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Abstract

Missing data is a widespread problem that can affect the ability to use data to construct

effective prediction systems. We investigate a common machine learning technique that

can tolerate missing values, namely C4.5, to predict cost using six real world software

project databases. We analyze the predictive performance after using the k -NN missing

data imputation technique to see if it is better to tolerate missing data or to try to impute

missing values and then apply the C4.5 algorithm. For the investigation, we simulated

3 missingness mechanisms, 3 missing data patterns, and 5 missing data percentages. We

found that the k-NN imputation can improve the prediction accuracy of C4.5. At the same

time, both C4.5 and k -NN are little affected by the missingness mechanism, but that the

missing data pattern and the missing data percentage have a strong negative impact upon

prediction (or imputation) accuracy particularly if the missing data percentage exceeds

40%.
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1 Introduction

Missing data is a widespread problem that can affect the ability to use data to construct effective

prediction systems because few statistical or machine learning techniques can cope with such

situations. Until recently the usual approach has been to exclude data that contains one or more

missing values. This is often referred to as missing data ignoring technique, specifically, case or

list-wise deletion. Although it is a simple approach, it suffers from two substantial problems.

First, it leads to the inefficient use of already scarce data. Second, case deletion can introduce

substantial bias into a data set unless the values are missing completely at random. Therefore,

missing data toleration techniques and missing data imputation techniques (see Subsection 2.3

for details) have been proposed as alternative approaches to deal with missing values.

Unfortunately, no one technique is consistently effective. Therefore, a number of papers on

the evaluation of missing data techniques has been published (e.g.[42, 15, 20, 24, 67, 47, 5, 17]).

However, these works all focus on missing data ignoring techniques and missing data imputation

techniques. To our knowledge, the comparison of missing data toleration techniques and missing

data imputation techniques remains unexplored. So the objective of this paper is to consider

this problem. As missing data toleration techniques are embedded in machine learning methods

themselves and missing data imputation techniques aim to provide complete data to data

analysis methods; moreover, even a better estimate for each missing value not necessarily leads

to a better overall estimate for the parameters of interest [57], so it is reasonable to evaluate

missing data techniques by means of comparing the results of statistical or machine learning

methods with original and treated data (see for example, [67, 47, 5]). Therefore, our study is

in the context of software project development cost prediction with a real world data set.

Software project development cost prediction is concerned with estimating how much cost

will be consumed in order to develop a software project. It is an important and active research

area but with many challenges remaining, including dealing with missing data (a common

occurrence), small data sets with complex interactions between features (multi-collinearity)
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and rapid obsolescence of data due to technology changes. Thus a large number of papers has

been published [70] on this topic. We classify the published methods into three categories:

parametric model based methods, expert judgement methods, and machine learning methods.

Expert judgement techniques such as Work Breakdown Structure [6, 4] and pairwise com-

parison [46, 62] based on experts’ knowledge and experience and are useful in the absence of

quantified, empirical data. The limitation of these methods is that an estimate is only as good

as the experts’ opinions which there is usually no way to test. There are also difficulties with

transparency and repeatability.

Parametric models such as SLIM [49], COCOMO [6] and SEER [28] use pre-specified for-

mulas to estimate software cost. Unfortunately, they tend only to perform well in their own

environments [34, 38], and need local data to calibrate the model to new circumstances. But

even with calibration the accuracy can be quite mixed and missing values cause considerable

difficulties.

Machine learning methods [66, 61, 21] use historical software project data sets to predict

cost, and can be very accurate given appropriate training data. Unfortunately, most of them

cannot work with missing data. But in practice, historical software project data sets usually

contain missing values [8, 9, 23, 2, 27]. Missing values pose a challenge to machine learning

methods.

Of these three categories of cost prediction methods, the last two are impacted by missing

values. Thus, dealing with missing data also is an important issue in software engineering. At

the same time, in the context of software cost prediction, either ignoring techniques [71, 10, 12]

or imputation techniques [67, 47, 17, 32, 64, 65] have been used to deal with missing values.

