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Stochastic Dynamic Modeling of Short Gene
Expression Time-Series Data
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Abstract—In this paper, the expectation maximization (EM) al-
gorithm is applied for modeling the gene regulatory network from
gene time-series data. The gene regulatory network is viewed as a
stochastic dynamic model, which consists of the noisy gene mea-
surement from microarray and the gene regulation first-order au-
toregressive (AR) stochastic dynamic process. By using the EM
algorithm, both the model parameters and the actual values of the
gene expression levels can be identified simultaneously. Moreover,
the algorithm can deal with the sparse parameter identification and
the noisy data in an efficient way. It is also shown that the EM algo-
rithm can handle the microarrary gene expression data with large
number of variables but a small number of observations. The gene
expression stochastic dynamic models for four real-world gene ex-
pression data sets are constructed to demonstrate the advantages of
the introduced algorithm. Several indices are proposed to evaluate
the models of inferred gene regulatory networks, and the relevant
biological properties are discussed.

Index Terms—Clustering, DNA microarray technology, expec-
tation maximization (EM) algorithm, gene expression, modeling,
time-series data.

I. INTRODUCTION

DNA MICROARRAY technology has provided an efficient
way of measuring the expression levels of thousands of

genes in a single experiment on a single “chip.” It enables the
monitoring of expression levels of thousands of genes simul-
taneously. This allows, for the first time, a global view on the
expression levels of all genes when the cell undergoes specific
conditions or processes. The potential of such technologies for
functional genomics is tremendous. Measuring gene expression
levels in different conditions may prove useful in medical di-
agnosis, treatment, and drug design. Microarray technology has
been heralded as the new biological revolution after the advent
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of the human genome project, since it become possible to ex-
tract the important information from gene expression time-series
data.

In order to infer useful biological information and determine
the relationships between individual genes, many current re-
search efforts have focused on clustering. Cluster analysis of
the gene expression data appeared first in [13] and has quickly
attracted considerable research attention. A number of cluster-
ing algorithms have been examined on gene expression data,
such as hierarchical clustering [13], self-organizing map [34],
k-means [35], and Gaussian-model-based clustering [28], [41],
to name just a few [19]. However, a fundamental shortcoming
of such clustering schemes is that they are based on the assump-
tion that there exists the correlation similarity between genes.
Recently, there has been an increasing research interest to recon-
struct models for gene regulatory networks from time-series data
[10], [31], such as Boolean network model [1], [18], [22], [32],
linear differential equation model [7], [9], [11], [17], Bayesian
model [16], [20], [23], [27], state-space model [4], [29], [40],
and stochastic model [8], [37].

Obviously, selecting a good model to fit gene regulatory
networks is essential to a meaningful analysis of the expres-
sion data. It turns out that the model for gene regulatory
networks should posses the following three properties. First,
the model should be easy to evolve the biological informa-
tion such as the linear dynamical model. Second, the model
should reflect the “stochastic” characteristics, since it is well
known that the gene expression is an inherently stochastic phe-
nomenon [21], [25], [27], [36]. Third, the observations (mea-
surement outputs) of the model should be regarded as noisy due
to our inability to perfectly and accurately (noise-free) mea-
sure gene expression levels. Fourth, in biology and medicine,
the available time series (e.g., gene expression time series)
typically consists of a large number of variables but with a
small number of observations. Therefore, the modeling method
should be capable of tackling short time series with acceptable
accuracy.

There have been attempts to reconstruct models for gene regu-
latory networks by taking into account the aforementioned three
properties. Dynamic Bayesian networks have been proposed to
model gene expression time-series data [20], [23], [27]. The
merits of dynamic Bayesian networks include the ability to
model stochasticity and handle noisy/hidden variables. How-
ever, dynamic Bayesian networks need more complex algo-
rithms such as the genetic algorithm [20], [33] to infer gene
regulatory networks. Another model is the state-space model
[4], [29], [40], whose main feature is that the gene expression
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value depends not only on the current internal state variables but
also on the external inputs. It is very interesting that the external
input is viewed as the previous time step observation, and the
gene regulation matrix is obtained from the relationship between
the current measurement, the previous measurement, and inter-
nal state variables [4], [29]. For the use of state-space models,
the measurements need to be accurate, and a suitable dimension
for the internal state variables needs to be determined before-
hand, which raises considerable difficulties in experimentation
and computation.

In this paper, we view the gene regulatory network as a dy-
namic stochastic model, which is composed of the gene mea-
surement equation and the gene regulation equation. In order to
reflect the reality, we consider the gene measurement from mi-
croarray as noisy, and assume that the gene regulation equation
is a first-order autoregressive (AR) stochastic dynamic process.
Note that it is very important to regard the models as stochastic,
since the gene expression is of inherent stochasticity. Stochastic
models can help conduct more realistic simulations of biological
systems, and also set up a practical criterion for measuring the
robustness of the mathematical models against stochastic noises.
After specifying the model structure, we apply the expectation
maximization (EM) algorithm for identifying both the model
parameters and the actual value of gene expression levels. Note
that the EM algorithm is a learning algorithm that can handle
sparse parameter identification and noisy data very well. It is
also shown that the EM algorithm can cope with the microar-
rary gene expression data with large number of variables but
a small number of observations. Four real-world gene expres-
sion data sets are employed to demonstrate the effectiveness of
our algorithm, and some indices are used to evaluate the mod-
els of inferred gene regulatory networks from the viewpoint of
bioinformatics.

The remainder of this paper is organized as follows. In
Section II, a stochastic dynamic model is described for genetic
regulatory network, which takes into account the noisy mea-
surement as well as the inherently stochastic phenomenon of
the genetic regulatory process. The EM algorithm is introduced
in Section III for handling the sparse parameter identification
problem and the noisy data analysis. In Section IV, our devel-
oped algorithm is applied to four real-world gene expression
data sets, and the biological significance is discussed in terms
of certain criteria. Further discussion is made in Section V to
explain the advantages and shortcomings of our method. Some
concluding remarks and future research topics are provided in
Section VI.

II. STOCHASTIC DYNAMIC MODEL FOR GENE

EXPRESSION DATA

Measuring gene expression levels by DNA microarray tech-
nologies has made a great progress in understanding the interac-
tion among genes and extracting functional information. How-
ever, the gene expression data measured are often contaminated
by measurement noises in a discrete-time fashion, because gene
expression time series represent discrete “snapshots” of gene
expression at various time points. Therefore, gene expression

levels measured can be modeled as

yi(k) = xi(k) + vi(k), i = 1, 2, . . . , n, k = 1, 2, . . . ,m
(1)

where yi(k) is the measurement data of the ith gene expres-
sion levels from microarray at time k, xi(k) is the ith actual
gene expression levels, which stand for mRNA concentrations
and/or protein concentrations at time k, vi(k) is the measure-
ment noise, n is the number of genes, and m is the measurement
time points. Without the loss of generality, we assume that vi(k)
is a zero mean Gaussian white noise sequence with covariance
Vi > 0.

