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In summary, Table VI presents the highest possible minimum weighiaximum distance of a doubly-even self-dual (DESD) code of length
d,, for an optimal self-dual code of length < 40, along with the n. Here we consider the asymptotic problem of determining
reference for the first known code with this weight. No entry in the last
column indicates the first code appears in this correspondence.
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To prove it we use a modification of the linear programming method
for upper-bounding individual components of the distance distribu-
tion of the DESD codes. We show that under some assumptions about
the minimum distance of the code, its distance distribution is upper-
bounded by the normalized binomial distribution. This phenomenon
for arbitrary codes was discussed in, e.g., [6], [7]. Furthermore, since

llia Krasikov and Simon LitsynMember, IEEE the upper binomial bound is actually attained at any interval of size
o(n), it proves an existence of nonzero component of the distance dis-
tribution in the interval of binomiality.

Abstract—We derive a new upper bound on the minimum distanced of Note, that estimating the range of binomiality requires analysis of
doubly-even self-dual codes of length. Asymptotically, for = growing,  properties of certain polynomials and their expansions in the basis of
it gives lim,, oo sup d/n < (5 — 5°%)/10 < 0.165630, thus  crantchouk polynomials. In the previous paper [8] we were able to
improving on the Mallows—Odlyzko-Sloane bound oft /6 and our recent - h
bound of 0.166315. compute only the zeroth coefficient of the expansion. Here we develop
alternative techniques which allow computing the total spectrum, thus
yielding a better estimate for the range of binomiality. Since now we
possess a complete knowledge about the coefficients of the expansion,
I. INTRODUCTION new ideas are necessary to achieve further improvements.

An Improved Upper Bound on the Minimum Distance of
Doubly-Even Self-Dual Codes

Index Terms—DBistance distribution, self-dual codes, upper bounds.

Self-dual codes attract a great deal of attention, mainly due to their
intimate connections with important problems in algebra, combina-
torics, and number theory (see many references in [2], [3], [11], [14],
and [16]). Il. BASIC RELATIONS

A binary self-dual linear cod€’ of lengthn and minimum distance ) .
d is doubly-even if all its weights are divisible by By a result of We need some notations. In what follows, all logarithms are natural,
Gleason (see e.g., [11, Sec. 19.2]) such codes exist ontydaiisible andthe logarithm of a negative number is understood as its real part

by 8 (for a proof not based on invariant theory see [8]). tetbe the (by this convention we avoid writing the absolute values of the expres-
sions under logarithms). As usual

H(z)=—alnz—(1—=2)In(l—2)
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distribution is symmetric with respect t9/2, i.e., B; = B,,_; and These polynomials are even in respectf@. The zeros of3}; («, k)
S, Bi = |C| = 2"/%. The distance distribution is invariant underaren /2 & hi/2, i = 0, - - -, k — 1. Notice that:/2 is a root of multi-
the MacWilliams transform plicity 2.
Let us sketch the proof of the main result. Let
2k
Bii(w, k) =Y Aj(n, h, k)P}'(x)
7=0
be the Krawtchouk expansion of the defined polynomials. Then,
choosingh = 8,d < n/2 — 4k, by the above lemma we can rewrite
(4) as

|C|B: = > B;Pi(j) 1)

whereP; is the corresponding Krawtchouk polynomial of degiee
2"/% 40(n, 8, k) — 2B4(0, k)

2k

[ fn—=x -2) = 2B (j, ]")_271/2141'(’“8» k) ) B;
Z( 1) ()( >:ﬂr+ ) j:;“( )

i—k il
n/2—4k
+2 > Bi(j, kB (6)
(for properties of Krawtchouk polynomials see, e.g., [1], [5], [9]-[11]). skt Al
In Section IV we show that asymptotically whengrows andk/n <

Let b I |
et f(x) be a polynomia 1/12

n Bn 0. k) = 271/2‘4 ) 8, 2
f(,r):ZAiPi(;,;) 5 (0, k) = o o(m, ))
= and forj /n > (5 — 5%/%)/10

on/? Aj(n, 8, k) = o(Bs (5, k)).
then (see, e.g., [10])

