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Variance-Constrained Filtering for Uncertain Stochastic
Systems With Missing Measurements

Zidong Wang, Daniel W. C. Ho, and Xiaohui Liu

Abstract—In this note, we consider a new filtering problem for linear
uncertain discrete-time stochastic systems with missing measurements. The
parameter uncertainties are allowed to be norm-bounded and enter into the
state matrix. The system measurements may be unavailable (i.e., missing
data) at any sample time, and the probability of the occurrence of missing
data is assumed to be known. The purpose of this problem is to design a
linear filter such that, for all admissible parameter uncertainties and all
possible incomplete observations, the error state of the filtering process is
mean square bounded, and the steady-state variance of the estimation error
of each state is not more than the individual prescribed upper bound. It
is shown that, the addressed filtering problem can effectively be solved in
terms of the solutions of a couple of algebraic Riccati-like inequalities or
linear matrix inequalities. The explicit expression of the desired robust fil-
ters is parameterized, and an illustrative numerical example is provided to
demonstrate the usefulness and flexibility of the proposed design approach.

Index Terms—Incomplete observation, Kalman filtering, linear matrix
inequality, missing signal, robust filtering.

I. INTRODUCTION

The well-known Kalman filtering is one of the most successfulH2

filtering approaches widely used in various fields of signal processing
and control. However, it has now been recognized that the standard
Kalman filtering algorithm will generally not guarantee satisfactory
performance when there exist parameter uncertainties in the system
model; see, e.g., [2]. To improve the robustness, in recent years, many
alternative design methods have been developed, among them, we just
mention theH1 filtering and robust filtering approaches; see, for ex-
ample, [9], [15], [20], and the references therein. Generally speaking,
theH1 filtering approach aims at minimizing theH1 norm of the
transfer function from noises to the estimation error, while the robust
filtering approach guarantees an upper bound to the quadratic cost in
spite of various parameter uncertainties, and then minimizes this upper
bound locally.

In practical engineering, however, it is often the case that, for a class
of filtering problems such as the tracking of a maneuvering target, the
performance objectives are naturally described as the upper bounds on
the error variances of estimation; see, e.g., [22] and [27]. Unfortunately,
it is usually difficult to utilize traditional methods to deal with this class
of constrained variancefiltering problems. For instance, the theory of
weighted least-squares estimation minimizes a weighted scalar sum of
the error variances of the state estimation, but minimizing a scalar sum
does not ensure that the multiple variance requirements will be sat-
isfied [23]. Motivated by this fact, a novel filtering method, namely,
error covariance assignment (ECA) theory (see, e.g., [14], [27], and
[28]), was developed to provide a closed form solution for directly as-
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signing the specified steady-state estimation error covariance. Subse-
quently, the idea of ECA theory has been applied in investigating the
so-called variance-constrained filtering problems for parameter uncer-
tain systems [25] and sampled-data systems [26], where a prespecified
upper bound is placed onto the steady-state estimation error variance. It
is worth mentioning that the specified variance constraints may not be
minimal, but should meet given engineering requirements. Therefore,
after assigning to the error dynamic system a specified variance upper
bound, there remainsmuchfreedom which can be used to attempt to
directlyachieve other desired performance requirements, but the tradi-
tional optimal (robust) Kalman filtering methods may not have such an
advantage.

So far in the previously mentioned literature, it is assumed that the
measurements always contain the signal. However, in practical appli-
cations such as target tracking, there may be a nonzero probability that
any observation consists of noise alone if the target is absent, i.e., the
measurements are not consecutive but contain missing observations.
The missing observations are caused by a variety of reasons, e.g., the
high maneuverability of the tracked target, a certain failure in the mea-
surement, intermittent sensor failures, accidental loss of some collected
data, or some of the data may be jammed or coming from a high noise
environment, etc. [16].