Next, we model the gene regulatory network containing n
genes by the following stochastic discrete-time dynamic system:

xi(k + 1) = −λixi(k) +
n∑

j=1

ai,j xj (k) + wi(k),

i = 1, 2, . . . , n, k = 1, 2, . . . , m (2)

where λi is the self-degradation rate of the ith gene expres-
sion product and ai,j represents the regulatory relationship and
degree among genes. A positive value for ai,j means the jth
gene stimulating the expression of the ith gene and, similarly,
a negative value for ai,j stands for the jth gene repressing the
expression of the ith gene, while a value of zero indicates that
jth gene does not influence the transcription of ith gene. This
way, each gene in the organism can have multiple inputs, both
positive and negative, of differing strength. wi(k) is the system
noise. We also assume that wi(k) is a zero mean Gaussian white
noise sequence with covariance Wi > 0, and wi(k) and vi(k)
are mutually independent.

Remark 1: The measurement noise vi(k) and the system
noise wi(k) in the model (1) and (2) are assumed to be zero
mean Gaussian white noises. Such an assumption, however,
does not lose the generality. The noises can also be mod-
eled as the colored noises, which does not cause difficulties
in our algorithm proposed later. More details about whitening
noises can be found in [2]. For simplicity, we only consider the
case in which vi(k) and wi(k) are zero mean Gaussian white
noises.

Now, denote

x(k) = [x1(k) x2(k) · · · xn (k) ]T , k = 1, 2, . . . ,m
(3)

and

ai = [ ai,1 ai,2 · · · − λi + ai,i · · · ai,n ] , i = 1, 2, . . . , n.
(4)

We can rewrite (2) as

xi(k + 1) = aix(k) + wi(k), i = 1, 2, . . . , n. (5)
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In this paper, our aim is to establish the model (1) and (5) from
the measurement data

Y := {y1(1), y1(2), . . . , y1(m), y2(1), y2(2), . . . , y2(m),

. . . , yn (1), yn (2), . . . , yn (m)}.

This is a system identification problem. Notice that for gene ex-
pression time-series data, we typically have a large number of
variables but a small number of observations. Unfortunately, tra-
ditional identification methods such as the least square method
cannot be suitably used for the system identification problem
with large number of variables but small number of observa-
tions, since they basically require a large amount of observa-
tions. Therefore, this problem becomes an “underdetermined”
one from the viewpoint of system identification. To handle the
data shortage problem, we introduce the EM algorithm to iden-
tify the model (1) and (5). Before introducing our algorithm, we
define the vector

θ = [a1a2 · · · anW1W2 · · ·WnV1V2 · · ·Vn ] (6)

which consists of all parameters to be estimated in (1) and (5).
In the next section, we will develop a computationally effi-

cient iterative method based on EM algorithm for identifying
the parameter θ.

III. EM ALGORITHM FOR PARAMETER IDENTIFICATION

In this section, we first introduce the main idea of the EM
algorithm. Then, to solve the specified gene network modeling
problem, we will derive the iterative computation procedure for
the proposed model (1) and (5) by using the Kalman filtering
and Kalman smoothing approaches.

The EM algorithm, for time-series analysis, was first pre-
sented by Shumway and Stoffer [30]. It is a general iterative
method to compute maximum likehood (ML) estimates of a set
of parameters. It has been shown in various signal processing ap-
plications that the use of EM algorithm leads to computationally
efficient estimation algorithms [38], [42].

The EM algorithm can be divided into two steps: E-step and
M-step. The E-step is to estimate the logarithm likehood of the
complete data using the observed data and the current parameter
estimate, and the M-step is to maximize the estimated logarithm
likehood function to obtain the new parameter estimate. Here,
given the observations Y and the current parameter estimate,
we define the natural logarithm of the conditional expectation
of probability density functions for the completed data as the
following logarithm likehood function [30]

J(θ, θ(l)) = Eθ ( l ) [L(X,Y, θ)|Y ] (7)

where

L(X,Y, θ)= −
n∑

i=1

{
m

2
ln |Wi |+

1
2

m∑
k=1

[xi(k) − aix(k − 1)]T

× W−1
i [xi(k) − aix(k − 1)]

+
(m + 1)

2
ln |Vi | +

1
2

m∑
k=0

[yi(k) − xi(k)]T

× V −1
i [yi(k) − xi(k)]

}
+ C (8)

with the constant C being independent of θ.
The new parameter estimate can be obtained by

θ(l+1) = arg max
θ

J(θ, θ(l)). (9)

Next, the new parameter estimate θ(l+1) can be found by max-
imizing J(θ, θ(l)). We maximize J(θ, θ(l)) with respect to ai ,
W−1

i , and V −1
i , respectively, and obtain

∂J

∂ai
= Eθ ( l )

{
m∑

k=1

W−1
i [xi(k)−aix(k−1)]x(k−1)T |Y

}
= 0

(10)

∂J

∂W−1
i

= Eθ ( l )

{
m

2
Wi −

1
2

m∑
k=1

[xi(k)

− aix(k − 1)][xi(k) − aix(k − 1)]T |Y
}

= 0 (11)

∂J

∂V −1
i

= Eθ ( l )

{
m + 1

2
Vi −

1
2

m∑
k=0

[yi(k) − xi(k)][yi(k)

− xi(k)]T |Y
}

= 0. (12)

From (10)–(12), we have

a
(l+1)
i =

{
m∑

k=1

Eθ ( l ) [xi(k)x(k − 1)T |Y ]

}

×
{

m∑
k=1

Eθ ( l ) [x(k − 1)x(k − 1)T |Y ]

}−1

(13)

W
(l+1)
i =

1
m

{
m∑

k=1

Eθ ( l ) [xi(k)xT
i (k)|Y ] − a

(l+1)
i

×
m∑

k=1

Eθ ( l ) [x(k − 1)xT
i (k)|Y ]

−
m∑

k=1

Eθ ( l ) [xi(k)xT (k − 1)|Y ](a(l+1)
i )T

+a
(l+1)
i

m∑
k=1

Eθ ( l ) [x(k−1)xT (k−1)|Y ](a(l+1)
i )T

}

(14)

Authorized licensed use limited to: Brunel University. Downloaded on March 24, 2009 at 11:34 from IEEE Xplore.  Restrictions apply.



WANG∗ et al.: STOCHASTIC DYNAMIC MODELING OF SHORT GENE EXPRESSION TIME-SERIES DATA 47

V
(l+1)
i =

1
m + 1

{
m∑

k=0

[yi(k)yT
i (k)]−

m∑
k=0

Eθ ( l ) [xi(k)|Y ]yT
i (k)

−
m∑

k=0

yi(k)Eθ ( l ) [xT
i (k)|Y ]+

m∑
k=0

Eθ ( l ) [xi(k)xT
i (k)|Y ]

}
.

(15)
The EM algorithm is an iterative numerical method for com-
puting the maximum likehood estimate. Letting θ0 be the initial
parameter estimate, the EM algorithm generates a sequence of
parameter estimates as follows.

1) E-Step: Set θ = θ(l) and compute J(θ, θ(l)) in (7).
2) M-Step: Compute a

(l+1)
i , W (l+1)

i , and V
(l+1)
i in (13)–(15)

from i = 1 to n.
Obviously, in order to compute (7) and (13)–(15), we

should first get the conditional expectations for Eθ ( l ) [xi(k)|Y ],
Eθ ( l ) [xi(k)xT

i (k)|Y ], and Eθ ( l ) [xi(k)x(k − 1)T |Y ]. In the fol-
lowing, we will provide the Kalman filtering and Kalman
smoothing algorithms to compute them.

