
An Ontological Approach for Recovering Legacy Business Content

Aseem Daga, Sergio de Cesare, Mark Lycett and Chris Partridge

 DISC, Brunel University

Uxbridge, Middlesex, UK

Firstname.lastname@brunel.ac.uk

Abstract— Legacy Information Systems (LIS) pose a challenge

for many organizations. On one hand, LIS are viewed as aging

systems needing replacement; on the other hand, years of

accumulated business knowledge have made these systems

mission-critical. Current approaches however are often criticized

for being overtly dependent on technology and ignoring the

business knowledge which resides within LIS. In this light, this

paper proposes a means of capturing the business knowledge in a

technology agnostic manner and transforming it in a way that

reaps the benefits of clear semantic expression – this

transformation is achieved via the careful use of ontology. The

approach called Content Sophistication (CS) aims to provide a

model of the business that more closely adheres to the semantics

and relationships of objects existing in the real world. The

approach is illustrated via an example taken from a case study

concerning the renovation of a large financial system and the

outcome of the approach results in technology agnostic models

that show improvements along several dimensions.

Keywords- legacy system; legacy transformation; ontology;

content transformation.

I. INTRODUCTION

The software engineering field has evolved and matured
over the last four decades, but the so called ‘Legacy
Information System’ (LIS) problem still exists [1]. Monolithic
systems, designed and developed during the 1960s and 1970s,
continue to operate and perform within a large number of
organizations. These systems run on obsolete hardware and
software capabilities, are designed in a stovepipe fashion, have
rigid work processes and their maintenance budgets alone
consume around 60-80% of the software related budgets of the
organization [2]. Constant restructuring and alteration is often
carried out to keep them functionally operational, however lack
of system knowledge and appropriate documentation has meant
that certain systems continue to run on their original
specification. While such systems are often viewed as prime
candidates for replacement; having been in operation for a
number of years, these systems have also become mission-
critical to the organization. Not only do they perform important
functions for the organization but in some situations they are
the only source of business knowledge (for example in the
form of business rules, work processes and more importantly
business data) [3] [4]. Systems that exhibit such a dual nature
are known as LIS, and are prominent within a number of
organizations.

The duality associated with LIS has made looking for
appropriate solutions a difficult exercise. While a number of
approaches have emerged that aim to resolve the LIS problem
[5] [6] [2] [7] [8], they remain largely ineffective in providing

a stable solution [9] [10]. The major issue with current
approaches is that they view the LIS problem primarily from a
technical perspective. The limitation with such a perspective is
that it not only ignores the organizational and business aspects
of LIS, but it also means that the whole effort is spent on
creating a LIS for the future[1]. The business knowledge, often
vital for the organization, is either neglected or always tied into
some technology. As a result, while on one hand, the program
understanding task becomes that much more difficult and
costly to implement, on the other hand, it also means that little
or no effort is spent on preserving or sophisticating (improving)
the business knowledge in a manner that allows for its repeated
use.

Given the increasing need to identify the enduring and
stable aspects of the system [11], this paper stresses the need to
capture and document such business knowledge into business
models, where the knowledge can be understood and reflected
through a business perspective and allowed to evolve in line
with business needs [12]. This has two distinct advantages.
Firstly, it can deliver a system whose business knowledge is
provably more sophisticated than that of the pre-existing
system and secondly, since the approach is model-driven, the
achieved benefits outlive the individual project and can be re-
employed in subsequent renovation projects.

To achieve the desired benefits, this paper presents an
ontology-based approach for renovating LIS called Content
Sophistication (CS). The approach is described in the context
of an example of a large financial organization to show (a) that
the practical benefits of applying the CS approach are
significant and (b) models that emerge from the CS process are
semantically rich and are stable across contexts of use. In an
effort to clearly distinguish the ontological aspect from its
epistemic counterpart, the present research focuses on
extracting the knowledge from the data residing within the LIS.
The main objective of CS is to extract and document the
business knowledge from the business data and interpret and
improve its real-world semantics (clarify its knowledge) to
provide a clear fit between the data and what they represent
(real world objects). Ontology provides the basis for
understanding and documenting the real-world semantics of the
data and a pathway for the data to be ‘sophisticated’.
Sophistication is a term that refers to the process of
improvement along several dimensions which provides the
pathway to evaluate the semantic richness of the data. The
following section argues the case for a different approach by
critically examining the current LIS renovation approaches.
Section 3 explains the concept of CS. Section 4 describes the
research design underlying the current work. Section 5
describes CS through an example in the context of the
migration of a large financial system. Section 6 discusses the

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

theoretical and practical implications of the approach. Lastly,
conclusions and directions for future research are presented.

II. BACKGROUND AND RELATED RESEARCH

In the field of Information Systems (IS), the meaning
attributed to LIS is normally confined to two different
perspectives. One perspective interprets and defines LIS in a
depreciative sense, suggesting an aging system, incapable of
adapting and changing as required by modern-day emergent
organizations [13] [14]. Another school of thought adopts a
more positive interpretation and views LIS as a valuable source
(in some cases the only source) of business knowledge, which
serves as a precious resource for future improvements to the IS
and the organization as a whole [15] [16]. This research takes a
more positive interpretation of LIS and views it as an important
source of business knowledge, which should be preserved for
the well-being of the organization.

