
 

Data Mining in Information Science 

 

 

Journal of Information Science, © CILIP 2004 

The Contribution of Data Mining in 
Information Science 

Sherry Y. Chen and Xiaohui Liu 

Department of Information Systems and Computing, Brunel University 

Abstract 

Information explosion is a serious challenge for current information institutions. On the other hand, data 
mining, which is the search for valuable information in large volumes of data, is one of the solutions to face 
this challenge. In the past several years, data mining has made a significant contribution to the field of 
information science. This paper examines the impacts of data mining by reviewing existing applications, 
including personalized environments, electronic commerce, and search engines. For these three types of 
applications, how data mining can enhance their functions is discussed. The reader of this paper is 
expected to get an overview of the state of the art research associated with these applications. 
Furthermore, we identify the limitations of current works and raise several directions for future research. 
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1.  Introduction 

As information institutions transform their role from passive data collection to a more active exploration and 

exploitation of information, they face a serious challenge: how can they handle a massive amount of data that the 

institutions generate, collect and store.  There is a need to have a technology that can access, analyze, summarize, 

and interpret information intelligently and automatically. Responding to this challenge, the field of data mining 

has emerged. Data mining is the process of extracting valuable information from large amounts of data [[20]]. It 

can discover hidden relationships, patterns and interdependencies and generate rules to predict the correlations, 

which can help the institutions make critical decisions faster or with a greater degree of confidence [[17]].   

 

In the past decade, data mining changes the discipline of information science, which investigates the properties of 

information and the methods and techniques used in the acquisition, analysis, organization, dissemination and use 

of information [[4]]. There is a wide range of data mining techniques, which has been successfully used in the 

field of information science. This paper is an attempt to illustrate how data mining can contribute to the field of 

information science by reviewing existing applications. To provide a sound understanding of data mining 

applications, it is necessary to build a clear link between tasks and applications. Therefore, the paper begins by 

explaining the key tasks that data mining can achieve, i.e. what can be achieved by data mining (Section 2).  It 

then moves to discuss application domains, i.e. where data mining can be helpful (Section 3). The paper 

identifies three common application domains, including personalized environments, electronic commerce, and 

search engines. For each domain, how data mining can enhance the functions will be described.  Subsequently, 

the problems of current research will be addressed, followed by a discussion of directions for future research 

(Section 4). 

 

2. Tasks: What can be achieved? 

Data mining can be used to achieve many types of tasks. Based on the types of knowledge to be discovered, it 

can be broadly divided into supervised discovery and unsupervised discovery. The former requires the data to be 

pre-classified. Each item is associated with a unique label, signifying the class in which the item belongs. In 
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contrast, the latter does not require pre-classification of the data and can form groups that share common 

characteristics [[36]]. To achieve these two main tasks, four data mining approaches are commonly used: 

classification, clustering, association rules, and visualization.  

 

2.1. Clustering 

Clustering, which is also known as Exploratory Data Analysis (EDA, [[46]]), is a division of data into groups of 

similar objects. Each group, called cluster, consists of objects that are similar between themselves and dissimilar 

to objects of other groups [[41]]. From a data mining perspective, clustering is unsupervised discovery of a 

hidden data concept. This approach is used in those situations where a training set of pre-classified records is 

unavailable. In other words, this technique has the advantages of uncovering unanticipated trends, correlations, or 

patterns, and no assumptions are made about the structure of the data.  The management of customers’ 

relationships (Section 3.2.1) is an example of using this approach. 

 

2.2. Classifications  

Classification, which is a process of supervised discovery, is an important issue in data mining. It refers to the 

data mining problem of attempting to discover predictive patterns where a predicted attribute is nominal or 

categorical. The predicted attribute is called the class. Subsequently, a data item is assigned to one of a 

predefined set of classes by examining its attributes [[9]]. In other words, the objective of classification is not to 

explore the data to discover interesting segments, but rather to decide how new items should be classified.  One 

example of classification applications is to provide personalized learning environments based on users’ 

characteristics, needs, and preferences (See Section 3.1).  
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2.3. Association Rules 

Association rules that were first proposed by Agrawal and Srikant [[1]] are mainly used to find out the 

meaningful relationships between items or features that occur synchronously in databases [[47]]. This approach is 

useful when one has an idea of different associations that are being sought out. This is because one can find all 

kinds of correlations in a large data set. It has been widely applied to extract knowledge from web log data [[29]]. 

