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Abstract

We consider two models (A and B) which can describe both two dimensional fragmentation
and stochastic fractals. Model A exhibits multifractality on a unique support when describing
a fragmentation process and on one of infinitely many possible supports when describing
stochastic fractals. Model B obeys simple scaling.
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Fragmentation is an irreversible kinetic process in which a collection of fragments are
sequentially broken. There have been a number of different analytical approaches to the
problem of the kinetics of fragmentation of one dimensional particles. These have included
using the maximum entropy method [1], using statistical and combinatorial arguments [2,3]
and using a kinetic equation. It is the kinetic equation approach, developed by Filippov
[4] after it’s original proposal by Kolmogorov [5], that has provided most of our theoretical
understanding. This has resulted in numerous exact and explicit solutions for the particle
size distribution function [6,7], in addition to scaling solutions [8,9].

In one dimension the size or mass of the particles is the only dynamical quantity of
interest. However, there has been a recent theoretical interest [10-12,20] in the kinetics of
fragmentation of multidimensional objects. This is motivated by a desire to move away
from characterising particles solely by their volume or equivalently, mass and towards an
understanding of the physical role played by shape in the fragmentation of particles. In
reality, particles are identified by their shape.

The studies of fragmentation phenomenon in two dimensions [10-12, 20] have revealed
unexpectedly rich patterns with interesting and novel statistics. We attempt to clarify the
origin of this behaviour and invoke the idea of multifractality to characterise such pattern.
We find that some fragmentation rules do not have a single measure support instead they
have an infinite number. Each measure yields different spectrum of exponents to characterize
the system. We also consider a second model which exhibits simple scaling and we seek to
explain the difference between these models.
The obvious extension of the rate equation to two dimensions [10-13]] is

∂f(x, y; t)

∂t
= −f(x, y; t)

∫ x

0
dx1

∫ y

0
dy1F (x1, y1, x, y) +

s
∫ ∞

x
dx1

∫ ∞

y
dy1f(x1, y1; t)F (x, y, x1, y1) (1)

where f(x, y; t) is the concentration of particles of sides x and y at time t and s = 1, 2, 3 or
4. F (x1, y1, x, y) describes the rate with which objects having sides x and y break to produce
fragments of sides x1, x − x1 and y1, y − y1.

The two integrals over the two variables implies that the two orthogonal cracks are placed
on an objects such that the cracks are equal and parallel to the sides. Evidently they will
produce four new fragments at each time step to describe fragmentation process (s = 4).
However, we can choose s = 1, 2, 3 which simply implies that s fragments are kept and (4−s)
fragments are removed at each time step. This process creates a stochastic fractals [14,15]]
at long times. In this letter, we consider our two variables x and y to be lengths. This is in
contrast to [12], where one variable was associated with energy and the other with mass.

We choose to study a homogeneous rate kernel [12],

F (x1, y1, x, y) = xβ1yβ2 (2)

This model (called A in the abstract) describes a system in which particles are selected
for fragmentation with a rate determined by their area and shape. The relative importance
of area and shape is determined by β1 and β2. Once a particles has been chosen for fragmen-
tation, products of any area and shape are equally likely so that the daughter distribution
is Poisson. Substituting this choice of kernel into the rate equation yields
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∂f(x, y, ; t)

∂t
= −xβ1+1yβ2+1f(x, y; t) + s

∫ ∞

x

∫ ∞

y
dx1dy1x

β1

1 yβ2

1 f(x1, y1; t) (3)

We now define the moments of the probability distribution function f(x, y; t) as

Mm,n(t) =
∫ ∞

0

∫ ∞

0
dxdyxm−1yn−1f(x, y; t) (4)

We can then obtain a rate equation for the moments,

∂Mm,n(t)

∂t
= (

s

mn
− 1)Mm+β1+1,n+β2+1(t) (5)

An interesting feature of the above equation is that there are infinitely many conserved (time
independent) moments. Moments Mm,n(t) that are conserved satisfy mn = s. This simply
reflects the fact that fragments with a given area can have an infinite number of different
shapes.