Before giving the algorithm, we denote

x̂(l)(k|m) := Eθ ( l ) [x(k)|Y ] (16)

Σ(l)(k|m) := Eθ ( l ) {[x(k) − x̂(l)(k|m)][x(k)

− x̂(l)(k|m)]T |Y } (17)

Π(l)(k, k − 1|m) := Eθ ( l ) {[x(k) − x̂(l)(k|m)][x(k − 1)

− x̂(l)(k − 1|m)]T |Y }. (18)

Since

Eθ ( l ) {[x(k) − x̂(l)(k|m)][x(k) − x̂(l)(k|m)]T |Y }
= Eθ ( l ) [x(k)xT (k)|Y ] − x̂(l)(k|m)[x̂(l)(k|m)]T

and

Eθ ( l ) {[x(k) − x̂(l)(k|m)][x(k − 1) − x̂(l)(k − 1|m)]T |Y }
= Eθ ( l ) [x(k)xT (k − 1)|Y ] − x̂(l)(k|m)[x̂(l)(k − 1|m)]T

thus, we can get Eθ ( l ) [x(k)xT (k)|Y ] and Eθ ( l ) [x(k)xT (k −
1)|Y ] from x̂(l)(k|m), Σ(l)(k|m), and Π(l)(k, k − 1|m).

The computation of the conditional expectations in
(16)–(18) can be carried out using the Kalman filtering and
smoothing methods. To do that, we may represent (1) and (5) in
the following state-space form:

x(k + 1) = Ax(k) + w(k) (19)

y(k) = x(k) + v(k) (20)

where

A =




a1
a2
...

an


 , w(k) =




w1(k)
w2(k)

...
wn (k)


 , y(k) =




y1(k)
y2(k)

...
yn (k)


 ,

v(k) =




v1(k)
v2(k)

...
vn (k)


 . (21)

Denote the current parameter estimate θ = θ(l) , then A,Q, and
R is replaced by A(l) , Q(l) , and R(l) , where

Q = diag{W1 ,W2 , . . . ,Wn}, R = diag{V1 , V2 , . . . , Vn}.
Therefore, at the current iteration cycle, x̂(l)(k|m), Σ(l)(k|m),
and Π(l)(k, k − 1|m) can be obtained from the following algo-
rithm [15], [42]:

1) Forward (Filtering) Recursions: For k = 1, 2, . . . ,m
Propagation equations

x̂(l)(k + 1|k) = A(l) x̂(l)(k|k) (22)

Σ(l)(k|k − 1) = A(l)Σ(l)(k − 1|k − 1)(A(l))T + Q(l) .

(23)

Updating equations

K(l)(k) = Σ(l)(k|k − 1)[Σ(l)(k|k − 1) + R(l) ]−1 (24)

x̂(l)(k|k) = x̂(l)(k|k − 1) + K(l)(k)

× [y(k) − Cx̂(l)(k|k − 1)] (25)

Σ(l)(k|k) = Σ(l)(k|k − 1) − Σ(l)(k|k − 1)

× [Σ(l)(k|k − 1) + R(l) ]−1Σ(l)(k|k − 1).

(26)

2) Backward (Smoothing) Recursions: For k = m,m −
1, . . . , 1

Λ(l)(k − 1) = Σ(l)(k−1|k−1)(A(l))T [Σ(l)(k|k−1)]−1

(27)

x̂(l)(k − 1|N) = x̂(l)(k − 1|k − 1) + Λ(l)(k − 1)

× [x̂(l)(k|N) − x̂(l)(k|k − 1)] (28)

Σ(l)(k − 1|N) = Σ(l)(k − 1|k − 1) + Λ(l)(k − 1)

×[Σ(l)(k|N)−Σ(l)(k|k − 1)]Λ(l)(k−1)T

(29)

and

Π(l)(k, k − 1|m) = Π(l)(k, k − 1|k) + [Σ(l)(k|m)

− Σ(l)(k|k)][Σ(l)(k|k)]−1Π(l)(k, k − 1|k) (30)

Π(l)(k, k − 1|k) = [I − K
(l)
k ]A(l)Σ(l)(k − 1|k − 1).

(31)

Remark 2: The EM algorithm is only guaranteed to con-
verge to a local maximum of the likehood function. There-
fore, in order to ensure convergence to the global maximum,
a good initialization procedure may be required. To initialize
the Kalman smoothing equations, we need to specify x̂(l)(0|0)
and Σ(l)(0|0). We may use the first observed data to spec-
ify x̂(0)(0|0) and Σ(0)(0|0). These initial estimates can then
be iteratively improved by using the final estimates from
the previous iteration cycle, i.e., x̂(l+1)(0|0) = x̂(l)(0|m) and
Σ(l+1)(0|0) = Σ(l)(0|m).

Remark 3: Since biologically the resulting gene regulatory is
expected to be sparse, we set some of the matrix entries equal
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to zero, and infer the network using only the nonzero entries.
If we know some parameters ai,j a priori, we do not need to
include the known ai,j in θ for computation and only specify
them in the matrix A. Moreover, if one group of genes are not
related with other groups of genes, we can divide them into
several groups. Several small gene regulatory networks are only
computed, which reduces the computational complexity. Note
that other conventional system identification algorithms such as
least square method cannot be used to deal with the sparse data
in such an effective way.

IV. SIMULATION RESULTS

In order to evaluate the performances of the proposed al-
gorithm, we adopt four real-world gene expression data sets,
that is, the yeast gene expression time series [41], the virus
gene expression time series [20], the human malaria gene ex-
pression time series [5], and the worm gene expression time
series [3], [26]. Our modeling process is carried out after data
preprocessing. Normalization is applied to the gene expression
profile by taking log ratios first, and then, mean centering. After
the normalization, the aforementioned EM algorithm is em-
ployed to these data sets in order to model the gene expression
network dynamics.

In order to be concise, we will elaborate the identification
process for yeast and virus gene expression time series in
Sections IV-A and IV-B, but will briefly describe the simula-
tion results for dynamic modeling of human malaria and worm
gene expression time series in Section IV-C.

A. Modeling of Yeast Gene Expression Time Series

The first data set is from the yeast gene expression experi-
ment, which consists of expression levels of 237 genes at 17
equally spaced time points, selected by Yeung et al. [41]. This
data set is available from the website http://faculty.washington.
edu/kayee/model/.

