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Abstract—The decomposition of high-dimensional multivariate time
series (MTS) into a number of low-dimensional MTS is a useful but
challenging task because the number of possible dependencies between
variables is likely to be huge. This paper is about a systematic study of
the “variable groupings” problem in MTS. In particular, we investigate
different methods of utilizing the information regarding correlations
among MTS variables. This type of method does not appear to have been
studied before. In all, 15 methods are suggested and applied to six datasets
where there are identifiable mixed groupings of MTS variables. This paper
describes the general methodology, reports extensive experimental results,
and concludes with useful insights on the strength and weakness of this
type of grouping method.

Index Terms—Correlation, evolutionary programming, genetic
algorithms, grouping, multivariate time series (MTS).

NOMENCLATURE

X Multivariate time series.
n Number of variables in the MTS.
T Number of cases/observations.
xi(t) Observation of the MTS variablei at timet.
lag Time lag of a correlation.
MaxLag Maximum limit for a time lag.
P Order of a VAR process.
Q List of discovered high correlations.
R Length ofQ.
G Set of groups.
m Number of groups.
gi The ith group.
ki Size of theith group.
s Size of the search space of all possible correlations

with all lags up toMaxlag.
r Number of true underlying dependencies (i.e., ex-

cluding spurious correlations).
c Number of calls to the correlation coefficient.
correl Correlation in the form of a triple,(xi; xj ; lag).
corr Boolean Function that returns true if a correlation pair

exists inQ irrespective of direction.
z z statistic for the normal distribution.
� Ratio c=s.

 Ratior=R.
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I. INTRODUCTION

There are many practical applications involving the partition of a set
of objects into a number of mutually exclusive subsets. The objective
is to optimize a metric defined over the set of all valid subsets, and the
term grouping has been often used to refer to this type of problem.
Examples of the grouping applications include bin packing, workshop
layout design, and graph coloring [6]. Much research has been done
on the grouping problem in different fields, and it was established
that many, if not all grouping problems, are NP-hard [9]. Therefore,
any algorithm that is guaranteed to find the global optimum will run
in exponential time to the size of problem space, and a heuristic or
approximate procedure is normally required to cope with most of the
real world problems. A variety of techniques have been proposed to
develop this procedure, including traditional clustering algorithms,
hill-climbing and evolutionary algorithms. These techniques utilize
a metric that takes relationships or dependencies between objects
into account, and partition them into a number of mutually exclusive
subsets [6].

When it comes to the problem of decomposing a high-dimensional
multivariate time series (MTS) into a number of low-dimensional
MTS, the number of possible dependencies between time series
variables becomes huge because one variable could affect another
after a certain time lag. Therefore, how to effectively utilize these
dependencies becomes an important issue; to use all the possible
dependencies in a variable grouping algorithm will be computationally
infeasible for many, especially real-time, applications.

This paper concerns a systematic study of the “variable group-
ings” problem in MTS. We investigate different heuristic methods
for utilizing the information regarding dependencies among MTS
variables; this type of method does not appear to have been studied be-
fore. In all, 15 such methods are suggested and applied to six datasets
where there are identifiable mixed groupings of MTS variables. Our
methodology scores possible groupings based on a list of highly
correlated pairings of variables. This list is not necessarily constructed
from an exhaustive search and, therefore, could make the method
applicable to massive data in some applications. The list size will
strongly influence the final groupings and so a method for determining
this parameter is sought for based on probabilistic simulation.

II. GROUPING IN MULTIVARIATE TIME SERIES

MTS data are widely available in different fields including medicine,
finance, science, and engineering. Modeling MTS data effectively is
important for many decision-making activities. A MTS is a series of
observations,xi(t); [i = 1; � � � ; n; t = 1; � � � ; T ], made sequentially
through time wherei indexes the measurements made at each time
point t.

Although much research has been carried out on modeling MTS for
different purposes, little has been done on an important preprocessing
issue: the grouping of MTS. When dealing with ann dimensional MTS,
it is desirable to model the data as a group of smaller MTS models as
opposed to a single one. Firstly, not all of the variables may be related,
and secondly the number of parameters to be located in such a model
would be very high. For example, in forecasting, there are many sta-
tistical MTS modeling methods such as the Vector Auto-Regressive
process (VAR), and other linear, nonlinear, and Bayesian systems [3],
[15], [19]. Take the VAR(P ) process as an example. There would be at
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leastn2P parameters to locate whereP is the order of the VAR process
andn is the number of variables in the data set. In explaining MTS, sup-
pose we are trying to learn Dynamic Bayesian Network (DBN) models
[5], [8] from a MTS which has very high dimensionality,n, and large
possible time lags, then the number of possible candidate networks will
be2MaxLag�n whereMaxLag is the maximum time lag [24].

Decomposing the data into smaller dimensional time-series that are
independent to some degree would narrow the search space a great deal
allowing the speedier production of MTS models. Therefore we are
interested in finding out how to decompose a high-dimensional MTS
into groups of smaller MTS, where the dependency between variables
within the same group is high, but very low with variables in another
group. Note that this is different fromdimensionality reductiontech-
niques such as principal component analysis or factor analysis which
make some sort of multivariate transformation of the data [18].

III. M ETHODOLOGY

Given a MTS, we want to partition the variables into a number of
smaller dimensional time series. The proposed methodology consists
of two stages. Firstly a search over combinations of both variables and
time lags (because time lag will affect the correlation between two
MTS variables) is carried out in order to find a list of highly correlated
variables. Let us call this listQ, which will be of lengthR.Q will con-
sist oftripleswhere a triple is made up of two variables and a time lag.
For example, the triple (x1, x2, 5) represents the correlation between
x1 andx2 with a time lag of 5. Essentially all of the triples inQ rep-
resent the variable pairs that are deemed to be significantly correlated
with the corresponding time lag. Therefore, it is important to estimate
whatR should be with a high degree of accuracy. We discuss this fur-
ther in Section IV. Stage two consists of an algorithm which is applied
toQwhere a specifically designed metric is used to group the variables
in the original MTS based on the pairs of variables found inQ. Note
that the lag portion of the triple is no longer used once the grouping al-
gorithm is applied. This is because we are interested in grouping highly
correlated variables irrespective of the time lag between them.