The increasing cost of managing LIS together with the need
to preserve business knowledge has meant that renovating LIS
has become an important research topic over the years. While
a number of approaches have emerged to solve the LIS
problem, practical solutions have been slow to emerge for a
variety of reasons. Most of the approaches are guilty of only
considering technology-based solutions for LIS renovation.
They ‘unlock’ a system view of the business from one
technology set, make some changes to aspects of data and/or
behavior, and ‘lock’ the revised view into another technology
set. This focus has limitations, as a technology dependent
solution means that the whole process is geared towards
building a LIS for the future [4]. Moreover it means that the
business knowledge is always locked into a specific technology
at any given time. So every time a renovation project is
initiated, the organization has to either find mechanisms to
move business knowledge onto the target system or risk the
prospect of developing this business knowledge again from
scratch. Taking a technology dependent view means that the
knowledge becomes further entrenched within the technology
and any program understanding task becomes that much more
difficult to achieve.

Considering that LIS are poorly designed and documented,
in many instances such knowledge is the only source of
business information and hence is vital and should be preserved
at any cost [3]. One of the primary and most visible sources of
business knowledge is ‘business data’. Given the wealth of
information that the data holds about the various aspects of the
business, it is often viewed as a fundamental source of business
knowledge [17]. Although few data-based solutions have
emerged in response to the increasing relevance of data, they
remain largely ineffective in either preserving and improving
the underlying business knowledge or providing a technology
independent solution. The approaches in this camp only
consider the basic process of migrating the data from one
system to another: Where effort is undertaken to understanding
the semantics, the focus is necessarily limited to making
improvements from an application perspective (schemas and
data normalization aspects) and not from a business perspective
(real world reference). Consequently, issues such as integration
and harmonization of application data from various LIS remain

largely unresolved primarily due to lack of clear semantics and
standardized data [5].

Current solutions rarely make use of models and
architectures which allow for specifications to be laid out
clearly and understood from a business perspective and used
for future reference. As a result, there is hardly any attempt to
extract the business knowledge and document it in business
models so as to (a) explicitly capture and separate the business
knowledge from the underlying technology and (b) enrich the
knowledge. The following is a brief overview of current legacy
renovation approaches. This overview is aimed at highlighting
the technology-dependent view of current approaches and how
they seriously fail to address the problem of delivering
semantically rich models of legacy systems’ business data. The
approaches taken from the literature are as follows:

• Big Bang or Cold Turkey Approach [18]: This

approach advocates re-developing the existing system

from scratch using modern architectures and the latest

technology. The LIS remains operational until the new

system is developed and subsequently switched off. The

approach while forward looking, involves a very

substantial risk for the organization. The approach suffers

from being primarily a technology-based solution and

completely ignores the knowledge stored within the

existing system. Moreover, the assumption that the new

system will always be better in terms of efficiency, cost

and functionality remains an open issue.

• Wrapping Approach [7]: Wrapping offers an easy and

cost effective alternative to replacement. The approach

works by hiding the complexity of the system through

modern looking interfaces [19]. LIS can be wrapped at the

functional level, data level or at the user interface level.

While wrapping offers a cost effective alternative, it very

much remains a short-term solution for LIS renovation.

The approach solves the immediate problem of LIS, but in

the long term wrapping means an additional layer of code

to manage. Moreover, being completely dependent on

technology implies that the layer will continue to grow

whenever the current technology is replaced.

• Chicken Little Approach [2]: This approach emerges as

a result of the increasing significance of the data aspect of

the LIS and the need to preserve the data assets. The

approach proposes an 11-step gateway-based migration

approach for renovating both the application and the

legacy database concurrently. As the approach involves

migrating both the data and application concurrently,

completing the whole process can become time-

consuming. With technology changing at a rapid pace,

this can become really tricky, if the target technology

becomes obsolete over time. Moreover as the approach

merely migrates the data without making any kind of

sophistication (semantics or schematic), the actual

benefits of the approach become limited overall.

• Butterfly Approach [20]: This is a data migration

approach which prescribes that systems do not need to

interoperate while the data is being migrated. The

approach eliminates the need for gateways as the LIS is

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

rendered read-only, while the data is migrated to the

target system. Manipulation of the data is managed

through software called DAA (Data Access Allocator)

and all the manipulations during the migration process are

stored in auxiliary data stores called TempStores (TS).

Chrysaliser, a piece of software then manages the

migration the data from the LIS and TS to the target

system. The Butterfly Approach requires that the skeleton

of the target database be designed completely before the

migration process can initiate. With systems that have

little documentation, understanding the data schemas and
then replicating them can involve considerable effort and

time. This cost can then increase exponentially

every time the system needs to be renovated. Moreover ,

even though the approach stresses on understanding the

semantics of the data, the actual scope is limited to

understanding the data schemas so that they can be

redesigned in the target system.

