
A Niching Memetic Algorithm for Simultaneous
Clustering and Feature Selection

Weiguo Sheng, Xiaohui Liu, and Michael Fairhurst

Abstract—Clustering is inherently a difficult task and is made even more difficult when the selection of relevant features is also an

issue. In this paper, we propose an approach for simultaneous clustering and feature selection using a niching memetic algorithm. Our

approach (which we call NMA_CFS) makes feature selection an integral part of the global clustering search procedure and attempts to

overcome the problem of identifying less promising locally optimal solutions in both clustering and feature selection, without making

any a priori assumption about the number of clusters. Within the NMA_CFS procedure, a variable composite representation is devised

to encode both feature selection and cluster centers with different numbers of clusters. Furthermore, local search operations are

introduced to refine feature selection and cluster centers encoded in the chromosomes. Finally, a niching method is integrated to

preserve the population diversity and prevent premature convergence. In an experimental evaluation, we demonstrate the

effectiveness of the proposed approach by using both synthetic and real data.

Index Terms—Clustering, feature selection, genetic algorithm, local search, memetic algorithm, niching method.

Ç

1 INTRODUCTION

CLUSTERING or cluster analysis is an important but
challenging task in unsupervised learning. The essence

of the clustering problem is to partition a set of objects into
an a priori unknown number of clusters while minimizing
the within-cluster variability and maximizing the between-
cluster variability. Data clustering is a common technique
for statistical data analysis and has been used in a variety of
engineering and scientific disciplines such as biology (e.g.,
to study genome data [3], [48], [53]) and computer vision
(e.g., to segment images [15], [25], [47]).

Many clustering algorithms have been proposed in the
literature. Generally, they can be divided into two main
categories, namely, hierarchical and partitional [24]. Hier-
archical clustering constructs a hierarchy of partitionings,
represented as a dendrogram in which each partitioning is
nested within the partitioning at the next level in the
hierarchy. In hierarchical clustering, problems due to
initialization and local optima do not arise. However, this
approach considers only local neighbors in each step and
ignores the global shape and size of clusters. Moreover,
hierarchical clustering is static; that is, data objects com-
mitted to a given cluster in the early stages cannot move to a
different cluster. In the work reported here, we concentrate
on partitional clustering, which is dynamic and considers
the global shape and size of clusters.

In partitional clustering, each data object is represented
by a vector of features. Most partitional algorithms assume

all features to be equally important for clustering in the sense

that they do not distinguish among different features, but

this approach to clustering can create significant limitations

in an unsupervised learning context. The problem is that not

all features are equally important; indeed, some of the

features may be redundant, some may be irrelevant, and

some can even mislead the clustering process. This is one of

the reasons that many clustering algorithms do not perform

well in the face of high-dimensional data, and the task of

selecting the best feature subset, the process known as

feature selection, is therefore important. In addition, feature

selection may lead to more economical clustering algorithms

(in terms of both storage and computational effort) and

contribute to the interpretability of the models generated.

Generally, for a data set of nontrivial size, finding the

optimal clustering solution is a challenging problem [17] and

becomes even more challenging if an appropriate feature set

also needs to be selected.
One way of approaching this challenge is to use stochastic

optimization schemes, prominent among which is an

approach based on genetic algorithms (GAs). The GA, first

developed by Holland [23], is biologically inspired and

embodies many mechanisms mimicking natural evolution.

It has a great deal of potential in scientific and engineering

optimization or search problems. Recently, hybrid methods

[2], [34], [52], which incorporate local searches with

traditional GAs, have been proposed and applied success-

fully to solve a wide variety of optimization problems. These

studies show that pure GAs are not well suited to fine-

tuning structures in complex search spaces and that

hybridization with other techniques can greatly improve

their efficiency. GAs that have been hybridized with local

searches are also known as memetic algorithms (MAs) [35],

[36]. Since we are concerned here with a GA where local

searches play a significant role, this term will be adopted in

this paper.

868 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

. W. Sheng annd M. Fairhurst are with the Department of Electronics,
University of Kent, Canterbury, Kent, CT2 7NT, United Kingdom.
E-mail: {w.sheng, m.c.fairhurst}@kent.ac.uk.

. X. Liu is with the School of Information Systems, Computing, and
Mathematics, Brunel University, Uxbridge, Middlesex, UB8 3PH, United
Kingdom. E-mail: xiaohui.liu@brunel.ac.uk.

Manuscript received 24 Nov. 2005; revised 1 June 2007; accepted 17 Jan.
2008; published online 25 Jan. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0522-1105.
Digital Object Identifier no. 10.1109/TKDE.2008.33.

1041-4347/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.



Traditional GAs and MAs are generally suitable for
locating the optimal solution of an optimization problem
with a small number of local optima. Complex problems
such as clustering, however, often involve a significant
number of locally optimal solutions. In such cases, tradi-
tional GAs and MAs cannot maintain controlled competi-
tions among the individual solutions and can cause the
population to converge prematurely [44]. To improve the
situation, various methods [9], [19], [32], [41], [46] (usually
called niching methods [44]) have been proposed. The
research reported shows that one of the key elements in
finding the optimal solution to a difficult problem with a
GA approach is to preserve the population diversity during
the search, since this permits the GA to investigate many
peaks in parallel and helps in preventing it from being
trapped in local optima.

In this paper, we first suggest a unified criterion for
simultaneous clustering and feature selection based on a
well-known scatter separability index. A GA-based evolu-
tionary procedure is then proposed to optimize the
criterion. In order to allow simultaneous clustering and
feature selection without the number of clusters being
known a priori, a composite representation is devised to
encode both feature selection and cluster centers with a
variable number of clusters. As a consequence, the cross-
over and mutation operators are suitably modified to tackle
the concept of composite chromosomes with variable
lengths. Additionally, we hybridize the proposed proce-
dure with local search operations, which are introduced to
refine the feature selection and cluster centers, respectively.
These local searches move solutions toward local optima
and allow a significant improvement in the computational
efficiency. Finally, a niching method is integrated with the
resulting hybrid GA to preserve the population diversity
and prevent premature convergence. To evaluate the
proposed algorithm, we have conducted a series of
experiments on both synthetic and real data and compared
it with related work. The results show that our algorithm is
generally able to select relevant features and locate
appropriate clustering with the correct number of clusters
and that it outperforms other methods implemented for
comparison.

The remainder of this paper is organized as follows:
After reviewing related work in Section 2, we suggest a
unified criterion for simultaneous clustering and feature
selection in Section 3. Then, in Section 4, we present a
niching MA for optimizing the criterion. Section 5 describes
six data sets employed in the experimental evaluation, and
this is followed by a discussion of the parameter settings of
the algorithm. In the experiments reported in Section 6, the
performance of the proposed algorithm is assessed. We
complete this paper with some concluding remarks and
suggestions for future directions for this work in Section 7.