Using Charlesby’s method, the moment equation can be iterated to get all the derivatives
of the moments [11,12]. These can then be substituted into a Taylor series expansion of
Mm,n(t) about t = 0 to give

Mm,n(t) = 2F2(a1, a2; b1, b2;−t) (6)

2F2 is a generalised hypergeometric function [15], where

a1/2 =
m

2(β1 + 1)
+

n

2(β2 + 1)
∓

√

√

√

√

(m(β2 + 1) − n(β1 + 1))2 + 4s(β1 + 1)(β2 + 1)

4(β1 + 1)2(β2 + 1)2
(7)

and
b1 =

m

(β1 + 1)
(8)

b2 =
n

(β2 + 1)
(9)

We are only interested in the long time behaviour of the moments. The asymptotic expansion
of the generalised hypergeometric function for large time t gives

Mm,n(t) ≈ Γ(b1)Γ(b2)Γ(a1 − a2)

Γ(a2)Γ(b1 − a1)Γ(b2 − a1)
t−a1 (10)

For s = 4 the conserved moments can be written as Mm∗, 4

m
∗

(t) where, m∗ is any number.

We will only consider m∗ positive. Obviously, M2,2(t) can be identifyed as the area of the
system. For convenience, we choose β1 = β2 = β since it does not change the physics of the
mechanism under investigation.

We may choose to associate each hidden conserved quantity of the s = 4 process with
the set of points in R2. This space can then be subdivided into boxes of size

δm∗ =

√

√

√

√

Mm∗, 4

m
∗

(t)

M1,1(t)
). (11)
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such that µi(δm∗) denotes the measure within the ith box that depends on the choice of s.
This choice of δm∗ ensures that for a pure fragmentation process (s = 4), we recover the
complete set of points in R2. We now express the moment Mm,1(t) in terms of δm∗

Mm,1(δm∗) ∼ δ
−γ(m∗)(

√
(m−1)2+4s−m−1)

m∗ (12)

where

γ(m∗) =
2

(m∗ + 4
m∗

) −
√

(m∗ − 4
m∗

)2 + 4s − 2 +
√

4s
(13)

When m = 1, the exponent of equation (13) gives the Hausdorff-Besicovitch dimension Df .
Note that γ(m∗) = γ(4/m∗) and that in the limit m∗ → ∞, when s > 1, γ(m∗) → 1/(

√
s−1).

We also see that for s = 4, γ(m∗) = 1 and Df = 2, independent of m∗, as we ensured with our
choice of δm∗ . However, for 1 < s < 4 there exist infinitely many supports for different values
of m∗ and each is subdevided by a corresponding δm∗ . We also can write the d−measure of
the weighted box number Mm,1(t) as

Mm,1(d, δm∗) =
∑

i

µ
k(m)
i δd

m∗ = N(k(m), δm∗))δ
d
m∗. (14)

Where N(k(m), δd
m∗) is the k(m)th moment of the measure such that N(0, δm∗) is the number

of boxes require to cover the support of dimension d = Df . Hence we can write the weighted
box number as

N(k(m), δd
m∗) =

∑

i

µ
k(m)
i ∼ δ

−τ(k(m))
m∗ (15)

We thus see that Mm,1(δm∗) can be partioned into boxes of sides δm∗ such that the proba-
bilities {µi} are normalised if we let

m = 1 + (s − 1)k (16)

when δm∗ → 0 we require that the measure Mm,1(d, δm∗) tends to a finite value. This occurs
when d = τ(k). Combining (13),(15) and (17) gives the mass exponent τ(k) as

τ(k) = γ(m∗){
√

(s − 1)2k2 + 4s − (s − 1)k − 2} (17)

This expression meets some essential requirement; namely τ(0) is the dimension of the
support and τ(1) = 0.

We thus see that there exist a spectrum of mass exponents τ(k) that characterise the
distribution of the particle size distribution. The mass exponent is nonlinear which indicates
the existence of a fractal subset for each support whether or not the support itself is fractal.
To find this fractal subset we use the usual Legendre transform of the independent variables
τ and k to the independent variable α and f(α(k));

α(k) = −dτ(k)

dk
(18)

and
f(α(k)) = kα(k) + τ(k) (19)
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These relations yield

α(k) = γ(m∗)
(s − 1)

√

(s − 1)2k2 + 4s − (s − 1)2k
√

(s − 1)2k2 + 4s
(20)

and

f(α(k)) = γ(m∗)
4s − 2

√

(s − 1)2k2 + 4s
√

(s − 12k2 + 4s
(21)

It is interesting to note that all the quantities of interest, γ(m∗), τ(k) and f(α(k)) are
independent of β when β1 = β2 = β. When β1 6= β2 all the quantities depend on both β1

and β2 so the analogous expressions are much more complex. However, the basic picture is
unchanged. For all β1 and β2 the f − α spectrum obeys a simple scaling relationship with
respect to γ, namely f(α) = γh(α/γ). In figure 1 the f − α spectrum is plotted for three
different values of m∗.