In particular, it is very popular among marketing managers and retailers in electronic commerce who want to find 

associative patterns among products (see Section 3.2.2).  

 

2.4.  Visualization 

The visualization approach to data mining is based on an assumption that human beings are very good at 

perceiving structure in visual forms. The basic idea is to present the data in some visual form, allowing the 

human to gain insight from the data, draw conclusions, and directly interact with the data [[2]]. Since the user is 

directly involved in the exploration process, shifting and adjusting the exploration goals is automatically done if 

necessary [[32]]. This approach is especially useful when little is known about the data and the exploration goals 

are vague.  One example of using visualization is author co-citation analysis (See Section 3.3.3).  

 

3. Applications: Where can be Useful? 

As the aforementioned discussion, data mining can be used to achieve various types of tasks, such as 

classification, clustering, association rules, and visualization. These tasks have been implemented in many 

application domains. The main application domains that data mining can support in the field of information 

science include personalized environments, electronic commerce, and search engines.  Table 1 summarizes the 

main contributions of data mining in each application.  
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Section Application Contributions 

2 Personalised 
Environments 

 To adapt content presentation and navigation 
support based on each individual’s characteristics. 

 To understand users’ access patterns by mining 
the data collected from log files. 

 To tailor to the users’ perceived preferences by 
matching usage and content profiles. 

3 Electronic 
Commerce 

 To divide the customers into several segments 
based on their similar purchasing behavior. 

 To explore the association structure between the 
sales of different products. 

 To discover patterns and predict future values by 
analyzing time series data. 

4 Search  

Engine 

 To identify the ranking of the pages by analyzing 
the interconnections of a series of related pages. 

 To improve the precision by examining textual 
content and user’s logs. 

 To recognize the intellectual structure of works by 
analyzing how authors are cited together. 

Table 1: Contributions of Data Mining 

3.1. Personalized Environments 

Increasingly, personalized applications are attempting to incorporate data mining [[12]]. Personalization refers to 

the automatic adjustment of information content, structure, and presentation tailored to an individual user [[39]].  

One of the major applications that employs personalization is e-learning programs, which adapt content 

presentation and navigation support to each individual by using the classification approach to identify his/her 

characteristics, needs, and preferences. For example, Mitchell, Chen, and Macredie (2004) developed a 

personalized web-based learning environment according to students’ cognitive styles [[33]]. In addition, 
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Esposito, Licchelli, and Semeraro (2004) built student models for an e-learning system based upon the student 

performance evaluation: good, sufficient or insufficient [[16]]. 

 

Prior to the emergence of data mining, most personalized applications adopted two methods: collaborative 

filtering and content-based filtering methods.  In the content-based method, user profiles are created using 

features extracted from content that user liked or used in the past. Subsequently, new content is provided by 

matching user’s profile to the features of this content [[26]]. The collaborative filtering method builds up profiles 

of user groups and then using a computational method tries to match current user’s profile to similar profiles. 

Selected data from these profiles are then used to provide recommendations [[43]]. Nevertheless, most web 

objects are represented by a multimedia type of information so it is difficult to analyze web objects with the 

content-based filtering methods. In addition, the collaborative filtering method can only be applied within a 

homogenous type of information domain and suffers from the cold-start problem [[48]].  Other shortcomings 

include reliance on subjective user profiles that may be prone to biases, or on standing profiles that may become 

outdated with changing user needs or interests. 

 

Recently it is indicated that usage mining can overcome shortcomings of the aforementioned two approaches to 

develop more advanced personalized applications [[34]]. In addition, usage mining and traditional personalized 

approaches can be integrated together or usage mining can be used with content mining. These approaches are 

described below. 

 

3.1.1 Usage Mining 

Usage mining is the process of automatically discovering and interpreting users’ access patterns by mining the 

data collected from users’ interaction with the system [[44]]. The extraction of users’ interaction data is mainly 

obtained from log files, which record each individual request [[5]]. This approach is very commonly used for 

discovering hidden patterns within web access data because web server logs constitute a rich source of data 

collected in a non-intrusive way (Koutri, et al., forthcoming). Understanding of users’ access patterns is useful to 
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provide effective personalization.  Some recent projects, such as Web Personaliser [[34]] and PageGather [[37]], 

etc., have all concentrated on providing personalization with usage mining.  