However, ignoring techniques make small software project data sets more smaller, and most

imputation techniques are based on assumptions about missingness mechanisms that are not

testable. By contrast, missing data toleration techniques directly analyze data sets with missing

values, and have no assumptions on data distribution and missingness mechanism. On the

other hand, to our knowledge, missing data toleration techniques are not used in software cost

prediction. For this reason we choose to study missing data toleration techniques in the context

of software project cost prediction.
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The well known missing data toleration techniques include CART [14], CN2 [19], Ltree

[22], and C4.5 [51]. Among these methods, CART has been used in software cost modeling

[13, 48, 11] but not to deal with missing data. However, both single imputation and multiple

imputation [54, 55] tend to outperform CART [20]. Ltree is an oblique decision tree which

follows the same strategy for handling missing values as C4.5. C4.5 is one of the best methods

on treating missing values among nine approaches [24] including CN2 which fills in the missing

values with the most common value, the capacity of tackling both continuous and categorical

values further makes it fitting software project data sets that always contain both types of data,

and it has been used to identify software modules with high cost [59, 29] with complete data.

All the above motivates us to consider the use of C4.5 to predict project cost in the face of

missing values. Specifically, we explore two possibilities. One, we can use the technique directly

or two, we can use a separate imputation technique prior to applying C4.5 upon the artificially

completed data set. In other words, can an imputation technique improve the performance of

the missing data toleration method C4.5 when using it as a predictor?

The remainder of the paper is organized as follows. In the next section we present the basic

concepts of missing data techniques. This is followed by a description of the research method

we used. The results follow with concluding discussion and suggestions for further work.

2 Concepts of Missing Data Techniques

Missing values introduce complexities to data analysis. The assumptions one makes about the

missingness mechanism and the missing data pattern of missing values can affect missing data

dealing with methods.

2.1 Missingness mechanisms

Missingness mechanisms are assumptions about the nature and types of missing data. Little

and Rubin [45] defined three types of missing data mechanisms: Missing Completely at Random

(MCAR), Missing at Random (MAR), and Non-Ignorable (NI).

In general, a missingness mechanism concerns whether the missingness is related to the
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study variables or not. This is extremely significant as it determines how difficult it may be to

handle missing values and at the same time how risky it is to ignore them.

Missingness mechanisms can be described as follows [53]. Suppose Z is a data matrix that

includes observed and missing data, let Zobs be the set of observed values of Z, Zmis be the set

of missing values of Z , R be the missing data indicator matrix, i be the ith case and j the j th

feature. Then

Ri,j =


1 if Zi,j is missing

0 if Zi,j is observed.

Missing Completely At Random (MCAR) indicates that the missingness is unrelated to the

values of any variables, whether missing or observed. So

p(R|Z) = p(R) for all Z.

MCAR is an extreme condition and from an analysts point of view, ideal. Generally you can

test whether MCAR condition can be met by showing there is no difference between the distrib-

ution of the observed cases and the missing cases, this is Little’s [41, 44] multivariate test which

is implemented in SYSTAT and the SPSS Missing Values Analysis module. Unfortunately, this

is hard when there are few cases as there can be a problem with Type I errors.

Non-Ignorable (NI) is at the opposite end of the spectrum. It means that the missingness is

non-random, it is related to the missing values, and it is not predictable from any one variable

in the data set. That is

p(R|Z) 6= p(R) for all Z, p(R|Z) depends on Zmis.

NI is the worst case since, as the name implies, the problem cannot be avoided by a deletion

technique nor by imputation techniques in general effective unless the analyst has some model

of the cause of missingness. This is best illustrated by an example. Suppose software engineers

are less likely to report high defect rates than low rates, perhaps for reasons of politics. Merely

to ignore the incomplete values leads to a biased sample and an over optimistic view of defects.

On the other hand, imputation techniques do not work well either since they attempt to exploit

known values and as we have already observed this is a biased sample. Unless one has some
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understanding of the process and can construct explanatory models, there is little that can

effectively be done with the NI missingness mechanism.

Missing At Random (MAR) lies between these two extremes. It requires that the cause of

the missing data is unrelated to the missing values, but may be related to the observed values

of other variables. That is

p(R|Z) = p(R|Zobs) for all Zmis.

Using the same example as for NI, this would occur if smaller projects were less likely to

report defect rates than larger projects. Most missing data methods assume MAR. Whether the

MAR condition holds can be examined by a simple t-test of mean differences between the group

with complete data and that with missing data [37, 68]. MAR is less restrictive than MCAR

because MCAR is a special case of MAR. MAR and MCAR are both said to be ignorable

missing data mechanisms [53] and is fully explained in the context of multiple imputation in

[56].

In practice it is usually difficult to meet the MCAR assumption. MAR is an assumption

that is more often, but not always tenable.

2.2 Missing data patterns

The missing data indictor matrix R reveals the missing data pattern. Generally, there are two

types of missing data patterns, they are the univariate pattern and the multivariate pattern.

In the univariate pattern, only one variable contains missing values. Table 1 is an example.

