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In summary, Table VI presents the highest possible minimum weight
dn for an optimal self-dual code of lengthn � 40, along with the
reference for the first known code with this weight. No entry in the last
column indicates the first code appears in this correspondence.
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An Improved Upper Bound on the Minimum Distance of
Doubly-Even Self-Dual Codes

Ilia Krasikov and Simon Litsyn, Member, IEEE

Abstract—We derive a new upper bound on the minimum distance of
doubly-even self-dual codes of length . Asymptotically, for growing,
it gives lim sup (5 5 ) 10 0 165630, thus
improving on the Mallows–Odlyzko–Sloane bound of1 6 and our recent
bound of 0 166315.

Index Terms—Distance distribution, self-dual codes, upper bounds.

I. INTRODUCTION

Self-dual codes attract a great deal of attention, mainly due to their
intimate connections with important problems in algebra, combina-
torics, and number theory (see many references in [2], [3], [11], [14],
and [16]).

A binary self-dual linear codeC of lengthn and minimum distance
d is doubly-even if all its weights are divisible by4. By a result of
Gleason (see e.g., [11, Sec. 19.2]) such codes exist only forn divisible
by 8 (for a proof not based on invariant theory see [8]). Letdn be the

Manuscript received August 18, 1998.
I. Krasikov is with the School of Mathematical Sciences, Tel-Aviv University,

Ramat-Aviv 69978, Tel-Aviv, Israel, and Beit-Berl College, Kfar-Sava, Israel.
S. Litsyn is with the Department of Electrical Engineering-Systems, Tel-Aviv

University, Ramat-Aviv 69978, Tel-Aviv, Israel (e-mail: litsyn@eng.tau.ac.il).
Communicated by R. M. Roth, Associate Editor for Coding Theory.
Publisher Item Identifier S 0018-9448(00)00077-8.

maximum distance of a doubly-even self-dual (DESD) code of length
n. Here we consider the asymptotic problem of determining

� = lim
n!1

sup
dn
n
:

By a result of Thompson [17] there exist DESD codes satisfying
the Gilbert–Varshamov bound, i.e.,� � H�1(1=2) = 0:110 � � �. It
is generally believed that this bound gives the true value. The Mal-
lows–Odlyzko–Sloane bound [12], [13] yields� � 1=6. This estimate
essentially exploits invariant theory. Recently, using a variant of linear
programming approach, we improved it to� < 0:166315.

For unrestricted self-dual codes the best known upper bound is due
to Ward [18] and also equals1=6 (see also Conway and Sloane [3] and
Rains [15] for better bounds for finite lengths).

Our main result here is the following theorem.

Theorem 1:

� � (5� 53=4)=10 < 0:165630:

To prove it we use a modification of the linear programming method
for upper-bounding individual components of the distance distribu-
tion of the DESD codes. We show that under some assumptions about
the minimum distance of the code, its distance distribution is upper-
bounded by the normalized binomial distribution. This phenomenon
for arbitrary codes was discussed in, e.g., [6], [7]. Furthermore, since
the upper binomial bound is actually attained at any interval of size
o(n), it proves an existence of nonzero component of the distance dis-
tribution in the interval of binomiality.

Note, that estimating the range of binomiality requires analysis of
properties of certain polynomials and their expansions in the basis of
Krawtchouk polynomials. In the previous paper [8] we were able to
compute only the zeroth coefficient of the expansion. Here we develop
alternative techniques which allow computing the total spectrum, thus
yielding a better estimate for the range of binomiality. Since now we
possess a complete knowledge about the coefficients of the expansion,
new ideas are necessary to achieve further improvements.

II. BASIC RELATIONS

We need some notations. In what follows, all logarithms are natural,
andthe logarithm of a negative number is understood as its real part
(by this convention we avoid writing the absolute values of the expres-
sions under logarithms). As usual

H(x) = �x ln x� (1� x) ln(1� x)

stands for the natural entropy function.
Let C be a DESD code of the minimum distanced, the relative

distance� = d=n, and let(B0; B1; � � � ; Bn) stand for its distance
distribution. Clearly,B0 = 1, B1 = � � � = Bd�1 = 0, and
Bj = 0 wheneverj is not a multiple of4. Moreover, the distance
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distribution is symmetric with respect ton=2, i.e.,Bj = Bn�j and
n
i=0Bi = jCj = 2n=2. The distance distribution is invariant under

the MacWilliams transform

jCjBi =

n

j=0

BjPi(j) (1)

wherePi is the corresponding Krawtchouk polynomial of degreei

Pi(x) =

i

k=0

(�1)k
x

k

n� x

i� k
=

(�2)i

i!
xi + � � � (2)

(for properties of Krawtchouk polynomials see, e.g., [1], [5], [9]–[11]).
Let f(x) be a polynomial

f(x) =

n

i=0

AiPi(x)

then (see, e.g., [10])

Ai = Ai(f) = 2�n
n

j=0

f(j)Pj(i) (3)

in particular

A0(f) = 2�n
n

j=0

f(j)
n

j
:

The following lemma of Delsarte [4] is the core of the linear pro-
gramming approach.