 

Web Personalizer [[34]] is a real-time personalized application and is produced based on a framework, which 

consists of four principal elements: modeling of web pages and users, categorization of web pages and users, 

mapping between and across web pages and users, and determination of the set of actions to be recommended for 

personalization. The personalization is provided according to web server logs, which are examined to discover 

clusters of users that exhibit similar browsing behaviors. These clusters are used to predict the needs of the 

current user based on their browsing similarities with previous users. A list of hypertext links that have not been 

visited and are not directly linked from the page is then recommended to the user for browsing the web site. 

 

The PageGather [[37]] is an adaptive web site that semi-automatically improves the organization and presentation 

by learning from user access patterns. The system takes a Web server access log as input and maps it into a form 

ready for clustering. Cluster mining is then applied to find collections of related pages at a web site, relying on 

the visit-coherence assumption. An algorithm is developed to identify candidate link sets to include index pages 

based on user access logs.  The algorithm has five basic steps: (1) process the access log into visits; (2) compute 

the co-occurrence frequencies between pages and create a similarity matrix; (3) create the graph corresponding to 

the matrix, and find maximal cliques (or connected components) in the graph; (4) rank the clusters found, and 

choose which to output; and (5) for each cluster, create a web page consisting of links to the documents in the 

cluster, and present it to the webmaster for evaluation.  

 

3.1.2 Usage Mining with Collaborative Filtering 

One of the examples that usage mining is integrated with traditional personalized approaches is Personalization 

Expert developed by Lee, Kim, and Rhee (2001). They present a framework that combines the collaborative 

filtering method with association rule mining to provide personalization. The collaborative filtering task is 

performed for each domain by using users' web object access information and generates the similarity 
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information among users that is valid within one specific domain and predicted rating value information of the 

objects. User similarity information over all the domains is gained by performing linear combination task. Using 

this information, the similar users can be found and these users' web object access information is to be the input 

data to discover object association rules. Discovered association rules among web objects are the information 

source that predicts whether certain web object is current user's favorite object or not. The results show that the 

proposed framework can provide better recommendation services by analyzing web access patterns of similar 

users [28].  

 

3.1.3 Usage Mining with Content Mining 

In addition to linking with traditional personalized approaches, usage mining can also be brought together with 

content mining, which extracts useful information from the content of documents.  Mobasher et al. (2000b) 

present such an application, which mines web usage patterns and web content to personalize the user experience, 

specifically, to recommend new content the user may like to see [[35]]. In this framework, both usage and 

content profiles are incorporated into the recommendation process. The usage profiles are derived from 

transaction clusters and the content profiles are based on occurrence patterns of features in page views. The 

personalized content takes the form of recommended links or products, targeted advertisements, or text and 

graphics tailored to the user’s perceived preferences as determined by the matching usage and content profiles. 

They found this framework could be applied to perform real-time personalization. 

 

3.2. Electronic Commerce 

The widespread use of the web has tremendous impact on the way organizations interact with their partners and 

customers. Many organizations consider analyzing customers' behavior, developing marketing strategies to create 

new consuming markets, and discovering hidden loyal customers as the key factors of success. Therefore, new 

techniques to promote electronic business become essential and data mining is one of the most popular 

techniques [[9]]. Data mining applications in electronic commerce include customer management, retail business, 

and time series analysis.  
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3.2.1 Customer Management 

For analyzing customers’ behaviors, a frequently used approach is to analyze their usage data in order to discover 

user interests, and then recommendations can be made based on the usage data extracted.  Well-known 

recommendation systems include online food stores [[45]], music suggestions [[11]], and online bookstores such 

as Amazon.com [[30]], etc. 

 

Basically, three approaches can be used for making recommendations: (1) collaborative filtering, (2) content-

based filtering, and (3) cluster models. The details of the first two approaches have been described in Section 2.  

The third approach is to create cluster models, which divide the customers into many segments and treat the task 

as a classification problem. The algorithm’s goal is to assign the user to the segment containing the most similar 

customers. It then uses the purchases and ratings of the customers in the segment to make recommendations. 