• Iterative Re-engineering Approach [8]: The Iterative

Re-engineering approach builds on the Chicken Little

approach by applying a data re-engineering strategy to the

whole approach. The approach is incremental and works

by dividing the LIS in small components and identifying

the components that need to be re-engineered. The data

aspects related to components that need to be renovated

are initially understood and their data structures re-

engineered and migrated to the target technology along

with real data. The component is then re-engineered using

modern tools and techniques. While the approach is data-

centric, the focus remains in developing the target

technology. The purpose of understanding the data is only

aimed at separating relevant data from data that is

redundant and no longer needs to be migrated. Similar to

the Butterfly approach, semantics are rarely understood

from a real world perspective and knowledge rarely

captured to provide a better understanding of descriptions

and relationships. Moreover, being technology focused

means that the whole process will have to be done again

once the current system becomes a legacy.

In summary, as highlighted in Table 1 the renovation
approaches available for LIS either tend to be very technology
motivated or are limited to basic data migration with the
primary motive of migrating the data from one system to
another. In either case they remain largely incapable of
capturing the business knowledge expressed through business
data in a manner that allows such knowledge to evolve and
benefit the organization. Although, the Butterfly and Iterative
Approaches are more mature, as they highlight the need to
understand the semantics of the data, the focus remains clearly
embedded in developing the target technology and not the
underlying business knowledge. To overcome the enduring
problems associated with a technology focused view, the focus
of LIS renovation needs to shift to a more model-based
approach because: (a) the use of technology in itself is not
sufficient to represent all the complexities underlying the
business which can only be done from a real world perspective
and (b) to explicitly capture the business knowledge hidden
within business data in a technology independent fashion, thus
allowing scope for improving and enriching the data. The paper
proposes such an approach, called Content Sophistication,
whose objective is to capture and deliver sophisticated business
knowledge underlying the business data in a technology
agnostic fashion.

III. CONTENT SOPHISTICATION

The ‘Content Sophistication’ (CS) approach is aimed at
extracting and documenting the business knowledge hidden
within business data (in the form of type and individual level
data) from LIS and improving this knowledge along several
dimensions of ‘sophistication’. Business knowledge refers to
the real world objects that the business data describes.
Sophistication is an improvement process undertaken to
explicitly understand and document this business knowledge,
thus providing scope for increase in the semantic richness of
the business data by reducing complexity and increasing the
potential functionality and interoperability. Sophistication is
achieved via the careful use of ontology which provides a
framework and a process to improve the semantic richness of
the data by clearly identifying the objects that exist within the

TABLE I. CURRENT LIS RENOVATION APPROACHES

IS Renovation

Approaches

Features

Available/Supported

Re-engineering Approaches

Chicken Little Butterfly Iterative

Approach Methodology Re-engineering

Wrapping Re-development

Technology Focused

Data Relevance
Focuses only on the

migration of data from one

technology to another

Schema level

Data level

× ×

Semantic Focus × Linguistic and

application

Perspective

Linguistic and application

perspective

× ×

Architectural and
Modeling Focus

× × × × ×

Business Knowledge Remains embedded within

technology as knowledge is
transferred from one system

to another

Remains embedded

within technology
as focus is on

improving database

design

Remains embedded within

technology
as focus is on improving

database design

× ×

Process Structure Incremental and iterative

although the whole system

needs to be transformed

Incremental and

iterative

Incremental and iterative

although the whole system

needs to be transformed

Ad-hoc Ad-hoc and complete

transformation at one

go

 × - Does not consider or Feature not available
 - Feature available in some form or other

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

business along with the types and relationships among
those objects. This section provides an overview of the CS
approach and articulates how the approach deals with the
problem prevalent within current LIS renovation approaches.

The major limitation of current approaches lies in their
inability to capture business knowledge at a technology
independent level. Efforts are rarely aimed at capturing the
business knowledge at a Computational Independent Model
(CIM) level [21]. CIM is a part of the Object Management’s
Group’s (OMG) Model Driven Architecture (MDA) initiative.
The CIM level highlights the need for well-developed business
models and aims to separate business concerns from
application concerns and the underlying platform technology.
Such a view is important as modern organizations are in a
constant state of evolution and business requirements are
continuously changing [22]. In order to understand and
represent business requirements, it is important to capture the
relative knowledge in models that allow an organization to
understand the inherent composition of the business, along with
a clearly defined way to deliver business value, irrespective of
particular application concerns. CS operates at a CIM level,
producing business models that are independent of any type of
technology or platform. Not being tied to any specific
technology, CS allows the organization to understand and
document knowledge in terms of its business semantics
providing scope for future refinements and re-use.