By using the proposed EM algorithm, for the first data set,
the gene regulation matrix for group 3 of yeast gene expression
experiment is obtained by A = [A1 A2 A3 ], where

A1 =


−0.4824 −0.3440 −0.4248 0.5235 0.3822 −0.4154
−0.0579 −0.0962 0.1152 0.3520 −0.0779 −0.1062
−0.1092 −0.1901 0.2481 0.2095 −0.0055 0.1430

0.0161 0.3041 −0.1126 −0.0678 −0.1018 −0.2795
−0.1161 1.0210 0.5017 0.0996 −0.0030 0.8956

0.2056 −0.0771 −0.0145 0.2066 −0.0373 −0.1362
0.2625 0.5455 −0.2064 −0.1530 0.1482 −0.5774
0.1012 0.0835 0.1955 0.0490 0.1986 0.5117
0.1452 0.6964 −0.0621 0.2799 0.0441 0.3137

−0.0162 0.2625 −0.3951 −0.3521 −0.2136 −0.2032
0.2221 0.2684 0.0338 −0.0121 0.2217 −0.5210
0.2114 −1.2157 0.3920 −0.0611 0.3203 0.3511
0.0352 0.2100 −0.2358 −0.1400 −0.2304 0.0839
0.2967 0.3958 −0.1568 0.4209 0.0581 0.0183

−0.2405 0.3095 0.0738 0.2097 0.0047 −0.0408
0.1657 −0.1242 −0.1044 0.1269 −0.1694 0.2038
0.3554 −0.2441 0.0842 −0.2436 0.3571 0.4504

−0.0808 0.2869 0.1084 0.2325 −0.0934 −0.0234




A2 =


0.6976 0.3902 0.5201 −0.5319 0.1039 −0.2079
0.0411 −0.1198 0.6151 0.2917 −0.2760 0.4203

−0.0605 −0.1433 0.1162 0.4696 0.1618 0.0102
−0.1204 −0.1456 0.1277 0.3725 −0.2130 −0.2519
−0.0261 −0.2367 −0.7025 −0.0071 0.0810 −0.4779

0.1804 −0.1333 0.3043 0.2478 0.2310 −0.4495
−0.0740 −0.5611 0.0397 −0.1946 0.2223 −0.5854
−0.0467 −0.3921 0.0190 0.1391 0.5357 0.2563

0.2650 −0.6973 0.2149 0.1320 0.1059 −0.1450
−0.2038 −0.3563 0.1770 −0.4520 −0.4880 0.1747
−0.1232 0.1624 1.1356 −0.3625 0.1256 0.5414
−0.0671 0.8208 −0.3664 −0.0691 −0.3463 0.0199
−0.0543 0.0862 −0.0724 0.0897 0.0350 0.0254

0.1491 0.0122 −0.3639 −0.2656 0.3253 0.1790
−0.0051 −0.2914 0.6284 0.5105 0.0863 −0.0651

0.2998 0.0877 0.3486 0.3826 0.2239 −0.1961
0.1233 0.2794 −0.0905 0.6867 −0.3379 0.0683

−0.0159 −0.0276 −0.0028 0.2788 −0.1808 0.0664




A3 =


−0.4381 −0.7611 0.1691 −0.1328 −0.4932 0.1544
0.0156 0.0058 0.1407 −0.1606 −0.2516 0.7453
0.0221 −0.2250 0.4366 −0.0785 −0.2756 0.0278
0.3515 −0.1879 0.1373 0.1641 0.2014 −0.1100
0.3996 0.7104 −0.1843 0.1939 −0.1773 −1.3029

−0.0246 −0.2462 0.2970 −0.0906 −0.2234 −0.4861
0.0124 0.2977 −0.0892 −0.0805 0.3771 0.5676
0.1859 −0.2419 0.0550 0.0537 −0.2569 0.4901
0.1126 0.1182 0.0445 0.0969 −0.2355 −1.0189
0.5669 −0.4872 −0.5928 0.2526 −0.0132 0.7997
0.6818 −0.2117 −0.1965 −0.0988 −0.1643 −0.0749

−0.1555 0.2701 −0.4681 −0.3162 0.3189 0.7409
0.5366 −0.4739 −0.0497 0.4096 0.0768 0.2256
0.4707 0.1121 0.1047 0.1813 0.2154 −0.7320
0.1140 0.0285 0.0575 −0.0551 −0.0846 −0.5759

−0.1705 −0.3424 −0.0993 0.0050 −0.1188 0.1565
0.0780 −0.1529 −0.3316 −0.0158 −0.1467 0.1716

−0.0564 −0.1127 0.3264 0.0387 0.1280 0.0218




.

The covariance of the yeast gene network model W and the
covariance of the yeast gene expression measurement noise V
are, respectively, calculated as shown at the bottom of the next
page.

As we can see from the aforementioned, all the parameters of
the proposed stochastic dynamic model can be easily obtained
by using our algorithm. Furthermore, the predicted values of
gene expression levels are also obtained. We can observe that,
for the gene expression levels, there exist differences between
the actual values and the predicted (simulated) values, and the
prediction errors of every yeast gene are shown in Figs. 1–4.

B. Modeling of Virus Gene Expression Time Series

The second data set is for the virus gene expression microar-
ray data from [20], which consists of 106 genes expressed at
eight equally spaced time points.

Again, by using the proposed EM algorithm to the second
data set, the gene regulation matrix A for group one of virus
gene expression experiment is obtained as shown at the bottom
of the next page.
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Fig. 1. Measurement errors of yeast genes (part 1).

The covariance of viral gene network model is

W = [0.0900 0.0560 0.0803 0.2862 0.0688

0.1253 0.1194 0.0753 0.0263 0.1453]

and the covariance of viral gene expression measurement noise
is

V = [1.0196 0.0350 0.4137 9.5014 0.5865

4.2930 4.7446 0.9643 0.0000 11.4422].

All the parameters of stochastic dynamic model as well as the
noise intensity are simultaneously calculated, and the prediction
errors of every virus gene are illustrated in Figs. 5 and 6.

C. Modeling of Human Malaria and Worm Gene Expression
Time Series

The third data set is from the human malaria gene expression
time series [5]. As stated in [5], Plasmodium falciparumis re-
sponsible for the vast majority of the 300–500 million episodes
of malaria worldwide and accounts for 0.7–2.7 million an-
nual deaths. A comprehensive understanding of Plasmodium
molecular biology will be essential for the development of
new chemotherapeutic and vaccine strategies. Therefore, it is of
great importance to model the human malaria expression data,
which are made throughout the invasion process, with no observ-
able abrupt change in the expression program upon successful
reinvasion. The human malaria expression data set consists of
530 genes expressed at 48 equally spaced time points. We select
a group of 15 genes and apply the proposed EM algorithm. All
the model parameters can be obtained, which are not given here
for the purpose of saving space. To illustrate the usefulness of
the proposed modeling method, we display the prediction errors
of every human malaria gene in Figs. 7–9.

The fourth data set is from the worm gene expression time
series [3], [26], which consists of 98 genes expressed at 123
equally spaced time points. Again, we select a group of 15 genes,
apply the proposed EM algorithm, and display the prediction
errors of the selected worm gene in Figs. 10–12.

V. DISCUSSIONS

A. Model Quality Evaluation

Since it is generally difficult to understand the real gene
regulatory networks completely by biological experiments at
present, some researchers [39], [40] proposed several indices
to evaluate the models for gene regulatory networks from the
viewpoint of bioinformatics, such as the computational cost,
the prediction power (error), the stability, the robustness, and
the periodicity. Obviously, different evaluation standards should

W = [0.0555 0.0075 0.0109 0.0083 0.0388 0.0126 0.0365 0.0076 0.0051

0.0114 0.0073 0.0253 0.0090 0.0090 0.0132 0.0203 0.0231 0.0020]

V = [0.1327 0.0006 0.0311 0.0105 0.0787 0.0011 0.1682 0.0075 0.0170

0.0021 0.0017 0.0157 0.0012 0.0014 0.0706 0.0805 0.0661 0.0001].

