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Correspondence

Variable Grouping in Multivariate Time Series Via I. INTRODUCTION

Correlation There are many practical applications involving the partition of a set

of objects into a number of mutually exclusive subsets. The objective
is to optimize a metric defined over the set of all valid subsets, and the
term grouping has been often used to refer to this type of problem.
Abstract—The decomposition of high-dimensional multivariate time Examples of the grouping applications include bin packing, workshop
series (MTS) into a number of low-dimensional MTS is a useful but layout design, and graph coloring [6]. Much research has been done
challenging task because the number of possible dependencies betweery, the grouping problem in different fields, and it was established

variables is likely to be huge. This paper is about a systematic study of . .
the “variable groupings” problem in MTS. In particular, we investigate that many, if not all grouping problems, are NP-hard [9]. Therefore,

different methods of utilizing the information regarding correlations ~ any algorithm that is guaranteed to find the global optimum will run
among MTS variables. This type of method does not appear to have been in exponential time to the size of problem space, and a heuristic or

studied before. In all, 15 methods are suggested and applied to six datasetsapproximate procedure is normally required to cope with most of the

Where; there are identifiable mixed groupings of MTS_ vanable_s. This paper real world problems. A variety of techniques have been proposed to
describes the general methodology, reports extensive experimental results,

and concludes with useful insights on the strength and weakness of this d€velop this procedure, including traditional clustering algorithms,
type of grouping method. hill-climbing and evolutionary algorithms. These techniques utilize

. . . . a metric that takes relationships or dependencies between objects
Index Terms—Correlation, evolutionary programming, genetic . . . .
algorithms, grouping, multivariate time series (MTS). into account, and partition them into a number of mutually exclusive
subsets [6].
When it comes to the problem of decomposing a high-dimensional
NOMENCLATURE multivariate time series (MTS) into a number of low-dimensional
MTS, the number of possible dependencies between time series
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X Multivariate time series. : !
n Number of variables in the MTS variables becomes huge because one variable could affect another
T Number of cases/observations. after a certain time lag. Therefore, how to effectively utilize these

2i(1) Observation of the MTS variableat timet. dependencies becomes an important issue; to use all the possible
‘ dependencies in a variable grouping algorithm will be computationally

lag Time lag of a correlation. ; ) - . W

MaxzLag  Maximum limit for a time lag. |nfea_S|bIe for many, especially real-tl_me, applications. _

P Order of a VAR process. This paper concerns a systematic study of the “variable group-
Q List of discovered high correlations. ings” problem in MTS. We investigate different heuristic methods
R Length of ). for utilizing the information regarding dependencies among MTS
G Set of groups. variables; this type of method does not appear to have been studied be-
m Number of groups. fore. Inall, 15 sut_:h m_et_hods are suggest_ed and applied to six datasets
i Theith group. where there are |dentn‘|able_3 mixed groupings of MTS va_rlables. Our
k; Size of theith group. methodology_§cores po_ssnble groupings based on a list of highly
s Size of the search space of all possible correlatiorf@rrelated pairings of variables. This list is not necessarily constructed

with all lags up toMazlag. from_ an exhaustive_ search _and, therefor_e, c_ould make_ the_meth_od
N Number of true underlying dependencies (i.e., e)@ppllcab!e to massive data in some applications. The list size \{wll

cluding spurious correlations). strongly |nf|uen_ce the final groupings and so a me_thqd for Qetermmlng
this parameter is sought for based on probabilistic simulation.

¢ Number of calls to the correlation coefficient.

correl Correlation in the form of a triple,z;, =}, lag).

corr Boolean Function that returns true if a correlation pair Il. GROUPING IN MULTIVARIATE TIME SERIES

exists inQ irrespective of direction.

2 - statistic for the normal distribution. MTS data are widely available in different fields including medicine,

3 Ratioc/s. finance, science, and engineering. Modeling MTS data effectively is

~ Ratior/R. important for many decision-making activities. A MTS is a series of
observationsy;(¢);[i = 1,---,n; ¢t = 1,---,T], made sequentially
through time wheré indexes the measurements made at each time
pointt.

Although much research has been carried out on modeling MTS for
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leastn® P parameters to locate wheRsis the order of the VAR process from zero to some positive maximui ax: Lag. We want to find these
andn is the number of variables in the data set. In explaining MTS, superrelations after exploring a fraction of the search space. Previously,
pose we are trying to learn Dynamic Bayesian Network (DBN) modelge have compared different methods for performing this task [23] and
[5], [8] from a MTS which has very high dimensionality, and large have found that for operations where speed is essential, an evolutionary
possible time lags, then the number of possible candidate networks wilbgramming approach performs best. The correlation list generated
be2 #rlagn® whereMax Lag is the maximum time lag [24]. using this method is then used in conjunction with the grouping strategy

Decomposing the data into smaller dimensional time-series that aescribed below. Note that at time lag zero, the correlations represented
independent to some degree would narrow the search space a greatlettie triples ¢;, =;, 0) and ¢;, =;, 0) are effectively the same so
allowing the speedier production of MTS models. Therefore we aekiplicates are consideréavalid. All triples of the form(x;, «;,lag)
interested in finding out how to decompose a high-dimensional MTll also be considered invalid since these are auto-correlations and do
into groups of smaller MTS, where the dependency between variabfes show relationships between different variables. All invalid triples
within the same group is high, but very low with variables in anotheare removed during the procedure.

group. Note that this is different fromiimensionality reductiotech- 1) Exhaustive Search (EX)The exhaustive search consists of
niques such as principal component analysis or factor analysis whighply exploring all of the variables, at each time lag. The algorithm
make some sort of multivariate transformation of the data [18]. is detailed as follows.