Lemma 1: Let f(x) be a polynomial of degreer

f(x) =

r

i=0

AiPi(x); 0 � r � n;

then

jCjA0 + jCj

r

i=d

AiBi = f(0) + f(n) +

n�d

j=d

f(j)Bj: (4)

Proof: Calculating jCj
r

i=0

AiBi, we get the claim from

(1).

We use this lemma with the polynomials

Bn
h(x; k) =

1

22k(2k)!

k�1

i=0

((n� 2x)2 � h2i2): (5)

These polynomials are even in respect ton=2. The zeros ofBn
h(x; k)

aren=2� hi=2; i = 0; � � � ; k� 1. Notice thatn=2 is a root of multi-
plicity 2.

Let us sketch the proof of the main result. Let

Bn
h(x; k) =

2k

j=0

Aj(n; h; k)P
n
j (x)

be the Krawtchouk expansion of the defined polynomials. Then,
choosingh = 8, d � n=2 � 4k, by the above lemma we can rewrite
(4) as

2n=2A0(n; 8; k)� 2Bn
8 (0; k)

=

2k

j=d; 4jj

2Bn
8 (j; k)� 2n=2Aj(n; 8; k) Bj

+ 2

n=2�4k

j=2k+2; 4jj

Bn
8 (j; k)Bj : (6)

In Section IV we show that asymptotically whenn grows andk=n <
1=12

Bn
8 (0; k) = o(2n=2A0(n; 8; k))

and forj=n > (5 � 53=4)=10

2n=2Aj(n; 8; k) = o(Bn
8 (j; k)):

This yields

2n=2A0(n; 8; k) = 2(1� o(1)) �

n=2�4k

j=d; 4jj

Bn
8 (j; k)Bj : (7)

Therefore, sinceBn
8 (j; k) for oddk’s is positive in the interval of sum-

mation, we obtain that for everyj in the interval[d; n=2� 4k]

Bj < 2n=2�1
A0(n; 8; k)

Bn
8 (j; k)

:

Choosingk as an appropriate function ofj, we conclude thatBj is,
up to a factor polynomial inn, upper-bounded by2�n=2 n

j
. Lettingk

tend ton=12 and plugging the bounds forBj into (7) we get that there
should exist a nonzero (in fact, binomial) component in the distance
distribution in the interval

(5� 53=4)n=10; (5� 53=4)n=10+ o(n)

thus proving the claim.
We used the MATHEMATICA package for analytical calculations.

III. POLYNOMIALS

Our goal here is to find the Krawtchouk expansion

Bn
h(x; k) =

2k

j=0

Aj(n; h; k)P
n
j (x)

and evaluate asymptotics of its coefficients forh = 8. In [6] we have
found such expressions forh = 2 and4. Forh = 8 we were only able
in [8] to calculateA0(n; 8; k). Here we further develop our techniques
to find Aj(n; 8; k) for everyj (actually, onlyj being multiples of4
are of interest). Notice, that for oddj the coefficients vanish due to the
symmetry of the polynomial in respect ton=2.

The starting point is the following lemma [8, Lemma 4].

Lemma 2:

dk cos(t arccos z)

dzk z=1

=
1

(2k� 1)!!

k�1

i=0

(t2 � i2):
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Lemma 3: For j even

Aj(n; h; k) =
(�1)j=2h2k

23kk!

dk

dzk
sinj 	h cosn�j 	h

z=1

where

	h =
arccos z

h
:

Proof: Using the previous lemma we obtain
k�1

i=0

(n� 2x)2 � h2i2

= h2k
k�1

i=0

n� 2x

h

2

� i2

= (2k� 1)!!h2k
dk

dzk
cos((n� 2x)	h)

z=1

:

Now, by (3)

Aj(n; h; k) =
1

2n

n

x=0

Bn
h(x; k)Px(j)

� (2k� 1)!!h2k

2n+2k(2k)!

n

x=0

Px(j)
dk

dzk
cos((n� 2x)	h)jz=1

=
h2k

2n+3kk!

dk

dzk

n

x=0

Px(j) cos((n� 2x)	h)

z=1

:

(8)

Furthermore, since

n

x=0

Px(j)u
x = (1� u)x(1 + u)n�x

we have, with notation� =
p�1

n

x=0

Px(j) cos((n� 2x)	h)

=
1

2

n

x=0

Px(j) (exp (�(n� 2x)	h)

+ exp (��(n� 2x)	h))

=
1

2
exp (�n	h) (1� exp (�2�	h))

j

� (1 + exp (�2�	h))
n�j

+
1

2
exp (��n	h) (1� exp (2�	h))

j

� (1 + exp (2�	h))
n�j

=
1

2
exp (�n	h) (�2�)j sinj 	h � exp (��j	h)

� 2n�j cosn�j 	h � exp (��(n� j)	h)

+
1

2
exp (��n	h) (2�)

j sinj 	h � exp (�j	h)

� 2n�j cosn�j 	h � exp (�(n� j)	h)

= 2n�j sinj 	h � cosn�j 	h;

where at the last step the following identities have been used:

1� exp(2�') = 2� sin ' � exp(�')
1 + exp(2�') = 2 cos ' � exp(�'):

Plugging it into(8) we obtain the claim.

To derive the explicit formulas for the coefficientsAj(n; 8; k) we
exploit the following values ofAj(n; 4; k) obtained in [8, Lemma 3].

Lemma 4: For j even

Aj(n; 4; k) =
n� 2j

22k(n� 2k � j)

n=2� k � j=2

k � j=2
:

Comparing the two previous lemmas we get

Corollary 1:

dk

dzk
sinj 	4 cosn�j 	4

z=1

=
(�1)j=2k!(n� 2j)

23k(n� 2k � j)

n=2� k � j=2

k � j=2
:

Theorem 2: For evenj, j � 2k � 2,

Aj(n; 8; k) =
1

(2k� j)2n=2

n=2�j

i=0

(i� j)

� n=2� j

i

i=2� k � 1

k � j=2� 1

A2k(n; 8; k) = 2�2k:

Proof: The expression forA2k(n; 8; k) follows from(2) by com-
paring the leading coefficients. Now

sinj 	8 cosn�j 	8 =
1

2j
sinj 	4 cosn�2j 	8

=
1

2n=2
sinj 	4(1 + cos 	4)

n=2�j

=
1

2n=2

n=2�j

i=0

n=2� j

i
sinj 	4 cosi 	4:

Furthermore, by Corollary 1

dk

dzk
sinj 	8 cosn�j 	8

z=1

=
(�1)j=2

2n=2

n=2�j

i=0

n=2� j

i

k!(i� j)

23k(i� 2k)

i=2� k

k � j=2

and the result follows by Lemma 3.

Let us consider now the situation of growingk andn, and estimate
the asymptotics ofAj(n; 8; k) andBn

8 (x; k).

Theorem 3: For � < 1=2� 4�,
1

n
ln Bn

8 (�n; �n) = (�+ 1=8� �=4) ln(1 + 8�� 2�)

+ (�� 1=8 + �=4) ln(1� 8�� 2�)

� 2� ln(4�) + o(1):

Proof: Notice that

Bn
8 (x; k) = n24k�3

n=8� x=4 + k � 1

2k
:

The Stirling approximation accomplishes the proof.

For our purposes we will need only oddk. Indeed, only in this case
Bn
8 (x; k) � 0 for all x divisible by4. So, from now on we assumek

to beodd.
Denote, forn divisible by8, j divisible by4 and oddk,

Sj(i) =
n=2� j

i

i=2� k � 1

k � j=2� 1
:

The following notation is used in the sequel,k = �n, j = �n,
i = �n, y = 1� 2�, and� = y2 � 16�+ 128�2.
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Lemma 5: Let� <
p
2=12, then for sufficiently largen the function

jS�n(�n)j has two local maxima in�, one at

�1 =
y(8�+ y � �)

4(1� 4�+ y)

and another at

�2 =
y(8�+ y + �)

4(1� 4�+ y)
;

wherey = 1 � 2�.
The first maximum is the absolute maximum for� > 1=12, other-

wise, the second maximum is the absolute one. For� = 1=12 they are
asymptotically equal.

Proof: Let

��(�) = lim
n!1

1

n
ln S�n(�n):

Observe thatSj(i) may be negative only for oddi’s and2k+3 � i �
4k � j � 3, that is,2� � � � 4� � �.