This section is arranged as follows. After, outlining the basic
notation in Section III-A, we introduce three methods for generating
Q in Section III-B. These methods are capable of generating a list
of highly correlated variable pairs, which can then be used along
with an appropriate metric by a grouping algorithm. In Section III-C,
a grouping metric is defined and its properties are studied. This
is followed by the presentation of five different grouping search
algorithms based on conventional clustering methods, hill climbing,
or evolutionary methods in Section III-D.

A. Preliminaries

Given a MTS withn variables and of lengthT we want to partition
each variablexi into m groups where the size of each group will be
denoted byki. This will be achieved by generating a list of “strong” cor-
relations,Q, which will be of lengthR. Q will be calculated by using
different searches through the number of all possible correlations,s,
where the number of calls to the correlation coefficient will be denoted
by c. The aim of this search is to find the true underlying dependencies
that generated the data. The number of “true” dependencies will be de-
noted byr.

B. Correlation Search

The first stage of the methodology constructsQ which containsR
pairs of highly correlated variables over all possible integer time lags

from zero to some positive maximum,MaxLag. We want to find these
correlations after exploring a fraction of the search space. Previously,
we have compared different methods for performing this task [23] and
have found that for operations where speed is essential, an evolutionary
programming approach performs best. The correlation list generated
using this method is then used in conjunction with the grouping strategy
described below. Note that at time lag zero, the correlations represented
by the triples (xi, xj , 0) and (xj , xi, 0) are effectively the same so
duplicates are consideredinvalid. All triples of the form(xi; xi; lag)
will also be considered invalid since these are auto-correlations and do
not show relationships between different variables. All invalid triples
are removed during the procedure.

1) Exhaustive Search (EX):The exhaustive search consists of
simply exploring all of the variables, at each time lag. The algorithm
is detailed as follows.

Input:X (a T � n MTS)
SetQ = Empty List
For i = 0 ton � 1

For j = 0 ton � 1
For lag = 0 toMaxLag

If the triple (i, j, lag) is valid Then
Insert the new triple, (xi, xj , lag), intoQ and order
(descending order of correlation magnitude)
If size ofQ = R+ 1 Then remove the end triple ofQ

End If
End For

End For
End For
Output:Q of lengthR:

2) Random Bag (RB):This is a heuristic approach whereby a
random selection of triples is placed in a “bag” containingR triples.
With each iteration a new random triple is added to the bag. When the
bag overflows, the worst correlation falls out. This is repeated for a
predefined number of iterations. The algorithm is described below

Input:X (aT � n MTS)
SetQ = Empty List
For i = 0 to c
i = U(0; n � 1), j = U(0; n � 1), lag = U(0;MaxLag) where
a = (i; j; lag) is valid
If a =2 Q then insert new triple,(xi; xj ; lag), intoQ and order (de-
scending order of correlation magnitude)
If size ofQ = R + 1 then remove the end triple fromQ

End For
Output:Q of lengthR:

Note that c is the maximum number of allowed calls to the
correlation function andU (min, max) returns a uniformly distributed
random integer between min and max inclusive.

3) Evolutionary Programming (EP):Evolutionary Programming
is based on a similar paradigm to Genetic Algorithms. However,
the emphasis is on mutation and the method does not use any
recombination. The basic algorithm is outlined as follows [2], [7].
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Input:X (aT � n MTS)
SetQ = Empty List
GenerateR random triples and insert intoQ
SetCallCount = R

While CallCount < c

Set Children toQ
Apply Mutate operator to Children
Insert valid Children intoQ
UpdateCallCount by the number of valid Children
SortQ
Apply Survival operator toQ

End While
Output:Q of lengthR:

A child will be considered invalid if it is already inQ. Traditionally,
EP algorithms useTournament Selection[1] during the survival of the
fittest stage and the best chromosome out of the final population will
be the solution to the problem. However, it was decided that the en-
tire population would be the solution for our EP method as in the RB
method. That is, each individual chromosome would represent a single
correlation (a triple) while the population would represent the set of
correlations found (Population Size= R). Hence the survival operator
consisted of keeping the bestR individuals. Although the entire pop-
ulation would represent the solution, it must be noted that the fitness
of each individual would still be independent of the rest of the pop-
ulation. Each individual would try to maximize the magnitude of the
correlation coefficient that it represents. This in turn would maximize
the population’s fitness by improving the correlations represented by
the population.

a) Mutate operator: Within the EP a gene is eitherxi, xj , or the
lag. We have used the idea ofSelf-Adapting Parameters[2] in this con-
text. Here each gene,genei, in each chromosome is given a parameter,
�i. Each gene within a chromosome is mutated according to the Normal
distribution with mean 0 and standard deviation equal to the gene’s cor-
responding standard deviation,�i, in (1). Each�i is then mutated ac-
cording to (2) which is essentially a normally distributed offset.

genei = genei +N(0; �i) (1)

�i = �i � exp(N(0; �) +N(0; �i)) (2)

� =
1p
2len

(3)

�i =
1

2
p
len

(4)

Note that� is constant for each gene in each chromosome but
different between chromosomes, and�i is different for all genes.
Both parameters are generated each time mutation occurs. Each
chromosome consisted of three parameters and their corresponding�i
values. The value oflen is the size of each chromosome, i.e., three.
A check is required after mutation for any duplicates and for any
invalid chromosomes. Any children that fell into this category were
repeatedly mutated until they became valid.

b) Survival operator: The Survival operator involves removing
triples from the population based on their fitness, i.e., their correla-
tion magnitude irrespective of sign, until population is of sizeR once
again. Therefore, theR chromosomes with the highest magnitude of
correlation are preserved for the next iteration.

C. Partition Metric

The Partition metric, which we define below, is used to group
variables together where they have strong mutual dependency and to
separate them into different groups where the dependency is low. Let
n be the number of variables,G be the list of groups, andm = jGj

(the number of groups). Letgi be theith member of the listG where
1 � i � m and letki = jgij. The notationgij refers to thejth element
of the ith list of G. G is restricted such that m

i=1
gi = fx1 � � � xng

andgu \ gv = �, 8u 6= v whereki � 1. Therefore, m

i=1
ki = n.