In table 1, only variable x3 contains 3 missing values.

In the multivariate pattern, more than one variable contain missing data. We can refine this

pattern into two types: the monotone pattern and the arbitrary pattern.

In the monotone pattern, variables can be arranged so that for a set of variables x1, x2, · · ·,

xn, if xi is missing, then so are xi+1,· · ·, xn. Table 2 is an example.
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x1 x2 x3 x4 x5 x6

C1 * * * * * *

C2 * * * * * *

C3 * * ? * * *

C4 * * ? * * *

C5 * * ? * * *

C6 * * * * * *

Table 1: The univariate missing pattern

x1 x2 x3 x4 x5 x6

C1 * * * * * *

C2 * * * * * ?

C3 * * * * ? ?

C4 * * * ? ? ?

C5 * * ? ? ? ?

C6 * ? ? ? ? ?

Table 2: The monotone missing pattern
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x1 x2 x3 x4 x5 x6

C1 * * ? * * *

C2 * * * * * ?

C3 * * * * * ?

C4 ? ? * * * *

C5 * * * * * *

C6 ? * * * * *

Table 3: The arbitrary missing pattern

In the arbitrary pattern, missing data can occur anywhere and no special structure appears

regardless how you arrange variables. Table 3 is an example.

The types of missing data patterns may affect the selection of missing data methods, because

some missing data methods are sensitive to missing data patterns. For this reason we will

examine different patterns in our experimental analysis.

2.3 Missing data techniques

The missing data problem has been studied by researchers in many fields for more than 30

years. There are three approaches to this problem: missing data ignoring techniques, missing

data toleration techniques, and missing data imputation techniques.

Missing data ignoring techniques simply delete the cases that contain missing data. Because

of their simplicity, they are widely used and tend to be the default for most statistics packages,

but this may not lead to the most efficient utilization of the data and incurs a bias in the data

unless the values are missing completely at random. Consequently they should be used only in

situations where the level of missing values is very low.

Missing data toleration techniques are the internal missing data treatment strategies, which

perform analysis directly using the data sets with missing values. If the objective is not to

predict the missing values, missing data toleration is a better choice. This is because any

predication of missing values will incur bias thereby making prediction results doubtful.
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Missing data imputation techniques refer to any strategy for filling in missing values of a

data set so that standard methods can then be applied to analyze the completed data set.

These techniques not only retain data in incomplete cases, but also impute values of correlated

variables [42].

Missing data imputation techniques can be classified into the ignorable missing data impu-

tation methods, which consist of the single imputation methods and the multiple imputation

methods [54, 55], and the non-ignorable missing data imputation methods which consist of the

likelihood based methods [43] and the non-likelihood based methods [52]. A single imputation

method fills in one value for each missing value, it is more common currently than multiple

imputation which replaces each missing value with several plausible values and better reflects

sampling variability about the actual values. However, multiple imputation generates more

than one data set, so how to integrate the multiple values induced still needs to be addressed.

The k-NN (k Nearest Neighbors) imputation is a hot-deck single imputation method, it

fills in missing data by taking values from other observations in the same data set. This

method searches the k nearest neighbors of the case with missing value(s) and replaces the

missing value(s) by the mean or mode value of the corresponding feature values of the k nearest

neighbors. The advantages of the k-NN imputation are:

1. It does not require to create a predictive model for each feature with missing data;

2. It can treat both continuous and categorical values;

3. It can easily deal with cases with multiple missing values;

4. It takes into account the correlation structure of the data.

Most notably, k-NN has no explicit missingness mechanism assumption, this makes it prac-

tically useful. Therefore, we used the k-NN method to impute the simulated missing values in

the data sets.
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3 Feature Subset Selection

All features are necessary for characterizing a set of software projects, but not all of them are

necessary for predicting software cost. Therefore, before predicting software cost, we must first

decide which feature subset is useful for the prediction task. Therefore, in this subsection, we

introduce the feature subset selection method used by the research.

Feature subset selection [18, 35, 63, 26] (FSS) is the process of identifying and removing as

much irrelevant and redundant information as possible.

The existing FSSs fall into three categories: the wrapper, filter and embedded methods. A

wrapper method uses a predetermined selection algorithm to search for feature subsets, and

employs a induction algorithm to evaluate them iteratively and make the final decision. The

same induction algorithm will be used to induce the final target concept. This type of method

can obtain high induction accuracy but inherits the limitations of the induction algorithm and

is highly expensive in terms of the computational cost. A filter method filters the irrelevant

features before applying an induction algorithm, it is much faster than wrappers and hence can

be applied to large data sets with many features. But there is a danger that features selected

by this method can not allow an induction algorithm to reach its maximum accuracy.

