)/∂r,

respectively, for large values of the transformed parameter s. Then, we ex-

pand the Bessel functions occuring in (11,12) supposing s to be large. The

final result for the concentration of monomers, keeping the leading time de-

pendent term, is

c(r, t) ≃ c0

[

1 −
(

R

r

)1/2

Erfc

(

r − R

2
√

Dt

)]

. (16)

The total flux at the droplet perimeter and the growth rate of the droplet

radius also in this limit using (6) and (5), respectively, are given by

Φ(t) ≃ 2 c0V R
√

πD t−1/2, (17)

R(t) ≃
(

8 c0V
√

πD

λ

)1/2

t1/4. (18)

We see that in the short time limit, R grows as a power of the time with an

exponent of 1/4.

For large values of the time, the behaviours of c(r, t) and ∂c(r, t)/∂r may

be determined from the bahaviours of c̄(r, t) and ∂c̄(r, s)/∂r, respectively,
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for small values of the transform parameter s. We then expand the Bessel

functions occuring in (11,12) supposing s to be small. Keeping the leading

time dependence term, the concentration of monomers yields

c(r, t) ≃ 2 c0

ln
(

r

R

)

ln
(

4Dt

σ2R2

) , (19)

where σ = eγ = 1.78107..., where γ = 0.57722... is Euler’s constant. The

total flux at the droplet perimeter and the growth rate of the droplet radius

also in this limit using (6) and (5), respectively are given by

Φ(t) ≃ 4πc0DV
[

ln
(

4Dt

σ2R2

)]−1

, (20)

R(t) ≃ A

[

τ

ln(τ)

]1/3

, (21)

where A = (9πV σ2/λ)
1/3

and τ = 4c0Dt/σ2 is the dimensionless time. Up

to a constant, these are the same results which were obtained by Krapvisky

based on a quasistatic approximation using a similarity variable approach

[15].

3 Phenomenological Rate Equation Model

One can consider various modification of the initial and boundary conditions

(2) and (4). Here we improve the model and incorporate effects other than the

irreversible adsorption at r = R expressed by (4), Ref. [37]. In this section

we consider a phenomenological modification of the boundary condition (4)

to allow for detachment. This was introduced in [37] where the relation
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∂c(r, t)

∂t
= −m c(r, t) + k (22)

at r = R was replaced for (4). Here it is assumed that the diffusing monomers

that reach the perimeter of the droplet are incorporated in the aggregate

structure at the rate mc proportional to their concentration at R. The second

term in (22) corresponds to detachment and is assumed that only depends

on the internal processes, so there is no dependence on the external diffuser

concentration [37].

To solve (1) with (2,3) and (22), we go through steps similar to section 2

and only emphasize the final expressions. In the Laplace transform version,

the boundary condition becomes

(s + m) c̄(r, s) =
k

s
+ c0 (23)

at r = R. The concentration and the radial gradient of the concentration in

this version become

c̄(r, s) =
c0

s
−

mc0 − k

s(s + m)

K0(qr)

K0(qR)
, (24)

∂c̄(r, s)

∂r
=

mc0 − k

(Ds)1/2

1

(s + m)

K1(qr)

K0(qR)
. (25)

Now we look for the solutions in the short and long time limits.

For small values of the time, we use the asymptotic expansions of the

Bessel functions in (24,25) for large values of s and ignore m in comparison

to s in the term (s + m). Then, the concentration, the total flux at the

droplet perimeter and the growth rate of the droplet radius in this limit,

keeping only the leading time-dependent terms, are given by
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c(r, t) ≃ c0 + 4mt

(

c0 −
k

m

)

(

R

r

)1/2

Erfc

(

r − R

2
√

Dt

)

, (26)

Φ(t) ≃ 4mV R
√

πD

(

c0 −
k

m

)

t1/2, (27)

R(t) ≃
[

16mV

3λ

√
πD

(

c0 −
k

m

)]1/2

t3/4. (28)

We see that in a phenomenological model, R grows as a power of the time

with an exponent of 3/4 in the short time limit. In the expressions (26-28), in

comparison with (16-18) in the previous section, there is a term as (c0−k/m)

which shows a reduction of the rate due to detachment, proportional to the

ratio k/m.

For large values of the time, we use the expansions of the Bessel functions

in (24,25) supposing s to be small and ignore s in comparison with m in the

term (s+m). Then, the concentration, total flux at the droplet perimeter and

growth rate of the droplet radius, keeping only the leading time dependent

terms, yield

c(r, t) ≃
k

m
+ 2

(

c0 −
k

m

) ln
(

r

R

)

ln
(

4Dt

σ2R2

) , (29)

Φ(t) ≃ 4πDV

(

c0 −
k

m

)

[

ln
(

4Dt

σ2R2

)]−1

, (30)

R(t) ≃ A

[

τ

ln(τ)

]1/3

, (31)

where A = (9πV σ2/λ)1/3 and τ = 4Dt(c0 − k/m)/σ2. These asymptotic

expressions are quite similar to the long time forms (19-21) in section 2. The
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only change is the reduction of the rate due to the detachment, proportional

to the ratio k/m.