It is clear that in all casesm � n. Thepartition metricfor any fixed
list G, f(G), is defined as follows, wherecorr(xi; xj) returns true if
there exists inQ any triple of the form(xi; xj ; lag) or (xj ; xi; lag)
for any validlag.

f(G) =

m

i=1

h(gi) (5)

h(gi) =

k

a=1

k

b=1

L(gia; gib); if ki > 1

0; otherwise

(6)

L(gia; gib) =

1; if corr(gia; gib)
0; if a = b

�1; otherwise
(7)

The metric has the following characteristics (proofs for these can be
found in the Appendix.

1) If there are no correlations, the maximum value is obtained when
all variables are in separate groups.

2) If a correlation exists for each pairing of variables (the search
space), then the maximum fitness is obtained when all of the
variables are in one group.

3) If the data generating the correlations came from a mixed set
of MTS observations, then the metric will be maximized when
the variables within the same group have as many correlations
within the listQ as possible and variables within differing groups
contain as few correlations as possible.

In this paper we have chosen acorrel that is a well estab-
lished correlation coefficient—Spearman’s Rank Correlation [21].
Spearman’s Rank Correlation (SRC) measures linear and nonlinear
relationships between two variables, either discrete or continuous,
by assigning a rank to each observation. We can calculate the SRC
between two variables over differing time lags by shifting one variable
in time. The equation incorporates the sums of the squares of the
differences in paired ranks, according to the formula

correl(xi; xj ; lag)

= 1�
6

T�lag

t=1

(rank(xi(t))� rank(xj(t+ lag)))2

(T � lag)((T � lag)2 � 1)
(8)

whereT is the length of the MTS andrank(xi(t)) is calculated from
ordering and ranking every observation of the variablexi on its value
and recording the rank of the value at positiont.

We chose Spearman’s Rank as it is well recognized and not limited
to finding linear dependencies although the methods are not restricted
to using this particular coefficient and others such as Pearson’s [21]
could have easily been used.

D. Grouping Search

We have looked at various methods for maximizing the metric out-
lined above in the context of grouping MTS. First of all we describe
the general Genetic Algorithm approach that we have adopted before
we explain three different forms of this algorithm. Next we describe a
hill climb technique and finally a heuristic clustering method.

1) Genetic Algorithms (GA):The general Genetic Algorithm
[12], [10] described below uses the notion of aPopulation of
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Chromosomeswhich represent a number of possible solutions to a
particular problem.CrossoverandMutation operators are applied to
these chromosomes according toCrossoverRateand MutationRate,
respectively. A selection process is applied toPopulation in order
to preserve “good” solutions and discard “poor” ones. The process
is iterated over thePopulationchromosomes for a specified number
of times,Generations. The general algorithm for generating a set of
groupsG from a set of correlationsQ is given on the next page.

Input:Q, Population, CrossoverRate, MutationRate, Generations
Fitness: The Partition Metric applied to a chromosome givenQ

GeneratePopulationchromosomes
RepeatGenerationtimes

SelectCrossoverRate� Populationchromosomes (with fitter chro-
mosomes being chosen with higher probability and a chromosome
can be chosen more than once)
Randomly pair up selected chromosomes to create parents
Crossover parents to generateOffspring1andOffspring2
Mutate offspring based onMutationRate
Insert offspring into the population
Sort the population according to Fitness
Retain thePopulationfittest chromosomes

End Repeat
Output:G (a set of groups, constructed from the final fittest individual)

The following describes three different representations, forms of
crossover and mutation that were used with this general algorithm.
For the scope of this paper, the fitness function for the methods will be
the partition metric defined in (5).

a) Gene per variable (GPV):This representation consists of a
chromosome with each gene representing a variable in the domain. The
value of the gene determines which group the variable is a member of.
Suppose we place 10 variables into the following three groups:

Group 0: 0 3 8 Group 1:2 7 4 1 5 Group 2: 6 9.

This would be represented by the following chromosome:
0 1 1 0 1 1 2 1 0 2. The Crossover operator we use for this representa-
tion is Holland’s [12] standard one point crossover and the Mutation
operator involves randomly mutating genes within the chromosome.
Each gene hasMutationRateprobability of being mutated to a value
from a uniform distributionU(0; n � 1). For example,

Parent 1: 0 1 1 0 1 1 2 1 0 2

Parent 2: 0 0 0 1 0 2 2 0 1 2

1) Crossover (Crossing Point= 3):

0 1 1 1 0 2 2 0 1 2 0 0 0 0 1 1 2 1 0 2:

2) Mutate:

0 1 0 1 0 2 1 0 1 2 0 2 0 0 1 1 2 1 0 2:

b) Goldberg’s partially mapped crossover (PMX):This form
of crossover applies to a new representation of the grouping problem
where the chromosome consists of variables interspersed with group
dividers. For example, let a group divider be represented by the
symbol i where the subscript is unique and each of 10 variables
within a domain be represented by a unique integer. Therefore
the chromosome:0 3 8 1 2 7 4 1 5 2 6 9 would represent the
groupings in the previous example. In other words, variables within
the same group dividers will be classed within the same group. This
representation requires a new crossover operator in order to ensure

that invalid offspring are not produced. It can be seen that standard
crossover as used in the GPV representation would produce many
invalid offspring as it would be highly likely to result in offspring with
variables appearing in more than one group. Goldberg introduced the
PMX operator [11] which prevented this and developed an o-schema
theory (closely linked to Holland’s original schema theory). It ensures
all offspring are valid, i.e., it is a closed operator, and works as follows

1) Select two crossing points for both parents.
2) Swap all elements between the crossing points.
3) For all repeating elements in the old part of the chromosome,

replace with the value found on the corresponding position on
the other chromosome.