In addition to this model-based perspective (not present
within the current LIS approaches), there is also the issue of
clarifying the real world semantics of the data. In general,
semantics is broadly defined around the notion of ‘sense’ and
‘reference’, which form the basis of a concept’s (data) meaning
[23]. While reference is the relationship between the concept
and the objects it refers to in real world (real world semantics),
sense is the thought that the concept expresses (reflected in a
concept’s relationships to other concepts). The issue with
present approaches is that they intuitively recognize the need to
understand the sense of the data (linguistic meaning) without
clearly understanding what the data means from a real world
perspective. This can have severe limitations as the sense
perspective is often dependent on a number of assumptions and
the context in which it is used or defined. These assumptions
can depend on designer preferences, application needs or
language used to define the concept and they rarely take into
account the real world reference of the concept as this
knowledge is often viewed as implied within the concept itself.
Consequently, many systems often face heterogeneity issues,
because the same concepts, which look semantically equivalent
from a sense perspective, are different because they reference
(or correspond to) different real world objects and vice-versa
[24]. To clarify and remove semantic heterogeneity
surrounding the data and its structure, it is often important to
understand the business knowledge hidden behind the data, i.e.,
what objects they describe – their real world semantics. The
use of ontology helps to clarify the real world semantics hidden
within the data and also provides a framework within which the
objects can be understood, modeled, and sophisticated to be
used as a reference ontology for future applications.

CS is an ontology-based approach; it uses the philosophical
notions of ontology as the basis for understanding, modeling

and sophisticating the business data. The aim of philosophical
ontology is to seek truth and develop theories that provide a
clear description of what ‘objects exist’ in the real world of any
domain, what relationships exist between the objects and their
categorization (i.e., types) [25]. To decipher the business
knowledge implicit in the data, it is important to understand the
meaning of the data – its logical semantics. Ontology is used as
an approach for understanding the semantics of the data, as it
reduces the conceptual and terminological confusion, both
implicit and explicit, and achieves a shared understanding [26]
[27].

CS uses ontology at two levels. At an initial level, ontology
provides a means for analyzing and deciphering the real world
semantics that are hidden in the data. This is done through the
notion of ‘ontic commitment’. Ontic commitment is based on
‘what exists’ and it expresses a commitment to the existence of
certain objects and their categories. This can be explained
through the following example. By nature, information is about
something. More precisely, any IS (whether a business or
computer system) refers to objects – and so implies that they
exist. These objects are the information’s ontic commitment.
Applying the notion of ontic commitment is important as it
allows moving away from the linguistic representation which is
normally accepted as true to more valid claims of what exists.
The basis for applying ontic commitment and developing the
subsequent ontology comes from the data within the existing
system. The existing data represents the underlying set of
objects that exist in this world together with its relationships
and types, thus providing the means for describing the
ontology. At another level the relevant objects and relations of
the ontology are modeled over time and across multiple
systems and domains within a common conceptual framework
(ontological model), which provides a representation of the
ontology. The conceptual framework directly reflects the
ontology, in other words objects modeled in the framework
map to objects in the real world. While this representation not
only removes any problems pertaining to implicit and hidden
knowledge, it also allows the ontology developed to be shared
with others who have similar needs for knowledge
representation in that domain, thus saving a significant amount
of labor that will have gone in replicating the same knowledge.

CS is based on the REV-ENG
TM

methodology [28], which
defines a way to re-engineer existing systems into business
models by using business objects and General Business
Patterns (GBP). Business objects, as mentioned earlier, refer to
the objects that exist in the real world and as a result have
meaning and usage to the business (e.g., countries, postal
regions). GBP are patterns of business objects that are related
to each other (e.g., the pattern Geo-Political Region (GPR)
expresses a relation between countries and postal regions
amongst others). Both business objects and GBP are a
‘sophisticated’ representation of legacy business data that
emerges through the process of applying CS to the LIS.

CS is normally carried out in two distinct phases, namely
Interpretation and Sophistication. Interpretation is defined as
identifying the business objects (e.g., countries, postal regions)
that the system commits to existing (ontic commitment).
Interpretation offers the opportunity to understand the real
world semantics of the data from the application’s perspective

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

and within its context of use. This knowledge might or might
not concur with what exists in the real world, thus providing
scope for sophisticating the business data and clarifying its real
world semantics. The interpretation process works its way
through the LIS identifying both the explicit and implicit
business data. This underwrites the completeness relative to the
LIS, ensuring that all the business data is captured in the final
model. In outline terms, sophistication can be defined as the
process of gradually improving a business model - by
removing any discrepancy between the semantics of the data
from an application perspective and what exists in the real
(business) world. The aim is to provide better theories and a
more precise representation of the world. Sophistication thus
provides the underpinnings for stability and the evaluation of
the stability aspect can be judged along the following
dimensions:

• Explanatory power: The ability of the improved model

can give increased meaning to the objects and the

relationships expressed.

• Fruitfulness: The degree to which the improved model

can meet currently unspecified requirements or is easily

extendable to do so.

• Generality: The degree by which the scope of the types in

the improved model can be increased without the loss of

information.