Basically, the standard definition of covariance in the data statistical
analysis does not directly apply if some of the measurements are un-
available. Thus, the popular robust and/orH1 filtering approaches,
which are dependent on the system output covariance, do not suit the
case when there are missing measurements. In [5] and [16], the system
identification problem was studied for data with missing observations.
As for filtering problem, only a very limited number of filter design
methods for system output signals with missing measurements have
been developed. In [11], the effect of missing data on the steady-state
performance of a tracking filter was shown to be crucial. In [6], Chen
proposed a suboptimal Kalman filtering method to cope with the case
of measurement data missing. In [13], a measurement model with a bi-
nary multiplicative noise was introduced to account for the influence
from the missing data. The similar model was employed in [14] to study
the filter design problem with error covariance assignment, where the
parameter uncertainties were not taken into account. Some more rele-
vant references can also be found in [7] and [14]. Recently, in [18] and
[19], the robust filtering problem with missing data was investigated by
using a jump Riccati equation approach, where a notion of incomplete-
ness matrix function was proposed to quantify the missing data. Up to
now, to the best of the authors’ knowledge, the issue ofvariance-con-
strainedfiltering on parameter uncertainsystems withmissing mea-
surementshas not been fully investigated and remains to be important
and challenging.

In this note, we are concerned with the variance-constrained
filtering problem for uncertain discrete-time stochastic systems with
probabilistic missing measurements. We aim at designing a linear
filter such that, for all admissible parameter uncertainties and all
possible incomplete observations: 1) the error state of the filtering
process is mean square bounded and 2) the steady-state variance of the
estimation error of each state is not more than the individual prescribed
upper bound. It is shown that, the solution to the addressed filtering
problem is related to a couple of algebraic Riccati-like inequalities or
linear matrix inequalities. The explicit expression of the desired robust
filters is derived, and a numerical example is offered to illustrate the
usefulness of the proposed design approach.

The rest of this note is arranged as follows. Section II formulates
the robust variance-constrained filter design problem for uncertain dis-
crete-time systems with missing measurements. The solution of this
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problem is given in Section III. We demonstrate the use of the proposed
theory in Section IV by means of a numerical example. In Section V,
some concluding remarks end the note by pointing out possible exten-
sions and future research directions.

Notation: The notations in this note are quite standard.n and
n�m denote, respectively, then dimensional Euclidean space and

the set of alln � m real matrices. The superscript “T ” denotes the
transpose and the notationX � Y (respectively,X > Y ) whereX
andY are symmetric matrices, means thatX � Y is positive semidef-
inite (respectively, positive definite).I is the identity matrix with
compatible dimension. Let (
, F , fFtgt�0, P ) be a complete proba-
bility space with a filtrationfFtgt�0 satisfying the usual conditions
(i.e., the filtration contains allP -null sets and is right continuous).
Ef�g stands for the mathematical expectation operator with respect
to the given probability measureP . Probf�g means the occurrence
probability of the event “�.” The shorthanddiag(M1;M2; . . . ;MN )
denotes a block diagonal matrix with diagonal blocks being the
matricesM1;M2; . . . ;MN . Sometimes, the arguments of a function
will be omitted in the analysis when no confusion can arise.

II. PROBLEM FORMULATION AND ASSUMPTIONS

Consider the following linear uncertain discrete-time stochastic
system:

x(k + 1) = (A +�A)x(k) + w(k) (1)

and the measurement equation

y(k) = (k)Cx(k) + v(k) (2)

wherex 2 n is a state vector,y 2 p is a measured output vector,
andA andC are known constant matrices.w(k) 2 n andv(k) 2 p

are mutually uncorrelated zero mean Gaussian white noise sequences
with respective covariancesW > 0 andV > 0. The initial statex(0)
has the mean�x(0) and covarianceP (0), and is uncorrelated with both
w(k) andv(k).�A is a real-valued perturbation matrix that represents
parametric uncertainty being of the following form:

�A =MFN FF
T � I (3)

andM andN are known constant matrices of appropriate dimensions
which specify how the elements of the nominal matrixA are affected
by the uncertain parameters inF . The uncertainties in�A are said
to be admissible if (3) holds. The stochastic variable(k) 2 is a
Bernoulli distributed white sequence taking values on 0 and 1 with

Prob f(k) = 1g = E f(k)g := � (4)

where� is a known positive constant, and(k) 2 is assumed to be
independent ofw(k), v(k), andx(0). Therefore, we have

Probf(k) = 0g = 1� � (5)

�
2

 := E ((k)� �)2 = (1� �)�: (6)

Remark 1: The parameter uncertainty structure as in (3) has been
frequently used in the problems of robust filtering and control of un-
certain systems (see, e.g., [4], [9], [15], [20], [21], [24], and [25]). Many
practical systems possess parameter uncertainties which can be either
exactly modeled or overbounded by (3). Observe that the unknown ma-
trix F in (3) can even be allowed to be time varying and state depen-
dent, i.e.,F = F (t; x(t)), as long as (3) is satisfied. On the other hand,
the system measurement mode (2) was first introduced in [13], and has
subsequently been used in many papers (see, e.g., [14]) to account for
the probabilistic measurement missing. The corresponding probability
� could be estimated through statistical tests.