A=




−0.0380 0.2864 0.0224 0.1894 −0.1095 0.0563 0.1044 0.2009 0.4790 0.2404
0.0358 −0.0149 0.4452 0.2760 −0.3539 0.0146 0.0201 −0.0330 −1.1245 0.4650

−0.0578 0.2458 0.2424 0.2885 −0.2094 0.0932 0.1267 0.1010 −0.0704 0.0864
0.5355 −0.0647 0.7688 0.1994 −0.0052 0.0681 0.2249 −0.0024 0.6778 0.3909
0.0727 0.4132 0.1664 0.0991 −0.1088 −0.0145 −0.0234 −0.0024 −0.1631 0.3268
0.1106 0.1621 0.2381 0.1420 0.0652 −0.0501 0.0183 −0.0303 0.2039 0.2081

−0.0108 0.2278 0.2461 0.1063 −0.1258 0.0094 −0.0296 −0.0394 0.1782 0.0468
0.1280 0.1246 0.2874 0.0801 0.0095 −0.0049 0.0025 −0.1375 0.4621 0.1838

−0.0758 0.2457 0.1075 −0.1461 −0.2045 −0.0659 0.0181 −0.1992 −0.1900 −0.2829
0.3163 −0.3176 0.0884 −0.0962 −0.2591 −0.0060 0.2219 0.1804 0.8216 −0.0740




.
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Fig. 2. Measurement errors of yeast genes (part 2).

Fig. 3. Measurement errors of yeast genes (part 3).

be applied to different kinds of models. Since our models are
stochastic and the measurements are noisy, our evaluation in-
dices will mainly focus on the computational cost, the estimation
covariance, the stability, and the robustness.

For the computational cost, our EM algorithm is an iterative
learning algorithm that does not involve searching. The compu-
tational complexity is only related with the number of genes, the
time points, and the number of iteration. From our simulations
on the four data sets, the computational time is in seconds on a
PC computer; hence, the computational cost is light.

From our experiments on the four data sets, the estimation
covariances W are small, which means that our models fit the
data very well. The covariances V represent the quality of mea-
suring gene expression levels using microarray. For example,
examining the covariances V for the established yeast and virus
time-series models, we can see that the measurement of yeast
gene expression levels is accurate, whereas the measurement of
virus gene expression levels is not quite accurate, because the
covariances V is smaller for the yeast measurement and the co-

Fig. 4. Measurement errors of yeast genes (part 4).

Fig. 5. Measurement errors of virus genes (part 1).

variances V is bigger for the virus measurement. Furthermore,
in order to evaluate the model quality in a quantitative way, let us
introduce the following criterion for the modeling errors (error
ratio in percentage) between the actual and predicted data [24]:

Error ratio = 100 × 1
l

l∑
c=1

[√∑s
k=1(yck − ŷck )2∑s

k=1 y2
ck

]
% (32)

where l is the number of genes (dimension) involved in the
modeling, s is the number of observations (length), and yck is
the actual gene expression value for cth gene at the kth time
point. The results are given in the following table:

It can be seen from Table I that, the model quality is generally
satisfactory. The publicly available yeast gene expression time-
series data is of a good quality that leads to the best model. It is
not surprising that the model for the virus gene expression time
series is relatively the worst simply because of the poor quality
of the data set (only eight observations are made for each gene).
In fact, the lengths for all the four time series considered here are
very short, and, as will be discussed later, traditional modeling
approaches fail to cope with the short time-series modeling due
to the assumption on the length of the time series.

In order to check the stability and robustness of our models,
we need to compute the eigenvalues of the regulation matrices
of the four models. For the virus gene expression time series,
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Fig. 6. Measurement errors of virus genes (part 2).

the malaria gene expression time series and the worm gene ex-
pression time series, the sets of the eigenvalues of the regulation
matrix are, respectively,

Evirus = {−0.1277 ± 0.8784i, 0.0893 ± 0.4355i, 0.8692,

− 0.4490,−0.3501,−0.0729,−0.0604,−0.0611}
Emalaria = {−0.4902 ± 0.7282i,−0.8811, 0.3662

± 0.6502i, 0.6410,−0.3408, 0.1044,−0.1660,

− 0.1055,−0.0847,−0.0486 ± 0.0046i,

− 0.0606 ± 0.0038i}
Eworm = {0.9993, 0.5957,−0.1149 ± 0.2028i, 0.0307,

− 0.0953 ± 0.0522i,−0.0461,−0.0562,

− 0.0875 ± 0.0014i,−0.0720,−0.0807,

− 0.0767 ± 0.0017i}.

Obviously, for the models of virus, malaria, and worm
gene expression time series, all eigenvalues lie well in-
side the unit circle. Therefore, the models are stable and
robust. For the yeast data set, 18 eigenvalues of the reg-
ulation matrix are given by 0.9067 ± 0.3304i, 0.7305 ±
0.6659i, 0.3706 ± 0.8439i, 0.0406 ± 0.9303i,−0.2429 ±
0.8529i,−0.5551 ± 0.6032i,−0.7877 ± 0.3466i,−0.0063 ±
0.0102i,−1.0260,−0.3956. All of these except one lie inside
the unit circle. Although one of the eigenvalues is outside the
unit circle, it is very close to 1. If the gene regulatory network is
periodic, this eigenvalue would not cause the instability. Hence,
the model is almost stable and robust.

B. Comparisons With Existing Modeling Methods

In biology and medicine, it is quite common for the mu ltivari-
ate time series (MTS) data to be rather short, either because of
the expense involved in obtaining data, e.g., in high-throughput

Fig. 7. Measurement errors of human malaria genes (part 1).

Fig. 8. Measurement errors of human malaria genes (part 2).

bioinformatics areas such as microarrays, or due to the practi-
calities such as patients’ treatment period or mortality.

Traditionally, statistical methods have been proposed when
modeling the MTS, e.g., the Vector Auto-Regressive (VAR)
process, VAR Moving Average, Markov Chain Monte Carlo
methods, and other nonlinear and Bayesian systems [6], [12].
In the computing community, many MTS forecasting methods
have been proposed using recurrent or time-delay neural net-
works, evolutionary computation, inductive logic programming,
and support vector machines, see [6], [14], and the references
therein.

However, one area where there has been little work is the
analysis of a particular type of time series in which the data set
consists of a large number of variables but with a small number
of observations. Almost all traditional methods for modeling
MTS place constraints on the minimum number of time-series
observations in the dataset; many methods require distribution
assumptions to be made regarding the observed time series, e.g.,
the maximum likelihood method for parameter estimation [6].
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Fig. 9. Measurement errors of human malaria genes (part 3).

Fig. 10. Measurement errors of worm genes (part 1).

