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Abstract

This article is concerned with the sound field generated by a fluid-loaded structural
wave travelling along the boundary of a two-dimensional duct with walls that have
smoothly varying elastic properties. It is the field within the duct that is of interest
and the exterior region is assumed to be in vacuo. By recourse to a modified form of
the two-dimensional plate equation the boundary-value problem is posed in terms of
the fluid velocity potential. A functional difference equation method is used to obtain
an explicit integral solution from which the reflection and transmission coefficients
are determined. Various limiting forms of the modified plate equation are discussed
together with the implications each has on both the analytic method used herein and

the physical situation it describes.




1 Introduction

Acoustic scattering by structures that have abrupt changes in either geometry or material
properties pose many technical problems for scientists and engineers. For example welds,
rivets and small physical variations in the properties of adjacent panels in an aircraft wing
all give rise to scattering of fluid-coupled structural waves. It is essential for design engi-
neers to understand the qualitative effects of, for example, sudden variation in panel depth
or the presence of a weld. Presence of two or more such features gives rise to the possibility
of resonance, which in turn could lead to structural fatigue. For these reasons scattering
by a wide variety of key structural features has been studied extensively. Problems in-
volving structures that have planar boundaries with abrupt change in material properties
may be amenable to solution by the Wiener-Hopf technique. Recent work on examples
of this type include Brazier-Smith [3], Norris and Wickham [11] and Cannell [4, 5]. For
nonplanar boundaries, there are no standard solution methods. Structures comprising two
planar surfaces that are joined together to form a wedge may be solved by recourse to
the Kontorovich-Lebedev transform [1, 14], or the Sommerfeld integral [2, 13]. Other ge-
ometric discontinuities that are amenable to analytic solution include problems involving
wave propagation in a duct with abrupt change in height [17]. Scattering by structures in
which the material properties vary smoothly in space as opposed to discontinuously have,
for a variety of reasons, received little attention, although a finite transition region may be
a better model of many real materials. Work by Roseau [15], Evans [7], and Evans and
Fernyhough [8] applies one of the few mathematical techniques available for this kind of
problem. Roseau solved a water-wave problem where the depth of water varied owing to
a sloping bottom with a continuous, nonlinear profile. By representing the fluid velocity
potential as a Fourier integral Roseau was able to recast the boundary-value problem as a

functional difference equation of a well-known class. Evans was able to employ the same




technique to solve another water-wave problem in which particles of varying density float
on the surface of a body of water of constant depth. Evans and Fernyhough then extended
the method to deal with the problem of scattering in an acoustic waveguide in which the
bounding surface had smoothly varying impedance.

This article deals with acoustic scattering by a duct in which one wall comprises an
elastic plate with properties varying continuously in one space direction. Specific details
as to which parameters vary are left until later in the text; however, a simple example is
smooth variation in plate thickness. The model is intended as a heuristic investigation of
this class of problem. The physical parameters are assumed to vary according to a simple
heuristic mathematical law [15, 7]. The aim is to understand qualitatively the effects of a
smooth change in material properties rather than quantify a specific physical situation.

In section 2 the equation governing small lateral vibrations of a thin, loaded plate with
nonuniform properties is derived for the case of cylindrical bending. It is assumed that one
or more of Young’s modulus, Poisson ratio and area density vary across the plate in one
direction. In section 3 the model boundary-value problem is set up using the Helmholtz
equation and a modified form of the plate equation of section 2. Exact solution to the
boundary-value problem is obtained in section 4 by recourse to the difference-equation
method. In section 5 expressions are obtained for the principal reflected and transmitted
modes in the duct resulting from an incident wave. The discussion in section 6 considers
limiting cases in which the variation in material properties is either particularly abrupt
or extremely gradual. Comparisons with the Wiener-Hopf analogy are drawn and the

implications for future work are discussed.




2 The plate equation

Before formulating the boundary-value problém that describes the sound field
within the duct it is necessary to derive the equation governing vibrations of a
loaded plate with non-uniform elastic properties. The following is based on the
theory in? [16] , where different notation is used.

Figur; 1'shows a rectangular portion of a thin elastic plate which is subjected
to pressure causing slight cylindrical bending; the broken lines indicate a strip

of the plate with unit width in the z-direction. In any thin, narrow layer of the

Figure .1: Rectangular portion of bent plate, showing the strip of unit width.

strip, located at a distance y from the neutral surface (see Figure - 2 and the text
below), the normal component of stress in the longitudinal direction of the layer,
o5, can be expressed in terms of the Young’s modulus E(z), Poisson’s ratio v(z)
and curvature, all of which are assumed to vary with z, as explained in the next
paragraph.

The deflection of the plate is denoted by 7 and is taken as positive in the
direction of increasing y. The curvature of the plé,te, regarded as positive when
convex downwards, is approximated by d®n/dz? so that the elongation in the

z-direction of the layer under consideration is
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Figﬁre 2: Section of strip, showing neéutral surface and thin layer.

Hooke’s law relates the normal stresses o, and o, to the unit elox_;g_ations e, and

€, by
. - "oy 3 v(z)o, . - o v(z)os 0.
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In the second of these equations the lateral strain e, must be zero to preserve the

cylindrical shape, so that

1—v(z)?
=z E(z) T
‘and it follows from ( - 1) that, for small deflections of the plate,
_ _E@@)y & |
e =77 v(z)? dz?’ (-2)

Tt should be noted that for the purposes of this section, y is measured from the
neutral surface, that is the plane which is subject to neither compression nor
tension during deformation. The curvature of the plate as drawn in Figure .2 is
negative; for y > 0 the stress on the indicated layer is positive, causing elonga-
tion. (In following sections of this chapter the dimensional co-ordinate 7 and its
non-dimensional counterpart y are measured from the lower surface of the duct.)
Equation ( 2) is an expression for the normal component of stress in the longi-
tudinal direction in the case of varying Young’s modulus (E) and Poisson ratio

(v). The reader is referred to [16] for further details.