Ill. M ETHODOLOGY
Input: X (a7 x n MTS)

Given a MTS, we want to partition the variables into a number c3€t@ = Empty List
smaller dimensional time series. The proposed methodology consfe@g: =0ton —1
of two stages. Firstly a search over combinations of both variables andorj=0ton — 1
time lags (because time lag will affect the correlation between two Forlag =0toMaxLag

MTS variables) is carried out in order to find a list of highly correlated If the triple (i, j, lag) is valid Then

variables. Let us call this ligp, which will be of lengthR. Q will con- Insert the new triple «(;, «;, lag), into @ and order
sist oftriples where a triple is made up of two variables and a time lag. (descending order of correlation magnitude)

For example, the triplex{, =2, 5) represents the correlation between If size of @ = I + 1 Then remove the end triple ¢
x1 andx, with a time lag of 5. Essentially all of the triples @ rep- End If

resent the variable pairs that are deemed to be significantly correlated End For

with the corresponding time lag. Therefore, it is important to estimate End For

what R should be with a high degree of accuracy. We discuss this flghd For

ther in Section IV. Stage two consists of an algorithm which is appliddutput:Q of length R.

to @ where a specifically designed metric is used to group the variables

in the original MTS based on the pairs of variables foun@)inNote

that the lag portion of the triple is no longer used once the grouping al-

gorithm is applied. This is because we are interested in grouping highly2) Random Bag (RB)This is a heuristic approach whereby a

correlated variables irrespective of the time lag between them.  random selection of triples is placed in a “bag” containfagriples.
This section is arranged as follows. After, outlining the basiéVith each iteration a new random triple is added to the bag. When the

notation in Section III-A, we introduce three methods for generatir@pg overflows, the worst correlation falls out. This is repeated for a

Q) in Section IlI-B. These methods are capable of generating a Igfedefined number of iterations. The algorithm is described below

of highly correlated variable pairs, which can then be used along

with an appropriate metric by a grouping algorithm. In Section III-C,

a grouping metric is defined and its properties are studied. This

is followed by the presentation of five different grouping searchput: X (a7' x n MTS)

algorithms based on conventional clustering methods, hill climbin§et = Empty List

or evolutionary methods in Section IlI-D. Fori=0toc

i=U0,n—-1),j=U(0,n—1),lag = U(0, MaxLag) where

a = (i,7,lag) is valid

If « ¢ Q then insert new triple(x;, «;, lag), into @ and order (de-
Given a MTS withn variables and of lengtf’ we want to partition ~ scending order of correlation magnitude)

each variabler; into m groups where the size of each group will be If size of @ = R + 1 then remove the end triple frof

denoted by, . This will be achieved by generating a list of “strong” cor-End For

relations,Q, which will be of lengthR. Q will be calculated by using Output:@ of length R.

different searches through the number of all possible correlatigns,

where the number of calls to the correlation coefficient will be denoted

by . The aim of this search is to find the true underlying dependencies

that generated the data. The number of “true” dependencies will be deNote that ¢ is the maximum number of allowed calls to the

noted byr. correlation function and’” (min, max) returns a uniformly distributed

random integer between min and max inclusive.
3) Evolutionary Programming (EP)Evolutionary Programming

is based on a similar paradigm to Genetic Algorithms. However,
The first stage of the methodology constru€tavhich containsR  the emphasis is on mutation and the method does not use any

pairs of highly correlated variables over all possible integer time lagscombination. The basic algorithm is outlined as follows [2], [7].

A. Preliminaries

B. Correlation Search
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Input: X (a7 x n MTS) (the number of groups). Let be theith member of the lis&G where
Set@ = Empty List 1 <i < mandletk; = |g:|. The notatiory;; refers to theth element
Generatel? random triples and insert in@ of theith list of G. G is restricted such that”" | g; = {x1 -+ 2n)
SetCallCount = R andg, N g, = ¢, Vu # v wherek; > 1. Therefore """ | ki = n.
While CallCount < ¢ Itis clear that in all cases: < n. Thepartition metricfor any fixed
Set Children ta? list G, f(G), is defined as follows, wher@rr(z;, z;) returns true if
Apply Mutate operator to Children there exists i any triple of the form(x;, z;,lag) or (x;, x;,lag)
Insert valid Children intay for any validlag.
UpdateC'allCount by the number of valid Children .
Sort@ . . ‘
Apply Survival operator ta) H&) = ;h(gl) ®)
End While k&,
Output: @) of length R. h(gi) = ZZL(gm,gzb), il > 1 ©)
a=1b=1
A child will be considered invalid if it is already i@. Traditionally, 0, otherwise
EP algorithms us@ournament Selectiofd] during the survival of the 1, ifcorr(gia. giv)
fittest stage and the best chromosome out of the final population will L(giasg90) = ¢ 0,  ifa=0D (M
be the solution to the problem. However, it was decided that the en- —1, otherwise

tire population would be the solution for our EP method as in the RB . ) o

method. That s, each individual chromosome would represent a singld '@ Metric has the following characteristics (proofs for these can be
correlation (a triple) while the population would represent the set §und in the Appendix.

correlations foundFopulation Size= R). Hence the survival operator 1) Ifthere are no correlations, the maximum value is obtained when
consisted of keeping the beBtindividuals. Although the entire pop- all variables are in separate groups.

ulation would represent the solution, it must be noted that the fitness2) If a correlation exists for each pairing of variables (the search
of each individual would still be independent of the rest of the pop- ~ space), then the maximum fitness is obtained when all of the
ulation. Each individual would try to maximize the magnitude of the ~ Vvariables are in one group.

correlation coefficient that it represents. This in turn would maximize 3) If the data generating the correlations came from a mixed set
the population’s fitness by improving the correlations represented by ~ 0f MTS observations, then the metric will be maximized when

the population. the variables within the same group have as many correlations
a) Mutate operator: Within the EP a gene is eithet, =, or the Within_the listQ as possi_ble and varia_bles within differing groups
lag. We have used the idea 8€lf-Adapting Parametefg] in this con- contain as few correlations as possible.

text. Here each gengene;,, in each chromosome is given a parameter, In this paper we have chosen arrel that is a well estab-

;. Each gene within a chromosome is mutated according to the Norrfighed correlation coefficient—Spearman’s Rank Correlation [21].
distribution with mean 0 and standard deviation equal to the gene’s c&earman’s Rank Correlation (SRC) measures linear and nonlinear
responding standard deviatian, in (1). Eache; is then mutated ac- relationships between two variables, either discrete or continuous,

cording to (2) which is essentially a normally distributed offset. by assigning a rank to each observation. We can calculate the SRC
between two variables over differing time lags by shifting one variable
gene; = gene; + N(0,0;) (1) in time. The equation incorporates the sums of the squares of the
oi =0, exp(N(0,7)+ N(0,7;)) (2) differences in paired ranks, according to the formula
1
T = 3 orrel{x;,r;,la
Sen (3) correl(x ijv]’fg)
1 T—lag
= — (4) 6 (rank(x;(t)) — rank(x;(t + lag)))?
— g )) (a5 ))