This yields
n/2—4k
2" Ag(n, 8, k) =2(1—0(1))- > BL(, k)B;. (7)
A=A =27" Y FUPG) ®3) 7=d,4ls
7=0 Therefore, sinc&g (j, k) for oddk’s is positive in the interval of sum-

mation, we obtain that for everyin the intervalld, n/2 — 4k]

21 Ao(n, 8, k)
. . B. < 2n/_ 1 > > .
in particular ’ Bz (j, k)

up to a factor polynomial im, upper-bounded by~ "/2 (J) Letting &
tend ton /12 and plugging the bounds f@&; into (7) we get that there
should exist a nonzero (in fact, binomial) component in the distance
The following lemma of Delsarte [4] is the core of the linear prodistribution in the interval
gramming approach. ((3 53/Yn /10, (5 — 5*")n/10 + o(n))
Lemma 1: Let f(«) be a polynomial of degree thus proving the claim.
We used the MATHEMATICA package for analytical calculations.

" Choosingk as an appropriate function gf we conclude thaB; is,
fl=27">f ( )

flz) = ZAL'PZ'(I), 0<r<n,
=0 Ill. POLYNOMIALS

Our goal here is to find the Krawtchouk expansion

then
Bji(x, k) ZA n, h, k)P (x)
n—d
|ClAo + |C| Z A;Bi = f(0)+ f(n)+ Z f()B;. (4) and evaluate asymptotics of its coefficients fioe= 8. In [6] we have
i=d j=d found such expressions for= 2 and4. Fori = 8 we were only able

in [8] to calculated, (n, 8, k). Here we further develop our techniques
to find A4;(n, 8, k) for every; (actually, onlyj being multiples oft
are of interest). Notice, that for ogdhe coefficients vanish due to the

Proof: Calculating |C|T§)AiB,¢, we get the claim from symmetry of the polynomial in respectig2.

(2). o The starting point is the following lemma [8, Lemma 4].
We use this lemma with the ponnomiaIs Lemma 2:
2.2 d" cos(t arccos z) 1 L
2.2 _ 2 _ .2
By (x, k) 2%(2]{), H n%i%). (5) | T @ g(t i°). O
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Lemma 3: For j even To derive the explicit formulas for the coefficients (n, 8, k) we

(=1)7/2p2% [ d* ] o exploit the following values ofi;(n, 4, k) obtained in [8, Lemma 3].
Ailn, h, k) = s <—k sin’ ¥y, cos" ™’ ‘I’h>‘ '
3 dz L=1 Lemma 4: Forj even
where o o 1
: A(n k) = o n— 2j ’ n/2 k. j/2 .
g, = Arecos 22k(n — 2k — j) k—3j/2
) h
O
Proof: Using the previous lemma we obtain Comparing the two previous lemmas we get
k—1
2 2.2 Corollary 1:
H ((n— 22)” — hzzr)) & _ _
=0 - sin? ¥y cos" 77 Uy
k-1 . 2 dz* o
_ 2k H n —2r 2 o
B I ' (=P = 25) ()2 —k—j/2 -
B p 2%k (n — 2k — ) k—j/2 '
_ 2k g o €
= (2k = DUR™ -5 cos((n — 22)Tn) - Theorem 2: For evenj, j < 2k — 2,
Now, by (3) 1 e
Aj(n, 8, k) = G Z (i —j)

=0

nf2—j\[{i/2-k-1
’ i k—j/2-1

1 i n )
Ajn, by k) = o > Bh(w, k)Pe(j)
r=0

(2k = DA & . d* _ o
N 2n+2k(2F)! ZPJT(J)W cos((n — 22)¥p)|,_, Asi(n, 8, k) =2 2k
w2k gk Li: Proof: The expression fats.(n, 8, k) follows from(2) by com-
) ' . : >
= S IF (Z Po(j) cos((n — 21,)\1,”) parlhg the Iead|'ng coefflments. Now |
= =0 2:88) sin’ Wg cos" ™7 Uy = 57 sin’ W, cos” "% Wy
= 2“% sin’ W4(1+ cos ‘Il4)"/2_j
Furthermore, since e
" = 2711/2 Z <n/2i—]> sin’ W, cos’ U,
P.(ju" =1 —-uw)(1+u)"™" i=0
; 4) ( ( ) Furthermore, by Corollary 1
. i
we have, with notation = /=1 gox Sin’ Ws cos™ 7 s .,