The relation ( *.2) is multiplied by y and integrated with respect to y through
the thickness of the plate to give the equation of the deflection curve of the

elemental strip, namely
B(z)— = —M(z), ( 3)
where
E(z)8®
12{1 — v(z)?}
is the bending stiffness (lexural rigidity) of the plate material and M (z) the bend-

B(z) =

ing moment per unit distance in the z-direction. With reference to Figure 2,
positive M is in the sense depicted, causing tension in the upper surface of the
plate and compression in the lower. '

If the plate is subjected to a loading ¢(z) acting from below, the equation of

equilibrium in terms of M(z) is

Y ). (4

Provided that variable bending stiffness B(z) is twice differentiable then, using
( .3) together with (- 4) the equation of equilibrium in terms of the lateral dis-

placement is
2

B(o) ok +2B(2) 54 + B(2) 5k = 4(a). (5)
This relates to cylindrical bending with varying bending stiffness. Further details
can be found in [16]. In this chapter, the variation in the bending stiffness B (z)
is attributable to non-uniformity of Young’s modulus, Poisson ratio and/or the
area density of the plate, whereas Timoshenko and Woinowsky-Krieger envisage
a plate with uniform material properties but varying thickness when deriving
their equation. Whilst the varying thickness model may be the most obviously

practical one, it is interesting to observe that the mathematical analysis is equally

applicable to a plate of constant thickness but varying material, such as an alloy




containing changing proportions of metals, and to situations where both thickness
and material vary in a suitable way.

Now consider a vibrating plate subject to fluid pressure ¢(z,t) and with dis-
placement 7n(z,t). The équation governing lateral vibrations follows from ( 5)

- d*n 2B'(z)0%  B"(z)0%p  m(z) 8
5ei T Ba) 0 T Ble) 922 = Bla) o P (6

where m(z) is the mass per unit area and [p|t the fluid pressure difference across

the plate. In the case of motion with harmonic time dependence of angular
frequency w, this becomes

d*n  2B'(z)8n B"(z)0’p wm(z)
ozt = B(z) 0z8  B(z) 0x? - B(z) n = —[pl%. ("

The second and third terms of (. 7) vanish when the bending stiffness B is con-
stant. It is thus to be expected that their effect on the mathematical analysis will

be greater if B(z) changes rapidly with z.

3 The boundary value problem

The boundary-value problem describes a two-dimensional infinite duct occupying
the region 0 < § < h of a Cartesian coordinate system (,7,%) (see Figure 3).
Note that, unlike § 2, dimensional quantities are here and henceforth indicated
by a caret ". The lower duct wall, that is at § = 0, is rigid whilst the upper
wall comprises an elastic plate whose material properties vary continuously and
monotonically between limiting values which are approached as & becomes large
in absolute value. A compressible fluid of ‘mean density po and sound speed
¢ occupies the interior of the duct whilst the exterior region is in wacuo. The
dimensional boundary-value-problem is formulated ﬁsing (' 7) as the plate equa-

tion. This is non-dimensionalised with respect to length and time scales k™ and
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Figure 3: The duct

w-! and then modified to represent the situation in which the plate properties
vary slowly with distance along the plate. The analysis is also applicable to the
problem obtained by reflecting the configuration in the plane § =0 and removing
the rigid surface there. (That is a 9-dimensional duct in which both boundaries
comprise elastic plates.)

A fluid-coupled structural wave propagates along the elastic plate and is scat-
tered due to the variation in the plate properties. The incident forcing has the
form

bo(#,§,1) = A cosh(7of)e ™
where the wavenumbers flo and 7o — or rather their non-dimensional equivalents —
are defined later in the text. This incident wave has harmonic time dependence,
of angular frequency w. Both the incident wave and the elastic properties of the
plate are independent of 2 and thus fluid velocity potential may be written as
@(:%,g),f). The fluid pressure and plate elevation 7 are related to the velocity
potential by

a2

. . 85 0
s B
p(£,9,t) = —po a7

z,Y,t — = .
($7y7 )7 at 6y
A steady state solution is sought and thus the acoustic field may be expressed as
9(%,9,1) = R{(&: )e™"}-

For convenience, the harmonic time factor is henceforth suppressed.




CHAPTER 4. SMOOTHLY-VARYING BENDING

The steady state, time-independent potential qAb(:“c,g:/) satisfies the Helmholtz
equation

82 2 2\ A o
(Zo+ 3 +¥)d =00 ®8>0, 9 20, (®)

where k = w/c is the acoustic wavenumber. Although k is a real quantity, it
is mathematically convenient to allow it to be complex with a small positive
imaginary part. Physically this corresponds to a small dissipation of wave energy

with distance. The lower bounding surface is described by the boundary condition

and the upper one by (4.7) which, expressed in terms of qg(a“c, 7), is

8t 2B/(8) 8 B"(&) 8 m(B)Ww’ s . 5y L
{0564 T Bs) 05 T Bls) 088 B() }%("”h)‘”

2

PoW” 4.a 5
B(i)ﬁb(wvh) ( 9)

where po is the density of the fluid in the absence of disturbance, m(Z) is the mass
per unit area of the plate material and B () its bending stiffness. The bending
stiffness and mass per unit area are taken, ¢f (3.7), to have the forms