=1-

8
Note thatr is constant for each gene in each chromosome but (T = lag)((T = lag)® = 1) ®
different between chromosomes, andis different for all genes.
Both parameters are generated each time mutation occurs. Each
chromosome consisted of three parameters and their correspending/here?’ is the length of the MTS andink(x;(t)) is calculated from
values. The value dfen is the size of each chromosome, i.e., three@rdering and ranking every observation of the variahlen its value
A check is required after mutation for any duplicates and for argnd recording the rank of the value at position
invalid chromosomes. Any children that fell into this category were We chose Spearman’s Rank as it is well recognized and not limited
repeatedly mutated until they became valid. to finding linear dependencies although the methods are not restricted
b) Survival operator: The Survival operator involves removingto using this particular coefficient and others such as Pearson’s [21]
triples from the population based on their fitness, i.e., their correl@ould have easily been used.
tion magnitude irrespective of sign, until population is of sizence
again. Therefore, th& chromosomes with the highest magnitude oP. Grouping Search
correlation are preserved for the next iteration. We have looked at various methods for maximizing the metric out-
. ) lined above in the context of grouping MTS. First of all we describe
C. Partition Metric the general Genetic Algorithm approach that we have adopted before
The Partition metric, which we define below, is used to groupe explain three different forms of this algorithm. Next we describe a
variables together where they have strong mutual dependency anditiocclimb technique and finally a heuristic clustering method.
separate them into different groups where the dependency is low. Lel) Genetic Algorithms (GA):The general Genetic Algorithm
n be the number of variable& be the list of groups, andh = |G| [12], [10] described below uses the notion of Ropulation of
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Chromosomesvhich represent a number of possible solutions to that invalid offspring are not produced. It can be seen that standard
particular problemCrossoverand Mutation operators are applied to crossover as used in the GPV representation would produce many
these chromosomes according @oossoverRatend MutationRate invalid offspring as it would be highly likely to result in offspring with
respectively. A selection process is appliedRopulationin order variables appearing in more than one group. Goldberg introduced the
to preserve “good” solutions and discard “poor” ones. The proceB&1X operator [11] which prevented this and developed an o-schema
is iterated over th&opulationchromosomes for a specified numbetheory (closely linked to Holland's original schema theory). It ensures
of times, Generations The general algorithm for generating a set odll offspring are valid, i.e., it is a closed operator, and works as follows

groupsG from a set of correlationg is given on the next page. 1) Select two crossing points for both parents.

2) Swap all elements between the crossing points.
Input: Q, Population, CrossoverRate, MutationRate, Generations 3) For all repeating elements in the old part of the chromosome,
Fitness: The Partition Metric applied to a chromosome giyen replace with the value found on the corresponding position on
GeneratéPopulationchromosomes the other chromosome.
RepeatGenerationtimes Mutation involves randomly swapping two genes within the

SelectCrossoverRatex Populationchromosomes (with fitter chro- chromosome according to tihéutationRate Each gene hadutation-
mosomes being chosen with higher probability and a chromosoiReateprobability of being swapped with another. For example
can be chosen more than once)

Randomly pair up selected chromosomes to create parents Parentl: 43001 1652023
Crossover parents to gener@éspringlandOffspring2 Parent2: 540>, 2303 01, 6.
Mutate offspring based oMutationRate
Insert offspring into the population 1) Crossing points= 3 and6.
Sort the population according to Fitness 2) Swap elementdT; 1 6" with “2 303"
Retain thePopulationfittest chromosomes
End Repeat 4030230035202 3 5400116010 6.

Output:G (a set of groups, constructed from the final fittest individual) 3) Replace repeated values:

The following describes three different representations, forms of 4602303 500; (2 1 540>, 0, 160323,
crossover and mutation that were used with this general algorithm.
For the scope of this paper, the fithess function for the methods will be 4) Mutate:
the partition metric defined in (5).
a) Gene per variable (GPV):This representation consists of a
chromosome with each gene representing a variable in the domain. The c) Falkenauer's grouping genetic algorithm (GGAFhis

value of the gene determines which group the variable is a member gl esentation is similar to the GPV except that it also has an extra
Suppose we place 10 variables into the following three groups: 541t on the chromosome which represents each group without any
Group 0:038 Group 127415 Group2: 6 9. information gbout their contents. For example the same groupir_wgs
as the previous examples would be represented by the following
This would be represented by the following chromosomé&hromosome0110112102:0 1 2The second part of the
011011210 2The Crossover operator we use for this representgdfomosome (after the colon) is simply a list of the existing groups
tion is Holland's [12] standard one point crossover and the Mutatidiat are found in the first part. Crossover is only applied to this part of
operator involves randomly mutating genes within the chromosontB€ chromosome and is as follows.
Each gene hablutationRateprobability of being mutated to a value 1) Selecttwo random crossing sites, delimiting the crossing section
from a uniform distributior/ (0, » — 1). For example, in each of the two parents denoted as

40, 0230350, 61 3400 0;1603520.

Parentl: 0110112102 [Start Position, End Position].

Parent2: 000102201 2 2) Inject the contents of the crossing section of the second parent at

the first crossing site of the first parent.