2 RELATED WORK

GAs are naturally applicable to problems with exponential
search spaces and have consequently been a significant
source of interest for clustering [21], [30], [33], [51]. For
example, Hall et al. [21] and Maulik and Bandyopadhyay
[33] proposed the use of traditional GAs for partitional
clustering. These methods can be very expensive and
susceptible to becoming trapped in locally optimal solutions

for clustering large data sets. Krishana and Murty [30] and
Tsai et al. [51] introduced hybrid GAs by incorporating
clustering-specified local searches into traditional GAs. In
contrast to the methods proposed in [21] and [33], clustering
based on hybrid GAs can be more efficient, but these
techniques can still, however, suffer from premature
convergence. Furthermore, all of the above methods may
exhibit limited performance, since they perform clustering
on all features without selection. GAs have also been
proposed for feature selection [42], [54]. However, they are
usually developed in the supervised learning context, where
class labels of the data are available, and the main purpose is
to reduce the number of features used in classification while
maintaining acceptable classification accuracies.

The second (and related) theme of this paper is feature
selection for clustering, and feature selection research has a
long history, as reported in the literature. Feature selection
in the context of supervised learning [1], [6], [16], [28],
adopts methods that are usually divided into two classes
[5], [28]—filters and wrappers—based on whether or not
feature selection is implemented independently of the
learning algorithm. To maintain the filter/wrapper distinc-
tion used in supervised feature selection, we also classify
feature selection methods for clustering into these two
categories based on whether or not the process is carried out
independently of the clustering algorithm. The filters in
clustering basically preselect the features and then apply a
clustering algorithm to the selected feature subset. The
principle is that any feature carrying little or no additional
information beyond that subsumed by the remaining
features is redundant and should be eliminated. Various
measures such as correlation coefficients [20], statistical
redundancy [22], and linear dependence [7], [50] have been
used in this context. Recently, the Relief Algorithm [26] and
its extensions [29], which identify statistically relevant
features, have also been reported.

The wrappers in clustering, on the other hand, incorpo-
rate the clustering algorithm in the feature subset searching.
Methods used in this category involve a clustering algo-
rithm (e.g., EM [10] and K Means [31]) running on a feature
subset, with the feature subset being assessed by the
clustering performance, as quantified by some appropriate
index. These include a sequential unsupervised feature
selection algorithm [8], feature selection based on the
expectation-maximization (EM) [12], [13] and maximum
entropy [4]. The wrappers can be superior in performance
when compared with the filters, which ignore the properties
of the clustering task at hand [28]. They can be used to
identify the clustering solutions as well. However, the
performance of both clustering and feature selection is
dependent on the incorporated clustering algorithms,
which may be sensitive to their initializations and suffer
from locally optimal solutions. Furthermore, when the
number of clusters is unknown beforehand, the wrappers
have to be applied in such a way as to search through a
range of possible cluster numbers. In contrast, our proposed
method makes feature selection an integral part of the
global clustering search procedure and attempts to identify
high-quality solutions for clustering and feature selection
while automatically evolving the correct number of clusters.

SHENG ET AL.: A NICHING MEMETIC ALGORITHM FOR SIMULTANEOUS CLUSTERING AND FEATURE SELECTION 869

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.



3 UNIFIED CRITERION

A number of implementation criteria have been proposed in
the clustering literature. However, they are usually de-
signed for either clustering or feature selection alone. In this
section, we suggest a unified criterion for simultaneous
clustering and feature selection by investigating a well-
known scatter separability index.

Let X ¼ fx1; x2; . . . ; xng be a set of n data objects in a
D-dimensional feature space. A partitioning of the set X is
defined as a set of nonempty clusters of X such that data
object xi in X is in exactly one of these clusters. The
partitioning is typically achieved by optimizing a specified
criterion. In the literature, various criteria have been
reported [11], [24], [49]. Some popular criteria are based
on the within-cluster and between-cluster scatter matrices.
One criterion is the traceðS�1

w SbÞ, in which the within-
cluster variation Sw is defined as

Sw ¼
1

n

Xk

j¼1

Xn

i¼1

zjiðxi �mjÞðxi �mjÞT : ð1Þ

Sw measures how scattered the objects are from their cluster
means (compactness), where zji ¼ 1 if xi 2 cluster j; other-
wise, this is 0. mj ¼ 1

nj

Pn
i¼1 zjixi is the mean of cluster j, and

nj ¼
Pn

i¼1 zji is the number of objects in cluster j. The
between-cluster variation Sb is defined as

Sb ¼
Xk

j¼1

nj
n
ðmj �mÞðmj �mÞT ð2Þ

and measures how scattered the cluster means are from the
sample mean (separability). Here, m ¼ 1

n

Pn
i¼1 xi is the

sample mean. In the traceðS�1
w SbÞ criterion, the between-

cluster variation Sb is normalized by the within-cluster
variation Sw. Hence, large values of the criterion correspond
to high-quality clustering solutions. This criterion is invar-
iant under any nonsingular linear transformation and has
been widely used for clustering, where issues such as feature
selection and the number of clusters do not arise. Here, we
investigate these issues and suggest a unified criterion based
on the above approach.

Issue 1: feature selection. Typically, for a particular
application, as much information as possible is gathered

without considering the significance of each feature to the

underlying clusters. Thus, it is essential to remove

irrelevant or redundant features while performing cluster-

ing. Let us denote the total set of collected features as

U ¼ f1; 2; . . . ; Dg. Feature selection for clustering can then

be defined as the problem of selecting d features from U ,

which can optimize a specified clustering criterion.
As such a criterion, the traceðS�1

w SbÞ is biased toward

higher dimensions. The value of this criterion monotoni-

cally increases as features are added, assuming equal

clustering assignments. This is not desirable, because we

would like to retain the minimum number of features

consistent with an appropriate level of performance. In

order to compare feature subsets of different dimensional-

ities, we normalize the traceðS�1
w SbÞ by a penalty term

ðD� dÞ=ðD� 1Þ. The resulting criterion, denoted by J1, can

be written as

J1 ¼ traceðS�1
w SbÞ � ðD� dÞ=ðD� 1Þ: ð3Þ

Since traceðS�1
w SbÞ remains relatively unchanged for any

addition of features with little discrimination [8], by

minimizing J1, we aim at attaining a feature subset with

good discrimination.
Issue 2: number of clusters. In most real-world situations,

the number of clusters k in a data set is usually unknown

beforehand. Furthermore, when searching for the best

feature subset, we encounter a new situation where the

value of k depends on the feature subset. For example, as

illustrated in Fig. 1, in two dimensions, the data set has four

clusters (as shown in Fig. 1a), whereas in one dimension, it

has only two clusters (as shown in Figs. 1b and 1c). Hence,

using a fixed number of clusters for all feature subsets may

not model the data in each respective subset correctly. Thus,

we need to search for the correct number of clusters while

performing clustering with each candidate feature subset.

For this purpose, we add another penalty term ðkmax �
kÞ=ðk� 1Þ to the criterion J1. Our new criterion, denoted by

J2, becomes

J2 ¼ traceðS�1
w SbÞ � ðD� dÞ=ðD� 1Þ � ðkmax � kÞ=ðk� 1Þ:

ð4Þ

870 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Fig. 1. The number of clusters varies with the dimension.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.