Cluster models can perform much of the computation offline, but recommendation quality is relatively poor 

[[42]]. A possible solution is to increase the number of segments, but this makes the online user–segment 

classification expensive.  

 

It seems that the aforementioned approaches have different strengths and weaknesses. Recent studies tend to use 

a hybrid approach. One of the examples is the study by Wang et al. (2004), who have developed a 

recommendation system for the cosmetic business. In the system, they segmented the customers by clustering 

algorithms to discover different behavior groups so that customers in same group have similar purchase behavior. 

For each group's customers, they used the association rules algorithm to discover their purchase behavior. In 

addition, they scored each product for each customer who might be interested in it with the collaborative filtering 

approach and the content-based approach. They found that this approach could not only recommend the right 

product to the right person, but also recommend the right product to the right person at the right time [[47]].  
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3.2.2 Retail Business 

The major area where retail businesses can benefit from data mining is in the area of market basket analysis [[3]]. 

The market basket analysis refers to the application of data analysis techniques to databases that store 

transactions from consumers buying choices of different products. The aim of the analysis is to understand the 

association structure between the sales of the different products available. Once the associations are found, they 

may help planning marketing policies. For instance, if there is a relationship between two products over time, 

then retailers can use this information to contact the customer, decreasing the chance that the customer will 

purchase the product from a competitor. This is the type of data typically analyzed with association rules.    

 

A recent development is that this approach can be used in detecting patterns in library circulation data. 

Cunningham and Frank (1999) applied the techniques of data mining to the task of detecting subject 

classification categories that co-occur in transaction records of books borrowed from a university library. They 

found that this information can be useful in directing users to additional portions of the collection that may 

contain documents relevant to their information needs, and in determining a library’s physical layout [[14]]. The 

other new progress is that Chen et al. (2004) propose store-chain association rules for a multi-store environment. 

The format of the rules is similar to that of the traditional association rules. However, the rules also contain 

information on store (location) and time where the rules hold. The results of the proposed method may contain 

rules that are applicable to the entire chain without time restriction or to a subset of stores in specific time 

intervals [[12]]. 

 

3.2.3 Time Series Analysis 

In business operations, decision makers need a solid description of future possible developments in order to 

formally include the future uncertainty in a decision process [[18]]. One of the ways to achieve such a description 

is by analyzing time series data. A time series is a sequence of observations that is ordered in time, which can be 

useful for the discovery and use of patterns and prediction of future values [[15]]. Time series analysis is an 

integral part of effective electronic commerce and is useful for many applications, such as economic forecasting, 

sales forecasting, budgetary analysis, and stock market analysis.  
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The main difference between traditional time series analysis and data mining on time series is that the latter can 

handle a large number of series. Many time series may be collected during normal business operations, so data 

mining is a useful technique to analyze time series data for electronic commerce. Liu et al. (2001) applied the 

time series data mining processes in a fast-food restaurant franchise. They found that the adaptation of data 

mining on time series provides several advantages: (1) to process large amounts of data in an automated fashion, 

(2) to convert vast amounts of data into information that is useful for inventory planning, labor scheduling, and 

food preparation planning, and (3) to offer a consistent, reliable and accurate method of forecasting inventory and 

product depletion rates over set temporal periods commonly used in restaurants. They claimed that such time 

series data mining could also be applied to other business operations [[31]].  

 

3.3. Search Engines 

Data Mining is of increasing importance for search engines. Traditional search engines offer limited assistance to 

users in locating the relevant information they need. Data mining can help search engines to provide more 

advanced features. According to current applications, there are three potential advantages: (a) ranking of pages, 

(b) improvement of precision, and (c) citation analysis. These advantages are described below.  

 

3.3.1 Ranking of Pages 
Data mining identifies the ranking of the web pages for a particular topic by analyzing the interconnections of a 

series of related pages. The PageRank [[6]] and Hyperlink-Induced Topic Search [[22]] apply this approach to 

find pertinent web pages.  In the PageRank, importance of page is calculated based on the number of pages that 

points to it. This is actually a measure based on the number of backlinks to a page. A backlink is a link pointing 

to a page, rather than pointing out from a page. This measure is used to prioritize pages returned from a 

traditional search engine using keyword searching. Google applies this measure to rank the search results. The 
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benefit is that central, important, and authoritative web pages are given preferences. However, the problem is that 

it only examines the forward direction. In addition, a much larger set of linked documents is required.   