Mutation involves randomly swapping two genes within the
chromosome according to theMutationRate. Each gene hasMutation-
Rateprobability of being swapped with another. For example

Parent 1: 4 3 0 1 1 6 5 2 2 3

Parent 2: 5 4 2 2 3 3 0 1 1 6:

1) Crossing points= 3 and6.
2) Swap elements “1 1 6” with “ 2 3 3”:

4 3 0 2 3 3 5 2 2 3 5 4 2 1 1 6 0 1 1 6:

3) Replace repeated values:

4 6 0 2 3 3 5 1 2 1 5 4 2 1 1 6 0 3 2 3:

4) Mutate:

4 2 0 2 3 3 5 1 6 1 3 4 2 1 1 6 3 5 2 0:

c) Falkenauer’s grouping genetic algorithm (GGA):This
representation is similar to the GPV except that it also has an extra
part on the chromosome which represents each group without any
information about their contents. For example the same groupings
as the previous examples would be represented by the following
chromosome:0 1 1 0 1 1 2 1 0 2 : 0 1 2. The second part of the
chromosome (after the colon) is simply a list of the existing groups
that are found in the first part. Crossover is only applied to this part of
the chromosome and is as follows.

1) Select two random crossing sites, delimiting the crossing section
in each of the two parents denoted as

[Start Position, End Position].

2) Inject the contents of the crossing section of the second parent at
the first crossing site of the first parent.

3) Remove any elements that are repeated from the groups that were
members of the first parent.

4) Remove any empty groups (groups that appear after the colon
but not before) and reinsert any unassigned variables to existing
groups.

5) Repeat (i) to (iv) to produce the second offspring by reversing
the roles of the first and second parent.

Example for first offspring:

Parent 1: 0 1 1 0 0 2 1 2 : 0 1 2

Parent 2: 4 5 3 4 5 6 3 6 : 3 4 5 6:

1) Starting with a copy of Parent 2 with all the first section
undetermined and Cross Sites set as:

Parent1 = [0; 1]; Parent2 = [1; 3]:

? ? ? ? ? ? ? ? : 3 4 5 6:
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2) Inject group 0 (determined from cross site limits [0, 1] on parent
1) into position 1:

0 ? ? 0 0 ? ? ? : 3 0 4 5 6:

3) Remove group 4 and 5 due to repeats (the new group, 0, clashes
with the old position of these two groups on the left part of the
chromosome). Then fill in the remaining groups on the left part
according to their old position (from parent 1):

0 ? 3 0 0 6 3 6 : 3 0 6:

4) Reinsert variable 1 (which is at present unassigned) into random
group (here 6):

0 6 3 0 0 6 3 6 : 3 0 6

where ? denotes an unallocated variable (adapted from [6]).
Mutation involves randomly mutating groups (on the right side of

the colon) according to theMutationRate. Each gene hasMutationRate
probability of being mutated so that the group is randomly split into
two new groups or combined with another existing group. Therefore,
for the offspring in the previous example, group 0 may be mutated
by splitting the elements into two new groups or combining it with
another group (say 3). Falkenauer proves [6] that this method allows the
schema theory to hold even for grouping problems. In contrast, PMX
and standard crossover as used in GPV, with their schema and o-schema
theories, appear to collapse when applied to these sort of problems.

2) Hill Climbing (HC): A Hill Climbing Search [20] iteratively
moves in the direction of increasing value for some metric. Our version
of Hill Climb involves using the GPV representation and making
simple changes to the current groupings with each iteration. Within
each iteration one variable is moved into another existing group or
placed into a newly formed group and if this change improves the
score of the individual, it is retained. The algorithm is outlined below.

Input:Q
Generate a random selection of groupings using the GPV representa-

tion
SetScoreto the Partition Metric applied toQ given the grouping
For i = 1 to Iterationsdo

Make a random change to one gene in the chromosome
SetNew_Scoreto the Partition Metric applied toQ
If New_Score< ScoreThen undo changes

End For
Output:G (a set of groups).

3) Mirkin’s Separate and Conquer (S&C):This method is based on
the clustering technique of Separate and Conquer [17]. The algorithm
is amended to allow it to cluster on the relationships between variables
rather than on the value of variables. The algorithm is as follows and
uses (6) to calculateh(gi):

Input:Q
LetG be a set of Groups (empty)
LetX be a set of variablesf1 � � �ng
Create a groupg1 containing the best correlation pair inQ
Add g1 to G and setm = 1
For i = 1 ton

Setskip= false andj = 1
While j < m + 1 andskip= false

If xi =2 gj Then
Add xi to gj to createg0j
If h(g0j) > h(gj) Then

Add xi to gj and setskip= true
End If

End If
j = j + 1

End While
If skip= false Then

Create a group g* containing onlyxi

Add g� toG and setm = m + 1
End If

End for
Output:G (a set of groups).

To summarize, a new group is created containing the two variables
that have the highest correlation between them. The next step is to take
each variable in turn, and iterate through each group that exists, seeing
if adding the variable to that group increases the groups’ score. If this
is the case, then the variable is added to that group. If there are no more
groups to test a given variable with, then it is placed into a new group
on its own.

IV. PARAMETER ESTIMATION

In order to retrieve groupings that correspond closely to the
correlations that represent actual dependencies, we will have to
determine the ideal set of parameters for the correlation search, most
importantlyR, the size of theQ. As this will determine the cutoff
point for significant correlations, it will affect the overall algorithm
a great deal. For example, a cut off point that is too high will mean
there are too few significant correlations resulting in smaller groups;
a cutoff point that is too low will mean there are too many significant
correlations and so groups will be combined into larger ones due to
the inclusion of low correlated variables in the list. We have decided to
try and determine the parameters through simulations of the random
bag method described in Section III-B. Random bag was chosen since
it is the simplest to model. It should also be the weakest of the three
methods for correlation search and so by coming up with confidence
intervals for selecting all the true correlations for this method should
mean we have a worst case scenario for the chosen parameters; namely
95% confidence on Random Bag should meanat least95% confidence
on EP. This has been shown to be true in our previous work in [22],
and through the experiments within this paper. These simulations were
used to generate probability distributions of selecting correlations that
represent actual dependencies. These distributions could be used to
determine confidence limits for the correlation list size and the number
of calls to the correlation function.