B1 +Bg€ﬁ/a
14 e2la

my -+ mzeﬁ/&

B(#) = 1+ eta

) (1 10)

m(Z) =

where & is a positive constant determining the maximum rate of change of the
function (which occurs at # = 0). In the case & >> 1 the first and second
derivative of B(%) are small compared to B (%) itself and this corresponds to slow
variation of the properties of the plate along its length. In such circumstances a
good approximation to the plate equation is obtained by neglecting the sécond
and third terms on the left-hand side. However, this approximation is more
widely valid. The reader is referred to the definitions of p; and «; given below
equation ( 22). For pj,a; > 1, j = 1,2 it is found that the approximation is
valid provided that a > 1; in fact, for some ranges of the parameters yj, o; it is
possible to take smaller values of a. This can be seen'by looking at the maximum

values of |B'/B| and |B"/B|. For example, it is required that




‘B' T
pi >> max B((z))
_ _—1_ Bz — B1
2a B1 + B2
from which it follows that
ios L BB
2#? By + By’

and a similar expression is obtained for the term |B”/B|. This chapter is primarily
concerned with thé situation in which the second and third terms of the differential
operator of (.9) can be neglected. Note, however, that this approximation is
never valid for a = 0. A :

The usual radiation condition holds. That is, with the
exception of the incident mode, all disturbances travel out to infinity as though
initiating from the point & = 0. For the geometric constraint h = hk < 7/2 with

a;fps < tan(hk) the fluid velocity potential thus assumes the form

R (Aeto? 4 Roe™*%) cosh(of) as & — —oo,
¢(2,7) = (11)

To cosh(j\gﬁ)e"”"i as & — +o0,
where Ry (To) is the complex reflection (transmission) coefficient of the fundamen-
tal mode. The wavenumbers 7o and 5\0 are associated with the ﬁmiting ﬁroperties
of the plate for large positive values of & and are defined later in the text.

The boundary-value problem is now expressed in a non-dimensional form by
using a length scale of k™" and a time scale of w™!. Non-dimensional variables,
functions, wavenumbers and plate properties are denoted by symbols without
carets. For example, £k = z, fw = t and ¢k?jw = ¢. The formulation ( 8)-
( 11) becomes

5 5
(5.753-‘_‘6?—*—1)45:07 0<y<h, —-oco<z<c0 (12)




¢y(z70) =0, ( 13)
84

{5;4 - (o) () = o), ), (1)

(Aeingn: + Roe—-'iTloI) COSh(TO'y) as z —r —0Q,

¢((L‘, y) = ( 15)

To cosh(/\oy)ei”O‘” as T — 400,
where the second and third terms of the plate equation ( 9) are neglected under
the assumptions stated above. These assumptions are discussed further in §- 6.

The plate wavenumber p and fluid loading parameter o are defined by

2\ " zfa _ 2 z/a
4 w*\ my + mape Pow 14e
. _ ) 2 = . { 16
#ia) (k‘*) BB OO ( & )Bl—l—Bzez/“ (16)

Each of these functions has a point of inflection, where the gradient is maximal, at

z = alog(Bi/Ba). Small values of a represent a rapid transition near the points
of inflection from the left-hand asymptotic values B; and m; to the right-hand
ones By and may; thus in the limit a — 0, when the points of inflection tend to
0, the problem is equivalent to one of standard Wiener—Hopf type, provided that
edge conditions are introduced at the position of the discontinuity of material
properties. In the special case By = B, a(z) is constant and no assumptions
regarding the rélative sizes of pj and ka are needed since the second and third
terms in (- .9) are zero for all values of a. Further details about the limiting cases
a — 0 for By = B, and B; # B, are discussed in § 6.

A solution of the form

Ho,y) = o [@(s,p)e7= ds (1)

is sought, where the wavenumber s is regarded as a complex variable and C is
a contour extending from —oo to co which is chosen so that #(z,y) satisfies the
radiation condition ( 15). The location of contour C is crucial to the analysis

which follows; full details are given in § 4. It is clear that expression ( 17)




satisfies (- -12) provided that

Byy(s,y) — (" = 1)®(s,y) = 0. (+18)
Thus ®(s,y) has the general form

8(s,y) = A(s)e™ + B(s)e™™,

where 7 = (s> — 1)*/2. The boundary condition at the lower duct surface, that is
( 13), implies that A(s) — B(s) = 0, so that

8(s,y) = 2A(s) cosh(7y).

For convenience A(s) is re-cast as

. £(6)
A(s) = (5% — /j{)fy sinh(fyh) — o COSh(’Yh)

where 1 and oy are the limiting values of the plate wavenumber and fluid loading
parameter as ¢ — —oo, defined by taking the appropriate limits in ( 16) and
given explicitly in ( -22). Consequently, ( 17) becomes

f (3) cosh(7yy)e =" ds
#(2,y) = o / (5% — pt)ysinh(yh) — on cosh(vh)’ (19)

where f (s) is an unknown meromorphic function. The denominator of the inte-
grand is the dispersion relation appropriate to the plate of uniform properties p1
and o;. Equation ( .19) satisfies the governing equation ( 12) and the boundary
condition (- 13). The function f(s) is determined by the need to satisfy ('.14) and
(..15), and is expected to reveal the properties of the transmitted and reflected

modes.

4 Solution of the boundary value problem

In the expression ( 19) for the velocity potential, the function f(s) and the

contour C must be chosen so that the plate and radiation boundary conditions,




( 14) and ( 15) are satisfied. Using the definitions of y*(z) and a(z) in ( 14),

Bi¢yzrzs — maw’dy — pow’d + e/ *( Byysazs — Maw’ ¢y — — pow’¢) =0 for y = k.

(- 20)
On substituting the inverse Fourier integral (- -19) for ¢(z,y) into ( .20), it is
found that

1 / f(s){Brs’ "/Slﬂh(h’Y) maw?y sinh(hy) — pow?® cosh(hw)e™™*}
© (s* — pf)ysinh(hy) — as cosh(hy)
1 / f(s){ Bys*ysinh(hy) — maw?y sinh(hy) — pow? cosh(hw)e” m(s+1/a)}
(s* — i)y sinh(hy) — on cosh(h?)