By contrast, an embedded method does the feature selection inside the induction algorithm

itself. C4.5 is an example. At the same time, sometimes C4.5 is also used as a filter method.

Cardie [16] used a decision tree to select feature subset for a nearest neighbor algorithm for a

natural language processing task, the features that did not appear in the resulting tree were

removed. The results show clearly that the quality of the subset generated by a decision tree

helped the nearest neighbor algorithm to reduce its prediction error. Kubat et al. [40] used

C4.5 filtering features for use with a näıve Bayesian classifier and obtained a similar result. But

Kibler and Aha [36] reported more mixed results on two medical classification tasks.

John et al. [31] advocated the wrapper model as a means of identifying useful feature

subsets and used C4.5 as the induction engine. They tested both forward stepwise selection

and backward stepwise elimination on several data sets. Their results show the improvement of

prediction accuracy of C4.5 is not significant, which seems to be in line with Holte’s [25] claims.

But Kohavi and John [39] found it is hard to use C4.5 to obtain the optimal feature subset and
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that forward selection search can improve the accuracy of C4.5. John [30] showed that a single

irrelevant feature to the credit-approval or diabetes data sets reduced the prediction accuracy

of C4.5 by 5%.

To summarize, the results of using C4.5 either as a feature subset selection method or as an

induction engine with other feature subset selection method can be mixed. However, Yu and

Liu’s Fast Correlation-Based Filter(FCBF) [72] method can improve the accuracy of C4.5 [72].

So we decided using FCBF to select the feature subset for software cost prediction via C4.5.

Unfortunately, although FCBF works well with discrete and nominal features, it can not

tackle continuous features. So before applying FCBF, we first used the Chi 2 discretization

algorithm [69] converting continuous values into discrete values.

4 Predicting Cost Using C4.5 with Incomplete Data

C4.5 is an enhancement of the ID3 algorithm [50] that accounts for missing values, continuous

feature values, pruning of decision trees, rule derivation, and so on. It builds decision trees

top-down and prunes them. A tree is constructed by finding the highest information gain

feature test to conduct at the root node of the tree. After the test is chosen, the cases are split

according to the test, and the subproblems are solved recursively.

Suppose there are nc classes in a given data set X , and si(i = 1, 2, · · · , nc) is the number of

cases of in class Ci(i = 1, 2, · · · , nc). The expected information needed to classify X is defined

as

I(s1, s1, · · · , snc) = −
nc∑
i=1

si

n
log2

si

n
. (1)

Where n is the total number of cases in data set X . Note that a log function to the base 2 is

used since the information is encoded in bits.

Let a feature f of X has v distinct values, {a1, a2, · · · , av}. Feature f can be used to

partition X into v subsets, {X1,X2, · · · ,Xv}, where Xj(j = 1, 2, · · · , v) contains those cases in

X that have value aj(j = 1, 2, · · · , v) of f . Suppose si,j is the number of cases of class Ci in

a subset Xj, the expected information needed to classify cases into subsets by feature f , also

referred to as Entropy, is defined as
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E(f) =
v∑

j=1

s1,j + s2,j + · · ·+ snc,j

n
I(s1,j, s2,j, · · · , snc,j). (2)

Where, for a given subset Xj,

I(s1,j, s2,j, · · · , snc,j) = −
nc∑
i=1

si,j

sj

log2
si,j

sj

. (3)

The information Gain of feature f is:

Gain(f) = I(s1, s2, · · · , snc)− E(f). (4)

One limitation of Gain is that it tends to favor features with a large number of values that

split the data into many small subsets. To compensate for this, Quinlan suggested using Gain

Ratio instead of Gain. Gain Ratio is defined as

GainRatio(f) =
Gain(f)

SplitInfo(f)
. (5)

Where SplitInfo(f) is the information due to the split of X on the basis of the values of f , it

indicates the outcome of the test rather than the class to which the case belongs. Thus

SplitInfo(f) = I(|X1|, |X2|, · · · , |Xv|). (6)

Sometimes the split is nontrivial and the split information SplitInfo(f) will be small and

this ratio will be unstable. To avoid this, the Gain Ratio criterion selects a test to maximize the

ratio above, subject to constraint that the information gain must be greater than the average

gain over all tests examined.

C4.5 deals with missing data with no assumption about the missing data mechanism. It

uses a probabilistic approach to handle missing values, this approach consists of the following

two steps.