A. Simulation of Random Bag

Simulations were carried out in order to mimic the way in which the
random bag searches for good correlations. These consisted of setting
the sizeR ofQ, the size of the total search space (s) and the number of
calls to the correlation function (c) to particular plausible instantiations
and then simulating the act of randomly selecting a correlation from the
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search space and then recording whether it was a predefined “true” de-
pendency. This process can be compared to repeatedly picking a selec-
tion of c random cards from a pack without replacement and recording
the number of Aces found. Therefore, for this caseR = 4 (the number
of Aces) ands = 52 (the number of cards in a pack). We were able,
therefore, to generate approximations of the distributions associated
with the probability of picking a “true” dependency. The number of
these “true” dependencies will be referred to asr, wherer � R. These
distributions were then tested for normality using the Lilliefors’ test
(see Section IV-B). The mean and standard deviation were then cal-
culated for each distribution so that a method for symbolic regression
could be used to learn a function to determine the mean and standard
deviation givenR, s andc (see Section IV-C). The simulation algo-
rithm is as follows and was repeated forNsims different values ofR,
s, andc.

Input:R, r, s, c andSimulationSize
Setdependencies= r randomly selected correlations
SetDistribution to be a zero array of lengthR
For i = 1 to SimulationSize

count= 0
For j = 1 to c

Randomly chooseR different correlations
If (xi; xj) is in dependenciesThencount= count+ 1

End For
Distributioncount = Distributioncount + 1

End For
Output:Distribution.

The probability distribution for selecting a true dependency is found
by dividing each element in the distribution array bySimulationSize.
SimulationSizeis a variable that dictates the number of times the
process is repeated to ensure that a good approximation to the random
bag process is reached.

B. Lilliefors’ Test

Lilliefors’ test [14] is a simple test for normality that can be per-
formed on a known distribution function. The simulations performed in
Section IV-A can easily be transformed into the required format for this
method and the test can be performed to see if the random bag method
can be approximated by a normal distribution. Givenv observations, a
metricDmax is computed as in (9).

Dmax =MAXjF �(r)� Sv(r)j (9)

where
Sv(r) sample cumulative distribution function;
F �(r) cumulative normal distribution with� equal to the sample

mean;
�2 sample variance;
v R + 1.

Within the simulations, these two summary statistics can be computed
directly from the data. If the value ofDmax exceeds the critical value
supplied by Lilliefors in his paper, one rejects the hypothesis that the
observations closely follow the normal distribution. For the purpose of
this paper we shall choose the 99% confidence limit, which requires
Dmax not to exceed1:031=

p
v. From the results of these tests we can

assume that the random bag can be approximated by a normal distribu-
tion with a 99% certainty. In fact all of the 150 simulations passed the
test for normality at this level.

C. Finding� ands

Once it has been ascertained that the distribution of the Random
Bag process can be approximated as Normal, a value for the mean and
standard deviation is needed in order to place confidence limits on the
number of function calls needed to find the requiredR, the size ofQ.
Since many simulations have been performed, tabulatingR, c, s and
the associated� and�, these can be used to evaluate the relationship
between� and�. We shall assume that� is a function ofR, c, ands,
and that� is another function ofR, s, andc. The Genetic Programming
technique of Symbolic Regression is used for this, [13], rather than ap-
plying a set of parameterized functions because there is no knowledge
whatsoever of relationships between any of the variables.

The functions for� and�, which shall be denoted�(R; c; s) and
�(R; c; s), will be assumed to be functions in terms of the operators +,
�,�, /, and the terminal symbolsR, c, s along with the constant inte-
gers 0 to 9. The exact form is unknown. A binary tree will be used to
represent a regular expression in terms of these symbols, with the ter-
minal nodes being a variable or constant and the nonterminals being an
operator. The worth of any given tree (its fitness) will be the difference
between the observed value of� and/or� versus the calculated value,
using the equation formed from the tree, and all of the available data.
This is defined in (10) and (11):

Fitness for� = �Nodes(�) �
N

i=1

j�(Ri; ci; si)� �ij2 (10)

Fitness for� = �Nodes(�) �
N

i=1

j�(Ri; ci; si)� �ij2 (11)

whereNodes(�) represents the number of nodes in the corresponding
binary tree, andi indexes a variable from the table of simulated
examples (where there are a total ofNsims examples). As with a
Genetic Algorithm, the initial population will be a certain number
of random binary trees as described above. This population will be
improved (better fitness) over subsequent generations through the
use of the standard genetic programming operators of Mutation and
Crossover. Note that the negative fitness function ensures that the
process tries to improve the population by minimizing the fitness.
Adjusting the fitness by penalizing it on the tree’s size will force the
genetic program to look for a smaller tree. The resulting functions for
� and� can be found in (12) and (13):

� =
2cR

2s+ c
(12)

� =
R

63
+

11c

s
(13)

D. Confidence Limits onc

Once values for the mean and standard deviation have been found,
one can place confidence limits on the probability of the random bag
finding a number of correlations that lie betweenr andR, whereR is
the size of the random bag andr is the number of correlations being
searched for. This is the cumulative normal distribution where the prob-
ability that the number of correlations found is greater thanr. For the
purpose of this paper, we have chosen the ratio ofR to r as 5 and the
confidence limit as 95%.

The aim of this exercise is to recommend a value forc based on the
known parametersR, r, ands. Given thatP (number of correlations
� r = 0:95), we can use the standard normal distribution tables with
z = (r � �)=� to find what the corresponding value ofc should be.
For the 95% level, the value ofz should be�1.645. Since we know�
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and�, an equation can be formed in terms ofz, r, R, c ands where
only c is unknown. We start with (14) and (15):

z =
r � �

�
(14)

z =

r �
2cR

(2s+ c)

R=63 + 11c=s
(15)

Unfortunately this requires a lot of algebra to solve the above equa-
tion for c. The final solution is a quadratic equation, and when some
reasonable approximations are made, is as found in (16):

c �
s

22
(1:3r � 2R) + (2R� 1:3r)2 +

88

63
(Rz � 63r) :

(16)
The parameterc is a guide toward how long the procedure is going to

take, in terms of how many correlation function evaluations are made.
For example ifc is greater or equal to the number of calls made by
the exhaustive search (s), then it is pointless to use the random bag to
locate the required number of correlations. As a guideline, we aim for
a 95% confidence at finding the required number of correlations.