(21)
This imposes a further constraint on f(s), that is f(s) must be such that both

the integrals exist. It is convenient to define.
K;(s) = (s* — p3)ysinh(hy) — o cosh(hy), =12, (22)

where
2
4 MW _ pow

b= B, T BB
Then ( 21) may be written as

-w:s i 1{2(3) ~iz(s+ifa —
/f( ds + cKl(.s)f() (+4i/2) g — 0. ( 23)

Provided there are no singularities of the integrand lying in the region between
the contour C' and the contour C’ which is everywhere distant 1/a above C, the

first term in ( 23) can be replaced by

2 [owese= B s B e e

Then ( 23) becomes

2\ B If( ) s . .
iz(s+i/a) ds 2 2 iz(s+ifa) = 0. N
o /f( ) + 2%/0[(1( ) f(s)e ds =10 (+25)




It follows that ( 23) will be satisfied if f(s) satisfies the functional difference

equation '
LD et ( 2)
There are infinitely many solutions to functional difference equations of this
type. The precise form of f(s) is dictated by the need to satisfy ( 15), ensure
convergence of the integrals in (- 21) and be pole-free in the (not necessarily
straight) strip lying between C' and C’. The latter point is essential in view
of ( 24) above. The choice of f(s) is thus of paramount importance to the
analysis. The solution of ( 26) is outlined below with further details given in
Appendix A. For ease of exposition two special cases will be investigated. These
are the simplest in that they have the smallest numbers of propagating modes in
the scattered acoustic field. The conditions, expressed in terms of the intrinsic

fluid loading parameter € = € (j) = ;j/p; denoted by € in Cannell [4] and « in

Crighton et al [6] (j = 1,2), are

i) each of the numerator and denominator of p(s) has exactly one pair of real

zeros; this requires A < m/2 and €; < tan h;

ii) each of the numerator and denominator of p(s) has exactly two pairs of real
zeros; this happens if either & < 7/2 and €; > tanh or 37/2 > h > /2 and

€ < tan h.

In ( 26), it is convenient to write f(s) = fo(s)fi(s)f2(s) so that (  26) is
equivalent to the three functional difference equations
fo (S + i)
fols)

f1(3+f) _ _122_
Als) T B

(28)




and
fa(s+3) _ Ka(s)
fas) Ki(s) (29)

Solutions of ( 27) are anti-periodic functions, i.e. those which change sign when

s is increased by z/ a, for example sinh{(2n — 1)was}. Functions of the form
c(s)e™™, where b = alog(B;/B;) and ¢(s) is periodic with period i/a, satisfy
( 28). Here, the function c(s) is disregarded, as it can be incorporated in the
.anti-periodic solution of (. 27). The expression e~ will also be omitted in the
subsequent analysis, as removing it from the velocity potential (: 19) merely has
the effect of translating the y-axis a distance alog(B;/B;) away from the point
of inflection of the functions p* and «. Such a shift of coordinates does not affect
the physical conclusions.

Equation ( 29) can be solved by writing p(s) as an infinite product over its
zeros and poles, which are denoted by +v, and +7,, n =0,1,2,..., respectively.
Note that 7o and vg are real (together with 7y and vy in case (ii) above), and
R(7m) > 0, R(v,) > 0,n =1,2,3,.... Details of the solution method are given in

Appendix A where it is shown that a solution is

2Tl —ida(ne — )} T{—ta(v + s)}
fals) = EIO T{1 — ia(vn — )} T{—ia(n + 5)}

(1 30)

The poles of functions appearing in the integrand of ( 19), together with zeros
of fa(s), are represented in Figure 4. A pole at —o, representing the incident

wave, can be introduced by choosing

B H
~ sinh{ra(s+mo)}’

fo(s) (- 31)

which satisfies ( 27). The constant H will be chosen later to give the incident
wave the required amplitude, A in ( 15). The contour C of ( 19) is now chosen
to pass below =no and above —wg. this choice ensures that ¢(z,y) satisfies the

radiation condition ( .15) and also permits the deformation detailed in (- 24).




V3
3% 9] ©  x
T3
X
©
X
M 1] 0] X
+ 712
© X
o e G o, x
v
c im
O N S 470
—37 % 75
—T1 x
2% KEY: x pole of fa(s)
X o o zero of fa(s)
X + zero of denominator of (4.19)
@ 3% pole of fo(s)
. other labelled point
#Fox —12%
©
X
o)
—113%
¥ ox 4
_.1/3>
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That is, no singularities of f(s) lie between the contours C and C’, as can be seen
in Figure 4. ‘
When the poles of the denominator of the integrand of ( 19) are taken into
account, the modes which do not attenuate for z — 400 are seen to be —7ng (inci-
dent wave), —1p (transmitted wave) and 7o (reflected wave). Further transmitted
and reflected modes may be given by —v1, 71 etc. The complete solution to ( 26)

18 NOW

—iH T{l+ ia(s +n0)}T{1 — ia(no — 8)}T'{—da(vo + s)}
7r ' {1 —ia(vo—s)}
o {1 —ia(n, — s)}T{—ia(va + 3)}
* L 5 Zia(vn — )T iama + )} (32)

fls) =

Expression ( ..32) clearly contains three infinite families of poles given by
i) —mo+imfa; m=0,1,2,..
) mn4imfa; n=0,1,2..; m=012,;
i) —v, —imfa; n=0,1,2,...; m=12,..

and these are represented in Figure 4. It should be noted that f(s) does not
contain poles at s = =tng which correspond to the forcing term and its reflected
wave. These terms are present in the denominator of the integral (-.19), that
is they are zeros of Ki(s). It is clear that the integral ( 24) is free of poles in
the strip 0 < $(s) < 1/a provided the contour C passes above the pole at —vyp.
In addition to these requirements, integral ( 19) will have the correct physical
composition if and only if C passes below the poles s = 4o that arise due to
K (s).