The first step is the penalizing of Gain Ratios. Suppose in class Ci of subset Xj, sm
i,j is the

number of the cases whose feature f contains missing values. Let δ =
∑nc

i=1

∑v
j=1

si,j−sm
i,j

si,j
, the

Gain is redefined as

Gainm(f) = δ × (I(s1, s2, · · · , snc)− E(f)). (7)
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Suppose a subset of Xj is Xm
j which consists of cases whose values of f were missing,

SplitInfo is redefined as

SplitInfom(f) = I(|X1 	Xm
1 |, |X2 	Xm

2 |, · · · , |Xv 	Xm
v |) + I(|Xm

1 |, |Xm
2 |, · · · , |Xm

v |). (8)

Therefore,

GainRatiom(f) =
Gainm(f)

SplitInfom(f)
. (9)

The second step is the fractioning of cases. This step assigns a probability to each of the

possible values {a1, a2, · · · , av} of f . These probabilities can be estimated based on the observed

frequencies of the various values for feature f among the cases at a given node. For example,

suppose f = {a, b} is a two-value feature, if a node contains 7 known cases with f = a and 3

with f = b, then the probability that f(?) = a 1 is 0.7, and the probability that f(?) = b is

0.3. A fractional 0.7 of ’?’ is now distributed down the branch for f = a and a fractional 0.3 of

’?’ down the other tree branch. These fractional cases are used for the purpose of computing

information gain and can be further subdivided at subsequent branches of the tree if a second

missing feature value must be tested. This same fractioning of cases can also be applied to

classify new cases whose feature values were missing. In this case, the classification of the new

cases is simply the most probable classification, computed by summing the weights of the case

fragments classified in different ways at the leaf nodes of the tree.

Once the decision tree is obtained from the incomplete data, it is ready for us to predict

software cost with it. However, when using the decision tree to predict software cost, we can

not only assign a specific value for each missing data item, but also can designate a series of

possible values and the corresponding probabilities for a categorical feature and an interval for

a continuous feature. It seems to be one of the best amongst simple methods to treat missing

values [24].

1f(?) means a missing value of feature f among cases at a given node.
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5 Experiments and Results

5.1 Experimental method

5.1.1 General method

The objective of this study is to investigate the predictive performance of C4.5, which is a

common machine learning technique that can tolerate missing values, after using the k-NN

missing data imputation technique to see if it is better to tolerate missing data or to try

to impute missing values and then apply the C4.5 algorithm in the context of software cost

prediction.

For this purpose, first we preprocessed the six real world data sets (see Subsection 5.2

for details) and obtained the corresponding six complete data sets. Then, for each of the six

complete data sets, the TwoStep clustering method [3] with a log-likelihood distance measure

was used to classify effort into clusters, and Yu and Liu’s feature subset selection method

FCBF [72] was used to to choose key features for the software development effort prediction

purpose, we obtained the six reduced data sets. After that, for each of the six reduced data

sets, we systematically extracted 5 pairs of the training and test data sets(see Subsection 5.1.2

for details) and obtained a total of 30-pair training-test data sets. By simulating various

missing data situations (see Subsection 5.1.3 for details ) from the missingness mechanism, the

missing data pattern, and the missing data percentage for the 30-pair training-test data sets,

we obtained thousands of the incomplete training and test data sets. At the same time, by

imputing these incomplete data sets with the k -NN method 2 we obtained the same amount

of the imputed complete training and test data sets as the corresponding incomplete training

and test data sets. Finally we ran C4.5 with three types of data sets: the complete, imputed

complete, and incomplete data sets and obtained the corresponding prediction accuracies and

summarized the results. Fig. 1 contains the details of the general research method.

2In the experiment, for the k-NN method, we used the two nearest cases (k=2) since Kadoda et al. [33]

suggested this to perform consistently better than higher values of k for this particular problem domain.
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Figure 1: The Research Method

5.1.2 Validation approach

Cross-validation is a method for estimating generalization error based on “resampling”[60]. We

used the 5-fold cross-validation strategy as the validation approach. In 5-fold cross-validation,

the data set D is randomly split into 5 mutually exclusive subsets D1,D2, . . . , D5 of equal size,

and ∪5
i=1Di = D. The inducer is trained and tested 5 times. Each time t ∈ {1, 2, . . . , 5}, it is

trained on D	Dt
3 which is referred to as a training set and tested on Dt which is referred to

as a test set.