" _ (-1 /Z_ wj2 -3\ K- (i2—k
> Po(j) cos((n — 22)Ty) PRI i 23k (i — 2k) \k — j/2
w=0 L and the result follows by Lemma 3. O

) Z P () (exp (u(n = 22)¥s) Let us consider now the situation of growikgandn, and estimate
7=0 the asymptotics ofi; (1, 8, k) andBg (z, k).
+exp (—e(n — 22)Ty))
: Theorem 3: For¢ < 1/2 — 4k,
= % exp (tny) (1 —exp (—2004,))’ 1 ¢ / "
; ~ 1n Bg in) =(rk+1/8—=&/4) In(1 4+ 8k — 2
(14 exp(=20F3))" p L Ps (€n, kn) =(rk+1/8 = £/4) In(1 + 8 — 2¢)
) +(k—1/84€/4)1In(1 —8xk —2
+ % exp (—n¥s) (1 — exp (20¥4))’ ( /8+¢/4) 3

— 2k In(4k) + o(1).
Proof: Notice that

(14 exp (200,,))"

= % exp (in®y) (=20)7 sin? Uy, - exp (=15 })

2277 cos" I Wy, - exp (—t(n — §)¥y) 2k
+ % exp (—inTy,) (QL)J' sin’ W, - exp (1T The Stirling approximation accomplishes the proof. O
27 cos™ I Wy, - exp (e(n = j)¥s) nFor our purposes we _vv_iII_need only oddIndeed, only in this case
Coni o g B (z, k) > 0 for all z divisible by4. So, from now on we assunie
= 2" sin’ ¥y, - cos Uy, to beodd.
Denote, forn divisible by8, j divisible by4 and oddk,
where at the last step the following identities have been used: 2=\ (fij2—k—1
1 — exp(2up) =20 sin ¢ - exp(ip) S=1" k—j/2-1)
1+ exp(2up) =2 cos ¢ - exp(1p). The following notation is used in the sequél,= xn, j = &n,
Plugging it intd8) we obtain the claim. O i=nn,y=1-2¢andp = /y? — 16x + 128x2.
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Lemmab5: Lets < v/2/12, then for sufficiently large: the function The only thing left to be proved is that the absolute maximum

|Sen(nn)| has two local maxima iny, one at is atn. for k < 1/12 and aty, otherwise. Consider the function
y(8r+y —p) v=o0¢(n2) —oe(m). Fork = 1/12 we computer = 0.
= 0 —drty) Differentiating iny we get
and another at dv _ 1 (1 =12k 4+ p)*
dy 4 (1-ds+y)(-l+4r+y)

_yBr+y+p) i . e
N2 = H(1—drnty) The condition forv to be increasing iy is that
2(1 = 126)(1 — 126+ p)
(1-4s+y)(—1+4k+y)
Since all the terms butl — 12«) are positive we conclude thatin-
creases i for s > 1/12 and decreases otherwise. Therefore, it attains
the minimum value ay = 1 — 4« for x < 1/12 and the maximum
1 value forx > 1/12.
oge(n) = nlglolo - ln Sen(nn). Consider the case < 1/12. Fory = 1 — 4x we have the equation

Ob has, (i b . ly for odids and2k +3 < i < at the bottom of this page. This function decreases and equal$)
servet (7) may be negative only for odds and2# + ! atk = 1/12. So, forx < 1/12,v < 0. Forx > 1/12, the proof is
4k — j — 3, thatis,2k < n < 4k — €. similar 0

Using Stirling approximation and the convention that logarithm is
understood as its real part, we obtain Remark: Actually, the constraint or, » < v/2/12inthe claim can
se(n) = —nlun+ (/2 — x) In(n/2 — x) be omitted. We used it to simplify the proof.