• Objectivity: The ability of the model to provide a more

objective (shared) understanding of the world.

• Precision: The ability of the improved model to give a

more precise picture of the business object: in particular, to

index a thing to its mode of existence as opposed to its

mode of representation and/or application.

• Simplicity: The degree by which the model can be made

less complex.

IV. RESEARCH DESIGN

The research approach adopted in this work is based on
grounded theory [29] [30]. A grounded theory approach to
conducting the research was deemed appropriate. Firstly, given
that ontology is about the objects that exist in the real world, a
natural consequence is that work aimed at modeling ontologies
should be based on empirical observation. Secondly, in the
presence of large complex LIS (of the magnitude of tens of
thousands of individual data items) a methodical approach to
collecting, analyzing and identifying patterns in the data is
necessary. Thirdly, the research described in this paper is
novel. In the absence of previous theories on the subject area, a
theory could only be constructed by grounding it in the data of
the systems available.

The primary aim for using the grounded theory approach is
the discovery of the conceptual framework. The process
underlying the discovery is CS. The former can be viewed as
the theory that emerges, whereas the latter represents the
‘grounded’ process for the discovery of the framework. As
highlighted in Figure 1, the process undertaken to extract the
business objects is grounded in the data of operational LIS. All
GBP and objects in CS are grounded in data; none result from
pure deduction. While the focus at present is to identify the
necessary sophistication gaps and develop the initial

framework, it is however necessary to test the generality of the
framework across multiple systems and domains and refine the
framework until a saturation point is reached (i.e., new data
does not impact the model). It is only then that an agreement
can be reached as to whether the ontological model that has
been developed is complete and comprehensive. The nature of
how general the framework can be needs to be considered from
a pragmatic perspective.

While explaining the conceptual framework is outside the
scope of this paper, the ontological constructs (metadata
repository) and how CS has been applied to extract and
sophisticate the business knowledge is defined in the next
section. The sophisticated models that emerge as a result of
applying the CS process only form a part of the overall
conceptual framework alongside other sophisticated models
[31].

Figure 1. Research Design

V. CONTENT SOPHISTICATION APPLIED

To highlight its practical benefits, CS is best explained
through an example of a Sophistication Instance (SI). A SI is a
CS artifact whose purpose is to enable the benefits of CS to be
easily presented to and understood by a business audience. The
SI presented in this section is part of a piece of work
undertaken to renovate a large financial system, henceforth
referred to as ‘App X’ and the company as ‘Company X’.
Company X is a large information technology solution and
services company with interest in a number of vertical markets.
App X is a large financial system developed, maintained and
managed by Company X. The system originally written in
state of the art technology around 20 years back is based on
obsolete technology and difficult to manage today. Client
feedback, market directions and the long-term business
objectives of the company have resulted in a business goal to
migrate the system towards modern technical platforms. This
has presented a situation to model the systems in a technology
agnostic fashion, thus insulating the risk of being dependent on
any specific technology. The SI described here concentrates on
the Geo-Political Regions (GPR) GBP, as it is regarded as
simple enough to be easily understandable, while also being
rich enough to demonstrate the feasibility of the approach. The
GPR GBP has emerged by applying the CS process to the
existing system. Before presenting the SI, the object paradigm
will be presented in order to provide the basis for
understanding the diagrams that follow.

The object paradigm [28], not to be confused with the
object-oriented paradigm, provides the basis for the

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

representation of ontologies and therefore models real world
objects. It provides a set of ontological constructs necessary for
describing the structure of the real world. In the object
paradigm, while everything is an object, objects themselves can
be classified as (a) elements, (b) tuples, (c) types, or (d) tuple
types. An element is an object that does not have instances (i.e.,
‘United Kingdom’ and ‘GB’). A tuple is a relationship between
elements. For example, the coded by relationship between
‘United Kingdom’ and ‘GB’ is a tuple. A type is an object that
has instances. For example, ‘Country’ and ‘Country Codes’ are
types. An instance of ‘Country’ is ‘United Kingdom’ and an
instance of ‘Country Codes’ is ‘GB’. A tuple type is a type of
relationship. For example, Countries are coded by Country
Codes, hence ‘coded by’ represents all the tuples
(relationships) in the world between Countries and Country
codes. A tuple is an instance of a tuple type. The notation used
to represent elements, tuple, types and tuple types is shown in
Figure 2. Note that tuple types are labeled ‘tuples’ (plural)
while tuple instances are labeled ‘tuple’ (singular).
Furthermore, the dashed lines with arrowheads represent
‘instance of’ relationships between a type and an element.

Figure 2. Object Paradigm Explained

The SI described here proceeds in three main steps: (1)
Initial content, (2) Intermediate sophistication steps and (3)
Final sophistication steps.