It is shown in Appendix A that f(s) decays exponentially for s — o0 in a
horizontal strip. This allows the integral ( 19) to converge and provides the final

justification for moving the contour in ( 23).




5 Reflection and transmission coefficients

The incident wave I is obtained by isolating the residue contribution from ( 19)

at —1o, on closing the contour in the upper half-plane, to get
_ if(=m0)

K1 (—o)
where K;(s) is defined in ( 22). The incident amplitude A in ( 15) is, by

I cosh(7oy)e™?, ( .33)

comparison with ( 19),

if(=n0)
e ( 34)

Hence, the constant H is related to A by

{1 —ia(vo+ n0)}
(T A )
© {1 —ia(vn + 10) T {=1a(7 — 70)}
* n=1 r{1- ia(nn + UO)}P{—?:G(V,.L — 170)} ’ ( 35)

The notation 7 = ¥(7a), M = 7(vx) is used here, and defines the wavenumbers

H = nAKi(-m0) T

70 and Ao which were used in dimensional form in § 3.
The first reflected mode is given by the residue contribution at 7o, the contour

being closed in the upper half-plane; thus

_ f(m)
Fo = %) (%)
and
||

To relate this to ( 34), note that Kj(—s) = —Kj(s) since Ki(s) is an even

function, so that

Ro f(m0)

A f(=m0)
l I'(2iano) ||sinh{aw(vo —n0)}
I'(—2iano) | |sinh{am (vo + n0)}

sinh{a7 (9, + 7o)} sinh{an (v, — 7o)}
sinh{am(n, — 7']0)} sinh{aw (v + n0)}

x 11

n=1

. ( 39)




On the right-hand side the first factor is 1 provided that 7o is real, and the second
factor is less than one for all a. The infinite product is 1 if 7, and v, are purely
imaginary. This is also true if a pair of roots have the form 7, = 1z, a1 = 12

which will occur for & >> 1. This leads to the alternative forms
( |sinh{am(vo = 10)}

sinh{aw(vo +10)} ,1loy Vo € ¥,

sinh{amn(vy — 70)} sinh{am (1 + mo)} sinh{am (11 —10)}
sinh{anr (vo +70) } sinh{an (7 — 7o) } sinh{ar(vy + 170)} !

Mo, M1, Vo, V1 € §R

Ro

1 (39)

=

which are valid for cases (1) and (ii) respectively (see §. 4). In the limit as a — 0,

the first of the above expressions, valid for case (i), becomes

Bo) _
2=

Tlo — Vo
N0+ vo|’

( 40)

which agrees with the reflection coefficient derived from the solution of the limiting
Wiener-Hopf problem with continuous edge conditions, - In the limit
as @ — oo, the first expression in (.39) tends to zero. This indicates that,
even though there may be a substantial difference between the left and right
asymptotic bending stiffnesses or thicknesses, the reflected wave has negligible
amplitude provided that the material properties change slowly enough.

The first transmitted mode is given by the residue contribution at —ug, the

contour being closed in the lower half-plane, so that its amplitude is

Ress=—., F($)

To =
0 K](—*Vo)

(41)

where the residue can be expressed as an infinite product by means of ( 32),

H T{1+ia(no — 1) }T{1 —ia(no + o)}
Beg1ls) = o T(1 — Ziav)
H {1l —ia nn + vo)} 1 {—ta(vn — v0)}
i {1 —ia(v, + Vo)}r{ 1a(7n — vo)}

(42)
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The above, together with the expression for H in ( .35), give T in terms of the

gamma function and, for case (i), the limiting forms for small and large a satisfy

T 2 N —
lim |22 = 2T ] |l To, Zn ¥ o ( 43)
—~0l Al w70~ Vntio
and ‘
T oo n
lim [22| = T[] [In Mo et o) ( 44)
a—o0 | A Vo =5 | — Vo Vn + v

The first of these expressions agrees with the transmission coefficient derived from
the Wiener-Hopf problem mentioned above, It is interesting to note
that, whilst |Ro/A| — Q as @ — o0, there is no simple form for Ty in this limit.
This is to be expected, since the different wavenumbers of the transmitted and
incident modes would require different amplitudes to convey the same energy.
The following graphs show the moduli of the fundamental reflection and trans-
mission coefficients for the cases By = B, and By # B;. In the first case the
graphs are valid for a > 0 but for the case By # B, this is not so. Figure §
compares the modulus of the reflection coefficient for p; = 0.5, g2 = 3.5 and
a; = ay = 200 against the heavy fluid loading case in which gy = 5, py = 15
and oy = oy = 100000. It is clear, with reference to equation ( 39), that both
curves decay exponentially with increasing a, however, although initially larger
in magnitude the reflection coefficient for the second set of parameters decays
significantly more rapidly. Figure 6 shows the modulus of the transmission
coefficient for the same two sets of parameters. It is clear that the two curves are
very nearly constant albeit at different values. Figure 7 compares the modulus
of the reflection coefficient for py = 1.5, g2 = 3 and oy = 200, a; = 1500 against
that for g3 = 5, py = 15 and a; = 1000, a; = 100000. In this case the graph
is valid only for a > 0.3 and it is clear that both curves are extremely small for
a = O(1). The transmission coefficient, for the same two sets of parameters, is

shown in Figure 8 and, clearly, for a > 0.3 the curves are constant. From Fig-




Figure ~5: The modulus of the reflection coefficient for the case By = By; contin-
wous line is for py = 0.5, pg = 3.5, a1 = az = 200 and broken line is for p1 =3,