V. EXPERIMENTAL RESULTS

We describe the generated datasets in Section V-A and the results
of estimating the parameters for the algorithms in Section V-B. We
then describe a metric for evaluating the discovered groupings in Sec-
tion V-C which is followed, in Section V-D, by the results of numerous
experiments which compare different grouping strategies consisting of
all combinations of the proposed methods for grouping search and for
correlation search. These 15 strategies are applied to six datasets where
there are identifiable mixed groupings of MTS variables. For each ex-
periment we have recorded the following.

1) The Partition metric of the best solution after a varying number
of calls to the fitness function for various different datasets. This
is a measure of how well the groupings represent the correlations
that were discovered during the correlation search.

2) The score as calculated by the Evaluation metric described in
Section V-C, which is independent of the correlation search re-
sults. This can be considered as a measure of accuracy of the re-
sulting groupings. It is essentially a measure of distance between
the groups that were used to generate the data and the resultant
groups found using our methods.

3) The number of function calls to find the solution with the highest
Partition metric (a measure of efficiency).

All stochastic grouping algorithms (all methods except Separate and
Conquer) were repeated 10 times and the average recorded in order to
remove any sampling bias. We then calculated the marginal statistics
over the correlation searches, the grouping strategies and the datasets.

A. Multivariate Time Series Datasets

Based on the two problems being tackled by the grouping
methods—the search for DBN structure and the generation of VAR
models, two types of datasets have been produced. One set has been
generated by hand-coded DBN’s and the other by VAR models. We
have generated five datasets of each type with varying dimensionality
and order. These are described below. For the experiments we mixed
various variables from these datasets to produce some which had only
DBN generated data, some which had only VAR generated data and
some with a mixture of the two. This was to see how the methods
performed under different conditions and for different types of data.

1) Dynamic Bayesian Networks:DBN can be used to model MTS.
A DBN consists of a set of nodes, representing variables in the do-
main at different time lags and directed links between these nodes.

To each node, with a set of parents, there is an associated probability
table and these can be used to infer probabilities about certain events in
the system [5]. Five DBN topologies were created with the conditional
distributions hand-coded in order to generate five separate MTS. The
number of variables within each network was three, five, five, ten, and
ten. The size of the largest time lag for each network varied between
five and 60.

2) VAR Processes:Just under half of the test data was generated
from a selection of VAR MTS models. These types of models have
various applications from medical domains [22] to economic domains
[4]. A VAR process of orderP , written VAR(P ), is defined in (17):

x(t) =

p

i=1

Ai � x(t� i) + "(t) (17)

where
x(t) next data vector of sizen (the number of variables in the

model) at timet;
Ai n � n coefficient matrix at time lagi;
"(t) n length noise vector at timet (usually Gaussian) with zero

mean.
The value of each element inAi is usually a real number in the range
�1. In order for this process not to rapidly tend toward infinity or zero
over time, certain conditions must be placed on the parameter matrices,
referred to as stability [15]. This condition can be imposed through the
use of a genetic algorithm to generate a random VAR(P ) process and
then the use of Crossover and Mutation to improve its fitness (which is
a measure of its stability) through subsequent generations.

3) Dataset Organization:Table I describes the datasets that were
generated using the two methods described above.

These ten MTS were grouped into various different combinations to
produce six datasets. The first consisted of all 61 variables, the second
consisted of only DBN generated data, the third only VAR generated
data and the remaining three consisted of various mixtures. All datasets
except the first consisted of 28 variables so as to keep the search space
identical. Table II shows the breakdown of each dataset.

B. Parameter Estimation Results

If we apply the parameter estimation analysis, from Section IV, to
Datasets 1–6, we obtain the results as listed in Table III. The equation
for s represents the total possible number of correlations at varying
time lags, once invalid correlations are removed (see Section III-B).�
and� are defined in (12) and (13) respectively,z is the standard normal
variable, andc is defined by (16). Two new parameters are introduced:

 and�. 
 is the ratio ofc to s and gives an indication of how efficient
the procedure is going to be. As a guideline, we would suggest that for
the random bag to be effective, this value should be less than 1/3. The
parameter� needs defining. This represents the ratior=R. We suggest
a value of 0.2, this being found by experimentation, and provides a good
trade off between the number of calls to the correlation function,c, and
how many correlations needed to be stored in memory. As can be seen,
the use of the approximation in (16) has resulted in the confidence limit
not being exactly 95%, but rather 94.4% (on average).

Fig. 1 shows an example wheres = 1 000 000� = 0:2, 
 is allowed
to vary between 0.22 and 0.32. The values ofR corresponds to 2.5%,
0.25% and 0.025% respectively ofs. It can be seen from the graph
thatR = 250 requires more correlation function calls for any level
of confidence than for the other two values ofR. However, there is
not much betweenR = 25000 andR = 2500. Similar experiments
have shown that the optimal value forR=s is near the 0.25% mark. To
conclude, we have shown thatc should be calculated from (16) once
a confidence limit has been assigned (e.g., 95%, giving a value forz:
�1.645); here we recommend the value forR=s to be about 0.25%.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 06:59 from IEEE Xplore.  Restrictions apply.



242 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 2, APRIL 2001

TABLE I
DIFFERENT MTS

DESCRIPTIONS

We have found that having the ratio ofr to R being 0.2 proves to be
efficient. However, a more systematic study should be conducted on
how these parameters relate to each other.

C. Evaluation Metric

A metric is needed to show how similar or dissimilar two groups are.
We define this by pairing all of the variables up and incrementing the
score each time that the pair appears in the correct group within the
two groups or when the pair appears in different groups. The metric
is scaled so that it returns a value between 0 and 1 inclusive, where 0
represents very dissimilar groups and 1 represents very similar groups.
This metric is defined as follows and is similar to the equivalence mis-
match coefficient [16]:

1) Definition of the Evaluation Metric Function EVM(G1; G2):

Let G1 andG2 be two groupings
Let n be the number of variables
Let EVM = 0
For i = 1 ton � 1

For j = i + 1 to n
Let g1 be the group withinG1 containingi
Let g2 be the group withinG2 containingj
If j in g1 andi in g2 ThenEVM = EVM + 1
If j not in g1 andi not in g2 ThenEVM = EVM + 1

End For
End For
UpdateEVM to 2EVM=n(n � 1):

D. Results

In this section we first look at the results from the 15 different
combinations of correlation search and grouping strategy to see how
they performed when averaged over the six datasets. We then look at
some of the marginal statistics to see how the correlation searches and
the grouping strategies performed irrespective of each other. We also
see how the different datasets affected the outcome by looking at their
marginal statistics. Finally, we discuss the grouping results using three
examples.