Using Stirling approximation and the convention that logarithm is
understood as its real part, we obtain

��(�) = � � ln � + (�=2� �) ln(�=2� �)

+ (1=2� �) ln(1=2� �)� (1=2� � � �)

� ln(1=2� � � �)� (�� �=2) ln(�� �=2)

+ (2�� �=2� �=2) ln(2�� �=2� �=2):

Now

d��(�)

d�
=

1

2
ln

(� � 2�)(1� 2� � 2�)2

4�2(4�� � � �)
: (9)

To find extrema we equate the square of the expression under the log-
arithm to1, which gives after substitutiony = 1� 2�,

8�3 + �2(2� 24�� 6y) + �(8�y + y2)� 2�y2

� �2(8�� 2y � 2) + �(8�y + y2)� 2�y2 = 0:

The roots of the second factor are exactly�1 and�2 from the claim. The
first factor has only one real root corresponding to the minimum. In-
deed, since always2� � �, it can be directly verified that the derivative
of the first factor in� is positive for� <

p
2=12. Moreover, the only

real root of the first factor belongs to the interval[2�; 4� � �], since
the first factor is negative at the left end of the interval and is positive at
the right one. Now, it is easy to check that�1 < 2� and�2 > 4�� �.
Computing the second derivatives at�1 and�2 we convince that there
are two maxima. Indeed, the second derivative of��(�) in � is

2�2(1� 4�+ y) + �y(1� 20�� y)� 4�y(1� 8�+ y)

2�(�� 2�)(y � 2�)(1 + 2� � 8�� y)
:

Substituting� = �1 and� = �2 we get

16�("� 12"�� �)(1� 4�+ y)3

y(4�+ y � 1)(2� 16�� "�+ y)2(8�+ "�+ y)2

where" = 1 corresponds to�1, and" = �1 corresponds to�2. Since
y = 1 � 2� � 1 � 4�, then4� + y � 1 � 0. Therefore, the sign of
the second derivative coincides with the sign of

"� 12"�� �:

Checking that

�2 � (1� 12�)2 = y2 � (1� 4�)2 � 0

we conclude that in both cases it is negative.

The only thing left to be proved is that the absolute maximum
is at �2 for � < 1=12 and at�1 otherwise. Consider the function
� = ��(�2)� ��(�1). For� = 1=12 we compute� = 0.

Differentiating iny we get

d�

dy
=

1

4
ln

(1� 12�+ �)2

(1� 4�+ y)(�1 + 4�+ y)
:

The condition for� to be increasing iny is that

2(1� 12�)(1� 12�+ �)

(1� 4�+ y)(�1 + 4�+ y)
< 0:

Since all the terms but(1 � 12�) are positive we conclude that� in-
creases iny for � > 1=12and decreases otherwise. Therefore, it attains
the minimum value aty = 1 � 4� for � < 1=12 and the maximum
value for� > 1=12.

Consider the case� < 1=12. Fory = 1� 4� we have the equation
at the bottom of this page. This function decreases in� and equals0
at � = 1=12. So, for� < 1=12, � < 0. For� > 1=12, the proof is
similar.

Remark: Actually, the constraint on�,� <
p
2=12 in the claim can

be omitted. We used it to simplify the proof.

Theorem 4: Let 0 < � <
p
2=12. Then

1

n
ln A�n(n; 8; �n)

=
y

4
ln

1� 12�+ "�

�1 + 4�+ y

� 1

4
ln

(2� 16�+ �� "y)(2� 16�� �+ "y)

16(1� 4�+ y)(�1 + 4�+ y)

+ � ln
(�� "y)2(2� 16�+ �� "y)(2� 16�� �+ "y)

256�2(1� 4�+ y)(�1 + 4�+ y)

+ o(1)

where" = 1 for 0 < � � 1=12 and" = �1 otherwise. Moreover,
for sufficiently largen, 8jn, oddk, and4jj,Aj(n; 8; k) is positive for
� < 1=12. For� > 1=12 its sign coincides with the sign of(�1 � �).

Proof: As we mentioned,Sj(i) can be negative only for oddi’s
and2� � � � 4�� �: Since the points of maxima,�1 and�2 do not
belong to this interval, then, by Theorem 2, for sufficiently largen, the
value ofAj(n; 8; k) is determined by the maximum ofSj(i) and the
sign of(i� j) for the optimali. Notice that

�2 � � =
�2 + 8�+ �y + 3y2

4(1� 4�+ y)

is increasing iny, so its minimum is attained aty = 1� 4� and equals
(1� 12�)=4 > 0. So, for� < 1=12, we have�2 > � and the value of
Sj(i) corresponding to�2 is positive. The result now follows from the
previous lemma.