This penalty term is needed, because the criterion J1 is

biased toward increasing the number of clusters. For

example, Sw is equal to 0 in the extreme case when the

number of clusters is equal to the number of data objects. It

should be noted, however, that both penalty terms in the

J2 formulation are determined empirically and there may

be other more effective penalty terms that could result in

better performance.

4 NICHING MEMETIC ALGORITHM

In this section, we propose a niching MA for simultaneous

clustering and feature selection (NMA_CFS) by optimizing

the unified criterion J2. The proposed algorithm works with

variable composite chromosomes, which are used to

represent solutions. The operation of the algorithm consists

of using a niching selection method for selecting pairing

parents for reproduction, performing different genetic

operators on different parts (i.e., feature selection vector

and cluster centers) of the paired parents, applying local

search operations (i.e., feature add and remove procedures

and one step of K Means) to each offspring, and carrying

out a niching competition replacement. The evolution is

terminated when the fitness value of the best solution in the

population has not changed for g generations. The output of

the algorithm is the best solution encountered during the

evolution. The flow of the algorithm (Algorithm 1) is given

as follows:

Algorithm 1: NMA_CFS.

Step 1. Randomly initialize p sets of solutions, which encode

both feature selection and cluster centers with

different numbers of clusters, by using a variable

composite representation (see Section 4.1).

Step 2. Calculate J2 according to (4) for each solution in the

initial population and set its fitness value as f ¼ J2.

Step 3. Repeat the following steps until the stopping
criterion is met:

a) Select pairing parents based on a niching selection

method (see Section 4.4). This procedure is repeated

until p=2 parent pairs are selected.

b) Generate intermediate offspring by applying

different genetic operators (see Section 4.2) on the

different parts (i.e., feature selection vector and

cluster centers) of the paired parents.
c) Apply feature add and remove procedures

(see Section 4.3) to the offspring.

d) Run one step of K Means (see Section 4.3) on the

offspring.

e) Pair the offspring with the most similar solution

found during a restricted competition replacement

(see Section 4.4).

f) Calculate J2 according to (4) for each of the offspring.
If the fitness of the offspring is better than its paired

solution, then the latter is replaced.

Step 4. Provide the feature subset and cluster centers of the

solution from the terminal population with the best

fitness.

In the following sections, we describe in more detail how

the solutions are initially created and how they evolve

during the optimization process, and we briefly analyze the

time complexity of the proposed algorithm.

4.1 Representation and Initialization

In the NMA_CFS procedure, we devise a variable compo-

site chromosome, which can encode both feature selection

and cluster centers with a variable number of clusters. The

feature selection vector in the chromosome is a string with

D binary digits (D is the total number of available features

in the data to be clustered), and each binary digit represents

an individual feature, with values 1 and 0 denoting selected

and ignored, respectively. The cluster centers in the

chromosome consist of D� ki real numbers, where ki is

the number of clusters. The first D positions represent the

D dimensions of the first cluster center, the next D positions

represent those of the second cluster center, and so on. For

example, in five-dimensional data, the chromosome

< 11001 0:510:110:700:500:61

0:210:910:800:700:31 0:810:910:500:600:21 >

encodes centers of three clusters (i.e., (0.5, 0.1, 0.6), (0.2, 0.9,

0.3), and (0.8, 0.9, 0.2)), with the first, second, and fifth

features being selected. It should be noted that only values

of the selected features (values with subscript “1”) are used

to form the cluster centers and the others (values with

subscript “0”) are ignored.
Each solution in the population is constructed using the

variable composite chromosome. The values are initialized

by random assignment of binary digits and real numbers to

the feature selection vector and the ki cluster centers,

respectively. The initial values of the cluster centers are

constrained to be in the range (determined from the data

set) of the feature to which they are assigned but are

otherwise random. The initial number of clusters ki is

calculated according to RandIntð2; kmaxÞ. Here, RandIntðÞ
is a function returning a natural number in the range from 2

to kmax (inclusive), and kmax is the upper bound of the

number of clusters and is taken to be
ffiffiffi
n
p

(n is the number of

objects in the data set to be clustered), which is a rule of

thumb used by many investigators in the clustering

literature [38]. The number of clusters for the solutions in

the population will therefore range from 2 to kmax.

4.2 Crossover and Mutation

In the composite representation, feature selection and

cluster centers are encoded in a single solution. Accordingly,

we have applied different genetic operators, which are

sensitive to the corresponding context, on feature selection

vector and cluster center parts of the paired parents. For the

feature selection vector part, the m-point crossover and flip

mutation [18] are applied. The m-point crossover, which is

performed on each set of paired parents, chooses m cutting

points at random and alternately copies each segment from

the two parents. For example, given a parent pair

SHENG ET AL.: A NICHING MEMETIC ALGORITHM FOR SIMULTANEOUS CLUSTERING AND FEATURE SELECTION 871

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.



Parent1 : < 1j10j0j1 0:50:10:70:50:6 0:20:90:80:70:3

0:80:90:50:60:2 >;

Parent2 : < 1j01j1j0 0:40:20:80:40:5 0:90:70:30:50:1

0:10:80:60:90:2 0:40:50:30:40:1 >;

suppose that three cutting points are chosen at positions 1,

3, and 4 (denoted by “j”) in the feature selection vector.

After the m-point crossover, the two intermediate offspring

generated would be

Offspring1 : < 10100 0:50:10:70:50:6 0:20:90:80:70:3

0:80:90:50:60:2 >;

Offspring2 : < 11011 0:40:20:80:40:5 0:10:80:60:90:2

0:90:70:30:50:1 0:40:50:30:40:1 > :

After crossover, each bit of the offspring is considered for

mutation. Mutation consists of flipping the value of the

chosen bit from 1 to 0, or vice versa. Both crossover and

mutation operations are likely to generate an offspring, with

no features being selected. When such an offspring

emerges, we repeat the operations until a proper offspring

is produced or until a limit on the number of trials is

reached.
For the cluster center part, we use a crossover operation

analogous to the traditional two-point crossover [18]. During

crossover, the cluster centers are considered to be indivisible

(i.e., the crossover points can only lie in between two

clusters’ centers). For this purpose, the crossover operation

is defined as follows: Let paired parents P1 and P2 encode k1

and k2 cluster centers ðk1 � k2Þ, respectively. Then, x1 and

x2, the crossover points in P1, are generated according to

RandIntð0; k1 � 1Þ. If x1 is greater than x2, then swap the

value of x1 and x2 to make sure that x2 > x1. The cross points

x3 and x4 in P2 are then generated as x3 ¼ RandIntð0; k2 �
jx2 � x1j � 1Þ and x4 ¼ x3 þ jx2 � x1j, where jx2 � x1j is the

length of segment between cross points of x2 and x1. After

that, the segment information between x1 and x2 in P1

exchanges with the segment information between x3 and x4

in P2. Continuing with the above example, given the two

intermediate offspring after the m-point crossover

Offspring1 : < 10100 0:50:10:70:50:6 j 0:20:90:80:70:3 j
0:80:90:50:60:2 >;

Offspring2 : < 11011 0:40:20:80:40:5 0:90:70:30:50:1 j
0:10:80:60:90:2 j 0:40:50:30:40:1 >;

suppose that the crossover points x1, x2, x3, and x4 are

generated at positions 1, 2, 2, and 3, respectively (denoted

by “j”). After the crossover, the two offspring would

become

Offspring1 : < 10100 0:50:10:70:50:6 0:10:80:60:90:2

0:80:90:50:60:2 >;

Offspring2 : < 11011 0:40:20:80:40:5 0:90:70:30:50:1

0:20:90:80:70:3 0:40:50:30:40:1 > :

It can be seen that according to the above rules, the number

of clusters of the offspring will be equal to either k1 or k2.