p2 =15 and oy = ag = 100000
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Figure 6: The modulus of the transmission coefficient, evaluated on y = h, for
the case By = By; continuous line is for py = 0.5, ps = 3.5, o = 03 = 200 and

broken line is for yy =5, pa = 15 and ay = o = 100000




Figure 7: The modulus of the reflection coefficient for the case By # By; con-
tinwous line is for pyy = 1.5, pg = 3, o = 200, ap = 1500 and broken line is for

g1 =5, iz = 15 and oy = 1000, az = 100000
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Figure 8: The modulus of the transmission coefficient, evaluated on y = h, in

the case By # By; continuous line is for pn = 1.5, 2 =3, o1 = 200, ay = 1500
and broken line is for yy = 5, pz = 15 and ay = 1000, ap = 100000




ures 5- .8 it is clear that the most interesting behaviour for both the reflection
and transmission coefficients occurs for @ << 1. The discussion of section "6
centres on a number of different approximations to the full plate equation (. 9)
and, in particular, presents a modified version by which results valid for By # B,

a << 1 may be obtained.

6 Discussion and Conclusions

The analysis of §3 and § 4 involves a simplified plate equation, (- 14), which

is valid for |B'/B|,|B"/B| << p%,a;, j = 1,2 and also for the case By = Bs.

In this section an alternative modification is presented by which results can be

obtained for the cases where ( .14) is not valid and, in particﬁlar, for a << 1.
The non-dimensional form of the full plate equation ( 9) is

o* + 2B'(z) 6° N B"(z) 0
dz* ' B(z) 0z®  B(z) 0z*

— ,u4(w)} by, —a(z)p = 0, —oo<z <00,
y=h. ( 45)

For situations in which the constraints discussed above do not apply the ansatz

of § 3 can still be applied to the full plate equation. It is found that

1 : 1 ' s
—izs ol ~iz(s+ifa)
27 /G fls)e™ ds+ T /C’ fls)e ds

1 [ BaKa(s) —in(s+2i/a) 1 [ BaKa(s) —in(s+3i/a)
T o Ba(e) " A5t o Jo Bikn(s) )° s

4 By — By / s%(2ias + 1) sinh(hy) f(s)e=(+i/2) s
wa? Jo B K1 (s)
By — By / s? (2’1:(115 — 1)’)! Sinh(h"y)f(s)e“im(s‘*‘?i/a) is
2ma? Jo B1Ki(s)

where f(s) is the unknown (meromorphic) function contained in the integral

representation for ¢(z,y) and the contour C extends from —oo to +oo but its full




specification is not yet known. In order to obtain a (rather more complicated)
functional difference equation from ( -46) it is necessary for all but one of the
integrals to shift the path of integration upward a distance m/a, where m =
1, 2, 3 depending on the exponent in the integrand. Then the substitution
s =1+ im/a ensures that each final integral contains the factor e#(+3/2), The
contour C, which can be suitably translated without encountering poles of the
integrand, is similar to that shown in Figure 4, but with extra detours below
the points —7o, 7o, 71 ete. Such a contour is possible if 23(n;) > 3/a, that is if
a is suitably large. Otherwise, allowance has to be made for poles which are the
wrong side of the contour by adding appropriate residue terms to the right-hand
side of ( 46). For a = O(1) or a << 1 a contour can be found only if 71,72
etc have small real parts as indicated in Figure ~4. This can be ensured if the
wavenumber k is assumed to have a small positive imaginary part as may be seen
easily for extreme values of a; or ag, when 7 and 7; take the forms

2,,2 .
k? — 7]22;;2 (aj — 0;7 = 172)1

72(n —1/2)?
\ﬁcz____(_m?/_l. (aj_ﬂ\oo).

Positive imaginary values of the above expressions acquire small real parts when

. oa
Mny Vn ™

k is given a small positive imaginary part. There is no loss of generality involved
in this assumption provided that (k) — 0 at the end of the analysis.
The full difference equation for f(s) is now

—————gﬁj EZ;f (s) + ZB'i 2;;; 2(23:;//:)) f (s + 3) +f (-3 + i)

ByK»(s+ 2i/a) 21 31
+ B1K1(5+2i/a)f( ot )+2f<5+ )+f<3+ )
{s +3i/(2a)}(s + i/a)*{ B2 Ka(s +i/a) — BiKi(s + i/a)} (S N )
ra?{(s +i/a)t — o*}B1K1(s +i/a) a
4 {5+ 3i/(20)}(s + 2i/a)*{BaKa(s 4 2i/a) — B1K:(s + Zi/a)}f<s N g_z~>
2ra?{(s + 2i/a)* — o*}B1 Ky (s + 2i/a)




where o is defined by
4 M2 — T

" B;— B’
The quantity o plays an important role in the Wiener—Hopf analysis, see [3].

g

When & >> 1, the first six terms on the left-hand side predominate, forming

a third-order functional difference equation, that is

o)+ (s+ ) wns ) 7o) #2054 )
+p<s+g§)f<s+%>+f<s+§i>=0’ (1)

a

where p(s) denotes B,Ka(s)/{B1Ki(s)}. This can be re-cast as
F(s)+2F(s+i/a)+ F(s+2i/a) =0 ( 49)

where
p(s)f(s) + f(s +i/a) = F(s).