For example, a traditional way of modeling MTS data is the VAR
process for a model of order P . The standard statistical methods
for fitting a VAR process to a set of data often consist of two
steps: order selection and parameter estimation. Order selection
is commonly performed through the use of information-theory-
based matrices such as Akaike’s Information Criterion. Many of
these matrices will impose a restriction on the minimum length
of an MTS, N , based on the number of degrees of freedom of the
model being estimated: N > KP + 1, where K is the number
of variables being modeled and P is the order of the VAR
process. For example, for an MTS consisting of 100 variables,
to find the most appropriate order of a VAR process with a
maximum order of three under consideration, N must be at
least 302. This restriction is clearly unacceptable for modeling
many short, high-dimensional time series, which are common
in biology and medicine.

For the four gene expression data sets considered in this paper,
the number of genes (dimension) and the number of observa-

Fig. 11. Measurement errors of worm genes (part 2).

Fig. 12. Measurement errors of worm genes (part 3).

tions (length) are given in Table II. It can be seen clearly from
Table II that the gene expression time series is pretty short but
with high dimensions, for which the traditional MTS modeling
methods are simply impossible to be applied in a satisfactory
way.

Recently, the modeling problem for short, high-dimensional
time series has begun to receive some research interests. For
example, dynamic Bayesian networks have been proposed to
model gene expression time-series data [20], [27] with the
ability of handling noisy/hidden variables. However, dynamic
Bayesian networks need more complex algorithms such as the
genetic algorithm [20], [33] to infer gene regulatory networks,
and the noise intensity cannot be obtained directly. In previous
sections, we have provided an algorithm to infer a gene regula-
tory network in the form of stochastic dynamic models. Using
our algorithm, the gene regulation matrix can be extracted from
a very short number of gene expression time-series data. This
matrix can be employed to figure out how genes act “in concert”
to achieve specific phenotypic characteristics [39].
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TABLE I
QUANTITATIVE MODEL EVALUATION

TABLE II
DIMENSION VS LENGTH

Compared to the existing MTS modeling methods, our algo-
rithm has the following advantages.

1) Our algorithm can effectively tackle short, high-
dimensional time series that typically occurs in biology
and medical sciences.

2) The defined gene regulation matrix can reflect the rela-
tionship and interaction between genes, where aij stands
for the effect of jth gene on ith gene. The model is of
direct biological significance.

3) Our scheme can identify the entire network structure. For
the existing differential equation method, there exists an
“underdetermined” problem if the number of genes is
equal to or larger than the number of experiments due
to the shortage of gene expression data. In this paper, we
use iterative “learning” procedure so that the global dy-
namic model can be obtained from a small number of gene
expression data.

4) Our method can deal with noises in gene expression data
measurement and sparse connectivity. Since the measure-
ments of mRNA concentration using microarrays are typ-
ically noisy, it is very advantageous that our algorithm
is robust to noises while identifying gene regulatory net-
works.

5) Our algorithm can tackle the spare gene regulatory net-
works only by setting some of the matrix entries as zero.
The algorithm is especially efficient for larger gene regu-
latory networks that can be divided into several individual
gene regulatory networks.

6) Our algorithm is very efficient for computation, and the
computational cost is light even if there is a lack of gene
expression data.

Nevertheless, our algorithm cannot deal with the data sets
with missing values, which often occurs in many gene mea-
surement data. Furthermore, a better data preprocessing method
should be explored to maintain the biological meaning while
simplifying the computation, since different preprocessing (nor-
malization) methods would cause different gene regulation ma-
trices. On the modeling issue, the models would be different
for different iteration times and initial conditions. Proper bi-
ological knowledge should be incorporated to our algorithm,
and some constraints need to be added to make the solution set
smaller. Moreover, for simplicity, we have adopted a stochastic
linear model with constant coefficients to infer gene regulatory

network. How to consider the influence of time-varying coeffi-
cients, nonlinearities, and time delays will be the topic of our
further investigation.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have developed an EM algorithm for mod-
eling the gene regulatory networks from gene expression time-
series data. The gene regulation matrix has been obtained by an
iterative learning procedure based on the stochastic linear dy-
namic model. Gene expression stochastic dynamic models for
four real-world gene expression data sets have been constructed
to show how our algorithm works. Our algorithm can tackle
the spare gene regulatory networks only by setting some of the
matrix entries as zero. Furthermore, our algorithm is especially
efficient for larger gene regulatory networks that can be divided
into several individual gene regulatory networks. Therefore, our
algorithm can be ideally applied to modeling the gene regulatory
networks where the real connectivity of the network is specified
a priori. We expect that our algorithm will be useful for recon-
structing gene regulatory networks on a genome-wide scale, and
hope that our results will benefit for biologists and biological
computation scientists. In the near future, we will continue to
investigate some real-world gene expression data sets and ap-
ply our algorithm to reconstruct gene regulatory networks with
missing data, sparse connectivity, periodicity, and time delays.
We are also getting connection with the biologists to explain our
results from the biological point of view.

REFERENCES

[1] T. Akutsu, S. Miyano, and S. Kuhara, “Identification of genetic networks
from a small number of gene expression patterns under the Boolean net-
work model,” in Proc. Pacific Symp. Biocomput., 1999, vol. 4, pp. 17–28.

[2] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood
Cliffs, NJ: Prentice-Hall, 1979.

[3] L. R. Baugh, A. A. Hill, J. M. Claggett, K. Hill-Harfe, J. C. Wen,
D. K. Slonim, E. L. Brown, and C. P. Hunter, “The homeodomain protein
PAL-1 specifies a lineage-specific regulatory network in the C. elegans
embryo,” Development, vol. 132, pp. 1843–1854, 2005.

[4] M. J. Beal, F. Falciani, Z. Ghahramani, C. Rangel, and D. L. Wild,
“A Bayesian approach to reconstructing genetic regulatory networks
with hidden factors,” Bioinformatics, vol. 21, no. 3, pp. 349–356, Oct.
2004.

[5] Z. Bozdech, M. Llinas, B. L. Pulliam, E. D. Wong, and J. Zhu, “The
transcriptome of the intraerythrocytic developmental cycle of plasmodium
falciparum,” PLoS Biol., vol. 1, no. 1, pp. 85–100, 2003.

[6] C. Chatfield, The Analysis of Time Series: An Introduction, 6th ed.
London, U.K.: Chapman and Hall, 2004.

[7] T. Chen, H. L. He, and G. M. Church, “Modeling gene expression with
differential equations,” in Proc. Pacific Symp. Biocomput., 1999, vol. 4,
pp. 29–40.

[8] D. L. Cook, A. N. Gerber, and S. J. Tapscott, “Modeling stochastic gene
expression: Implications for haploinsufficiency,” in Proc. Nat. Acad. Sci.,
USA, 1998, vol. 95, pp. 15641–15646.

[9] M. J. de Hoon, S. Imoto, K. Kobayashi, N. Ogasawara, and S. Miyano,
“Inferring gene regulatory networks from time-ordered gene expression
data of bacillus subtilis using differential equations,” in Proc. Pacific Symp.
Biocomput., 2003, pp. 17–28.

[10] H. de Jong, “Modeling and simulation of genetic regulatory systems:
A literature review,” J. Comput. Biol., vol. 9, no. 1, pp. 67–103,
2002.

[11] P. D’ haeseleer, X. Wen, S. Fuhrman, and R. Somogyi, “Linear modeling
of mRNA expression levels during CNS development and injury,” in Proc.
Pacific Symp. Biocomput., 1999, pp. 41–52.