For a fast enough detachment, the total fluxes of the monomers at the

boundary in the both short and long time limits (27,30) can actually become

negative. In this case, the flux does not feed the growth of the droplet and the

droplet volume does not increase anymore. Therefore, the mass conservation

(5) does not hold and the growth laws (28,31) are not valid anymore. For a

case in which c0 = k/m, the system reaches a stationary state and therefore

the total rate and the total flux of the monomers at the droplet perimeter,

become zero for all times. Consequently, there is no growth for the droplet

and the concentration of the monomers is equal to the initial concentration,

c0, for all times. These results can be obtained from the both short and long

time expressions (26-28) and (29-31), respectively.

4 Radiation Boundary Condition

In this section we consider another modification of the boundary condition

(4) and replace it with a radiation boundary condition

α
∂c(r, t)

∂r
+ β = c(r, t) (32)

at r = R, Ref. [37]. Here it is assumed that the concentration is proportional

to its derivative, with an additional constant β. Again we go through steps

similar to the section 2 and only emphasize the final expressions. In the

Laplace transform version, the boundary condition becomes

α
∂c̄(r, s)

∂r
+

β

s
= c̄(r, s) (33)
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at r = R. The concentration and its radial gradient in this version become

c̄(r, s) =
c0

s
−

(c0 − β)

s

K0(qr)

K0(qR) + αqK1(qR)
, (34)

∂c̄(r, s)

∂r
=

(c0 − β)

(Ds)1/2

K1(qr)

K0(qR) + αqK1(qR)
. (35)

We concentrate our attention to the solutions in the short and long time

limits.

For small values of the time, we use the asymptotic expansions of the

Bessel functions in (34,35) to get the leading time dependent terms for the

concentration, the total flux and the droplet growth rate

c(r, t) ≃ c0 −
2i

α
(c0 − β)

(

DR t

r

)1/2

Erfc

(

r − R

2
√

Dt

)

, (36)

Φ(t) ≃
2πRDV

α
(c0 − β), (37)

R(t) ≃
[

4πDV

αλ
(c0 − β)

]1/2

t1/2. (38)

The term (c0 − β) in these expressions shows a reduction of the rate due

to the detachment, proportional to the ratio β. We see that in the short

time limit, the total flux at the droplet perimeter is time-independent and R

grows as a power law with an exponent equal to 1/2.

For large values of the time, we expand the Bessel functions in (34,35)

supposing s to be small. Consequently, the asymptotic expressions for the

concentration, total flux and the droplet growth rate, yield

c(r, t) ≃ β + 2(c0 − β)
ln
(

r

R

)

ln
(

4Dt

σ2R2

) , (39)
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Φ(t) ≃ 4πDV (c0 − β)
[

ln
(

4Dt

σ2R2

)]−1

, (40)

R(t) ≃ A

[

τ

ln(τ)

]1/3

, (41)

where A = (9πV σ2/λ)1/3 and τ = 4Dt(c0 − β)/σ2. These long time expres-

sions have the same forms as (29-31) provided we identify

β =
k

m
. (42)

For a fast enough detachment, analogue to the section 3, the total fluxes of

the monomers at the boundary (37,40) can become negative. In this case,

the growth laws (38,41) do not hold anymore. For a case in which c0 = β,

analogue to the section 3, the system reaches a stationary state and therefore

the total flux and the droplet growth rate become zero. The concentration

also does not change with the time and is equal to the initial one. These

can be seen from the both short and long time results (36-38) and (39-41),

respectively.

5 Constant Flux Boundary Condition

In this section we impose a condition on the flux of the monomers assum-

ing that the total flux of monomers at the droplet perimeter is constant.

Therefore, we replace (4) with

Φ(t) = Q (43)
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at r = R, where Φ(t) is given by (6) and Q is a constant. The analogue to the

previous sections, in the Laplace transform version, the boundary condition

becomes

2πRDV
∂c̄(r, s)

∂r
=

Q

s
(44)

at r = R. The concentration and its radial gradient in this version are

c̄(r, s) =
c0

s
−

Q

2πRV D1/2

K0(qr)

s3/2K1(qR)
(45)

and

∂c̄(r, s)

∂r
=

Q

2πRDV

K1(qr)

sK1(qR)
. (46)

Appropriate expansions of the Bessel functions in (45) give us the limiting

forms of the concentrations. For small values of the time it yields

c(r, t) ≃ c0 −
i Q

πV

(

t

DR r

)1/2

Erfc

(

r − R

2
√

Dt

)

(47)

and for large values of the time it gives

c(r, t) ≃ c0 −
Q

4πDV
ln
(

4Dt

σr2

)