A. Intial Content

The SI highlighted here concentrates on the sophistication
of the CNTRY (Country Details) fragment. The interpretation
process has revealed a sophistication gap between the Migrated
Business Ontology and App X’s Application Ontology. The
CNTRY fragment as defined in the current system is used in
the operational calculation of settlement days and in various
reporting facilities (for e.g., limit reporting). There is however
an implicit assumption by these operational and reporting
facilities that the countries stored on the CNTRY fragment are
disjoint. In reality however, there are countries that are not
disjoint, the United Arab Emirates (UAE) containing Abu
Dhabi is an example. This type of disjointness constraint is
common in computer systems and is known as stratification.
The disjointness constraint does not specify which countries
are allowed to be set up in CNTRY, merely that whatever
countries are set up must be disjoint. Where two countries
overlap, the disjointness constraint allows either of the two to
be set up, but not both. This can lead to different
implementations having different incompatible CNTRY tables,
even though the application level CNTRY description is
identical. This situation is called implementation indexing –
where the table is indexed to the implementation.

Figure 3 shows example interpretations of two possible
implementations of App X, a Bank of England (BoE) country
table and an ISO country table. BoE countries include Abu
Dhabi and Dubai and ISO countries include the United Arab
Emirates. The interpretation process has revealed a gap in the
application’s ontology. The process has revealed that even
though both these tables refer to the same notion of countries,
the two tables however cannot be combined as the tables do not
cater for the scenario where the countries overlap (Abu Dhabi
and Dubai are parts of the United Arab Emirates). This
limitation is due to the stratified nature of CNTRY within the
App X, which does not support nesting of countries.

Figure 3. Legacy Representation of Stratified Countries

The above limitation can be highlighted using the following

competency question:

• Can both nesting (e.g., United Arab Emirates) and nested

countries (e.g. Abu Dhabi and Dubai) be represented?
A key question that the sophistication needs to address is

how to provide a non-implementation indexed ontology that
can combine these two implementation ontologies for
countries.

B. Intermediate sophistication steps

The common application level description of CNTRY
fragment indicates that there is a common business pattern that
links the application level with the different implementations.
There is an implicit notion of countries, as the individual
implementations of CNTRY are meant to be constrained to
individual sets of countries. Figure 4 aims to highlight the
stratified representation of countries in App X, by recognizing
that App X’s CNTRY commits to the existence of both
CNTRY types (the collection of implemented CNTRYs) and
Countries (as a super-type of every implemented CNTRY).
Taken together these help to explain the common pattern of the
two example implementations. To clarify things further and
complete the pattern, Stratified Country Types and Country
Types are introduced.

Figure 4. Country Stratified Types

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

A further sophistication step is shown in Figure 5. It
eliminates the implementation indexed CNTRY Types as
redundant – its work is done by Stratified Country Types. This
enables multiple stratified country types in a single
implementation (if required), as demonstrated by BoE
Stratified Countries and ISO Stratified Countries.

Figure 5. Country Stratified Types

C. Sophisticated model

Figure 6 illustrates the (destratified) sophisticated ontology

proposed for the business data. It illustrates how all the

elements introduced in Figure 3 can fit into this ontology. To

enable consolidated reporting, it is not sufficient to relax the

constraint on disjointness. There needs to be a way to represent

the overlapping. This is done by introducing a whole-part

relationship – the example here is between United Arab

Emirates and Abu Dhabi and Dubai- this allows the

overlapping of countries to be shown and modeled explicitly.

Figure 6. Destratified Nested Countries

For reference Table 2 indicates how the sophistication process

has delivered improvements in terms of the dimensions

highlighted in the previous section.

TABLE II. SOPHISTICATION DELIVERED ACROSS DIMENSIONS

Sophistication

Dimension

Delivered Sophistication

Objectivity The resulting model is not implementation

indexed as was the case with the original

App X system.

Generality At a later stage, the country wholes-parts
relationship is generalised to GPR. This is

not shown in this SI given that it is not

within the scope of the fragment’s data.

Simplicity It is simpler in that it no longer needs to
deal with the stratified country patterns.

Precision The more general Countries are a more

precise reflection of the common-sense
notion of a country than the specialised

implementation indexed App X Countries.

Explanatory

power

It has increased the explanatory power, as it

has explicitly modeled the whole-part
relationship between UAE and Abu Dhabi.

VI. IMPLICATIONS FOR THEORY AND PRACTICE

The critical analysis of existing renovation approaches has

highlighted important gaps. The near dependence on

technology, negligence towards business data, coupled with

issues like abstractness and limited practical ability of the

existing approaches has clearly highlighted the need for a

different approach for legacy renovation. In light of these

arguments the theoretical and practical implications of CS can

be summarized as follows:

• An Ontological Approach to developing IS: CS provides

a different approach to developing and designing IS. Use

of ontology clarifies object semantics and ensures that all

the objects and their relationships are explicitly identified

and reflect real world concerns.

• Technology Agnostic Development: To avoid creating

‘legacy of the future’, renovation approaches must focus at

the CIM level. CS clearly underscores the need for well-

developed business models and aims to separate business

and/or application concerns from underlying platform

technology, with the objective of making business models

explicit and allowing them to evolve in line with business

needs (as opposed to technology).