1) Crossover (Crossing Poiet 3): 3) Remove any elements that are repeated from the groups that were

0111022012 0000112102, members of the first parent.
4) Remove any empty groups (groups that appear after the colon
2) Mutate: but not before) and reinsert any unassigned variables to existing
groups.
0101021012 0200112102. 5) Repeat (i) to (iv) to produce the second offspring by reversing

the roles of the first and second parent.
b) Goldberg’s partially mapped crossover (PMXYhis form  Example for first offspring:
of crossover applies to a new representation of the grouping problem
where the chromosome consists of variables interspersed with group Parentl: 01100212:012
dividers. For example, let a group divider be represented by the Parent?2: 45345636:345 6.
symbol [J; where the subscript is unique and each of 10 variables

within a domain be represented by a unique integer. Therefore1) Starting with a copy of Parent 2 with all the first section

the chromosome0 3 80y 2 7 4 1 5[, 6 9 would represent the undetermined and Cross Sites set as:
groupings in the previous example. In other words, variables within

the same group dividers will be classed within the same group. This Parentl = [0, 1], Parent = [1, 3]:
representation requires a new crossover operator in order to ensure ?7TT?T?7T?7:3456.
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2) Inject group 0 (determined from cross site limits [0, 1] on parerhput: @
1) into position 1: Let G be a set of Groups (empty)
Let X be a set of variable§l - - - n}
Create a group, containing the best correlation pairdh
07700777:30456. Add ¢, to G and setn = 1
Fori =1ton

Setskip=false andj = 1
3) Remove group 4 and 5 due to repeats (the new group, 0, clashewh”ej < m + 1 andskip= false

with the old position of these two groups on the left part of the ¢ ¢ g, Then

chromosome). Then fill in the remaining groups on the left part Add «; to g; to createy,
x i

according to their old position (from parent 1): If h(g}) > h(g,) Then
Add z; to g; and seskip= true
End If
° .
07300636:306. End If
j=i+1
4) Reinsert variable 1 (which is at present unassigned) into randonf"d While

If skip= false Then
Create a group g* containing only
Addg*toG and setn = m + 1
06300636:306 End If
End for
Output: GG (a set of groups).

group (here 6):

where ? denotes an unallocated variable (adapted from [6]). ) . . .
Mutation involves randomly mutating groups (on the right side of To summarize, a new group is created containing the two variables

the colon) according to thdutationRateEach gene hadutationRate that have_ the highest corrglation between them. The next ste_p isto ta}ke
probability of being mutated so that the group is randomly split intﬁaCh yarlable in .turn, and iterate thr.ough each group that exists, seeing
two new groups or combined with another existing group. Therefor!é,""dd'”g the variable to_that group increases the groups’ score. If this
for the offspring in the previous example, group 0 may be mutatdsjthe case, then the varlaple is added to thgtgroup. If_there are no more
by splitting the elements into two new groups or combining it wit§rOUPS to test a given variable with, then it is placed into a new group
another group (say 3). Falkenauer proves [6] that this method allows fie!tS OWn.
schema theory to hold even for grouping problems. In contrast, PMX
and standard crossover as used in GPV, with their schema and o-schema IV. PARAMETER ESTIMATION
theories, appear to collapse when applied to these sort of problems. |, order to retrieve groupings that correspond closely to the
2) Hill Climbing (HC): A Hill Climbing Search [20] iteratively cqrrelations that represent actual dependencies, we will have to
moves in the direction of increasing value for some metric. Our versigtermine the ideal set of parameters for the correlation search, most
of Hill Climb involves using the GPV representation and makingmnortantly R, the size of the. As this will determine the cutoff
simple changes to the current groupings with each iteration. Withifint for significant correlations, it will affect the overall algorithm
each iteration one variable is moved into another existing group Qfgreat deal. For example, a cut off point that is too high will mean
placed into a newly formed group and if this change improves thgere are too few significant correlations resulting in smaller groups;
score of the individual, it is retained. The algorithm is outlined below, ¢ ioff point that is too low will mean there are too many significant
correlations and so groups will be combined into larger ones due to
the inclusion of low correlated variables in the list. We have decided to
try and determine the parameters through simulations of the random
bag method described in Section IlI-B. Random bag was chosen since

Input: Q . . . it is the simplest to model. It should also be the weakest of the three
Generate a random selection of groupings using the GPV representa- . . : -
tion methods for correlation search and so by coming up with confidence

intervals for selecting all the true correlations for this method should
mean we have a worst case scenario for the chosen parameters; namely
95% confidence on Random Bag should matieast95% confidence

on EP. This has been shown to be true in our previous work in [22],
and through the experiments within this paper. These simulations were
used to generate probability distributions of selecting correlations that
represent actual dependencies. These distributions could be used to
determine confidence limits for the correlation list size and the number
of calls to the correlation function.

SetScoreto the Partition Metric applied t@ given the grouping
Fori = 1 to Iterationsdo
Make a random change to one gene in the chromosome
SetNew Scoreto the Partition Metric applied t@
If New Score< ScoreThen undo changes
End For
Output:G (a set of groups).

A. Simulation of Random Bag

3) Mirkin’s Separate and Conquer (S&C)This method isbasedon  Simulations were carried out in order to mimic the way in which the
the clustering technique of Separate and Conquer [17]. The algorithamdom bag searches for good correlations. These consisted of setting
is amended to allow it to cluster on the relationships between variabtle sizeR of ), the size of the total search spaeggnd the number of
rather than on the value of variables. The algorithm is as follows anédlls to the correlation functiom) to particular plausible instantiations
uses (6) to calculatk(g; ): and then simulating the act of randomly selecting a correlation from the
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search space and then recording whether it was a predefined “true” @e-Finding ¢« and s
pendency. This process can be compared to repeatedly picking asele&—nce it has been ascertained that the distribution of the Random

tion of ¢ random cards from a pack without replacement and recordi%g‘s‘gj process can be approximated as Normal, a value for the mean and

the number of Aces found. Therefore, for this case- 4 (the number A . . .
of Aces) ands = 52 (the number of cards in a pack). We were ablestandard deviation is needed in order to place confidence limits on the
=2 u inap ' w %Uénber of function calls needed to find the requifcthe size of).
inc

therefore, to generate approximations of the distributions associa e many simulations have been performed, tabulaing, s and

with the probability of picking a “true” dependency. The number o . . .
. ; th t do, th b dt luate the relationsh
these “true” dependencies will be referred to-aaherer < R. These e associated ands, these can be used to evaluate the relationship

L . . - ! etweerp ando . We shall assume thatis a function ofR, ¢, ands,
distributions were then tested for normality using the Lilliefors tesgnd thatr is another function of?, s, ande. The Genetic Programming

(see Section 1V-B). The mean and standard deviation were then cal-, . . e . i
culated for each distribution so that a method for symbolic regress(i‘teChanue of Symbolic Regression is used for this, [13], rather than ap

X X dBPi g a set of parameterized functions because there is no knowledge
could be used to learn a function to determine the mean and stan ﬁgtsoever of relationships between any of the variables.