The parameters for all the grouping genetic algorithms were identical
and are found in Table IV. The exception to this was GPV which was
allowed to run for 1000 generations due to its slow convergence. For
the Hill Climb, the parameter,Iterations, was set toPopulation�Gen-
erations.

1) The 15 Methods:We can see from the results of the 15 different
methods in Table V that while there is a lot of variation in the number
of calls to the partitioning function (FC), the metrics, in particular the
evaluation metric does not vary a great deal at all. This implies that the
initial process of searching forQ does not have to be exhaustive to get
good results. This property would be very useful for those applications

TABLE II
BREAKDOWN OF EACH DATASET

TABLE III
PARAMETERS FORDATASETS 1–6

Fig. 1. Confidence against
 with varyingR.

TABLE IV
PARAMETERS FOR THEGAS

where the partitioning of a MTS must occur on a real time basis. By
far the fastest to converge is the Separate and Conquer Method taking
little more than 400 function calls. However, it must be noted that this
method is deterministic and is not guaranteed to find the best groupings.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 06:59 from IEEE Xplore.  Restrictions apply.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 2, APRIL 2001 243

The most important statistic is the evaluation metric and the method
that seems to perform best over all the datasets is the Exhaustive
Search/Hill Climb. Although the Falkenauer finds just as good a
solution, it takes almost twice as many function calls. However, as the
marginal statistics will show, the Falkenauer method performs better
when averaged over all the correlation search strategies. Therefore, it
appears that if the exhaustive search cannot be carried out then a com-
bination of Random Bag or Evolutionary Program with Falkenauer is
the best option.

2) Note Regarding RB and EP:Table VI displays the average of the
top r correlations for each method of correlation mining, and displays
the average over all of the datasets.

As can be seen in the table, the exhaustive search performs the best,
followed by the random bag, and then evolutionary programming. It
should be noted that this result only applies to the situation where
there are a large number of correlation calls made (c is large). It has
been shown in [23] that the EP method outperforms the RB method for
smaller values ofc. Based on the extensive analysis and experiments
performed so far we can recommend that ifc is more than 30% ofs then
the exhaustive search method should be used. If this is not the case and
if z corresponds to less than 50%, use the EP method, otherwise use
the RB method.

3) Marginal Statistics: In order to explore more fully the effect
of the different correlation searches, grouping strategies and datasets,
we calculated various marginal statistics. Essentially this involved
averaging over the correlation searches, the grouping strategies and
the datasets to see how each of these methods compared. These results
can be found in Tables VII–IX and each table is discussed in the next
section.

The correlation summary statistics (Table VII) support the conclu-
sion that the method used for generating a good set of correlations does
not have a very significant effect on the final groupings. In other words,
the evaluation metric which measures the distance between the orig-
inal groupings and the discovered groupings are very similar for all
correlation search methods (approximately 0.9). Therefore, it would
make more sense to perform a fast approximate correlation search on
datasets where the search space is so large that the exhaustive search is
infeasible.

The best grouping strategies, as shown by the grouping summary sta-
tistics (Table VIII), are the Hill Climb method and Falkenauer’s GGA.
This is probably due to the economical use of function calls made by
Hill Climb (unlike the GA methods which require evaluating popula-
tions) and the efficient crossover developed by Falkenauer. The other
GA methods used less efficient crossovers and the Separate and Con-
quer method is deterministic and therefore can never be guaranteed to
find the global solution. It is, however, very fast at finding a good set
of groupings after a very small number of function calls.

Looking at the dataset statistics (Table IX), it appears that Dataset
1 (the mixture of both types of data) produced a higher fitness and
independent metric score than the rest and Dataset 3 (the purely VAR
data) produced better results than Dataset 2 (the purely DBN data). A
reason for this could be that the VAR data generator produced variables
with higher correlations between true dependencies. These may then
have outflanked any spurious correlations. It is encouraging to note that
the largest dataset, Dataset 1, with a mixture of DBN and VAR data
produced such good results. Datasets 4 to 6 which contain a mixture of
VAR and DBN exhibit the most variations in the evaluation metric. This
is most likely down to the strength of correlations that were reflected
in the generated data as well as the existence of spurious correlations.

4) Sample of Groupings:Table X shows a selection of groupings
from the three datasets using the Falkenauer algorithm with differing
correlation searches. It can be seen that the majority of variables have
been grouped correctly in the all three experiments. In fact, 15 out of

TABLE V
FIVE GROUPING STRATEGIES APPLIED TO THETHREE METHODS FOR

GENERATINGQ

TABLE VI
AVERAGE TOP r CORRELATIONS FOR THETHREE METHODS FOR

GENERATINGQ

TABLE VII
AVERAGING OVER CORRELATION SEARCH

TABLE VIII
AVERAGING OVER GROUPINGSTRATEGY

TABLE IX
AVERAGING OVER DATASET

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 06:59 from IEEE Xplore.  Restrictions apply.



244 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 31, NO. 2, APRIL 2001

TABLE X
SAMPLE OF GROUPINGRESULTS FROM THEFALKENAUER METHOD ALONG

WITH THE ORIGINAL GROUPINGS THAT WEREUSED TOGENERATE THEMTS

the 21 groups have been perfectly recreated. Some of the variables have
been placed in a group on their own implying that they are indepen-
dent when in actual fact there should be some correlation between them
and other variables. This could be due to spurious correlations which
have prevented the true correlations from being included on the corre-
lation list. This effect is also evident in the summary tables where the
independent metric (which simply measures the distance between the
discovered groupings and the original) is higher for some experiments
than others but the fitness (which relies on the correlations between
variables) is lower. The opposite is also evident in the results. Once
again, this is most likely due to spurious correlations between variables
in different groups.