< 0.

wherey = 1 — 2¢.

The first maximum is the absolute maximum for> 1/12, other-
wise, the second maximum is the absolute onesforl/12 they are
asymptotically equal.

Proof: Let

+(1/2-8& Wn(1/2-¢&) —(1/2—n = &) Theorem 4: Let0 < x < v/2/12. Then
In(1/2 =0 =€) = (5 = £/2) In(x = £/2) L Aen(n, 8, 5n)
n
+ (26 = 1/2-¢/2) In(2k = n/2 = £/2). _ v, L 12ntep
Now _Zn —1+4r+y
doe(n) _ 1 (n=2r)(1 =2y = 26)° ©) _ Ly @ loetp )2 10— ptcy)
dnp 2 An2(4dk —n — &) 4 16(})_4”"1‘!/)(_1‘1‘4"'/-1-?/)
. . (p—2y)” (2= 16K+ p — 2y)(2 = 16K = p + cy)
To find extrema we equate the square of the expression under the log- ++ In 25652 (1 — 45 + y)(—1 + 45 + 9)
arithm to1, which gives after substitutiop = 1 — 2¢, +o(1) 7 ’
3 206 e ; . 2y 2
(87° +17(2 = 241 — 6y) + n(8ry +y*) = 2ry”) wheres = 1for0 < » < 1/12 ands = —1 otherwise. Moreover,
2 < c 2 ‘ 2 . . . e
(7 (8w =2y = 2) + n(8ky +y") — 2ry") = 0. for sufficiently largen, 8|n, oddk, and4|j, A;(n, 8, k) is positive for

The roots of the second factor are exagthyandr, from the claim. The # < 1/12.Forx > 1/12 its sign coincides with the sign ¢fy — £).

first factor has only one real root corresponding to the minimum. In-  Proof: As we mentioneds; (i) can be negative only for odids

deed, since alway®: > ¢, it can be directly verified that the derivative @nd2s < n < 4 — &. Since the points of maxima, andn. do not
of the first factor iny is positive fors < +/2/12. Moreover, the only Pelong to this interval, then, by Theorem 2, for sufficiently largehe
real root of the first factor belongs to the interj2k, 4x — ¢], since Value of4;(n, 8, k) is determined by the maximum 6f;(i) and the
the first factor is negative at the left end of the interval and is positive 89N of (i — j) for the optimali. Notice that

the right one. Now, it is easy to check that< 2x andn, > 4k — €. —24 8k + py + 3>
Computing the second derivativesiatandy, we convince that there &= 41— 4 ,
! 12V Ince —4rt+y)
are two maxima. Indeed, the second derivative dfy) in 1 is is increasing iny, so its minimum is attained gt= 1 — 4x and equals
207 (1 — 4r +y) + ny(l — 20k — y) — 4ry(l — 8k + y) (1-12k)/4 > 0. So, forx < 1/12, we havey, > £ and the value of
2n(n —26)(y —2n)(1 4+ 2n — 8k — y) S; (i) corresponding t@- is positive. The result now follows from the
Substitutingy = 71 andy = 52 we get previous lemma. o
16p(c — 12ek — p)(1 — 4k 4+ y)?
y(de +y — 1)(2 - 16k —ep + y)*(8k +ep + y)? IV. PROOF OF THEMAIN RESULT

wheres = 1 corresponds t@, ands = —1 corresponds t@-. Since
y=1-2¢>1—4x, thendr + y — 1 > 0. Therefore, the sign of Lemma 6: Fors < 1/12

the second derivative coincides with the sign of Bg (0, k) = 0(2”/?40(71,./ 8, k)), (10)
e —12ek — p. and for
Checking that (5-5"")/10<E<1/2— 4k
PP —(1—125)2 =y = (1—45)> >0 (5-5"/20 <k < 1/12
we conclude that in both cases it is negative. 2"2 Ai(n, 8, k) = o(BE(j, k). (11)

_ (14+4s)In24+(1-8xk)In(1 —8k) — (1 —4x)In(l — 4r) + 4rlnk
= 5 )
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Proof: Denote

Be(k) = lim = In Bg(&n, kn)

n—oo

I |3~

ag(k) = lim = 1In Ag,(n, 8, kn)
Ae(r) =8e(rk) — ag(r) — ln 2/2.