ﬂtek\\/r;?tifgsg?cl)ﬁgalsbéigtjvc;gsf:pgzg IdOQQ’L\./-C)di:fgﬁgslrcg:ﬁgggggo- The functions forr and e, which shall be denoted(R, ¢, s) and

" o(R,c,s),will be assumed to be functions in terms of the operators +,
s, andc. —, %X, /, and the terminal symboR, ¢, s along with the constant inte-
gers 0 to 9. The exact form is unknown. A binary tree will be used to
represent a regular expression in terms of these symbols, with the ter-
minal nodes being a variable or constant and the nonterminals being an
operator. The worth of any given tree (its fithess) will be the difference
between the observed value;ofind/ore versus the calculated value,
using the equation formed from the tree, and all of the available data.
This is defined in (10) and (11):

Input: R, r, s, c andSimulationSize
Setdependencies r randomly selected correlations
SetDistributionto be a zero array of lengtR
Fori = 1 to SimulationSize
count=0
Forj=1toec
Randomly choosé different correlations Nuims
If (x;,2;) is in dependencieShencount= count+ 1 Fitness foru = — Nodes(j1) - Z W(Riveisi) — uil® (20)
End For —
Distribution.oun: = Distribution.oun: + 1 Naims
End For Fitness forr = —Nodes(o) - Z lo(Riycivsi) — o) (11)
Output: Distribution. =1

whereNodes(-) represents the number of nodes in the corresponding
The probability distribution for selecting a true dependency is fourlainary tree, and indexes a variable from the table of simulated
by dividing each element in the distribution array 8ymulationSize examples (where there are a total 8t;,,s examples). As with a
SimulationSizes a variable that dictates the number of times th&enetic Algorithm, the initial population will be a certain number
process is repeated to ensure that a good approximation to the randdémandom binary trees as described above. This population will be

bag process is reached. improved (better fitness) over subsequent generations through the
use of the standard genetic programming operators of Mutation and
B. Lilliefors’ Test Crossover. Note that the negative fithess function ensures that the

. , . . ) process tries to improve the population by minimizing the fitness.
Lilliefors” test [14] is a simple test for normality that can be perjyi,sting the fitness by penalizing it on the tree’s size will force the

formed on a known distribution function. The simulations performed ige i program to look for a smaller tree. The resulting functions for
Section IV-A can easily be transformed into the required formatfor thjs . L 4 - can be found in (12) and (13):

method and the test can be performed to see if the random bag method

can be approximated by a normal distribution. Givesbservations, a 2%R
MEtric Drm.. is computed as in (9). =it (12)
R 1le
Dinax = MAX|F* (1) = $,(r)] (©) =wmt s (13)
where
S.(r) sample cumulative distribution function; D. Confidence Limits on
F7(r) cumulative normal distribution with equal to the sample Once values for the mean and standard deviation have been found,

, mean, one can place confidence limits on the probability of the random bag
4 sample variance; finding a number of correlations that lie betweeand R, whereR is
v R+ 1. the size of the random bag ands the number of correlations being

Within the simulations, these two summary statistics can be computaghrched for. This is the cumulative normal distribution where the prob-
directly from the data. If the value dP,...x exceeds the critical value ability that the number of correlations found is greater thaFor the
supplied by Lilliefors in his paper, one rejects the hypothesis that tperpose of this paper, we have chosen the ratif® 6 » as 5 and the
observations closely follow the normal distribution. For the purpose obnfidence limit as 95%.

this paper we shall choose the 99% confidence limit, which requiresThe aim of this exercise is to recommend a value:fbased on the
Diax not to exceed .031/+/v. From the results of these tests we caknown parameter®, r, ands. Given thatP(number of correlations
assume that the random bag can be approximated by a normal distribu- = 0.95), we can use the standard normal distribution tables with
tion with a 99% certainty. In fact all of the 150 simulations passed the= (» — u)/o to find what the corresponding value ethould be.
test for normality at this level. For the 95% level, the value aefshould be—1.645. Since we know
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ando, an equation can be formed in terms=9f-, R, ¢ ands where To each node, with a set of parents, there is an associated probability

only ¢ is unknown. We start with (14) and (15): table and these can be used to infer probabilities about certain events in
T the system [5]. Five DBN topologies were created with the conditional
S (14)  distributions hand-coded in order to generate five separate MTS. The
2R number of variables within each network was three, five, five, ten, and
T (—95—‘“) ten. The size of the largest time lag for each network varied between
*= Rje3t1ic/s (15)  five and 60.

2) VAR ProcessesJust under half of the test data was generated

Unfortunately this requires a lot of algebra to solve the above edYfm a selection of VAR MTS models. These types of models have

tion for c. The final solution is a quadratic equation, and when SOMBrious applications from medical domains [22] to economic domains

reasonable approximations are made, is as found in (16): [4]. A VAR process of orde?, written VAR(P), is defined in (17):

c & é <(1.3r —2R)+ \/(QR —1.3r)2 + %(R: - G3T)> .