 
HITS is different from the PageRank in that it examines both backward and forward direction. HITS identifies 

pages with most in-links and most out-links among a set of web pages in the same domain. The pages with most 

in-links are defined as authorities, and the pages with most out-links as hubs. There are two main steps: (a) a 

sampling component, which constructs a focused collection of several thousand web pages likely to be rich in 

relevant authorities; (b) a weight-propagation component, which determines numerical estimates of hub and 

authority weights by an iterative procedure. As the result, pages with highest weights are returned as hubs and 

authorities for the research topic. The benefit of this approach is that it can provide a densely linked community 

of related authorities and hubs.  

 

3.3.2 Improvement of Precision 
The problem of HITS is that it is a purely link structure-based computation, ignoring the textual content. 

Therefore, the precision is low. On a narrowly focused topic,,  it frequently returns resources for a more general 

topic. IBM Almaden Research Centre continued refinements of HITS to develop CLEVER search engine [[8]]. 

The main refinement is to promote the precision by combining content with link information, breaking large hub 

pages into smaller units, and computing relevance weight for pages. Following the CLEVER, Focused Crawling 

[[7]] is another further enhancement of HITS. The improvement is that Focused Crawling selectively seeks out 

pages that are relevant to a predefined set of topics. The topics are specified not using keywords, but using 

exemplary documents. Rather than collecting and indexing all accessible documents to be able to answer all 

possible ad hoc queries, a Focused Crawler analyzes its crawl boundary to find the links that are likely to be most 

relevant for the crawl, and avoids irrelevant regions of the web. 

 
User’s log is the other source that can be used to improve the precision. Zhang and Dong (2002) developed a 

Chinese image search engine named eeFind by using Matrix Analysis on Search Engine Log (MASEL). The 

basic idea of MASEL is to use the query log to find relations among users, queries, and clicks on results. The 

relation between pages chosen after a query and the query itself provides valuable information. After a query, a 

user usually performs a click to view one result page. Each click is considered a positive recommendation of that 
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result so that the system will provide further results based on the recommendation [[49]]. Guan and Wang (2003) 

used a similar approach to produce a search engine named Nstar. Like other search engines, Nstar needs users to 

provide keywords to define the scope of the search, and then to create a set of potential relevant results. 

Subsequently, a sample-based mining method is applied to extract further information. The sample-based mining 

method extracts information based on a sample specified by the users. The system then looks for similar parts 

from other pages automatically based on the pattern and style of the sample. The method is based on the 

observation that many Web sites are organized by the same institute, and thus the pages therein commonly 

exhibit very similar stylistic properties [[19]]. 

 

3.3.3  Citation Analyses 

Author co-citation analysis (ACA) has been widely used as a method for analyzing the intellectual structure of 

science studies. It can be used to identify authors from the same or similar research fields. He and Hui (2002) 

used data mining to perform such an analysis and developed a data warehouse named Web Citation Database, 

which contained citation indices of Web publications that can be mined to help document retrieval.  Hierarchical 

clustering is used as the mining technique for author clustering. This technique begins by considering each author 

to be a cluster. In the mining process, two clusters are combined together until, at the end, all of the authors are in 

a single cluster. Subsequently, multidimensional scaling is adopted for displaying author cluster maps, in which 

cluster represents a research area and authors within the same cluster are the experts of the same research area 

[[21]]. Moreover, other research applied visualization techniques to present ACA.  Chen and Paul (2001) used 

3D virtual landscape to represent author co-citation structures. The most influential scientists in the knowledge 

domain appear near the intellectual structure’s center. In contrast, researchers who have unique expertise tend to 

appear in peripheral areas. The virtual landscape also lets users access further details regarding a particular author 

in the intellectual structure, such as a list of the author’s most-cited papers, abstracts, and even the full content of 

that author’s articles [[10]]. 

 



 

S. Y. CHEN AND X. LIU   

14  Journal of Information Science © CILIP 2004

Co-citation analysis can also support the automatic indexing, which can autonomously locate articles, extract 

citations, identify citations to the same article that occur in different formats, and identify the context of citations 

in the body of articles. One of the examples is Research Index system (formerly known as CiteSeer), which 

works by downloading papers from the Web and converting them to text. It then parses the papers to extract the 

citations and the context in which the citations are made in the body of the paper. Furthermore, references are 

automatically linked to the documents they cite, creating a fully-fledged citation index. In other words, the 

system provides relevant papers to users by using common citations to make an estimate of document similarity 

[[27]]. 