Throughout this note, we will need the following assumption.

Assumption 1:The matrixA is nonsingular and Schur stable (i.e.,
all eigenvalues ofA are nonzero and located within the unit circle in
the complex plane).

Introducing now a new stochastic sequence

~(k) := (k)� � (7)

we can see that~(k) is a scalar zero mean stochastic sequence with
variance

�
2

~ = (1� �)�: (8)

The linear full-order filter considered in this note is of the following
structure:

x̂(k + 1) = Gx̂(k) +K (y(k)� �Cx̂(k)) (9)

wherex̂(k) stands for the state estimate andG andK are the filter
parameters to be scheduled.

The steady-state estimation error covariance is defined by

P := lim
k!1

P (k):= lim
k!1

E e(k)eT (k) e(k)=x(k)� x̂(k): (10)

From (1), (2), (7), and (9), we have

y(k)� �Cx̂(k) = (k)Cx(k) + v(k)� �Cx̂(k)

= ~(k)Cx(k) + �Ce(k) + v(k)

and, subsequently

e(k+ 1) = (A+�A�G� ~(k)KC)x(k)

+(G� �KC)e(k) + w(k)�Kv(k): (11)

Define

xf (k) :=
x(k)

e(k)

Af :=
A 0

A �G� ~(k)KC G� �KC
(12)

An :=
A 0

A�G G� �KC
J :=

0 0

�~KC 0
(13)

Mf :=
M

M
Nf := [N 0] �Af =MfFNf (14)

Wf :=BfB
T
f :=

W W

W W +KVKT (15)

X(k) := E xf (k)x
T
f (k) :=

Xxx(k) Xxe(k)

XT
xe(k) Xee(k)

: (16)

Considering (1) and (11), we obtain the following augmented
system:

xf (k + 1) = (Af +�Af )xf(k) +Bfwf(k) (17)

wherewf(k) denotes a zero mean Gaussian white noise sequence with
unity intensityI > 0.

Remark 2: It is mentionable that there is a stochastic variable
~(k) involved inAf , which reflects the characteristic of the missing
measurement for the addressed filtering problem, and the augmented
system (17) is, therefore, essentially a stochastic parameter system.
Note that a more general stochastic parameter system is the so-called
Markovian jumping system, where the stochastic variable~(k) may
be an ergodic finite state Markov chain. Markovian jumping systems
have received much research attention in the past decade; see [3], [4],
and the references therein. The robust Kalman filtering problem has
recently been studied in [21] for linear jumping systems by solving
two sets ofcoupledalgebraic Riccati equations. Nevertheless, focusing
on the particular data missing problem, we let the stochastic variable
~(k) be a Bernoulli sequence and, therefore, we are able to obtain
more practical solutions. For example, the algorithm developed in this
note will not involve solvingcoupledmatrix equations/inequalities.
Another motivation is that, instead of the minimum variance filtering,
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we consider the constrained variance filtering problem here, which
should give more design freedom. This will be demonstrated later in
Remark 6.

Using the statistics of the noisesw(k), v(k) and, in particular,~(k),
the state covarianceX(k) defined in (16) is found to satisfy

X(k+ 1) = (An +�Af)X(k)(An+�Af )
T + JX(k)JT +Wf :

(18)
We know from [1] and [8] that, if the state of (17) is mean square

bounded, the steady-state covarianceX of (17) defined by

X := lim
k!1

X(k) (19)

exists and satisfies the following discrete-time modified Lyapunov
equation:

X = (An +�Af )X(An +�Af )
T + JXJ

T +Wf : (20)

Remark 3: It follows from [1] and [8] that, there exists a unique
symmetric positive–semidefinite solution to (20) iff

� f(An +�Af )
 (An +�Af ) + J 
 Jg < 1 (21)

where� is the spectral radius and
 is the Kronecker product. Further-
more, we also know from [1] and [8] that the condition (21) is equiv-
alent to the mean square boundedness of the state of (17). Hence, we
conclude here that, if there exists a positive definite solution to the (20),
then (21) holds, and the convergence ofX(k) in (16) will be guaran-
teed to a constant valueX.