The crossover is performed on each set of paired parents.

After crossover, a low probability of Gaussian mutation
is applied on the offspring. Gaussian mutation adds a unit
Gaussian distributed random value to the chosen feature.
The new feature value is clipped if it falls outside the lower
or upper bounds of that feature.

4.3 Local Searches

Pure GAs are not well suited to fine-tuning solutions that
are close to optima [19], and this results in their having a
long runtime. To improve the time efficiency, incorporation
of local searches into the regeneration step of GAs, creating
the so-called MAs, is essential if competitive GAs are to be
used [2]. In this section, we present several local search
operations to effectively design an MA for simultaneous
clustering and feature selection.

Feature add and remove operations. Sequential forward
selection (SFS) and sequential backward selection (SBS) [14]
are two classical heuristic feature selection algorithms
developed for supervised learning. SFS starts with an empty
set of features, and at each iteration, the algorithm tentatively
adds each available feature and selects the feature that
results in the highest estimated performance. The search
terminates when the accuracy of the current subset cannot be
improved by adding any other feature. SBS works in an
analogous way but starts from the full set of available
features and tentatively deletes each feature not deleted
previously. SFS and SBS are simple and fast. However, they
are prone to being trapped in locally optimal solutions.

Here, we introduce two basic operations—add (based on
the SFS) and remove (based on the SBS)—as noted in the
following and incorporate them into the GA to fine-tune the
feature selection encoded in the solution for clustering:

. Add. Choose a feature from the unselected feature
subset that, when combined with the currently
selected features, yields the largest value of the
criterion J1 and changes its status to “selected.”

. Remove. Choose a feature from the selected feature
subset that makes the least contribution to the
criterion J1 and changes its status to “ignored.”

These operations generate local improvements by adding
the most significant feature or removing the least significant
feature and aim at speeding up the search for the best
feature subset. Each of the operations is applied once (the
add operation followed by the remove operation) to all new
offspring after the crossover and mutation operations.

K Means operation. K Means [31] is an iterative scheme
attempting to minimize the within-cluster sum of squares
errors (SSE):

SSE ¼
Xn

i¼1

Xk

j¼1

zjikxi �mjk2: ð5Þ

Starting from an initial distribution of cluster centers in the
data space, each data object is assigned to a cluster with the
closest center, after which each center itself is updated as
the center of data objects belonging to that particular
cluster. This procedure is repeated until there is no
reassignment of any data object from one cluster to another
or the SSE value ceases to decrease significantly. This
iterative scheme is known to converge fast. However, it
depends highly on the initialization of cluster centers.

872 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.



In order to improve the computational efficiency, one
step of K Means is applied to the cluster centers encoded in
all the new offspring during each generation after the
feature add and remove operations. This is done by assigning
each data object to one of the clusters with the nearest center
encoded in the solution. After that, the cluster centers
encoded in the solution are replaced by the means of the
respective clusters.

4.4 Niching Method

One of the key elements in overcoming less promising
locally optimal solutions of a difficult optimization problem
with a GA approach is to preserve the population diversity
during the search [44]. In this section, we introduce a
modification of the niching method proposed in [46] and
integrate it into our GA to preserve the population diversity
during the simultaneous search for clustering and feature
selection.

The niching method presented in [46] was designed for
clustering where no feature selection is required and the
number of clusters is known beforehand. In this method, a
niching selection with a restricted competition replacement
was developed to encourage mating among similar solu-
tions while allowing for some competitions among dissim-
ilar solutions. During the niching selection, one parent p1 is
selected randomly from the population, and its mate is
selected from a group of solutions called the selection group,
picked randomly from the population. The one most similar
(determined by the euclidean distance based on a phenotypic
metric) to p1 is chosen as its mate p2. During the restricted
competition replacement, each offspring is compared with a
group of solutions called the replacement group, picked
randomly from the population, and is then paired with the
most similar one. If the fitness of the offspring is better than
its paired solution, then the latter is replaced.

With appropriate sizes of the selection and replacement
groups, this method can maintain the population diversity
with respect to the cluster centers with a fixed number of
clusters encoded in the solutions. However, for the problem
considered here, it is more important to preserve the
population diversity with respect to the number of clusters,
since the solutions with different numbers of clusters have
rather different feature selection and cluster centers. For this
purpose, we modify the niching selection to encourage
mating among solutions with similar numbers of clusters
and extend the restricted competition replacement to
encourage replacement among solutions with the same
number of clusters while allowing for some competitions
among the solutions with different numbers of clusters. The
modified niching method is implemented as follows:
During the niching selection, one parent p1 is still randomly
selected from the population. Its mate p2 is now chosen
from the selection group with the most similar number of
clusters as for p1. If this results in a group with more than
one candidate solution, the similarity of feature selection
and cluster centers is further used to select the most similar
one. During the restricted competition replacement, we
now compare the offspring with each solution that has the
same number of clusters as the offspring in the competition
group, and we pair it with the one with the most similar
feature selection and cluster centers if this exists; otherwise,
we pair it with a solution with the lowest fitness. If the

fitness of the offspring is better than its paired solution, then
the latter is replaced.

Crossover among solutions with a large difference in
cluster numbers often produces low-performance offspring.
The modified niching selection tries to promote mating
among solutions with similar numbers of clusters. When
the size of the selection group is equal to one, it is basically a
random selection. As the size increases, there is a greater
possibility of selecting parent pairs with the same number
of clusters. However, the size should be small enough to
allow mating among solutions with different numbers of
clusters. The extended restricted competition replacement is
mostly used to balance competitions during replacement
among solutions with different numbers of clusters. A large
replacement group size will restrict the replacement among
solutions with the same number of clusters. Decreasing the
size will promote more competitions among the solutions
with different numbers of clusters. An appropriate value
should be set to allow both thorough exploration of the
search space with the same number of clusters and
competitions among solutions with different numbers of
clusters. By measuring the similarity of solutions based on
their feature selection and cluster centers during replace-
ment, we are also attempting to preserve the diversity
among the solutions of the same number of clusters with
respect to feature selection and cluster centers.