(16)

The parameteris a guide toward how long the procedure is going to
take, in terms of how many correlation function evaluations are madéhere
For example ifc is greater or equal to the number of calls made by z(t) -
the exhaustive search)( then it is pointless to use the random bag to model) at timef;

locate the required number of correlations. As a guideline, we aim for” t " IX " fhoeffl_ment rr;atrlxt ‘?t time Iagl;l Gaussi i
a 95% confidence at finding the required number of correlations. (1) que;ng hoise vector at time(usually Gaussian) with zero

The value of each element it; is usually a real number in the range

+1. In order for this process not to rapidly tend toward infinity or zero
We describe the generated datasets in Section V-A and the resuoiter time, certain conditions must be placed on the parameter matrices,

of estimating the parameters for the algorithms in Section V-B. Weferred to as stability [15]. This condition can be imposed through the

then describe a metric for evaluating the discovered groupings in Sese of a genetic algorithm to generate a random \lARgrocess and

tion V-C which is followed, in Section V-D, by the results of numeroushen the use of Crossover and Mutation to improve its fithess (which is

experiments which compare different grouping strategies consistingsofneasure of its stability) through subsequent generations.

all combinations of the proposed methods for grouping search and foB) Dataset Organization:Table | describes the datasets that were

correlation search. These 15 strategies are applied to six datasets wienerated using the two methods described above.

there are identifiable mixed groupings of MTS variables. For each ex-These ten MTS were grouped into various different combinations to

periment we have recorded the following. produce six datasets. The first consisted of all 61 variables, the second

1) The Partition metric of the best solution after a varying numbé&ensisted of only DBN generated data, the third only VAR generated
of calls to the fitness function for various different datasets. Thiata and the remaining three consisted of various mixtures. All datasets

is a measure of how well the groupings represent the correlatig®écept the first consisted of 28 variables so as to keep the search space
that were discovered during the correlation search. identical. Table 1l shows the breakdown of each dataset.

2) The score as calculated by the Evaluation metric described in
Section V-C, which is independent of the correlation search r8. Parameter Estimation Results

sults. This can be considered as a measure of accuracy of the r§f \ve apply the parameter estimation analysis, from Section 1V, to

sulting groupings. Itis essentially a measure of distance betweghasets 1-6, we obtain the results as listed in Table I1l. The equation
the groups that were used to generate the data and the resuligpt; represents the total possible number of correlations at varying

2(t) =" A;-a(t—i)+=(t) (17)

next data vector of sizea (the number of variables in the

V. EXPERIMENTAL RESULTS

groups found using our methods. o _ time lags, once invalid correlations are removed (see Section I}B).
3) The.n.umber qf function calls to fln.d.the solution with the highes{q, are defined in (12) and (13) respectivelys the standard normal
Partition metric (a measure of efficiency). variable, and: is defined by (16). Two new parameters are introduced:

All stochastic grouping algorithms (all methods except Separate an@nd. ~ is the ratio of- to s and gives an indication of how efficient
Conquer) were repeated 10 times and the average recorded in ordghédrocedure is going to be. As a guideline, we would suggest that for
remove any sampling bias. We then calculated the marginal statistigg random bag to be effective, this value should be less than 1/3. The
over the correlation searches, the grouping strategies and the datagRifameters needs defining. This represents the rafid?. We suggest
avalue of 0.2, this being found by experimentation, and provides a good
trade off between the number of calls to the correlation functipand

Based on the two problems being tackled by the groupirttow many correlations needed to be stored in memory. As can be seen,
methods—the search for DBN structure and the generation of VARe use of the approximation in (16) has resulted in the confidence limit
models, two types of datasets have been produced. One set has beébeing exactly 95%, but rather 94.4% (on average).
generated by hand-coded DBN’s and the other by VAR models. WeFig. 1 shows an example whefe= 1 000 0003 = 0.2, v is allowed
have generated five datasets of each type with varying dimensionatibywary between 0.22 and 0.32. The valuedioforresponds to 2.5%,
and order. These are described below. For the experiments we mige26% and 0.025% respectively of It can be seen from the graph
various variables from these datasets to produce some which had dhbt R = 250 requires more correlation function calls for any level
DBN generated data, some which had only VAR generated data afcconfidence than for the other two values Bf However, there is
some with a mixture of the two. This was to see how the methodst much betwee®® = 25000 andR = 2500. Similar experiments
performed under different conditions and for different types of data.have shown that the optimal value fBy s is near the 0.25% mark. To

1) Dynamic Bayesian NetworksDBN can be used to model MTS. conclude, we have shown thashould be calculated from (16) once
A DBN consists of a set of nodes, representing variables in the doconfidence limit has been assigned (e.g., 95%, giving a value for
main at different time lags and directed links between these nodesl.645); here we recommend the value ®fs to be about 0.25%.

A. Multivariate Time Series Datasets
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TABLE | TABLE 1
DIFFERENT MTS BREAKDOWN OF EACH DATASET
DESCRIPTIONS
Dataset MTS
MTS Order Dimensionality 1 abcdefghij
a 10 3 2 abde
b 20 5 3 fghij
c 3 5 4 acfij
d 30 10 5 aboghj
e 60 10 3 dghij
f 2 10
g 3 7
h 4 6 TABLE Il
i ; ; PARAMETERS FORDATASETS 1-6
]
Parameter Dataset 1 Dataset 2-6
Wg have found that having the ratio _oito R being 0.2 proves to be - (numx:f;igaﬁables) : ;3
efficient. However, a more systematic study should be conducted on , 150 64
how these parameters relate to each other. R 750 320
c 72201 15585
C. Evaluation Metric s =n(n—1)(MaxLag +0.5) 276330 57078
A metric is needed to show how similar or dissimilar two groups are. _ 2R 173.321 76.879
We define this by pairing all of the variables up and incrementing the “4= 2s+¢
score each time that the pair appears in the correct group within the R 1lc 14.779 8.083
two groups or when the pair appears in different groups. The metric g =a s
is scaled so that it returns a value between 0 and 1 inclusive, where 0 oy 1.578 1.593
represents very dissimilar groups and 1 represents very similar groups. z= p
This metric |_s_def|ned as follows and is similar to the equivalence mis- 7=2f5 0373 0561
match coefficient [16]:
1) Definition of the Evaluation Metric Function EVI{ . G2): B=r/R 0.200 0.200
Confidence 0.943 0.945

Let Gy andG2 be two groupings

Let n be the number of variables 1.00 -

LetEVM =0 ol
Fori=1ton — 1 095 1 /
Forj =i+ 1ton 0.90 1 /
Let g1 be the group withir?; containingi £ 085 1 / f
Let g» be the group withirG> containingj g ‘ / Vs
If jing, andiin g, ThenEVM = EVM + 1 s 080 1 /
If j noting; andi noting, ThenEVM = EVM 4+ 1 ‘,“; 0.75 - / /

End For € 070 - // —R=25000
End For S / - R=2500
UpdateEV M to 2EV M /n(n — 1). § 0651 [ ~— R=250