The purpose of this note is to design the filter parameters,G and
K, such that for all admissible perturbations�A: 1) the state of the
augmented system (17) is mean square bounded, i.e., (21) holds; and
2) the steady-state error covarianceXee satisfies

[Xee]ii � �
2

i ; i = 1; 2; . . . ; n: (22)

where[Xee]ii means the steady-state variance of theith error state,
and�2i (i = 1; 2; . . . ; n) denotes the prespecified steady-state error
estimation variance constraint on theith state.

Remark 4: In (22), individual upper bound constraint, which can
be obtained according to the engineering requirement, is imposed on
individual steady-state estimation error variance. This idea has been
applied in dealing with the pointing problem for NASA’s ACES struc-
ture, such as the Hubble Space Telescope [29]. Note that conventional
minimum variance filtering method aims to minimize a weighted scalar
sum of the estimation error variances, and is therefore not able to en-
sure that the multiple variance requirements will be satisfied [23].

In the next section, a solution to the problem addressed above will
be given. A two-step approach will be developed. Specifically, we will
first characterize an upper bound on the steady-state error covariance
X satisfying (20) in terms of some free parameters, and let this upper
bound meet the prespecified variance constraints, and then we will pa-
rameterize all desired filter gains with which the resulting steady-state
error covariance is not more than the obtained upper bound.

III. M AIN RESULTS AND PROOFS

The following lemmas will be needed in establishing our main re-
sults.

Lemma 1: [24] Let a positive scalar" > 0 and a positive definite
matrixQf > 0 be such thatNfQfN

T
f < "I , and�Af = MfFNf

with FF T � I . Then

(An +�Af )Qf(An +�Af )
T

� An Q
�1

f � "
�1
N

T
f Nf

�1

A
T
n + "MfM

T
f (23)

holds for all admissible perturbations�A.
Lemma 2: [25] For a given negative definite matrix� < 0 (� 2
n�n), there always exists a matrixL 2 n�p (p � n) such that

� + LLT < 0.

Lemma 3: (Schur complement) Given constant matrices
1, 
2,

3 where
1 = 
T

1 and0 < 
2 = 
T
2 , then
1 +
T

3 

�1

2

3 < 0 if

and only if


1 
T
3


3 �
2

< 0

or
�
2 
3


T
3 
1

< 0:

For presentation convenience, we denote

� := (A�G) P
�1

1 � "
�1
N

T
N

�1

(A�G)T

+ "MM
T +W (24)

R := �2 + �
2

~ CP2C
T + V (25)

� :=� +GP2G
T � P2 � �2GP2C

T
R
�1
CP2G

T (26)

where� and�~ are defined in (4) and (8), respectively.
The following theorem reveals that the solution to the problem of

variance-constrained filtering with missing measurements is related to
two quadratic matrix inequalities.

Theorem 1: Assume that there exists a positive scalar" > 0 such
that the following two quadratic matrix inequalities:

AP1A
T � P1 + AP1N

T ("I �NP1N
T )�1�

NP1A
T + "MM

T +W < 0 (27)

� = �+GP2G
T�P2��2GP2C

T
R
�1
CP2G

T
< 0 (28)

respectively have positive–definite solutionsP1 > 0 (NP1N
T � "I)

andP2 > 0, where

G = A + ("MM
T +W )(A�1)T P

�1

1 � "
�1
N

T
N : (29)

Moreover, letL 2 n�p (p � n) be an arbitrary matrix satisfying
� + LLT < 0 (see Lemma 2), andU 2 p�p be an arbitrary orthog-
onal matrix (i.e.,UUT = I). Then, the filter (9) with the parameters
determined by (29) and

K = �GP2C
T
R
�1 + LUR

� (30)

will be such that, for all admissible perturbations�A: 1) the state of the
augmented system (17) is mean square bounded; and 2) the steady-state
error covarianceXee meetsXee < P2.

Proof: Define Pf := diag(P1; P2). Then, it follows directly
from Lemma 1 and the definitions (24)–(26) that

(An +�Af )Pf(An +�Af )
T�

Pf + JPfJ
T +Wf �

An P
�1

f � "
�1
N

T
f Nf

�1

A
T
n+

"MfM
T
f �Pf+JPfJ

T+Wf :=	 :=
	11 	12

	T
12 	22

(31)

where

	11 =A P
�1

1 �"�1NT
N

�1

A
T�P1+"MM

T+W (32)

	12 =A P
�1

1 �"�1NT
N

�1

(A�G)T+"MM
T+W (33)