4.5 Complexity

The major computational load during each generation of
the proposed algorithm is in the feature add and remove
procedures, one step of the K Means operator, and the
fitness evaluation. The feature add procedure takes
OðnkmaxD2Þ time. Similarly, the feature remove procedure
has OðnkmaxD2Þ time complexity in the worst case. The
one-step K Means operator and the fitness evaluation of a
given solution take OðnkmaxDÞ and OðnDÞ time, respec-
tively. Therefore, the overall complexity of the proposed
algorithm is OðnkmaxD2pgÞ, where p is the population
size, and g is the number of generations.

5 DATA SETS AND IMPLEMENTATION PARAMETERS

This section provides a description of the data sets used
for experimentation and the parameter settings of the
proposed algorithm. Several data sets, both real and
synthetic, have been used in our experiments. The
synthetic data sets were generated with different num-
bers of clusters, and each comprises 2,000 data objects.
These data sets contain both “relevant” and “irrelevant”
features, where “relevant” means that we create the
clusters using these features. “Irrelevant” features are
generated as Gaussian normal random variables. The first
data set Synthetic3_7 (as shown in Fig. 2a) consists
of three equiprobable Gaussian clusters, with means
�1 ¼ ð0:40; 0:20Þ, �2 ¼ ð0:20; 0:20Þ, and �3 ¼ ð0:30; 0:32Þ,
respectively. Five irrelevant features are added, yielding
a set of seven-dimensional data. The second data set
Synthetic4_10 (as shown in Fig. 2b) consists of four
clusters, with means at (0.2, 0.2), (0.2, 0.35), (0.3, 0.45),
and (0.3, 0.3), respectively. We add eight Gaussian
normal random irrelevant features. There is some overlap
among the four clusters, and the eight additional
irrelevant features increase the difficulty of the problem.

SHENG ET AL.: A NICHING MEMETIC ALGORITHM FOR SIMULTANEOUS CLUSTERING AND FEATURE SELECTION 873

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.



The third data set Synthetic6_20 (as shown in Fig. 2c) has
20 features, only five of which are relevant (features {1,
3, 6, 9, 15}). There are six Gaussian clusters across the
five relevant features. The means are sampled from a
uniform distribution on the interval [0.1, 0.5]. In each of
the data sets, the clusters are generated with equal sizes.
Note that the synthetic data sets are generated in such a
way that they present different degrees of difficulty for
simultaneous clustering and feature selection.

Three real data sets are also considered, and these are
Iris, the Wisconsin diagnostic breast cancer (WDBC), and
image segmentation. They are taken from the UCI Machine
Learning Repository [37]. The Iris data consists of 150 objects
belonging to three species of Iris, with 50 objects in each
species. This data is described by four real-valued features.
The WDBC data set has 576 data objects, with 30 features
extracted from cell nuclei presented in an image. The image
segmentation data set contains 2,310 objects with 19 features
from seven clusters, where each object consists of features
extracted from a 3 � 3 region taken from seven types of
outdoor images: brickface, sky, foliage, cement, window,
path, and grass. Normalization to zero mean and unit
variance is performed on all the three real data sets so as to
make the contribution of different features roughly equal a
priori. Since we are concerned with unsupervised learning,
the class labels in these data sets are used only for
evaluation of the clustering results.

All parameter values of the NMA_CFS procedure were
determined experimentally on the above data sets. Both
mutation rates (flip and Gaussian mutation) are set to be
0.01. To establish these values, all other parameters are held
constant, with only the mutation rate changing. Ten runs
are completed for a wide range of values of the mutation
rate. The best solutions (in terms of the fitness values) from
the 10 runs are averaged, and the best average is selected.
The sizes of selection and replacement groups are deter-
mined in a similar way. First, the size of the selection group
is varied as all other parameters are held constant, and then
the size of replacement group is determined using the
established selection group size. The selection group sizes
of 6, 8, 12, 4, 8, and 16 with the replacement group sizes of
15, 20, 30, 10, 20, and 40 have been established on the above
six data sets, respectively. The population sizes are set to be
50, 70, 100, 40, 70, and 120, respectively. The number of
generations g, which is used to terminate the evolution, is

set to be 20. A larger value of either g or population sizes
may lead to a longer runtime but with no significant
improvement in performance.

6 EXPERIMENTS

In this section, after defining several performance measures
in Section 6.1, we report a series of experiments in
Section 6.2 performed over the synthetic and real data sets
described above. We first evaluate the performance of the
proposed algorithm and compare it with related work.
Additionally, we assess the significance of the niching
method and local search operations within the proposed
algorithm. Finally, the effectiveness of the simultaneous
global clustering and feature subset search mechanism for
optimizing the unified criterion is examined. All results
were obtained on a PC with AMD Athlon 1800 running the
Windows 2000 operation system.

6.1 Performance Measures

Let us suppose that we have obtained a clustering solution
with feature selection. Some natural questions are given as
follows: How good are the clusters? Is the number of
clusters correctly identified? Is the selected feature subset
relevant? In what follows, we describe several performance
measures relevant to answer these questions.

Since the quality of clusters depends on the particular
application, there is no standard criterion for evaluating
clustering solutions in the literature [24]. To answer the first
question, here, we compute classification errors, since we
know the “true” clusters of the synthetic data and the class
labels of the real data. This is done by first running the
algorithm to be tested on each data set. Next, each cluster of
the clustering results is assigned to a class based on
examining the class labels of the data objects in that cluster
and choosing the majority class. After that, the classification
errors are computed by counting the number of misclassi-
fied data objects. To answer the second question, we report
the number of clusters found. We stress that the class labels
are not used during the generation of the clustering results,
and they are intended only to provide independent
verification of the clusters.

To answer the third question, the feature recall and
precision are reported on synthetic data, since the relevant
features are known a priori. Recall and precision are

874 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

Fig. 2. (a) Synthetic3_7, (b) Synthetic4_10, and (c) Synthetic6_20 data sets by projecting the objects onto two of the relevant features.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.



concepts from text retrieval [43]. Feature recall is the
number of relevant features in the selected subset divided
by the total number of relevant features. Feature precision is
the number of relevant features in the selected subset
divided by the total number of features selected. These
indices give us an indication of the quality of the features
selected. High values of feature recall and precision are
desired. Note that, with respect to the real data, we report
only the number of feature selected, since the relevant
features are unknown.

6.2 Results

We first conducted a set of experiments on both synthetic
and real data to evaluate the proposed algorithm, compar-
ing this with a feature selection wrapped around the
K Means algorithm (denoted by FS-K Means_BIC). To
investigate whether feature selection can help in finding
better clusters, we also report the results of the genetically
guided algorithm (GGA) [21] and K Means [31] (clustering
using all features) on the data described above.