Tts is easily shown that
P(s) = {A(s) + sB(s)}e™

where the functions A(s) and B(s) are periodic so that, for example, A(s) =
A(s + i/a). The solution to ( 48) that has the correct pole structure and for
which the integral representation of the velocity potential ¢(z,y) exists is obtained
only if A(s) = B(s) = 0 whence the results of § 4 are retrieved. For & << 1,
the last two terms on the left-hand side of ( 47) appear to predominate, but
the limiting equation does not provide physically meaningful solutions. This is
because the difference between the arguments s and s 414 /a tends to infinity as @
tends to zero, with the result that the limiting equation no longer has the nature

of a difference equation. The increasingly abrupt change in physical properties




as a — 0 invalidates assumptions on which the thin plate theory are based. A
more productive approach for analysis of the problem when a << 1 is to multiply
( .9) throughout by B(z) and then replace the quantities B'(z) and B"(z) by
the generalised functions which reflect their limiting properties. The notation

B(z) = B(xz;a) makes the parameter explicit. It is shown in Appendix C that

lim B'(z;1/n) = (Bs — B1)8(z) ( 50)

Flr OO
and
lim B'(z:1/n) = (B, — B3 (e) (51)

“where §(z) here denotes the Dirac delta function. The analysis presented herein
is based on the assumption that the velocity potential maintains continuity of

displacement, gradient and the next two derivatives with respect to = across

z = 0, that is
¢y(0—7 h) - ¢y(0+7 h);
¢‘y~'b'(0"7 h) = ¢yz(0+7 h); ( 52)
¢ym:(0_7 h) = ¢ya::z:(0+7 h)7

¢yza:1:(0""7 h) = ¢ym‘z(0+7 h)
Under these conditions and for @ << 1, the terms of interest give rise to forcing

functions

zB'(m)Qi‘%%@ ~ 2(Bs — B1)yses(, B)8(z) = —Aob(c) ( 53)

say and

B”(m:)Qi%’—(m%’—h—)~ ~ (By — B1)byas(z, h)8 (2) = —A:16'(2). ( 54)

The boundary condition ( 14) is then replaced by

(B2 )] )~ s 1) = Au8(@) + A, (59




Equation (-..55) permits the theory presented here to be extended to two further
situations. Firstly, it approximates the plate boundary condition for the case
B, # B, with a << 1. Secondly, it models the case By = By, a > 0 with
the plate constrained so that its displacement and gradient are continuous but
specified at z = 0 (or at any other = value). In the latter case, the delta functions
on the right-hand side of (:.54) are to be viewed as forcing terms (cf [2]) and are
not the @ — 0 limiting forms of B’ and B” (which are in any case known to be zero
for B; = B;). Both situations are of interest and the solution of the boundary
value problem with (- 55) instead of (*.9) as boundary condition could form the
subject of future research. It was noted in § 3 that B' = B"” = 0 for By = Bs.
Expressions ( 53) and ( 54) are consistent with this since then A; = Ag = 0.
This special case in which B, = By arises if the Young’s modulus and Poisson’s

ratio vary with z but §(z) also varies in such a way that

E(z)é(z)’
12(1 — v(z)?)

It is worthwhile commenting on the Wiener—Hopf problem which arises as

= constant.

@ — 0. On multiplying (4.9) through by B(z) and taking this limit in each term
it is found that

[+ (B BH(E) L — s+ s — ma) )| ) = pos (e, )
= Aof2)8(2) + Ai()8 (2) ( 56)

where H(z) is the Heaviside step function. The boundary value problem that
is obtained on replacing ( 14) with this two-part condition can be solved by
recourse to the Wiener-Hopf technique. It should be noted that this is not the
Wiener—Hopf problem that is referred to and used for comparison in § 5. The
Wiener—Hopf problem results quoted there arise from the a — 0 limiting case of
( 14), that is, the Wiener—Hopf limit of the @ >> 1 approximation to (. 9).
Thus, the results presented




in § 5 for the case By # By, although not valid for a = 0, are compared with the
Wiener-Hopf result as a means of checking algebraic accuracy. The results are,
however, valid for @ = 0 in the case By = Bs.

As a final point, it is noted that the special case m; = m, permits some slight
simplification of the functional difference equation. This case arises if the density
and thickness of the plate material both vary but in such a way that the area

density m = poé remains uniform. In this case the quantity o in ( 47) is zero.
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Appendix A

The functional difference equation

flz+1) _ g 2) = hyi(2)hq(z
O h(z) = h1(2)ha(z) (A1)
has the formal solution
f(z) = [, hi(z—n) H hi(z — n) (A.9)

ITno ha(z + n) h2 Z) i he(z + n)
as may be seen by substituting and treating infinite products as absolutely conver-
gent. The numerator and denominator in (A.2) are both adapted from Norlund’s
principal solution [16]. In a particular case, hi(z) and h(z) need to be chosen so
that the solution given By (A.2) contains an absolutely convergent infinite product
which defines a meromorphic functional solution to (A.1).

For the functional difference equation ( 29), suitable functions h1(s) and hs(s)
can be defined in much the same way as the plus and minus functions employéd
in the Wiener-Hopf method. A product representation of p(s), which is defined
by ( .26), is

‘ s2/v?
p(s) =50) [T = (A3)
where :
. 4 00 2
patanh —ay 17 ¥
0) pltanh —oy 7};‘[0 n2’ (A-4)




the last equality following from the fact that lim, .. p(s) = 1, which may be
deduced from ( .26). The infinite product in (A.3) converges because both v, and
nn are asymptotically win/h as n — co. The infinite product in (A.4) converges
because v, — 7, = O(n™®), which follows from (B.7). Separating the zeros and
poles of p(s) into two sets, {7n}U{vn} and {—n,} U{—wm}, p(s) can be factorised
as p(s) = hi(s)ha(s), where

ha(9) = o) T 102, hafe) = o) T T2 (45)

n"O n==0

The products converge absolutely for all s because, using (B.7) and (B.6), v;* —
77t =0(n"") as n — oo.
By (A.2), ( 29) has asolution
1 =k (o—)
fa(s) = ’
)= 56 721 ho (s +2)

provided that the product converges. With hy(s) hy(s) are given by (A.5), the

product does converge and can be reduced to the form

{1 —ia(n, — )} {—ta(vn + 5)}
fals) = I__IO {1 is(vm — 5) T4 —ia(7m + 5)] (A-6)

where the infinite product representation for I'(z) has been utilised. In order to

examine the behaviour of f(s) as |s| — oo it is useful to recast fy(s) as

o0 o0 1 - m ]— + Un, .
fa(s) . H H ( ﬂm: 1+ + ) (A7)

hZ(S) m=1 n=0 - Vn‘l‘? +l?