As filling in missing data is not the final objective which is using imputed complete data

to do other things, for example, predicting software effort. Moreover, it has been proven that

even a better estimate for each missing value not necessary leads to a better overall estimate for

the parameters of interest [59]. So using the results of a machine learning method to evaluate

the missing data techniques is more practically useful and at least [68], [48], and [5] have

used this method. Here, we used the prediction accuracy as a measure to evaluate the k-NN

based imputation method and the C4.5 classifier with the complete, incomplete, and imputed

3The notation D 	Dt means set D minus set Dt.
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complete data sets. The accuracy measure is defined as follows:

Accuracy =
nc

n
× 100%.

Where nc is the number of cases whose class labels being correctly predicted and n is the total

number of cases in a test set.

5.1.3 Missing data simulation approach

For the purpose of completely assessing the impacts of the missingness mechanism, the missing

data pattern, and the missing data percentage on the performance of the missing data toleration

technique of C4.5 and the k -NN missing data imputation technique in the context of software

cost prediction, the simulation approach which was used for simulating various missing data

situations was used.

When inducing missing values from both the complete training and test data sets, the

missingness mechanism, the missing data pattern, the missing data percentage, and the number

of features with missing data are the four parameters considered.

All the three missingness mechanisms MCAR, MAR, and NI were simulated.

1. The implementation of the MCAR mechanism is to induce missing values for the desired

feature or features completely at random.

2. The implementation of the MAR mechanism is based on the size of the project. The bigger

the project, the greater the probability of missing data. Specifically, first we order the

cases according to project size. Then we divide the data set into 4 subsets with different

percentages of missing data. The missing data percentage is proportion to the mean of

project size of each subset. That is, for the ith subset, the missing data percentage is

Mi∑4

j=1
Mj

× p% × n, where Mi is the mean of project size of the ith subset, p% is the

given missing data percentage which is the amount of missing data we want to missing

in a given data set under the given missingness mechanism and the given missing data

pattern, and n is the number of data items.

3. The implementation of the NI mechanism is very similar to MAR. The only difference

is the missing values were induced on the given particular features in question and only
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depend on the particular features themselves. Both the greater and smaller values (or the

values with the greater and smaller frequency) have a higher likelihood of missingness.

Three missingness patterns were simulated, they are the 1-N pattern – one nominal feature

with missing values, the 1-C pattern – one continuous feature with missing values, and the

Arbitrary pattern – arbitrary features with missing values. For each of the three missing data

patterns, the missing values were induced based on the given missingness mechanisms and the

given missing data percentages. Moreover, for each of the three missingness patterns, missing

values were induced for every feature. However, for the 1-N pattern and the 1-C pattern, every

time only one feature contained missing values (but each feature has the chance to contain

missing values) while all features contained missing values for the Arbitrary pattern.

Five missing data percentages, 10%, 20%, 30%, 40%, and 50% were simulated, although the

data sets with more than 40% missing data percentage are not useful for detailed analysis [67].

5.2 Data sources

In this section we provide some background on the six data sets used in our study. These are

chosen to represent varying sizes of data set that are commonly encountered in the project

prediction domain. We selected two small sized, two medium sized and two large sized software

project data sets for the analysis. These are chosen to represent a diverse range of software

developers and a mixture of continuous, discrete and categorical features as well. The chosen

enables us to generalize conclusions to other cases in the software project prediction domain.

5.2.1 Finnsh data set

Finnish is a large data set collected by the benchmarking organization STTF Ltd. This data

is collected over a number of years from more than 30 different companies and more than

600 projects from insurance, banking, manufacturing, communications, retail and government

sectors. The features are a mixture of continuous, discrete and categorical. However, there are

a number of missing data values and also some features that would not be known at prediction

time and so are not included in our analysis. Removing features with missing values or after-

the-event data, leaves a subset of 42 features that are actually used in the study. The data set
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also exhibits significant multi-collinearity, in other words there are strong relationships between

features as well as with effort.

5.2.2 ISBSG data set

ISBSG is an international organization, based on the national software metrics associations

from several countries. ISBSG believes that they are representative of better software projects

worldwide. Presently ISBSG Data Repository contains data on approximately 1238 projects

with 55 features from insurance, government, banking, business services, manufacturing, com-

munications, and utilities organizations of 20 countries. The projects cover a wide range of

applications, development techniques and tools, implementation languages, and platforms. The

features are a mixture of continuous, discrete and categorical as well.

5.2.3 Desharnais data set

Desharnais is a medium sized data set collected by a Canadia software house from projects dis-

tributed amongst 11 different organizations. This data set is publicly available, it contains 81

cases of which 77 are complete and combines both continuous and categorical features (8 con-

tinuous or discrete and 1 categorical). This data set exhibits properties that are representative

of other data sets of software projects with respect to (non-)linearity and heteroscedasticity.