	22 =(A�G) P
�1

1 � "
�1
N

T
N

�1

(A�G)T

+ (G� �KC)P2(G� �KC)T + "MM
T

� P2 + �
2

~KCP2C
T
K

T +W +KVK
T
: (34)

It follows immediately from the matrix inverse lemma that

P
�1

1 � "
�1
N

T
N

�1

= P1 + P1N
T ("I �NP1N

T )�1NP1

and, therefore, (27) implies that	11 < 0. Moreover, substituting the
expression ofG in (29) into (33) leads to	12 = 0 easily.
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Next, we will consider	22. By using the definitions (24)–(26), we
can rearrange (34) as follows:

	22 =�+ (G� �KC)P2(G� �KC)T � P2

+ �
2

~KCP2C
T
K

T +KVK
T

=�+GP2G
T
�P2+K �2+�2~ CP2C

T+V K
T

� �GP2C
T
K

T
� �KCP2G

T

=�+GP2G
T
�P2��

2
GP2C

T
R
�1
CP2G

T

+ KR � �GP2C
T
R
�

� KR � �GP2C
T
R
�

T

=�+ KR � �GP2C
T
R
�

� KR � �GP2C
T
R
�

T

: (35)

Noticing the expression ofK = �GP2C
TR�1+LUR�1=2 in (30)

and the fact thatUUT = I , we have

KR � �GP2C
T
R
�

KR � �GP2C
T
R
�

T

=LLT
:

Thus, it follows from (35), the definition of the matrixL(L 2 n�p)
and (28) that	22 = � + LLT < 0.

To this end, we can conclude that	 < 0. Therefore, it follows from
(31) that

(An+�Af)Pf (An+�Af )
T
�Pf+JPfJ

T
��Wf+	 < 0 (36)

which leads to (21). As discussed earlier in Section II (see Remark 3),
we know that the state of the augmented system (17) is mean square
bounded, and there exists a symmetric positive–semidefinite solution
to (20). The first claim of this theorem is then proved.

Furthermore, subtract (20) from (36) to give

(An +�Af )(Pf �X)(An +�Af )
T

�(Pf �X) + J(Pf �X)JT � 	 < 0 (37)

which indicates again from Remark 3 thatPf �X � 0 and, therefore

Xee = [X]22 � [Pf ]22 = P2

This completes the proof of this theorem.
Remark 5: It is clear from Theorem 1 that, if the quadratic matrix

inequalities (27) and (28), respectively, have positive–definite solutions
P1 > 0, P2 > 0, andP2 > 0 satisfies

[P2]ii � �
2

i ; i = 1; 2; . . . ; n (38)

then the filter (9) determined by (29) and (30) will be such that: 1)
the state of the augmented system (17) is mean square bounded; and 2)
[Xee]ii < [P2]ii � �2i , i = 1; 2; . . . ; n. Hence, the design objective of
variance-constrained robust filter with missing measurements will be
accomplished. Note that the existence of a positive–definite solution to
(27) implies the asymptotical Schur stability of system matrixA, and
the nonsingularity ofA is required in (29). This means that Assumption
1 should hold.

We now briefly discuss the solvability of the quadratic matrix in-
equalities (27) and (28), which play a key role in designing the expected
filters. We can observe that, fortunately, the parameterP2 of (28) is not
included in (27). Therefore, we could first solve (27) for" > 0 and
P1 > 0, and then solve the standard Riccati-like matrix inequality (28)
for P2 > 0.

By using the Schur Lemma (Lemma 3), we can transform (27) into
the following linear matrix inequality (LMI):

AP1A
T
� P1 + "MMT +W AP1N

T

NP1A
T

�"I +NP1N
T < 0 (39)

The inequality (39), together with the inequality constraint

�"I +NP1N
T
< 0 (40)

are both linear on" > 0 andP1 > 0. Therefore, we can employ the
standard LMI techniques in [10] to check the solvability of the original
matrix inequality (27). AfterP1 is obtained, (28) becomes a standard
Riccati-like matrix inequality, and some related solving algorithms can
be found in [17], etc. It is mentionable that, in the past decade, LMIs
have gained much attention for their computational tractability and use-
fulness in signal processing and control engineering, and the number
of control problems that can be formulated as LMI problems is large
and continues to grow. The LMIs can now be solved efficiently by the
powerful Matlab LMI Toolbox [10].