Physically, the f(α(k)) versus α curve simply suggest the existence of intertwined fractal
subsets describing the measure. We find that when fragments are removed from the system
at each time step there exist a range of fractal dimension 1.4641 ≤ Df(m

∗) ≤ 2 and there
are an infinitely manny f−α spectra for each Df . All the Df(m

∗) compete on equal footings
to be the support on which the measure can distributed in a given realisation. This reflects
that in addition to the entropy from the location of the fractal subset there is another source
of entropy from Df(m

∗) which is absent in the pure fragmmentation (s = 4) process.
As an aside, let us mention the connection between these models for 1 < s < 4 and

those of random sequential adsorption (rsa) (see [17] for a recent review). One can imagine
that at each time step, the fragmentation event is a deposition in which 4 − s fragments
are deposited on the substrate and play no further part in the kinetics and s regions of the
substrate survive for future deposition. The difference between true rsa and our system is
that in our system deposition can only take place in rather restricted set of position also
as time proceeds the deposited particles get smaller in size. However, in the long time the
pattern created looks rather like that created by the deposition of a mixture of sizes of
ractangles. This is the 2 − d variant of the 1 − d system of mixture deposition studied by
[18]. The s = 2 version of this system studied in [19] the context of deposition of needles. In
rsa, one of the interesting observables is that system reaches a jamming limit at long time
which is less than random close packing. However, in this case we find instead of having a
jamming limit the number density shows power law behaviour with non-trivial exponent. In
general, the jamming limit can be found using the following relation

θ(t → ∞) = 1 −
∫ ∞

0
dx

∫ ∞

0
dyf(x, y; t) (22)

This gives
1 − θ(t → ∞) ∼ t

√
s−1 (23)

To understand the role played by the dimension and shape we consider now a different model
ie

F (x1, y1; x, y) = xβ1yβ2δ(2x1 − x)δ(2y1 − y) (24)
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Substitute this into the rate equation to get,

∂f(x, y; t)

∂t
= − 1

22
xβ1yβ2f(x, y; t) + 2β1+β2sf(2x, 2y; t) (25)

And the rate equation for the moments

∂Mm,n(t)

∂t
= −(

1

22
− s

2m+n
)Mm+β1,n+β2

(t) (26)

This again gives infinitely many hidden conserved quantity. As before the condition for the
conserved dynamical quantity can be obtained from the requirement of time independent
moments

m + n = 2 +
lns

ln2
(27)

This linear relation between m,s and n,s implies asymptotic power law decay of the moments
with linear exponent in m,s and n,s in time:

Mm,n(t) ∼ A(m, n)t−α(m+n) (28)

Substitute this into the rate equation for the moments to give a difference equation

α(m + n + β1 + β2) = α(m + n) + 1 (29)

Iterating the above difference equation and using the appropriate boundary condition gives

α(m + n) =
m + n − (2 + lns

ln2
)

(β1 + β2)
(30)

This gives us the power law decay of all the moments and allows us to show that the average
number of fragments < N(t) > and the average area are related by

< N(t) >∼< xy >− lns

2ln2 (31)

Consequently, the fractal dimension for s < 4 is given by

Df =
lns

ln2
(32)

and we have f(α) = Df and τ(k) = Df (1 − k) (self-similar). In short, model B exhibits
simple scaling.

These results give us the opportunity to ask why one needs an infinite number of in-
dependent exponents to characterise the scaling relations in model A while model B only
exhibits scaling. To find the answer we need to go back to the nature of the models them-
selves and search for the things we lost in moving from the model A to the model B. In
the model A we had stochastic homogenieity which implies the fragmentation of an object
possesses ergodic probability distribution. In this model, two orthogonal cracks are placed
independently parallel to the sides ie they can pass through any points in Euclidean space.
While the model B describe two orthogonal cracks are allowed to place only at the middle
of the objects to produce successfully four equal sized fragments. It implies that the size is
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no longer intrigued with shape ie shape is determined by the initial condition. Note that
it is one of the infinitely many possibility of the former model. Thus if there is a mixture
of particles of different size and shape, and if any fragments are equally likely to be picked,
in the second model, once a fragments with definite shape is picked for fragmentation that
will only produce of that shape. Thus it is the broken ergodicity in shape that causes the
absence of multiscaling.

In conclusion, we have studied the two different models to understand the fragmentation
phenomenon when there are more than one dynamical variable. We found significantly
different behaviour between the two models, although both models have an infinite number
of conserved moments. Interestingly, these models also helps us to explain the occurence of
multifractality in fragmenting systems, which is not yet fully understood.
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Figure

1. Three of the f − α spectra for model A when s = 3 and β1 = β2. The three curves
are for m∗ = 2, 4 and ∞.
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