0.60 1 [i/
D. Results 055 - ){/

In this section we first look at the results from the 15 different 050 12 . : . .
combinations of correlation search and grouping strategy to see how 0.220 0.245 0.270 0.295 0.320
they performed when averaged over the six datasets. We then look a
some of the marginal statistics to see how the correlation searches ana
the grouping strategies performed irrespective of each other. We a9 1. confidence againstwith varying R.
see how the different datasets affected the outcome by looking at their

cas fractionof s

marginal statistics. Finally, we discuss the grouping results using three TABLE IV
examples. PARAMETERS FOR THEGAS

The parameters for all the grouping genetic algorithms were identical
and are found in Table IV. The exception to this was GPV which was Parameter Dataset | Dataset 2-6
allowed to run for 1000 generations due to its slow convergence. For CP"P"’“";” 1)53 ;0:

. . : . rossoverRate . .

the I_—||II Climb, the parametelterations was set td”opulationx Gen- NutationRate 01 o1
erations Generations (GPV) 150 100 (1000)

1) The 15 Methods:We can see from the results of the 15 different
methods in Table V that while there is a lot of variation in the number
of calls to the partitioning function (FC), the metrics, in particular thevhere the partitioning of a MTS must occur on a real time basis. By
evaluation metric does not vary a great deal at all. This implies that tfeg the fastest to converge is the Separate and Conquer Method taking
initial process of searching f@p does not have to be exhaustive to gelittle more than 400 function calls. However, it must be noted that this
good results. This property would be very useful for those applicationgethod is deterministic and is not guaranteed to find the best groupings.
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The most important statistic is the evaluation metric and the method TABLE V
that seems to perform best over all the datasets is the Exhaustive FIVE GROUP'NGSFRATEG'(EBSAPPL'ED TO)THETHREEMETHODS FOR
Search/Hill Climb. Although the Falkenauer finds just as good a ENERATING

solution, it takes almost twice as many function calls. However, as the Partit - -

. A ; ition Evaluation Function
marginal statistics will show, the Falkenauer method performs better Metric Metric Calls
when averaged over all the correlation search strategies. Therefore, it RB/ GPV 110.60 0.91 232292.5
appears that if the exhaustive search cannot be carried outthen acom-  RB/PMX 114.90 0.92 12974.00
bination of Random Bag or Evolutionary Program with Falkenauer is RB/GGA 121.10 0.93 8697.667
the best option. RB/HC 125.00 0.92 4881.200

2) Note Regarding RB and EPTable VI displays the average of the RB/S&C 113.67 0.90 400.6667
topr correlations for each method of correlation mining, and displays g//gfg( ig;:;3 g:zg fgﬁ?s;
the average over a_lll of the datasets. _ EP/ GGA 113.67 0.92 3152333

As can be seen in the table, the exhaustive search performs the best, EP/HC 118.80 0.91 5331.520
followed by the random bag, and then evolutionary programming. It EP / S&C 109.33 0.89 427.6667
should be noted that this result only applies to the situation where EX / GPV 117.80 0.91 232237.4
there are a large number of correlation calls madis (arge). It has EX /PMX 122.50 0.92 11325.67
been shown in [23] that the EP method outperforms the RB method for EX/GGA 128.87 0.93 8693.667
smaller values of. Based on the extensive analysis and experiments EX/HC 130.03 0.93 4778.470
performed so far we can recommend thati§ more than 30% of then EX/S&C 12267 0.92 411.6667
the exhaustive search method should be used. If this is not the case and
if = corresponds to less than 50%, use the EP method, otherwise use TABLE VI
the RB method. AVERAGE TOP r CORRELATIONS FOR THETHREE METHODS FOR

3) Marginal Statistics: In order to explore more fully the effect GENERATING ©

of the different correlation searches, grouping strategies and datasets,

we calculated various marginal statistics. Essentially this involved Dataset (r) EX RB EP
averaging over the correlation searches, the grouping strategies and Dataset 1(150) 0.592 0.527 0.547
the datasets to see how each of these methods compared. These result Dataset 2 (64) 0.536 0.48% 0.402
. s . Dataset 3 (64) 0.694 0.629 0.659
can pe found in Tables VII-IX and each table is discussed in the next Dataset 4 (64) 0.641 0575 0.569
section. Dataset 5 (64) 0.548 0.509 0.497
The correlation summary statistics (Table VII) support the conclu- Dataset 6 (64) 0.625 0.568 0.558
sion that the method used for generating a good set of correlations does _Dataset’s Avg. 0.606 0.549 0.539
not have a very significant effect on the final groupings. In other words,
the evaluation metric which measures the distance between the orig- TABLE VI
inal groupings and the discovered groupings are very similar for all AVERAGING OVER CORRELATION SEARCH
correlation search methods (approximately 0.9). Therefore, it would
make more sense to perform a fast approximate correlation search on Partition Evaluation Function
datasets where the search space is so large that the exhaustive search is Metric Metric Calls
infeasible. Average EX 124.373 0.923 51489.37
) . ) Average EP | 111.420 0.905 51356.97
The best grouping strategies, as shown by the grouping summary sta- Average RB | 117.053 0.915 5184921
tistics (Table VII1), are the Hill Climb method and Falkenauer's GGA.
This is probably due to the economical use of function calls made by
TABLE VIII

Hill Climb (unlike the GA methods which require evaluating popula-

. _ AVERAGING OVER GROUPING STRATEGY
tions) and the efficient crossover developed by Falkenauer. The other

GA methods _used Iess' effit_:ient crossovers and the Separate and Con- Partition Evaluation Function
quer method is deterministic and therefore can never be guaranteed to Metric Metric Calls

find the global solution. It is, however, very fast at finding a good set Average GPV| 111278 0.907 232285.8

of groupings after a very small number of function calls. Average PMX| 115756 0916 11615.11

Looking at the dataset statistics (Table 1X), it appears that Dataset Average GGA| 121.211 0.926 8514556

1 (the mixture of both types of data) produced a higher fitness and Average HC | 124611 0922 4997.061