1 1"‘5/1/1;_1+3/ac;g
ha(s) Pairs (1 - S/:I:k 1+ S/yk> ’ (A8)

where z; (with k& = 0,1,2,...) are the numbers v, + im/a arranged in order of

s

increasing imaginary part and yj are the numbers 7, + im/a similarly arranged.

Note that
|zx| ~ +/27k/ha as k — oo, ‘
lyg| ~ 1/27k/ha as k — oo, (A.9)

zr— e =0k "?) as k — co.




The complete solution to ( .26) can now be written in the form

Hemts o (1=s/yx 1+ s/
ha(s) sigh{wa(s+ vo)} 11 (1 — 8]z, 1+s/yk) )

k=0

#(s) = (A.10)

The roots 7, and v, become purely imaginary and increasing in modulus for 1arge
" n. Tt follows that z; and y; are both purely imaginary for all large enough &, and
so the infinite product and the function hs(s) in (A.10) are bounded as s — oo
in a horizontal strip. The complete function f(s) therefore decays exponentially
for such s, provided that B; < e™Bs, and certainly if the factor e is omitted, as

explained in § - 4.




Appendix B

S Lef +n, be the
roots of Ky(s) = (s* — pf)ytanh(yh) — oy = 0, and +v, those of Ks(s) =
(s* — p3)ytanh(yh) — @y = 0. Apart from a finite number, say 2m; and 2msa,
the roots of each equation are purely imaginary. So for large n, 7, and v, are
those roots which are closest to wi(n —m; +1)/h respectively (j = 1,2). In what
follows it can be assumed without loss of generality that m; = my = m.

An asymptotic expression for n, in powers of n~! can be obtained by the
method given by Olver [12]’ For simplicity of notation-expressions are derived for

the case m = 1. Using the notation 7, = v(7,), define
€n = h7n + Tin (B.1)

and write the defining equation as

aq

(nt — i)

(B.2)

€, = tanh™!

From (B.1),

Bof

1
€n = —hn, (1 —_ 7) + min,
n

choosing an appropriate branch of «,
h h 5h Th 21h

h
= —hp dmind — +
Tt Tt e Y ang T 1o T 1287 T 25657 T T02an




+ O0(n;") as n — oo. (B.3)

On the other hand, from (B.2),
o p\ 1\7?
-1 1
€, = tanh {—-E (1 — 55) (1 — -7;%-)

+ O(n;*?). (B.4)

Combining (B.3) and (B.4),

hi = min+ —+ —+|—=+a —-—+ +—| =

2n, 873 16 128 ' 2 nr
Th 4 30!1 ]_ 21hA Qf1,u1 50(1 1
+(256+alﬂl+ 8 ) ;~3+<1024 2 16
+0(1;"). (B.5)
Starting with
=5 +0(n™)

and repeatedly substituting for 7, in the right-hand side, the following expression
is obtained

min ih ik 1 o ik° 5 . 5a;\ ik’
s %) v+ 3)

kR 2rn  8r%n® 16 + b ) wons 128 2h ) ™7
7 (831 ’th ~11
- {256 + (1 + 4)77} s T O, (B.6)

The expression for v, is the same except that oy and 2 replace oy and py. When
m > 1, the expression on the right-hand side of (B.6) represents 7, 4m_1 or Untm—1

rather than n, or v,. Subtracting,

1h? 5:h7
Nntm—1 = Vngm-1 = (a2 — a1)m + (@ — o) T
1h®?

+ {4(a2 — o) + p — }‘9—5
+O0(n™) as n — oo. (B.7)




Appendix C

The bending stiffness as a function of 'z is denoted by

. Bl -+ Bgem/“

B(z;a) = T el (C.1)

where By, B; and a are positive parameters and z is real. As ¢ — 0, the pointwise
limits are

}IEI(I) B(IC, a) = B1 -+ (Bz - Bl)H(IL'), (02)

where H(z) is the Heaviside step function with H(0) = 1/2. On differentiating

(C.1),
B, — By)
B'(z;a) = ( : , .
(z;0) 4a cosh®(z/2a) (C3)
It will be shown here that the sequence B'(z;1/n) defines the generalised func-

tion (By — B;)8(z) where

/ ‘: §(2)F(z) dz = F(0), (C.4)

for any good function F(z) in the sense of [9].. The small parameter a has been

replaced by 1/n and following [9] :

} / Z B'(z;1/n)F(z) dz — F(0)




= l/ —sech—F( )d:):——F(O)'

‘ [ Zeect™ {P(a) - F(0)}do

lfv!

I

< max|F'(¢ ]/ ch2~—dw —o0 < € < o0 (C.5)

where the last step is accomplished by recourse to the mean value theorem of the
differential calculus.
It remains to be shown that the value of the integral in (C.5) tends to zero as

n — 00. this is done by writing

/_wﬁllil-sechz%aidm
= E/oo:zzsechzzg;—claz:
2 Jo 2
= Zz_/o tsech —z—dt

— 0 asn — oo.

It follows that
B'(z;1/n) ~ (B, — B1)é(z)

and, by the consistency properties proved in [9] page 18,

B"(z;1/n) ~ (By — B1)6'(z).