Using results of the previous section we obtaip(1/12) = 0.
We start from proving that\, (<) < 0 for x < 1/12. Denote

po = V1 — 16k + 128k2.

278
that is,
8w <y <5 N
Direct verification shows that for chosenit always holds.
By Theorem 4 we have by straightforward calculations that
a0(K) = Be(r) + In 2/2 = H(E) - 1“72 O

Proof of Theorem 1:Assume the contrary, namely, that there ex-
ists a code withs > (5 — 5%/)/10. Then, by the previous theorem,
and (4) we have

We get
dAo(r) (14 8r)(1+po)*(3 = 165 + po) (=1 + 165 + po) l (”,)
o § BRI . n—d J
dr 256(1 — 8k)3 K2 (k) + ln_2 1y SBLGL ) | o)
As itis easy to check the expression under the logarithm is greater than 2 n = 2"

1, so the maximumAq () = 0, is attained at = 1/12, thus proving
10).
( L)et us prove (11). For the range $fand« defined in the claim we
havel — 4x < y < 57'/%.
Computing derivative iry
dAg(r) _ 1 (1=-12r+p)*(y — 8r)
dy 8 (4 +y — 1)%(y + 8k)
we conclude that its sign is determined by the sign of

8k — 96K + 8kp + 8ky — py — y2.

Direct checking confirms that the last expression is negative, i.€5, In 5)/24. So, foré§ > (5 —

= nax (Be(w) + H(E) — In 2/2) 4+ o(1).

Notice, that the maximum of the right-hand side is attainegl at 6.
Indeed, substituting = 1 — 2¢, we have that the derivative of the
right-hand side iry is

8 (I+y)iy—8r)
It is easy to check that the derivative tendtéor y — 5~ '/* and
x — 1/12. Hence, at this point the maximum is attained. It equals
53/1)/10 and x sufficiently close to

1, (1=y)'(y+8k)

A¢(r) decreases iy. Therefore, A (k) attains its minimum at the 1/12 we have

minimal value of¢, that is, fory = 5~ /%,

Now, we differentiate in< getting
dA¢(r) _ | 16(y —8r)(1 =4k +y)(=1+4r +y)(8k +y)
dr (p—y)2(2—165+p—y)(2—165—p+y)
One can check that for = 5~'/* this derivative is negative for
in the considered interval, and thus the minimumef( ) is attained
fory = 5~ */* andx = 1/12. This minimum equal$, therefore, for
k < 1/12, the functionA¢ () is positive. O

Theorem 5: If there exists a DESD cod€ with 6 = d/n > (5 —
53/4)/10 then
()

on/2’
Proof: Letx < 1/12. Substitute the polynomidy (z, k) into
(4). From the previous lemma we have
n—d
2" Ao (n. 8, k) = (1 - 0(1)) Y BL(j. k)B,
j=d
n/2—4k
=2(1-o(1)) > Bi(j, k)B;.

j=d

1 In Bj < (140(1)) In
n

Recall, that sincé is chosen to be odd, all summands in the right-hand[10]

side are nonnegative. Therefore, Jo€ [d, n/2 — 4k]
on/2

2
B; <(1+ 0(1))m

or

In2

% In B¢, < -5 - Be(k) + o(1).

Givenj = &n choose
_(1-20%E+(1-9% _ yA+y?)
8(&t+ (1 -84 2(1 46y +y*)’

Here

8 <y<1-26

5ln 5
24
However,ao(1/12) + (In 2)/2 = (5 In 5)/24, a contradiction. [

ao(k)+ (In 2)/2 <
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