Before discussing the results, we first briefly describe the
algorithms to be compared and their implementation
details. The FS-K Means_BIC uses SFS [14] to search for
feature subsets. The criterion used in this algorithm is the
traceðS�1

W SBÞ normalized using a cross projection scheme
[12]. To find the number of clusters, it is applied to search
through a range of possible cluster numbers and evaluate
the “goodness” of the results in each case by adding the
Bayesian information criterion (BIC) [39], [45] penalty term
to the normalized criterion. The GGA to be compared
employs a traditional GA for clustering. To make the
comparison between the two GA-based methods (GGA and
NMA_CFS) more meaningful, the same terminal criterion
(i.e., that the fitness value of the best solution in the
population has not changed for g generations) is used in
both algorithms. Since the GGA converges much more
slowly than the NMA_CFS, the g value in the GGA is set to

be relatively large, with g ¼ 40. The population size of GGA
is taken to be identical to the NMA_CFS for experiments on
each of the data sets. Other parameters of the GGA are
specified according to the original values reported with the
best performance. The K Means algorithm has been
described earlier in Section 4.3. This algorithm is initialized
by dividing the data set into a partitioning of k clusters at
random and then uses the k cluster centers as the initial
centers [40]. The stopping criterion for the K Means
algorithm is an iteration for which no data object changes
clusters. The number of clusters k, which is assumed to be
fixed in both GGA and K Means, is set to be equal to the
correct number of clusters for experiments on each data set.
All four algorithms were independently run 10 times on
each of the data sets, and their results were then averaged.

Table 1 lists the results of classification errors, number of
clusters, feature recall, and precision found with respect to
the synthetic data. It clearly shows that NMA_CFS is able to
select relevant features and locate appropriate clusters with
the correct number of clusters. In comparison with the FS-K
Means_BIC, NMA_CFS achieves lower classification errors
on all three synthetic data sets. For the FS-K Means_BIC, the
classification errors turn out to be 5.1 percent, 5.3 percent,
and 6.9 percent on the three data sets, respectively. In
comparison, in the NMA_CFS, the classification errors are
around 3.2 percent, 3.9 percent, and 2.8 percent, respec-
tively. Furthermore, our proposed algorithm offers more
precise feature selection. For example, on Synthetic4_10, the
feature precision of the FS-K Means_BIC is 0.65, while our
method shows 0.87. The performance improvement of our
proposed algorithm over the FS-K Means_BIC is mainly
due to the use of the simultaneous global clustering and
feature selection optimization mechanism, which can over-
come less promising locally optimal solutions. In compar-
ison with the GGA and K Means, both NMA_CFS and FS-K
Means_BIC show significantly better performance in terms
of classification errors. The poor performance of both GGA

SHENG ET AL.: A NICHING MEMETIC ALGORITHM FOR SIMULTANEOUS CLUSTERING AND FEATURE SELECTION 875

TABLE 1
Percent Classification Error, Number of Clusters, Feature Recall, and Precision of the Four Algorithms

(NMA_CFS, FS-K Means_BIC, GGA, and K Means) Applied to the Three Synthetic Data Sets

The entries in the table (averaged over 10 runs) give the means in the form mean (� 95 percent confidence interval).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.



and K Means is mainly because they retain the irrelevant
features for clustering. This result may indicate that feature
selection helps in finding better clusters.

Table 2 shows the results on the three real data sets.
Looking first at the Iris data, NMA_CFS achieves the best
classification error, followed by FS-K Means_BIC, GGA, and
K Means. NMA_CFS also finds the correct number of
clusters, while FS-K Means_BIC tends to overestimate the
number of clusters. Both NMA_CFS and FS-K Means_BIC
consistently choose features 3 (petal length) and 4 (petal
width). In fact, we learn from this experiment that these are
the most important features for clustering the Iris data. Two
typical clustering solutions identified by NMA_CFS and FS-
K Means_BIC are shown in Figs. 3a and 3b, respectively, as a
scatterplot on the two important features. Looking next at
the other two data sets, our algorithm still exhibits the best
performance in terms of the classification errors. In the case
of image segmentation data, feature selection does not
significantly improve the classification errors of FS-K
Means_BIC and NMA_CFS. However, they produce com-
parable results with significantly fewer features. FS-K
Means_BIC selects about 3.4 features (typically {4, 10, 12,
18}) out of 19, while our proposed algorithm picks
2.4 features (typically {4, 11}) on the average. Feature 4
stands for “short-line-density-5.” These results imply that
many features in the image segmentation data are redun-
dant or irrelevant for clustering.

Next, we carried out experiments to assess the signifi-
cance of the niching method and local search operations
within the NMA_CFS. For this purpose, we assess and
compare the NMA_CFS with three variants: NMA_CFS
without local search operations (NMA_CFS_1), NMA_CFS
without the niching method (NMA_CFS_2), and NMA_CFS
without either the niching method or local search opera-
tions (NMA_CFS_3). In the cases of NMA_CFS_2 and
NMA_CFS_3, parent pairs are selected using roulette wheel
selection, and the population of the next generation is

generated by replacing the worst solutions of previous
population with the offspring. These algorithms are
compared using the same parameter settings. In order to
investigate the convergence properties, a relatively large
parameter value g ¼ 50 is used in the terminal condition for
all four algorithms.

Fig. 4 shows the average classification errors of the best
solutions over the runtime corresponding to the four
algorithms on the Synthetic6_20. It is observed that
NMA_CFS_3 performs the worst. The niching method and
local search operations improve the performance of the
algorithm in different ways. NMA_CFS_1 shows that the
niching method helps prevent the algorithm from conver-
ging to less promising solutions. However, the convergence
of the algorithm is slow. NMA_CFS_2 shows that as
compared with NMA_CFS_1, the local search operations
significantly speed up the convergence during the evolu-
tion. However, it is susceptible to less promising optimal
solutions with higher classification errors. By incorporating
both the niching method and local search operations,
NMA_CFS can efficiently recover solutions with low
classification errors. In fact, this is the main reason for
using the niching method and local search operations in
NMA_CFS.

Finally, we report experiments to examine the effective-
ness of the simultaneous global clustering and feature
subset search mechanism by comparing it with the
traditional SFS [14] wrapped around the K Means proce-
dure [31] to optimize the unified criterion J2 (denoted by
FS-K Means J2). To search for the number of clusters, we
run FS-K Means J2, with a range of numbers of clusters
from 2 to kmax, and evaluate J2 of the results in each case.
kmax is taken to be

ffiffiffi
n
p

for each data set. The results are
presented in Table 3.

The results show that the NMA_CFS with the simulta-
neously applied global clustering and feature subset search

876 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

TABLE 2
Percent Classification Error, Number of Clusters, and Number of Features Selected by the Four Algorithms

(NMA_CFS, FS-K Means_BIC GGA, and K Means) Applied to the Three Real Data Sets

The entries in the table (averaged over 10 runs) give the means in the form mean (� 95 percent confidence interval).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.



mechanism outperforms FS-K Means J2. The difference

between the two algorithms lies in the search procedure

used for the optimization of J2. Consequently, the results

reveal that the proposed mechanism can overcome less

promising locally optimal solutions and are therefore able

to more accurately select relevant features and identify

appropriate partitionings. The traditional SFS wrapped

around the K Means procedure, however, usually con-

verges to less promising locally optimal solutions. This is

mainly because SFS has difficulty in anticipating the

complex interactions among features.