Authorized licensed use limited to: Brunel University. Downloaded on March 24, 2009 at 11:34 from IEEE Xplore.  Restrictions apply.



54 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 7, NO. 1, MARCH 2008

[12] P. Diggle, Time Series: A Biostatistical Introduction, Oxford Statistical
Science Series 5, 1990.

[13] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster
analysis and display of genome-wide expression patterns,” in Proc. Nat.
Acad. Sci., USA, 1998, vol. 95, pp. 14863–14868.

[14] F. Gers, N. Schraudolph, and J. Schmidhuber, “Learning precise timing
with LSTM recurrent networks,” J. Mach. Learning Res., vol. 3, pp. 115–
143, 2002.

[15] Z. Ghahramani and G. E. Hinton, “Parameter estimation for linear dynami-
cal systems,” Univ. Toronto, Toronto, Canada, Tech. Rep., CRG-TR-96-2,
1996.

[16] Z. Ghahramani, “Learning dynamic Bayesian networks,” in Adaptive
Processing of Sequences and Data Structures, C. L. Giles and M. Gori,
Eds. Lecture Notes in Artificial Intelligence. Berlin, Germany: Springer-
Verlag, pp. 168–197.

[17] N. S. Holter, A. Maritan, M. Cieplak, N. V. Fedoroff, and J. R. Banavar,
“Dynamic modeling of gene expression data,” in Proc. Nat. Acad. Sci.,
USA, 2001, vol. 98, pp. 1693–1698.

[18] S. Huang, “Gene expression profiling, genetic networks, and cellular
states: An integrating concept for tumorigenesis and drug discovery,”
J. Molecular Med., vol. 77, pp. 469–480, 1999.

[19] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,”
ACM Comput. Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[20] P. Kellam, X. Liu, N. Martin, C. Orengo, S. Swift, and A. Tucker, “A
framework for modelling virus gene expression data,” Intell. Data Anal.,
vol. 6, pp. 265–279, 2002.

[21] T. B. Kepler and T. C. Elston, “Stochasticity in transcriptional regulation:
Origins, consequences, and mathematical representations,” Biophys. J.,
vol. 81, no. 6, pp. 3116–3136, 2001.

[22] S. Liang, S. Fuhrman, and R. Somogyi, “REVEAL: A general reverse
engineering algorithm for inference of genetic network architectures,” in
Proc. Pacific Symp. Biocomput., 1998, vol. 3, pp. 18–29.

[23] T. Liu, W. Sung, and A. Mittal, “Model gene network by semi-fixed
Bayesian network,” Expert Syst. Appl., vol. 30, no. 1, pp. 42–49,
2006.

[24] L. Ljung, System Identification—Theory for the User, 2nd ed. Upper
Saddle River, NJ: Prentice-Hall, 1999.

[25] H. M. McAdams and A. Arkin, “Stochastic mechanisms in gene expres-
sion,” in Proc. Nat. Acad. Sci., USA, 1997, vol. 94, pp. 814–819.

[26] M. F. Maduro and J. H. Rothman, “Making worm guts: The gene regulatory
network of the Caenorhabditis elegans endoderm,” Dev. Biol., vol. 246,
pp. 68–85, 2002.

[27] K. Murphy and S. Mian, “Modelling gene expression data using dy-
namic Bayesian networks”, Univ. California, Berkeley, CA, Tech. Rep.,
1999.

[28] M. F. Ramoni, P. Sebastiani, and I. S. Kohane, “Cluster analysis of gene
expression dynamics,” in Proc. Nat. Acad. Sci., USA, 2002, vol. 99,
pp. 9121–9126.

[29] C. Rangel, J. Angus, Z. Ghahramani, M. Lioumi, E. A. Sotheran, A. Gaiba,
D. L. Wild, and F. Falciani, “Modeling T-cell activation using gene ex-
pression profiling and state space models,” Bioinformatics, vol. 20, no. 9,
pp. 1361–1372, 2004.

[30] R. H. Shumway and D. S. Stoffer, “An approach to time series smoothing
and forecasting using the EM algorithm,” J. Time Series Anal., vol. 3,
pp. 253–264, 1982.

[31] P. Smolen, D. A. Baxter, and J. H. Byrne, “Mathematical modeling of
gene networks review,” Neuron, vol. 26, no. 3, pp. 567–580, 2000.

[32] R. Somogyi and C. A. Sniegoski, “Modeling the complexity of genetic
networks: Understanding multigenic and pleiotropic regulation,” Com-
plexity, vol. 1, no. 6, pp. 45–63, 1996.

[33] S. Swift and X. Liu, “Predicting glaucomatous visual field deterioration
through short multivariate time series modelling,” Artif. Intell. Med.,
vol. 24, pp. 5–24, 2002.

[34] P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan, E. Dmitrovsky,
E. S. Lander, and T. R. Golub, “Interpreting patterns of gene expression
with self-organizing maps: Methods and application to hematopoietic dif-
ferentiation,” in Proc. Nat. Acad. Sci., USA, 1999, vol. 96, pp. 2907–2912.

[35] S. Tavazoie, J. D. Hughes, M. J. Campbell, R. J. Cho, and G. M. Church,
“Systematic determination of genetic network architecture,” Nature Ge-
netics, vol. 22, no. 3, pp. 281–285, 1999.

[36] T. Thattai and A. van Oudenaarden, “Stochastic gene expression in fluc-
tuating environments,” in Proc. Genetics Soc. Am., 2004, pp. 523–530.

[37] T. Tian and K. Burrage, “Stochastic neural network models for gene
regulatory networks,” in Proc. 2003 IEEE Congr. Evol. Comput., pp. 162–
169.

[38] E. Weinstein, A. V. Oppenheim, M. Feder, and J. R. Buck, “Iterative and
sequential algorithms for multisensor signal enhancement,” IEEE Trans.
Signal Process., vol. 42, no. 4, pp. 846–859, Apr. 1994.

[39] L. F. Wessels, E. P. van Someren, and M. J. Reinders, “A comparison
of genetic network models,” in Proc. Pacific Symp. Biocomput., 2001,
pp. 508–519.

[40] F. Wu, W. Zhang, and A. J. Kusalik, “Modeling gene expression from
microarray expression data with state-space equations,” in Proc. Pacific
Symp. Biocomput., Hawaii Island, HI, 2004, pp. 581–592.

[41] K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo,
“Model-based clustering and data transformations for gene expression
data,” Bioinformatics, vol. 17, no. 10, pp. 977–987, 2001.

[42] I. Ziskind and D. Hertz, “Maximum-likelihood localization of narrow-
band autoregressive sources via the EM algorithm,” IEEE Trans. Signal
Process., vol. 41, no. 8, pp. 2719–2724, Aug. 1993.

Zidong Wang (M’03–SM’04) was born in Jiangsu,
China, in 1966. He received the B.Sc. degree in math-
ematics from Suzhou University, Suzhou, China, in
1986, the M.Sc. degree in applied mathematics in
1990, and the Ph.D. degree in electrical and com-
puter engineering in 1994, from Nanjing University
of Science and Technology, Nanjing, China.