An interesting result that was found in the DBN data groups was that
if a group of variables was incorrectly split into 2 or more groups, then
the divide(s) made topological sense when compared to the structure
of the DBN’s that generated the data.

VI. CONCLUDING REMARKS

In this paper we have outlined a framework with which we can
decompose high dimension multivariate time series (MTS) into
smaller dimension MTS which are relatively independent of one
another based on correlation between the variables. This can be very
useful in problems where the high dimensionality of a MTS prevents
certain algorithms from being applied, for example the generation of
Vector AutoRegressive (VAR) models or dynamic Bayesian networks

(DBNs). Our results have shown that whilst the initial search for good
correlations to generate the groupings does not have to be exhaustive
to produce equally good results, the best method of grouping search
appears to be either a Hill Climb strategy or Falkenauer’s Grouping
Genetic Algorithm. The results have been very promising on both
VAR data and DBN data and, in most cases, the metric used to find
the groupings proved robust enough to avoid mistaken groups due to
spurious correlations. We have also provided some concrete practical
recommendations on the correlation search step of our methodology.

Future work will involve looking at how the grouping methodology
performs on some real world datasets with the aim of building DBN
and VAR models. We will also be looking at ways of tackling the
spurious correlations problem using a combination of standard statis-
tical techniques and heuristics. Relationships between the parameters
as described in Section IV also need a more rigorous and in-depth study.

APPENDIX

PROOFS FORGROUPINGMETRIC

Proof 1: When there are no correlations, thenQ = �. Therefore
max(f(G)) is 0, because there will never be any cases whereL is 1.
This therefore requires that the size of any of the groups inG will be
1. This is by definition of the functionsL andh.

Proof 2: If a correlation exists for each pairing of variables, then
the maximum size forQ will be n(n� 1)=2, because of the duplicate
restriction. It therefore follows that the value forh(gi) will be ki(ki�
1)=2 using the same logic. Using (5), we have

max(f(G)) = max

m

i=1

h(gi)

therefore

max(f(G)) = max

m

i=1

ki(ki � 1)

2

since

max

m

i=1

ki(ki � 1)

2
=

1

2
max

m

i=1

k2i � n

thenf(G) will be a maximum when m

i=1
k2i is a maximum.

We shall assume that1 � k1 � k2:::km. If we writek0

1 = k1+ k2
then

(k1 + k2)
2 = k21 + k22 + 2k1k2

(k0

1)
2 > k21 + k22 :

This process can be repeated until there is only one valuek1 re-
maining wherek1 = n, andf attains its maximum value. Hence when
Q is at a maximum size (as above), the arrangement with the maximum
fitness will be all variables in a single group.

Proof 3: If the data generating the correlations came from a mixed
set of multivariate time series observations, then for a given grouping
arrangementG and correlation setQ

max(f(G)) =

m

i=1

max(h(gi))

max(h(gi)) = max

k

a=1

k

b=1

L(gia; gib) :

This will be a maximum when all instances of the functionL
are 1. IfQ contains an additional spurious correlation or is missing
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a correlation, then this value will be reduced by 1, by definition
of L and proof 2. Hence the maximum value of the fitness for a
given G will be whenQ contains the all of the correlations that
can exist for each grouping.
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Fuzzy Multimodel of Timed Petri Nets

S. Hennequin, D. Lefebvre, and A. El Moudni

Abstract—This paper deals with discrete event systems (DES) modeled
either by discrete timed Petri nets without conflict or by continuous Petri
nets. A fuzzy rulebased multimodel is developed for this kind of system. The
behavior of each Petri net transition is described by the combination of two
linear local fuzzy models. Using the Takagi–Sugeno model in a systematic
way, we define the exact modeling for both classes of timed Petri nets. As
a result, we notice that classical sets result in the exact description of dis-
crete timed Petri nets. On the contrary, only fuzzy sets are suitable to de-
scribe continuous Petri nets exactly. The proposed fuzzy multimodels are
very interesting from a control point of view. In that sense, general results
such as convergence for timed Petri nets are given.

Index Terms—Discrete event system, Takagi–Sugeno (T–S) fuzzy model,
timed Petri net.

I. INTRODUCTION

Petri nets (PN) [12] are an attractive way of modeling discrete
event systems (DES’s) such as manufacturing systems because they
associate graphical representation and analytical description through
mathematical equations that describe the evolution of these systems.
In order to evaluate dynamic performances of DES’s, discrete timed
and continuous Petri nets [2] have been introduced. A discrete timed
Petri net is a discrete event model that is well adapted to approximate
the behavior of DES’s. However, when a DES contains a large number
of parts, the number of reachable states of the corresponding timed
Petri net explodes. In this context, the continuous approximation of
timed Petri nets (continuous Petri nets [1]) has been introduced. In
this paper, a fuzzy rulebased approach is proposed to obtain discrete
and continuous Petri nets behavior. Indeed, the fuzzy logic theory
[14], [15] represents a means of both collecting human knowledge and
expertise and permitting to deal with uncertainties and complexities
in the system. Moreover, fuzzy techniques are useful to complete the
analysis and the control design of the system.

While the number of applications using fuzzy logic has increased
[4], few researches have been developed for manufacturing systems
and its main modeling tool, Petri net. In particular, certain results
have been established for fuzzy modeling of manufacturing systems
by Mahmood [9] and for fuzzy control design by Ghabri [5]. In
these works, the resulting fuzzy systems based on fuzzy Mamdani
models [10] are nonlinear and are difficult to analyze. Conversely,
the Takagi–Sugeno model [13], based on a set of linear equations, is
suitable to work out local linear state space models. Based upon this
last method, the main concern of this paper is to propose an exact
multimodel of discrete and continuous Petri nets by means of fuzzy
logic. In particular, T-timed and variable speeds continuous Petri
nets are considered [2]. A fuzzy multimodel (FM) is developed for
each model and gives the firing of the transitions. Since, also, the
fuzzy rules are similar for both continuous and discrete models, the
proposed fuzzy multimodel is an interesting way to describe hybrid
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