. (48)

The trivial solution for the droplet growth rate using (5,43) is

R(t) =
(

3 Q

λ

)1/3

t1/3, (49)

for all times.
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6 Conclusions

We studied the growth of a single, motionless, three-dimensional droplet that

accommodates monomers at its perimeter on a 2D substrate. The noncoa-

lescing monomers diffuse and are adsorbed at the aggregate perimeter of the

droplet with different boundary conditions. Models with adsorption and radi-

ation boundary conditions, and a phenomenological model for the boundary

condition, were considered and solved in a quasistatic approximation. In a

model with adsorption boundary condition, the droplet forms an absorber

and the concentration of the monomers at its perimeter is zero. In a phe-

nomenological model, we assumed that the diffusing monomers that reach

the perimeter of the droplet, are incorporated in the aggregate structure at

a rate proportional to their concentration at the boundary. We also added

another term which corresponds to detachment. In a model with radiation

boundary condition we assumed that the concentration is proportional to its

derivative with an extra detachment term. For each model, we solved ex-

actly the diffusion equation for the concentration of the monomers, subject

to a fixed boundary. Then, using a mass conservation law at the perimeter

of the droplet, we found an expression for the growth rate of the moving

boundary. Models were subjected to an initial, uniform concentration of

monomers. Asymptotic results for the concentration, total flux of monomers

at the boundary and the growth rate of the droplet radius, were obtained

in both short and long time limits. The results revealed that in both phe-

nomenological and radiation models, in comparison with adsorption model,

there is a reduction of the rate due to the detachment. The rate can become

negative if the detachment is fast enough. In this case, the total flux of the

monomers at the perimeter of the droplet become negative. Therefore, the
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flux does not feed the growth of the droplet volume and the droplet growth

laws obtained in the models, are not valid anymore. For a value of the de-

tachment for which the total rate and therefore the total flux become zero,

the system reaches a stationary state and there is no growth for the droplet

anymore. The same reduction of the rate was obtained in [37] where incor-

poration of particle detachment in Smoluchowski model of colloidal growth,

was considered.

The results in the short time limit predicted that the radius of the droplet

grows as a power of the time with different exponents for different bound-

ary conditions. The exponents of the power laws were 1/4, 1/2 and 3/4,

respectively, for the models with adsorption, radiation and phenomenologi-

cal boundary conditions. We see that the growth rate is the slowest for the

adsorption boundary condition and is the fastest for the phenomenological

model. This is because, as was said before, in the phenomenological model,

the diffusing monomers at the perimeter of the droplet are incorporated in

the aggregate structure of the droplet. The total flux of the monomers at the

droplet perimeter is also power law with exponents of −1/2 and 1/2 for the

adsorption and phenomenological model, respectively, and is a constant for

the radiation model. Again the flux is maximum for the phenomenological

model and is minimum for the adsorption model.

In the long time limit, the growth law for the radius of the droplet was

the same for all boundary conditions. Also the concentration and total flux

had the same time dependency in all models. The only change, as we said

before, was the reduction of the rate due to the detachment in the both phe-

nomenological and radiation models in comparison with adsorption model.

Asymptotic results for large values of the time exhibited that the radius

of the droplet increases as [t/ ln(t)]1/3 in all models. This was obtained by
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Krapivsky [15] where a similarity variable approach was used to treat the

growth of a droplet with an adsorption boundary condition based on a qua-

sistatic approximation.

We saw that the time dependency of the results was the same for all the

models in the long time limit and was different for different models in the

short time limit. This suggests that initially the flux of the monomers at the

boundary and therefore the droplet growth rate, are affected by the condi-

tion at the boundary. But in the long time limit, the system reaches a stable

state and the initial effects can be ignored, therefore all the models give the

same results. This suggests that a rate as [t/ ln(t)]1/3 is a universal asymp-

totic growth law for the radius of the droplet independent of the boundary

conditions.

In the both models with phenomenological and radiation boundary con-

ditions, similar to the results in [37], the value of the concentration at r = R

for large times, see (29) and (39), is exactly equal to β = k/m, independent

of R. This suggests that as far as large R and large time behaviours are

concerned, we can use the boundary condition

c = β =
k

m
(50)

at r = R, instead of phenomenological and radiation boundary conditions.

Indeed, the value of the concentration at r = R is the only parameter needed

to calculate the modifications of the asymptotic behaviours due to the de-

tachment. With this boundary condition for all times, the asymptotic results

(29-31) and (39-41) become exact. Therefore, a constant concentration of the

monomers at r = R for all times, gives an exact growth rate as [t/ ln(t)]1/3 .

We also examined another model with a constant flux of monomers at

r = R. The results showed that the radius of the droplet grows as t1/3 for all
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times. Thus, the growth laws predicted by a constant concentration and by

a constant flux at the boundary, differ from each other by a slowly varying

logarithmic factor.
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