 

4. Problems and Future Works 

The above three application domains demonstrate that data mining is a very useful technology and opens new 

opportunities for data analyses. However, there are still some difficulties, which need to be aware of and should 

be investigated in further works: 

 

4.1. Data Cleaning 

It is important to know that the effective implementation of data mining methods depends on a large extent on the 

quality of the data. Therefore, a step of data cleaning before analysis is usually needed.  Data cleaning deals with 

detecting and removing errors and inconsistencies from data in order to improve the quality of data. It becomes 

especially necessary when multiple data sources need to be integrated. This is because the sources often contain 

redundant data in different representations. Although the large number of tools indicates both the importance and 

difficulties of data cleaning, so far only a little research has appeared on data cleaning [[38]]. 
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4.2. Interdisciplinary Research 

Data mining is an interdisciplinary study, which embraces several current information technologies such as 

information visualization, machine learning, and soft computing. One of the significant problems for the 

interdisciplinary research is the range and level of domain of expertise that are present among potential users so it 

can be difficult to provide access mechanisms appropriate to all [[25]]. Therefore, there is a need to develop tools 

that can help to conduct good communications among experts from the fields of different technologies. In 

addition, further works are needed to integrate these technologies and this integration may offer more 

methodologies to investigate the problems of data mining.  

4.3. Multimedia Mining  

Multimedia mining is engaged to mine unstructured information and knowledge from multimedia sources.  This 

is a challenging field due to the fact that Multimedia databases are widespread. There are tools for managing and 

searching within such collections, but the need for tools to extract hidden useful knowledge embedded within 

multimedia data is becoming critical for many applications. However, multimedia mining has received less 

attention than text mining [[23]], and it opens a new window for future research to explore. Today, we need tools 

for discovering relationships between data items or segments within images, classifying images based on their 

content, extracting patterns from sound, categorizing speech and music, recognizing and tracking objects in video 

streams, relations between different multimedia components, and cross-media object relations. 

 

4.4. Assessment of Effectiveness  

As described in Section 3, data mining can enhance the functions of various types of applications in the field of 

information science. However, the effectiveness of these applications is still a question. It is due to the fact that 

most previous evaluation concerned the comparison of different techniques, instead of assessing the effectiveness 

from user points of view. Certainly, there is a need to conduct more empirical studies to verify the effectiveness 

and evaluate the performance of these applications based on the users’ position. Better understanding of users’ 
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needs can help designers to develop effective applications that will take the advantages of the features of data 

mining into account at the same time focusing on users’ requirements. In addition, such an evaluation can shed 

light on efficient use of data mining techniques and can potentially result in better end-to-end system 

performance, which in turn has a direct positive impact on the user experience. 

 

5. Conclusions 

Within the past 10 years, there has been significant progress in the field of information science. Some of this 

progress represents improvements in existing techniques. One of these techniques is data mining, which can 

search for interesting relationships and global patterns from various types of resources. These relationships and 

patterns represent valuable knowledge about the objects and this is reflected by many applications in the field of 

information science.  

 

In this paper, we have given some background to data mining techniques. This knowledge is useful in selecting 

appropriate approaches for a specific application. The survey of applications presented in this paper provides 

additional insight into the contribution of data mining in information science. Interested readers may further 

explore applications in a specific area through the references listed in this paper. Understanding the scope and 

limitations of current applications can be very useful in developing new applications. 

 

Data mining is widely used in many applications. The paper focuses on three main application domains, 

including electronic commerce, personalized environments, and search engines. It should be noted that data 

mining has also been applied to other application domains, such as bioinformatics, digital libraries, and web-

based learning, etc. It is another direction for future research to investigate what major functions are required for 

each application domain and to develop concrete criteria for the evaluation of their effectiveness. These works 

can be integrated together to generate guidelines, which can be used for commercial and research communities to 
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select suitable data mining techniques. The ultimate goal is to enhance the functions and performance of these 

applications by exploiting the full potential of data mining techniques.  
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