• Semantically rich data for future business needs: The

literature is awash with instances highlighting the

importance of business data stored within systems [32].

While CS is not only data-driven, it progressively aims to

make the data richer and more sophisticated in order to

cater for future requirements. With reference to Section 5,

country destratification allows to explicitly represent

nested countries. In this specific example it was not

possible to generalize Country to GPR as no non-country

data was present to drive this. However, in other SI

examples, where non-country data is available (e.g., Postal

Regions, Country Groups), Countries have been

generalized to GPR and Country Whole-Parts to GPR

Whole-Parts [31]. This generalization has two distinct

advantages. While there is no loss in the semantic richness

of the data, generalizing reduces the number of objects to

manage.

• Data richness induces better reuse and interoperability:

CS recognizes that using ontology as a basis for

sophistication can improve the real world semantics of the

data. The sophistication of the CNTRY fragment has

resulted in a more general notion of Countries, which is a

more precise reflection of the common sense notion of a

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

7

country than the specialized implementation indexed App

X Countries. Removing the implementation-indexed

constraint has allowed country representations of different

implementations to be interoperable. For example, UAE,

Abu Dhabi and Dubai can now be loaded onto a single

Country Table. Moreover, since the business models

reflect a real world scenario, these models can be readily

(re)used in any organization or across domains. For

example, loading the sophisticated notion of countries can

only enhance the functionality provided by the system.

• Flexible, Incremental and Effective: CS is completely

flexible, as it is not tied to any particular migration tool.

Any design tool, depending on the needs and familiarity

can be used for CS. Moreover, segmenting the system

allows the migration to be done incrementally, which then

can be tested thoroughly using competency questions and

validation queries on the sophisticated data. The

effectiveness of the approach is proportional to the scope

and the amount of time spent in analyzing the existing

system. Increases in scope can lead to better opportunities

for sophistication of the business data, which over time

provide a more significant payback as economies of scope

and scale are increasingly achieved.

The success of CS is affected by several factors including

the availability of both type and individual level data, business
and technical expertise of the existing system, and business
modeling knowledge. The adoption of the CS approach is
coupled with a necessary learning curve. This learning curve is
however necessary as the approach requires a new way of
thinking about systems development and so new development
rules apply and new competences are required. Moreover, the
level of sophistication and its associated benefits are directly
proportional to the application of the CS approach within real
systems. Since the approach is firmly grounded in data, the
benefits are greater when the models are generalized out of
several systems.

VII. CONCLUSION

CS provides a business perspective to LIS renovation. Such
a perspective has been lacking within present renovation
approaches which merely focus on renovating the technical
aspect of the LIS. A primarily technical focus can become an
enduring problem as the whole effort is spent on building a LIS
for the future. This is compounded by the fact that majority of
the approaches ignore the business knowledge hidden within
these systems, which is often the most stable and important
asset of the organization. No efforts are spent on extracting
and documenting this knowledge in a way that allows the
organization to have a clear representation of objects that are
important to the business.

The aim of CS is to overcome the above problems by
capturing the business knowledge hidden within the system in a
technology agnostic fashion. Being independent of any
application or platform concerns ensures that the outcomes of
CS can outlive the life of one renovation project and can
subsequently be used for future renovation projects. While the
premise of the approach is to capture the business knowledge,

an earnest effort is also made to make sure that the knowledge
that is captured is consistent with the objects that exist in the
real world. Ontology provides the basis for such a reflection as
it provides a clear description of the objects that exist in this
world through the notion of ontic commitment. The resulting
benefits of an ontology focused approach are improved
semantics, better interoperability and less complexity.

The benefits of CS have been demonstrated here through an
example of a sophistication instance (an artifact delivered by
the CS process). Among others, benefits have been achieved in
a reduction in complexity and an increase in potential
functionality and interoperability. Future research will focus on
applying the GPR framework across multiple systems to test
the generality of the framework and make the necessary
refinements. Work will also continue in developing
frameworks where new GBP have been identified (e.g. a
Product GBP). This iterative approach will allow the CS
process to mature and at the same time test the resilience of
patterns already identified. Further work will also focus on the
development of a software tool to automate CS activities as
well as combining CS with application-level development.

REFERENCES

[1] Bennett, K., "Legacy systems: coping with success", IEEE

Software, vol 12(1), January 1995, pp. 19-23.

[2] Brodie, M. and M. Stonebraker, Migrating Legacy Systems:

Gateways, Interfaces and the Incremental Approach. San Francisco:

Morgan Kaufmann Publishers Inc., 1995.

[3]Young-Gul, K., "Improving Legacy systems maintainability",

Information Systems Management, pp. 7-11, 1997.

[4] Kelly, S., N. Gibson, C. P. Holland and B. Light, "A business

perspective of legacy information systems" Communications of the

AIS, vol 2(1), pp. 1-27, July 1999.

[5] Aiken, P.H., Y. Yoon, and B. Leong-Hong, "Requirements-driven

data engineering", Information & Management, vol 35(3), pp. 155-

168, March 1999.