7 CONCLUSIONS

We have designed and implemented NMA_CFS by
optimizing the suggested unified criterion J2. The signifi-
cance of the niching method and local search operations
within the proposed algorithm has been clearly shown in
the experimental results, which also confirm that the
simultaneous global clustering and feature subset optimiza-
tion mechanism is effective in approaching the problem.
The resulting algorithm is generally able to select relevant
features and locate appropriate partitionings with the
correct number of clusters and outperforms other methods
implemented for comparison.

SHENG ET AL.: A NICHING MEMETIC ALGORITHM FOR SIMULTANEOUS CLUSTERING AND FEATURE SELECTION 877

Fig. 3. Typical partitioning found on the Iris data set by (a) NMA_CFS and (b) FS-K Means BIC shown on the two important features (different

clusters represented by different symbols).

Fig. 4. Percent classification errors of the best solutions (averaged over five runs) plotted against the runtime corresponding to the four algorithms on

the Synthetic6_20 data set.

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.



For future work, it will be very interesting to apply the
NMA_CFS procedure to real data sets with an abundance of
irrelevant or redundant features. An example of such an
application is to cluster gene expression data, in which the
goal is to identify the informative gene subset for cluster
discovery from a large data set that is contaminated with
very-high-dimensional irrelevant features. In this case,
identifying a relevant subset that adequately captures the
underlying structure in the data can be particularly useful.
Additionally, as a general optimization framework, the
proposed algorithm can be applied for text mining [27]. In
such a case, an unbiased clustering criterion in some sense
can be produced by computing the mutual information
between clusters, thus enabling a better verification of the
properties of the proposed optimization scheme.

REFERENCES

[1] H. Almuallim and T. Dietterich, “Learning with Many Irrelevant
Features,” Proc. Ninth Nat’l Conf. Artificial Intelligence (AAAI ’91),
pp. 547-552, 1991.

[2] S. Areibi and Z. Yang, “Effective Memetic Algorithms for VLSI
Design Automation = Genetic Algorithms + Local Search + Multi-
Level Clustering,” Evolutionary Computation, vol. 12, no. 3, pp. 327-
353, 2004.

[3] P. Baldi and G.W. Hatfield, DNA Microarrays and Gene Expression.
Cambridge Univ. Press, 2002.

[4] S. Basu, C.A. Micchelli, and P. Olsen, “Maximum Entropy and
Maximum Likelihood Criteria for Feature Selection from Multi-
variate Data,” Proc. IEEE Int’l Symp. Circuits and Systems (ISCAS
’00), pp. 267-270, 2000.

[5] A. Blum and P. Langley, “Selection of Relevant Features and
Examples in Machine Learning,” Artificial Intelligence, vol. 97,
no. 1/2, pp. 245-271, 1997.

[6] C. Cardie, “Using Decision Trees to Improve Case-Based Learn-
ing,” Proc. 10th Int’l Conf. Machine Learning (ICML ’93), pp. 25-32,
1993.

[7] S.K. Das, “Feature Selection with a Linear Dependence Measure,”
IEEE Trans. Computers, pp. 1106-1109, 1971.

[8] M. Dash and H. Liu, “Unsupervised Feature Selection,” Proc.
Fourth Pacific Asia Conf. Knowledge Discovery and Data Mining
(PAKDD ’00), pp. 110-121, 2000.

[9] K.A. DeJong, “An Analysis of the Behavior of a Class of Genetic
Adaptative Systems,” PhD dissertation, Univ. of Michigan, Ann
Arbor, 1975.

[10] A.P. Dempster, N.M. Laird, and D.B. Rubin, “Maximum Like-
lihood from Incomplete Data via the EM Algorithm,” J. Royal
Statistical Soc. B, vol. 39, no. 1, pp. 1-38, 1977.

[11] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification. Wiley,
2001.

[12] J. Dy and C. Brodley, “Feature Subset Selection and Order
Identification for Unsupervised Learning,” Proc. 17th Int’l Conf.
Machine Learning (ICML), 2000.

[13] J. Dy and C. Brodley, “Feature Selection for Unsupervised
Learning,” J. Machine Learning Research, pp. 845-889, 2004.

[14] I. Foroutan and J. Sklasky, “Feature Selection for Automatic
Classification of Non-Gaussian Data,” IEEE Trans. Systems, Man
and Cybernetics, vol. 17, pp. 187-198, 1987.

[15] H. Frigui and R. Krishnapuram, “A Robust Competitive Cluster-
ing Algorithm with Applications in Computer Vision,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 21, no. 5,
pp. 450-465, May 1999.

[16] K. Fukunaga, Statistical Pattern Recognition. Academic Press, 1990.
[17] M. Garey and D. Johnson, Computers and Intractability-A Guide to

the Theory of NP-Completeness. W.H. Freeman, 1979.
[18] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning. Addison-Wesley, 1989.
[19] D.E. Goldberg and J. Richardson, “Genetic Algorithms with

Sharing for Multimodal Function Optimization,” Proc. Second Int’l
Conf. Genetic Algorithms (ICGA ’87), pp. 41-49, 1987.

[20] M.A. Hall, “Correlation Based Feature Selection for Discrete and
Numeric Class Machine Learning,” Proc. 17th Int’l Conf. Machine
Learning (ICML), 2000.

[21] L.O. Hall, I.B. Ozyurt, and J.C. Bezdek, “Clustering with a
Genetically Optimized Approach,” IEEE Trans. Evolutionary
Computation, vol. 3, no. 2, pp. 103-112, 1999.

[22] R.P. Heydorn, “Redundancy in Feature Extraction,” IEEE Trans.
Computers, pp. 1051-1054, 1971.

878 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 20, NO. 7, JULY 2008

TABLE 3
Comparing the Results of the Two Algorithms (NMA_CFS and FS-K Means J2) Applied to the Six Data Sets

The entries in the table (averaged over 10 runs) give the means in the form mean (� 95 percent confidence interval).

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.



[23] J.H. Holland, Adaptation in Natural and Artificial Systems. Univ. of
Michigan, Ann Arbor, 1975.

[24] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data. Prentice
Hall, 1988.

[25] A.K. Jain and P. Flynn, “Image Segmentation Using Clustering,”
Advances in Image Understanding, pp. 65-83, 1996.

[26] K. Kira and L. Rendell, “A Practical Approach to Feature
Selection,” Proc. Ninth Int’l Conf. Machine Learning (ICML ’92),
pp. 249-256, 1992.

[27] J. Kogan, C. Nicholas, and V. Volkovich, “Text Mining with
Information-Theoretic Clustering,” IEEE Computational Science and
Eng., pp. 52-59, 2003.

[28] R. Kohavi and G.H. John, “Wrappers for Feature Subset
Selection,” Artificial Intelligence, vol. 97, no. 1/2, pp. 273-324, 1997.

[29] I. Kononenko, “Estimating Attributes: Analysis and Extension of
Relief,” Proc. Seventh European Machine Learning Conf. (ECML ’94),
pp. 171-182, 1994.

[30] K. Krishna and M.N. Murty, “Genetic K-Means Algorithm,” IEEE
Trans. Systems, Man and Cybernetics Part B, vol. 29, no. 3, 1999.