5.2.4 COCOMO81 data set

COCOMO81 is the data set that was used by Boehm [7] to build the COCOMO model and also

was used by Briand et al. [8], Srinivasan and Fisher [66], and Samson et al. [58] to compare

different effort prediction methods. It contains 63 projects and 40 features (23 continuous and

17 categorical).

5.2.5 BT data set

BT is a small data set derived from one division of a large telecommunication company. This

is representative of many organizations that embark upon an internal data collection program

to support their effort prediction activities. The data is relatively homogeneous, comprises 17
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Figure 2: Accuracy of C4.5 with the incomplete, imputed complete, and complete data sets

projects and 11 features (10 continuous and 1 categorical).

5.2.6 Albrecht data set

The Albrecht data set actually is the IBM DP Services data but was first used by Albrecht

and Gaffney [1] and was also used by Shepperd and Schofield [61] to validate software size and

effort estimation methods. The data comprises 23 projects and 8 features (7 continuous and 1

categorical ).

5.3 Results

In this subsection, we present the experimental results for the six complete data sets and

both the corresponding incomplete and imputed complete data sets with different missing data

percentages and different missing patterns under all the three missingness mechanisms MCAR,

MAR and NI for the C4.5 method. For each missing data percentage of each missing pattern

under a specific missingness mechanism, we used the mean accuracy of five data replications.

Then we summarized the results from the four aspects of the data set type, the missingness

mechanism, the missing data pattern, and the missing data percentage (See Figs. 2, 3, 4, and

5 for details.)

Fig. 2 contains the accuracy of C4.5 with the six complete data sets and the corresponding

incomplete and imputed complete data sets. From it we observe that, for each of the six data
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Figure 3: Accuracy of C4.5 with the incomplete and imputed complete data sets under the

three missingness mechanisms
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Figure 4: Accuracy of C4.5 with the incomplete and imputed complete data sets under the

three missing data patterns

Figure 5: Accuracy of C4.5 with the incomplete and imputed complete data sets under the five

missing data percentages
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sets and its variations, the accuracy of C4.5 with the imputed complete data set is between with

the complete data set and the incomplete data set; averagely, the accuracy has been improved

by 6 percent. This means the k -NN imputation improves the performance of C4.5’s missing

data toleration technique, further improves the prediction accuracy of C4.5.

Fig. 3 contains the accuracy of C4.5 with the incomplete and imputed complete data sets

under all the three missingness mechanisms MCAR, MAR, and NI. From it we observe that

1) the accuracy of C4.5 with the incomplete data sets decreases as the missingness mecha-

nism changes from MCAR through MAR to NI. This means that the missingness mechanism

negatively affects the performance of C4.5’s missing data toleration technique and further the

accuracy of C4.5, and the NI missingness mechanism has a little stronger negative impact on

prediction (or imputation) accuracy than the other two missingness mechanisms; 2) the accu-

racy of C4.5 with the imputed complete data sets also decreases as the missingness mechanism

changes from MCAR through MAR to NI. This means that the missingness mechanism nega-

tively affects the imputation accuracy of k -NN, and the NI missingness mechanism has a little

stronger negative impact than the other two missingness mechanisms; 3) for each pair of the

incomplete and imputed complete data sets under each missingness mechanism, the accuracy

of C4.5 with the imputed complete data set is higher than that of with the incomplete data

set. This means that for all the three missingness mechanisms, the k -NN imputation improves

the performance of C4.5’s missing data toleration technique, further improves the prediction

accuracy of C4.5.

Fig. 4 contains the accuracy of C4.5 with the incomplete and imputed complete data sets

under all the three missing data patterns 1-N, 1-C and Arbitrary. From it we observe that 1) the

accuracy of C4.5 with the incomplete data sets decreases strongly as the missing data pattern

changes from 1-N through 1-C to Arbitrary. This means the missing data pattern negatively

affects the performance of C4.5’s missing data toleration technique and further the accuracy of

C4.5; and the impacts of these three patterns are quite different, the Arbitrary missing data

pattern has a stronger negative impact on prediction (or imputation) accuracy than the other

two missing data patterns; 2) the accuracy of C4.5 with the imputed complete data sets also

decreases strongly as the missing data pattern changes from 1-N through 1-C to Arbitrary.
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This means the missing data pattern negatively affects the imputation accuracy of k -NN; and

the impacts of these three patterns are quite different, the Arbitrary missing data pattern has

a stronger negative impact on prediction accuracy than the other two missing data patterns;

3) for each pair of the incomplete and imputed complete data sets under each missingness

pattern, the accuracy of C4.5 with the imputed complete data sets is higher than that of

with the incomplete data sets. This means that for all the three missingess patterns, the k -

NN imputation improves the performance of C4.5’s missing data toleration technique, further

improves prediction accuracy of C4.5, although the improvement for the 1-C and Arbitrary

patterns are greater than for the 1-N pattern.