[6] Bisbal, J., D. Lawless, B. Wu and J. Grimson, "Legacy

Information Systems: Issues and directions" IEEE Software, vol

16(5), pp. 103-111, September/October 1999.

[7] Comella-Dorda, S., K. Wallnau, R. C. Seacord and J. Roberts, "A

Survey of Legacy modernisation approaches", Carnegie Mellon

University, Software Engineering Institute, pp. 1-20, April 2000.

[8] Bianchi, A., D. Caivano, V. Marengo and G. Vissagio, "Iterative

reengineering of Legacy Systems", IEEE Transactions on Software

Engineering, vol 29(3), pp. 225-241, March 2003.

[9] Ganti, N. and W. Brayman, Transition of Legacy Systems to a

Distributed Architecture. New York: John Wiley and Sons, 1995.

[10] Tilley, S.R. and D.B. Smith, Perspectives on Legacy Systems

reengineering. Carnegie Mellon University. Pittsburg: Software

Engineering Institute, 1995.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8

[11] Fayed, M. and S. Wu, "Merging multiple conventional models in

one stable mode", Communications of ACM, vol 45(9), pp. 102-106,

September 2002.

[12] Eriksson, H. and M. Penker, Business modeling with UML:

Business Patterns at work, New York: John Wiley and Sons, 2000.

[13] Ulrich, W., "From Legacy Systems to Strategic Architectures",

Software Engineering Strategies, vol 2(1), pp. 18-30, March/ April

1994.

[14] Connall, D. and D. Burns, "Reverse Engineering: Getting a grip

on Legacy Systems", Data Management Review, vol 2(1), pp. 24-27,

1993.

[15] O'Callaghan, A.J., "Migrating large-scale Legacy Systems to

Component-based and Object technology: the evolution of a pattern

language", Communications of the AIS, vol 2(1), pp. 1-43, July 1999.

[16] Weill, P. and M. Broadbent, Leveraging, The new infrastructure:

How market leaders capitalize on Information Technology. Boston:

Harvard Business School Press, 1998.

[17] Robertson, P., "Integrating Legacy Systems with modern

corporate applications", Communications of ACM, vol 40(5), pp. 39-

46, May 1997.

[18] Bateman, A. and J. Murphy, Migration of Legacy Systems,

School of Computer Applications. Dublin: Dublin City University:

Dublin, 1994.

[19] Winsberg, P., "Legacy Code: Don't Bag it, Wrap it",.

Datamation, vol 41(9), pp. 36-41, 1995.

[20] Wu, B., D. Lawless, J. Bisbal, R. Richardson, J. Grimson, V.

Wade and D. O'Sullivan, "The Butterfly Methodology: A gateway-

free approach for migrating Legacy Information Systems", In

Proceedings of the ICECCS97, Villa Olmo:Italy, 1997.

[21] Miller, J. and J. Mukerji, MDA Guide Version 1.0., OMG, 2003

(http://www.omg.org/docs/omg/03-05-01.pdf (June 11, 2004).

[22] Truex, D.P., R. Baskerville, and H. Klien, "Growing systems in

emergent Organizations", Communications of ACM, vol 42(8), pp.

117-123, August 1999.

[23] Frege, G., The foundation of Arithmetic: A logico-mathematical

enquiry into the concept of number. 1884.

[24] Sheth, A. and J. Larson, "Federated Database Systems for

managing distributed, heterogeneous and autonomous Databases",

ACM Computing Surveys, vol 22(3), pp. 183 - 236, September 1990.

[25] Smith, B., Ontology and Information Systems, 2000

(http://wings.buffalo.edu/philosophy/faculty/smith/articles/ontologies

.htm (June 11, 2004).

[26] Uschold, M. and M. Gruniger, "Ontologies: Principles, methods

and applications", Knowledge Engineering Review, vol 11(2), pp. 93-

155, 1996.

[27] Chandrasekaran, B., J. Josepheson, and V.R. Benjamins,

"Ontologies: What are they? Why do we need them?", IEEE

Intelligent Systems and Their Applications, vol 14(1), pp. 20-16,

1999.

[28] Partridge, C., Business Objects: Re-Engineering for Reuse.

Oxford: Butterworth-Heinemann, 1996.

[29] Glaser, B.G. and A.L. Strauss, The Discovery of Grounded

Theory: Strategies for qualitative research, London:Weidenfeld and

Nicholson, 1967.

[30] Turner, B.A., "The use of grounded theory for qualitative

analysis of organizational behaviour", Journal of Management

Studies, vol 20(3), pp. 333-348, 1983.

[31] Daga A., S. de Cesare, M. Lycett and C. Partridge, "Software

Stability: Recovering general patterns of business", In Proceedings of

the AMCIS'04, New York, USA, 06-08 August, 2004.

[32] Coyle, F.P., "Legacy integration changing perspectives", IEEE

Software, vol 17(2), pp. 37-41, March/April 2000.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

9