[31] J. MacQueen, “Some Methods for Classification and Analysis of
Multivariate Observations,” Proc. Fifth Berkeley Symp. Math.
Statistics and Probability, pp. 281-297, 1967.

[32] S.W. Mahfoud, “Niching Methods for Genetic Algorithms,” PhD
dissertation, Univ. of Illinois, Urbana-Champaign, 1995.

[33] U. Maulik and S. Bandyopadhyay, “Genetic-Algorithm-Based
Clustering Technique,” Pattern Recognition, vol. 33, pp. 1455-1465,
2000.

[34] P. Merz and B. Freisleben, “Memetic Algorithms and the Fitness
Landscape of the Graph Bipartitioning Problem,” LNCS, pp. 765-
774, 1998.

[35] P. Moscato, “On Evolution, Search, Optimization, Genetic Algo-
rithms and Martial Arts: Toward Memetic Algorithms,” technical
report, California Inst. Technology, 1989.

[36] P. Moscato, “Memetic Algorithms: A Short Introduction,” New
Ideas in Optimization, D. Corne, M. Dorigo, and F. Glover, eds.,
McGraw-Hill, pp. 219-234, 1999.

[37] P.M. Murphy and D.W. Aha, “UCI Repository for Machine
Learning Databases,” technical report, Dept. Information and
Computer Science, Univ. of California, Irvine, http://www.ics.
uci.edu/mlearn/MLRepository.html, 1994.

[38] N.R. Pal and J.C. Bezdek, “On Cluster Validity for the Fuzzy
C-Means Model,” IEEE Trans. Fuzzy Systems, vol. 3, no. 3, pp. 370-
379, 1995.

[39] D. Pelleg and A. Moore, “X-Means: Extending K-Means with
Efficient Estimation of the Number of Clusters,” Proc. 17th Int’l
Conf. Machine Learning (ICML ’00), pp. 727-734, 2000.

[40] J.M. Pena, J.A. Lozano, and P. Larranaga, “An Empirical
Comparison of Four Initialization Methods for the K-Means
Algorithms,” Pattern Recognition Letters, vol. 20, pp. 1027-1040,
1999.

[41] A. Petrowski, “A Clearing Procedure as a Niching Method for
Genetic Algorithms,” Proc. IEEE Int’l Conf. Evolutionary Computa-
tion (ICEC ’96), pp. 798-803, 1996.

[42] M.L. Raymer, W.F. Punch, E.D. Goodman, L.A. Kuhn, and A.K.
Jain, “Dimensionality Reduction Using Genetic Algorithms,” IEEE
Trans. Evolutionary Computation, vol. 4, no. 2, pp. 164-171, 2000.

[43] G. Salton and M.J. McGill, Introduction to Modern Information
Retrieval. McGraw-Hill, 1983.

[44] B. Sareni and L. Krähenbühl, “Fitness Sharing and Niching
Methods Revisited,” IEEE Trans. Evolutionary Computation, vol. 2,
pp. 97-106, 1998.

[45] G. Schwarz, “Estimating the Dimension of a Model,” The Annals of
Statistics, vol. 6, no. 2, pp. 461-464, 1978.

[46] W. Sheng, A. Tucker, and X. Liu, “Clustering with Niching
Genetic K-Means Algorithm,” Proc. Genetic and Evolutionary
Computation Conf. (GECCO ’04), pp. 162-173, 2004.

[47] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888-905, Aug. 2000.

[48] S. Tavazoie, D. Hughes, M.J. Campbell, R.J. Cho, and G.M.
Church, “Systematic Determination of Genetic Network Archi-
tecture,” Nature Genetic, vol. 22, pp. 281-285, 1999.

[49] S. Theodoridis and K. Koutroumbas, Pattern Recognition. Aca-
demic, 1999.

[50] G.T. Toussaint and T.R. Vilmansen, “Comments on Feature
Selection with a Linear Dependence Measure,” IEEE Trans.
Computers, 1972.

[51] H.K. Tsai, J.M. Yang, Y.F. Tsai, and C.Y. Kao, “An Evolutionary
Approach for Gene Expression Patterns,” IEEE Trans. Information
Technology in Biomedicine, vol. 8, no. 2, pp. 69-78, 2004.

[52] D. Whitley, “Modeling Hybrid Genetic Algorithms,” Genetic
Algorithms in Eng. and Computer Science, G. Winter, J. Periaux,
M. Galan, and P. Cuesta, eds., John Wiley, pp. 191-201, 1995.

[53] S. Wu, A.W.C. Liew, H. Yan, and M. Yang, “Cluster Analysis of
Gene Expression Database on Self-Splitting and Merging Compe-
titive Learning,” IEEE Trans. Information Technology in Biomedicine,
vol. 8, no. 1, 2004.

[54] J.H. Yang and V. Honavar, “Feature Subset Selection Using a
Genetic Algorithm,” IEEE Intelligent Systems, vol. 13, no. 2, pp. 44-
49, 1998.

Weiguo Sheng received the MSc degree in
information technology from the University of
Nottingham, Nottingham, United Kingdom, in
2002 and the PhD degree in computer science
from Brunel University, London, in 2005. He is
currently a research associate in the Depart-
ment of Electronics, University of Kent, Canter-
bury, United Kingdom. His research interests
include evolutionary computation, heuristic
search, data mining/clustering, and their appli-

cations to bioinformatics, biometrics, and security.

Xiaohui Liu is a professor of computing at
Brunel University, where he conducts interdisci-
plinary research concerned with the effective
analysis of data, particularly in biomedical areas.
He founded a biennial international conference
series on intelligent data analysis in 1995 and
gave numerous invited and keynote talks. He
has more than 100 journal publications in
biomedical informatics, data mining, and intelli-
gent systems. He is a charted engineer, a life

member of the Association for the Advancement of Artificial Intelligence,
and a fellow of the Royal Statistical Society and the British Computer
Society.

Michael Fairhurst is the head of the Department
of Electronics, University of Kent, Canterbury,
United Kingdom. His research interests include
computational architectures and algorithms for
image analysis and classification, and their
applications to handwritten text reading, docu-
ment processing, and medical image analysis, in
particular security and biometrics. His current
projects include work on multimodal biometrics,
on verification engines for biometrics, on asses-

sing the vulnerability of biometric identification techniques, and on the
analysis of handwriting for identification purposes and to improve the
effectiveness of automated processing for forensic applications. Bio-
metric processing also underpins work that investigates document
encryption linked to biometric data. In related work, he is further
developing work that he pioneered at Kent, which has established novel
techniques for the assessment and monitoring of neurological conditions
through the analysis of patients’ writing and drawing abilities. He sits on
numerous conference, workshop, and government committees and is on
the editorial boards of several international journals. He has published
more than 350 papers in the scientific literature. He is a fellow of the
International Association for Pattern Recognition (IAPR).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SHENG ET AL.: A NICHING MEMETIC ALGORITHM FOR SIMULTANEOUS CLUSTERING AND FEATURE SELECTION 879

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 24, 2009 at 07:51 from IEEE Xplore.  Restrictions apply.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