He was with Nanjing University of Science and
Technology earlier as a Lecturer and later as an
Associate Professor. During 1997–1998, he was an
Alexander von Humboldt Research Fellow at the

Control Engineering Laboratory, Ruhr-University, Bochum, Germany. During
1999–2001, he was a Lecturer at the Department of Mathematics, University
of Kaiserslautern, Kaiserslautern, Germany. During 2001–2002, he was a Uni-
versity Senior Research Fellow at the School of Mathematical and Information
Sciences, Coventry University, Coventry, U.K. Since 2002, he has been with
the Department of Information Systems and Computing, Brunel University,
Uxbridge, U.K., earlier as a Lecturer and Reader, and currently, as a Professor.
He is an Adjunct TePin Professor at Donghua University, Shanghai, China, a
Visiting Professor at Fuzhou University, Fuzhou, China, and a Guest Professor
at Nanjing Normal University, Nanjing. He is the author or coauthor of more
than 80 papers published in international journals. His current research interests
include dynamical systems, signal processing, bioinformatics, control theory,
and applications.

Dr. Wang is a Fellow of the Royal Statistical Society, a member of pro-
gram committee for many international conferences, and a Reviewer for many
international journals. He is an Associate Editor for the IEEE TRANSACTIONS

ON NEURAL NETWORKS, IEEE TRANSACTIONS ON AUTOMATIC CONTROL, the
IEEE TRANSACTIONS ON SIGNAL PROCESSING, the IEEE TRANSACTIONS ON

SYSTEMS, MAN, AND CYBERNETICS—PART C, the IEEE TRANSACTIONS ON

CONTROL SYSTEMS TECHNOLOGY, the Circuits, Systems and Signal Process-
ing, an Action Editor for the Neural Networks, an Editorial Board Member for
the International Journal of Systems Science, the Neurocomputing, the Interna-
tional Journal of Computer Mathematics, the International Journal of General
Systems, and an Associate Editor on the Conference Editorial Board for the IEEE
Control Systems Society. He was awarded the Humboldt Research Fellowship
in 1996 from Alexander von Humboldt Foundation, the Japan Society for the
Promotion of Science (JSPS) Research Fellowship in 1998 from the JSPT, and
the William Mong Visiting Research Fellowship in 2002 from the University
of Hong Kong. He was the recipient of the Outstanding Science and Technol-
ogy Development Awards, from the National Education Committee of China,
once in 2005 and twice in 1997, from the Military Industry General Company
of China in 1997, from Jiangsu Province Government of China in 1997, and
from the National Education Ministry of China in 1999. He was nominated an
Appreciated Reviewer for the IEEE TRANSACTIONS ON SIGNAL PROCESSING

in 2006 and 2007, an Outstanding Reviewer for the IEEE TRANSACTIONS ON

AUTOMATIC CONTROL in 2004, and the Automatica in 2000. He was the Standing
Member of the Technical Committee on Control of International Association of
Science and Technology for Development in 2000. From 2001 to 2007, he was
a member of technical program committee for 35 international conferences.

Authorized licensed use limited to: Brunel University. Downloaded on March 24, 2009 at 11:34 from IEEE Xplore.  Restrictions apply.



WANG∗ et al.: STOCHASTIC DYNAMIC MODELING OF SHORT GENE EXPRESSION TIME-SERIES DATA 55

Fuwen Yang (SM’04) received the B.Sc. degree in
electrical engineering from Anhui University of Sci-
ence and Technology, Huainan, China, in 1983, and
the M.Sc. and Ph.D. degrees in control engineering
from Huazhong University of Science and Technol-
ogy, Wuhan, China, in 1986 and 1990, respectively.

From 1986 to 1987, he was with Fujian Institute of
Electronic Technique as a Research Engineer. Since
1990, he has been with the Department of Electrical
Engineering, Fuzhou University, China, where he is
currently a Professor of Control Engineering. He has

held research positions at King’s College London, Brunel University, Uxbridge,
U.K., the University of Manchester, Manchester, U.K., and the University of
Hong Kong, Hong Kong. He is the author or coauthor of more than 90 journal
and conference papers. His current research interests include H∞ control and
filtering, iterative learning control, nonfragile control, signal processing, indus-
trial real-time control, and power electronics.

Dr. Yang was the recipient of the Teaching Excellence Award for Young
Teachers in 1995 from Fok Ying Tung Education Foundation, China, three
Science and Technology Development Awards in 1996, 1999, and 2002, from
Fujian Province of China, and two Youth Science and Technology Awards both
in 1998 from Fujian Province of China and from Yun Sheng Foundation. He was
listed in the Ten Outstanding Youth from Fujian Province of China in 1999, and
was honored the May 4 Youth Medal from Fujian Province of China in 2000.
Since 2001, he has been acting as a State Consultant of the People’s Republic
of China.

Daniel W. C. Ho (SM’04) received the B.Sc., M.Sc.,
and Ph.D. degrees in mathematics from the Univer-
sity of Salford, Salford, U.K., in 1980, 1982, and
1986, respectively.

From 1985 to 1988, he was with the Industrial
Control Unit, University of Strathclyde, Glasgow,
U.K., as a Research Fellow. Since 1989, he has been
with the Department of Mathematics, City University
of Hong Kong, Hong Kong, where he is currently a
Professor. His current research interests include H∞
control theory, robust pole assignment problem, adap-

tive neural wavelet identification, and nonlinear control theory.
Dr. Ho is an Associate Editor of the Asian Journal of Control.

Stephen Swift received the B.Sc. degree in mathe-
matics and computing from the University of Kent,
Canterbury, U.K., in 1991, the M.Sc. degree in artifi-
cial intelligence from Cranfield University, Cranfield,
U.K., and the Ph.D. degree in intelligent data anal-
ysis from Birkbeck College, University of London,
London, U.K. in 1993 and 2002, respectively.

He is currently with the School of Information
Systems, Computing, and Mathematics, Brunel Uni-
versity, Uxbridge, U.K., as a Research Lecturer. He
was a Web Designer, a Programmer, a Technical

Architect, and a Postdoctoral Research Fellow. His current research interests
include multivariate time-series analysis, heuristic search, data clustering, and
evolutionary computation.

Allan Tucker received the B.Sc. degree in cognitive
science from the University of Sheffield, Sheffield,
U.K., in 1996, and the Ph.D. degree in computer sci-
ence from Birkbeck College, University of London,
London, U.K., in 2001.

He is currently with the Department of Infor-
mation Systems and Computing, Brunel University,
Uxbridge, U.K., a Research Lecturer. His current re-
search interests include machine learning, Bayesian
networks, bioinformatics, and medical informatics.

Xiaohui Liu received the B.Eng. degree in com-
puting from Hohai University, Nanjing, China, in
1982 and the Ph.D. degree in computer science from
Heriot-Watt University, Edinburg, U.K., in 1988.

He is currently with the Department of Infor-
mation Systems and Computing, Brunel University,
Uxbridge, U.K., as a Professor, where he leads the
Intelligent Data Analysis (IDA) Group, engaging in
research on artificial intelligence, dynamic systems,
image and signal processing, and statistics.

Prof. Liu is on editorial boards of four computing
journals, founded the biennial international conference series on IDA in 1995.

Authorized licensed use limited to: Brunel University. Downloaded on March 24, 2009 at 11:34 from IEEE Xplore.  Restrictions apply.