Remark 6: A typical feature of the present parameterization design
approach is that, there exists much explicit freedom, such as the choices
of the free parametersL(L 2

n�p satisfies� + LLT < 0), the
orthogonal matrixU 2

p�p, etc. This makes it possible that more
performance constraints (e.g., the transient requirement and reliability
behavior on the filtering process) could be taken into account within the
same framework, which gives us one of the future research topics. We
also point out that, the results of this note can also be extended to the
case when there are some deterministic parameter uncertainties on the
system outputs. The reason why we discuss the case when the param-
eter uncertainties only enter into the state matrix is just to make our
theory more understandable and to avoid unnecessarily complicated
notations.

As a summary, we give our main results as follows.
Corollary 1: If there exist a positive scalar" > 0 and two pos-

itive–definite matricesP1 > 0, P2 > 0 such that the LMIs (39)
(40) and the matrix Riccati inequality (28) hold, andP2 > 0 satis-
fies [P2]ii � �2i (i = 1; 2; . . . ; n:), then the filter (9) determined by
(29) and (30) will achieve the desired robust filtering performance for
uncertain systems with missing measurements.

IV. NUMERICAL EXAMPLE

In this section, we demonstrate the theory developed in this note by
means of a target tracking example.

Assume that the maneuvering target is accelerating with random
bursts of gas from its reaction control system (RCS) thrusters and,
hence, the state vector could consist of the position and velocity. When
tracking a maneuvering target through a radar system, we wish that the
target would be kept inside a “window” as frequent as possible. The
size of such a window depends on the acceptable filtering error vari-
ance. The target is said to be missing if it is outside the window. Our
task is therefore to design a filter such that, in the presence of missing
measurement and modeling error, the probability for the target to stay
within a given window would be kept at a given level. Such a require-
ment can then be expressed in terms of the variance constraints on the
individual error state; see [12] and the references therein. Motivated by
this background, we consider a linear uncertain discrete-time stochastic
system (1) and (2) with parameters given by

A =
0:5 0:1

0:1 �0:5
C =

1 0

0 1
M =

0:1 0:05

�0:02 0:8

N =
0:1 0

0 0:1
W =

0:1 0

0 0:1
V =

0:5 0

0 0:5
:

and the probability for complete observation is assumed to be 0.9, i.e.,
the missing probability is 0.1.

The purpose of this example is to design the filter parameters,G

andK, such that for all admissible perturbations�A, the augmented
system (17) is mean square bounded, and the steady-state error covari-
anceXee satisfies

[Xee]11 � 0:8 [Xee]22 � 4:

Authorized licensed use limited to: Brunel University. Downloaded on March 23, 2009 at 09:26 from IEEE Xplore.  Restrictions apply.



1258 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 7, JULY 2003

Solving LMIs (39) and (40) for", P1, and then the Riccati-like ma-
trix inequality (28) forP2, we obtain

" =1:8286

P1 =
5:8346 0:0064

0:0064 3:6628

P2 =
0:7765 0:0052

0:0052 3:6983
:

One of the filter parameters,G, is calculated from (29) as follows:

G =
0:5437 0:0768

0:2040 �1:1470
:

To obtain another parameter,K, we chooseL = 0:5I2 such that� +

LL
T
< 0 and select the orthogonal matrixU asI2. Then, it follows

from (30) that

K =
0:8040 0:0725

0:1246 �0:8165
:

Alternatively, to show the design flexibility, we chooseU as�I2, and
subsequently have

K =
�0:1346 0:0732

0:1253 �1:3490
:

It is not difficult to verify that the specified mean square boundedness
as well as the steady-state error variance constraint are achieved.

V. CONCLUSION

In this note, the linear filtering problem has been considered for
parameter uncertain discrete-time stochastic systems where there is
a nonzero probability of signal being absent in the measurement.
This problem has been approached by assigning an upper bound to
the steady-state error covariance, and by parameterizing the set of
all filter gains that could achieve such an upper bound. It has been
shown that, the problem is solvable if several LMIs or Riccati-like
matrix inequalities have positive definite solutions. In particular, the
characterization of the desired filter gains has been given in terms
of some “free” parameters, and much design flexibility have been
offered, which could be utilized to achieve more expected performance
requirements. A numerical example has been provided to illustrate the
effectiveness of the proposed design approach.

Possible future research directions include real-time applications of
the proposed filtering theory in telecommunications, and further ex-
tensions of the present results to more complex systems, such as sam-
pled-data systems, bilinear systems, and a class of nonlinear systems.
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