Fig. 5 contains the accuracy of C4.5 with the incomplete and imputed complete data sets

under all the five missing data percentages 10%, 20%, 30%, 40%, and 50%. From it we observe

that 1) the accuracy of C4.5 with the incomplete data sets decreases as the missing data per-

centage increases. This means the missing data percentage negatively affects the performance

of C4.5’s missing data toleration technique and further the accuracy of C4.5; the bigger the

missing data percentage, the less the prediction (or imputation) accuracy. More importantly,

if the missing data percentage exceeds 40%, the accuracy will decrease greatly. 2) the accuracy

of C4.5 with the imputed complete data sets also decreases as the missing data percentage

increases. This means the missing data percentage negatively affects the imputation accuracy

of k -NN; the bigger the missing data percentage, the less the imputation accuracy. More im-

portantly, if the missing data percentage exceeds 40%, the imputation accuracy will decrease

greatly. 3) for each pair of the incomplete and imputed complete data sets under each missing

data percentage, the accuracy of C4.5 with the imputed complete data sets is higher than that

of with the incomplete data sets. This means that for all the five missing data patterns, the

k -NN imputation can always the performance of C4.5’s missing data toleration technique and

further the prediction accuracy of C4.5, but the improvement decreases as the missing data

percentage increases.

For the purpose of more formally determining whether the accuracy improvements of the

imputation are statistical significant compared with the missing data toleration technique of

C4.5., we used a Mann-Whitney test, which is a non-parametric test that doesn’t assume a
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Data Set p Value

Finnsh 0.0042

ISBSG 0.0025

Desharnais 0.0157

COCOMO81 0.0003

BT 0.0235

Table 4: Mann-Whitney test of the prediction accuracy differences between the imputed com-

plete data sets and the incomplete data sets regardless of whatever the missingness mechanism,

the missing data pattern, and the missing data percentage are

Gaussian distribution, to compare the sample medians of the accuracies between the incomplete

data sets and the imputed complete data sets. For all the tests, the null hypotheses are that

there is no difference with (α = 0.05).

In the Mann-Whitney test, for each of the six data sets, we suppose that the accuracy

of C4.5 with the imputed complete data sets is greater than with the incomplete data sets

regardless of whatever the missingness mechanism, the missing data pattern, and the missing

data percentage are. Table 4 contains the corresponding test results. From it we observe that

all the alternate hypotheses are accepted. This reveals that the improvements of imputation

on prediction accuracy are statistical significant.

To summarize, from the results we observe that the k -NN imputation method can improve

the performance of C4.5’s missing data toleration technique and further the prediction accuracy

of C4.5, regardless of whatever the missingness mechanism, the missing data pattern, and the

missing data percentage are. More importantly, the improvements are statistical significant.

At the same time, the missingness mechanism, the missing data pattern, and the missing data

percentage negatively affect the prediction accuracy of C4.5 and imputation accuracy of k -NN;

within each of these factors, the individual impact varies. On the other hand, for both C4.5

and k -NN, there was a big accuracy drop if the missing data percentage exceeds 40%.
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6 Conclusions

In this study we have compared the impacts of the missing data toleration technique of C4.5 with

the k -NN missing data imputation method on the prediction accuracy of C4.5 in the context

of software cost prediction. This is further to help determine whether the k -NN imputation

method can improve the performance of C4.5 when predicting with incomplete data.

First we induced the incomplete data sets from the six complete data sets for each combina-

tion of the missing data percentage, the missing data pattern and the missingness mechanism,

and obtained thousands of incomplete training and test data sets. For the purpose of com-

paring the missing data toleration technique of C.45 with the k -NN imputation technique, we

used the latter imputing these incomplete data sets and obtained the corresponding imputed

complete training and test data sets. After that we assessed C4.5 with the incomplete data sets

and the imputed completed data sets. We found that 1) the k -NN imputation can improve the

prediction accuracy of C4.5 and the improvements are statistical significant; 2) both C4.5 and

k -NN can be affected by the missingness mechanism, the missing data pattern and the missing

data percentage.
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