IV. PROOF OF THEMAIN RESULT

Lemma 6: For� < 1=12

Bn
8 (0; k) = o(2n=2A0(n; 8; k)); (10)

and for

(5� 53=4)=10 � � � 1=2� 4�

(5� 53=4)=20 �� < 1=12

2n=2Aj(n; 8; k) = o(Bn
8 (j; k)): (11)

� =
(1 + 4�) ln 2 + (1� 8�) ln(1� 8�)� (1� 4�) ln(1� 4�) + 4� ln�

2
:
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Proof: Denote

��(�) = lim
n!1

1

n
ln Bn8 (�n; �n)

��(�) = lim
n!1

1

n
ln A�n(n; 8; �n)

��(�) = ��(�)� ��(�)� ln 2=2:

Using results of the previous section we obtain��(1=12) = 0.
We start from proving that�0(�) < 0 for � < 1=12. Denote

�0 =
p
1� 16�+ 128�2:

We get

d�0(�)

d�
ln

(1 + 8�)(1 + �0)
2(3� 16�+ �0)(�1 + 16�+ �0)

256(1� 8�)3�2
:

As it is easy to check the expression under the logarithm is greater than
1, so the maximum,�0(�) = 0, is attained at� = 1=12, thus proving
(10).

Let us prove (11). For the range of� and� defined in the claim we
have1 � 4� � y � 5�1=4.

Computing derivative iny

d��(�)

dy
= �1

8
ln

(1� 12�+ �)2(y � 8�)

(4�+ y � 1)2(y + 8�)

we conclude that its sign is determined by the sign of

8�� 96�2 + 8��+ 8�y � �y � y2:

Direct checking confirms that the last expression is negative, i.e.,
��(�) decreases iny. Therefore,��(�) attains its minimum at the
minimal value of�, that is, fory = 5�1=4.

Now, we differentiate in� getting

d��(�)

d�
= ln

16(y � 8�)(1� 4�+ y)(�1 + 4�+ y)(8�+ y)

(�� y)2(2� 16�+ � � y)(2� 16�� �+ y)
:

One can check that fory = 5�1=4 this derivative is negative for�
in the considered interval, and thus the minimum of��(�) is attained
for y = 5�1=4 and� = 1=12. This minimum equals0, therefore, for
� < 1=12, the function��(�) is positive.

Theorem 5: If there exists a DESD codeC with � = d=n > (5�
53=4)=10 then

1

n
ln Bj < (1 + o(1)) ln

n
j

2n=2
:

Proof: Let � < 1=12. Substitute the polynomialBn8 (x; k) into
(4). From the previous lemma we have

2n=2A0(n; 8; k) = (1� o(1))

n�d

j=d

Bn8 (j; k)Bj

=2(1� o(1))

n=2�4k

j=d

Bn8 (j; k)Bj :

Recall, that sincek is chosen to be odd, all summands in the right-hand
side are nonnegative. Therefore, forj 2 [d; n=2� 4k]

Bj � (1 + o(1))
2n=2

2Bn8 (j; k)
or

1

n
ln B�n � ln 2

2
� ��(�) + o(1):

Givenj = �n choose

� =
(1� 2�)2(�2 + (1� �)2)

8(�4 + (1� �)4)
=

y2(1 + y2)

2(1 + 6y2 + y4)
:

Here

8� � y � 1� 2�

that is,

8� � y � 5�1=4:

Direct verification shows that for chosen� it always holds.
By Theorem 4 we have by straightforward calculations that

�0(�)� ��(�) + ln 2=2 = H(�)� ln 2

2
:

Proof of Theorem 1:Assume the contrary, namely, that there ex-
ists a code with� > (5 � 53=4)=10. Then, by the previous theorem,
and (4) we have

�0(�) +
ln 2

2
=

1

n
ln

n�d

j=d

Bn8 (j; k)

n

j

2n=2
+ o(1)

= max
�2[�;1=2]

(��(�) +H(�)� ln 2=2) + o(1):

Notice, that the maximum of the right-hand side is attained at� = �.
Indeed, substitutingy = 1 � 2�, we have that the derivative of the
right-hand side iny is

1

8
ln

(1� y)4(y + 8�)

(1 + y)4(y � 8�)
:

It is easy to check that the derivative tends to0 for y ! 5�1=4 and
� ! 1=12. Hence, at this point the maximum is attained. It equals
(5 ln 5)=24. So, for� > (5 � 53=4)=10 and� sufficiently close to
1=12 we have

�0(�) + (ln 2)=2 <
5 ln 5

24
:

However,�0(1=12) + (ln 2)=2 = (5 ln 5)=24, a contradiction.
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