Average S&C| 115222 0.903 413.3333

independent metric score than the rest and Dataset 3 (the purely VAR
data) produced better results than Dataset 2 (the purely DBN data). A

reason for this could be that the VAR data generator produced variables TABLE IX

with higher correlations between true dependencies. These may then AVERAGING OVER DATASET

have outflanked any spurious correlations. It is encouraging to note that

the largest dataset, Dataset 1, with a mixture of DBN and VAR data Partition | Evaluation | Function

produced such good results. Datasets 4 to 6 which contain amixture of e 21\242"'?;0 h:‘;t;g’ 5 9282581

VAR and DBN exhibit the most variations in the evaluation metric. This ve Dataset i . i

is most likely down to the strength of correlations that were reflected Avg Dataset2| 69227 0.830 42105.42

in the generated data as well as the existence of spurious correlations. ~ Avg. Dataset3| 105.667 0934 41916.15
4) Sample of GroupingsTable X shows a selection of groupings Avg. Datasetd| 101.200 0.896 42154.41

from the three datasets using the Falkenauer algorithm with differing Avg. Dataset5 99.493 0.948 42003.80

correlation searches. It can be seen that the majority of variables have Avg, Dataset6| 107.987 0923 2191649

been grouped correctly in the all three experiments. In fact, 15 out of
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SAMPLE OF GROUPING RESULTS FROM THEFALKENAUER METHOD ALONG
WITH THE ORIGINAL GROUPINGS THAT WEREUSED TO GENERATE THEMTS
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TABLE X

(DBNSs). Our results have shown that whilst the initial search for good
correlations to generate the groupings does not have to be exhaustive
to produce equally good results, the best method of grouping search
appears to be either a Hill Climb strategy or Falkenauer’'s Grouping

go;’ggimmd Oorllg;na] MIS Groupings lo):sscovered Groupings Genetic Algorithm. The results have been very promising on both
Dataset 1 1 VAR data and DBN data and, in most cases, the metric used to find
2 the groupings proved robust enough to avoid mistaken groups due to
34567 3457 spurious correlations. We have also provided some concrete practical
89101112 g 10 recommendatior!s on the corre_lation search step of_ our methodology.
1112 Future work will involve looking at how the grouping methodology
1314151617181920 |13 performs on some real world datasets with the aim of building DBN
21 22 14152021 22 and VAR models. We will also be looking at ways of tackling the
16171819 spurious correlations problem using a combination of standard statis-
g? g‘; 252627282930 gi 3‘2‘ 252627282930 tical techniques and heuristics. Relationships between the parameters
3334 353637383940 1333435 3637 383940 as described in Section IV also need a more rigorous and in-depth study.
41 42 4142
4344 4546474849 43444546 47 4849 APPENDIX
50 51 52 53 54 55 50515253 54 55 PROOES FORGROUPING METRIC
56 57 58 565758
39 60 5960 Proof 1: When there are no correlations, then= ¢. Therefore
max(f(G)) is 0, because there will never be any cases wiiei®e1.
gt;ff:‘ 2‘11 § 67 241126 ; This threfore rgc!gires that the sige of any of the grougs inill be
3 1. This is by definition of the functiong andh.
89101112 910 Proof 2: If a correlation exists for each pairing of variables, then
1112 the maximum size fo€ will be n(n — 1)/2, because of the duplicate
13141516171819  113141516171819 restriction. It therefore follows that the value fofg, ) will be k; (k; —
ig 3 BN ig ;,1/. RBAUBL 1)/2 using the same logic. Using (5), we have
gﬁ;sft(}? 0123456789 21235789 max(f(G)) = max (ZMW))
6 i=1
10111213141516 10111213141516
17 therefore
1718192021 22 1819202122 ™ (ki — 1)
232425 232425 max(f(G)) = max (Z “>
26 27 2627 o 2
since

the 21 groups have been perfectly recreated. Some of the variables have  max <Z M) = 1 max <<Z Lf) - n)

been placed in a group on their own implying that they are indepen- i=1 2 2 i=1

dentwhen in actual fact there should be some correlation between them ‘

and other variables. This could be due to spurious correlations whigtgnf(G) will be a maximum wher}=7" | &7 is a maximum.

have prevented the true correlations from being included on the correWe shall assume that< ki < ka...k.,. If we write k) = ki + k2

lation list. This effect is also evident in the summary tables where theen

independent metric (which simply measures the distance between the

discovered groupings and the original) is higher for some experiments

than others but the fitness (which relies on the correlations between

variables) is lower. The opposite is also evident in the results. Once

again, this is most likely due to spurious correlations between variablesThis process can be repeated until there is only one viajuee-

in different groups. maining wherek; = n, andf attains its maximum value. Hence when
An interesting result that was found in the DBN data groups was th@tis at a maximum size (as above), the arrangement with the maximum

if a group of variables was incorrectly split into 2 or more groups, thefiness will be all variables in a single group.

the divide(s) made topological sense when compared to the structur®roof 3: If the data generating the correlations came from a mixed

of the DBN’s that generated the data. set of multivariate time series observations, then for a given grouping

arrangemendz and correlation set)

(ki + k2)® = ki + k5 + 2k ks
(k1)* > ki + k3.

VI. CONCLUDING REMARKS m

max(f(G)) = Z max(h(g:))

=1

ki Ky
max(h(g;)) = max <ZZL(0m¢{lib)> .

a=1 bh=1

In this paper we have outlined a framework with which we can
decompose high dimension multivariate time series (MTS) into
smaller dimension MTS which are relatively independent of one
another based on correlation between the variables. This can be very
useful in problems where the high dimensionality of a MTS prevents
certain algorithms from being applied, for example the generation of This will be a maximum when all instances of the functién
Vector AutoRegressive (VAR) models or dynamic Bayesian networlese 1. If Q contains an additional spurious correlation or is missing
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a correlation, then this value will be reduced by 1, by definition Fuzzy Multimodel of Timed Petri Nets
of L and proof 2. Hence the maximum value of the fitness for a _ _
given G will be when () contains the all of the correlations that S. Hennequin, D. Lefebvre, and A. El Moudni

can exist for each grouping.

Abstract—This paper deals with discrete event systems (DES) modeled
either by discrete timed Petri nets without conflict or by continuous Petri
nets. A fuzzy rulebased multimodel is developed for this kind of system. The
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