
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 1, JANUARY 2006 109

Integrating Heterogeneous Distributed COTS
Discrete-Event Simulation Packages: An

Emerging Standards-Based Approach
Simon J. E. Taylor, Xiaoguang Wang, Stephen John Turner, Member, IEEE, and Malcolm Y. H. Low

Abstract—This paper reports on the progress made toward the
emergence of standards to support the integration of heteroge-
neous discrete-event simulations (DESs) created in specialist sup-
port tools called commercial-off-the-shelf (COTS) discrete-event
simulation packages (CSPs). The general standard for heteroge-
neous integration in this area has been developed from research
in distributed simulation and is the IEEE 1516 standard The
High Level Architecture (HLA). However, the specific needs of
heterogeneous CSP integration require that the HLA is aug-
mented by additional complementary standards. These are the
suite of CSP interoperability (CSPI) standards being developed
under the Simulation Interoperability Standards Organization
(SISO—http://www.sisostds.org) by the CSPI Product Develop-
ment Group (CSPI-PDG). The suite consists of several interoper-
ability reference models (IRMs) that outline different integration
needs of CSPI, interoperability frameworks (IFs) that define the
HLA-based solution to each IRM, appropriate data exchange
representations to specify the data exchanged in an IF, and bench-
marks termed CSP emulators (CSPEs). This paper contributes to
the development of the Type I IF that is intended to represent the
HLA-based solution to the problem outlined by the Type I IRM
(asynchronous entity passing) by developing the entity transfer
specification (ETS) data exchange representation. The use of the
ETS in an illustrative case study implemented using a prototype
CSPE is shown. This case study also allows us to highlight the im-
portance of event granularity and lookahead in the performance
and development of the Type I IF, and to discuss possible methods
to automate the capture of appropriate values of lookahead.

Index Terms—Discrete-event simulation, distributed simula-
tion, high level architecture, interoperability, standards.

I. INTRODUCTION

D ISCRETE-EVENT simulation (DES) is a computer-based
technique typically used to model and investigate the

behavior of complex dynamic systems [2], [39], [43]. Dis-
crete event refers to the type of simulation that models
a system in terms of state variables that change instanta-
neously at separated points in time (events) as opposed to
continuous change (continuous simulation) [27]. DES tech-
niques can be used to support system analysis, education
and training, acquisition and system acceptance, research and

Manuscript received December 1, 2004; revised May 20, 2005. This paper
was recommended by Associate Editor M. Zhou.

S. J. E. Taylor is with Brunel University, Brunel UB8 3PH, U.K.
X. Wang and S. J. Turner are with the Nanyang Technological University,

Singapore 639798, Singapore.
M. Y. H. Low is with the Singapore Institute of Manufacturing Technology,

Singapore 638075, Singapore.
Digital Object Identifier 10.1109/TSMCA.2006.859167

planning, organizational change, and facilitation [36], [42]
in a range of diverse areas such as commerce [7], defense
[22], health care [11], manufacturing [8], supply chains [18],
and civil [28] and maritime transportation [10]. We use the
term commercial-off-the-shelf (COTS) discrete-event simula-
tion packages (CSPs) to describe commercially available soft-
ware tools that have been developed to facilitate the process
of DES and to provide a distinction from other similar mod-
eling approaches such as those based on Petri Nets or sys-
tems dynamics [26]. Examples of CSPs include the following:
ProModel (http://www.promodel.com); Arena (http://www.
arenasimulation.com); Witness (http://www.lanner.com); Ex-
tend (http://www.imaginethatinc.com); AutoMod (http://www.
automod.com); and Simul8 (http://www.simul8.com).

Distributed simulation can be defined as the distribution
of the execution of a single run of a simulation program
across multiple processors [14]. There are various motivations
for this. These include the reduction of the execution time
of a single simulation run, the use of multiple computers to
support the memory needs of the simulation and the linking
of simulations sited in different locations [15]. In terms of
CSPs as described above, distributed simulation is also used
for the following reasons: to integrate DESs across virtual
organizations, extended enterprises, and supply chains; reduce
the cost of model development by enabling the reuse of dis-
tributed model components; and protect intellectual property
(information hiding in distributed models) [17], [33], [38], [44].
Additionally, variants of distributed simulation techniques can
also reduce the time taken for simulation experimentation (dis-
tributed replication and experimentation) and reduce simulation
project costs (remote model execution and group working)
[45], [54]. Although there are excellent examples of successful
distributed simulations with CSPs (in particular Boer et al. [6]
and Mertins et al. [32]), a general solution to this problem of
heterogeneous integration is illusive. There is a strong argument
to suggest that the reason for this is that no governing standard
in this area exists [52].

In general distributed simulation there is a different story.
In 2000, the IEEE 1516 standard The High Level Architecture
(HLA) was published [25]. This built on previous experience
of the IEEE 1278 standard Distributed Interactive Simulation
(DIS) [24] and provided the basis for the integration over a
network (interoperation) of general heterogeneous distributed
simulations. However, the specific needs of heterogeneous CSP
integration require that the HLA is augmented by additional

1083-4427/$20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

110 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 1, JANUARY 2006

complementary standards. These are the suite of CSP interoper-
ability (CSPI) standards being developed under the Simulation
Interoperability Standards Organization (SISO) by the CSPI
Product Development Group (CSPI-PDG). The suite consists
of several interoperability reference models (IRMs) that outline
different integration needs of CSPI, interoperability frame-
works (IFs) that define the HLA-based solution to each IRM,
appropriate data exchange representations to specify the data
exchanged in an IF, and benchmarks termed CSP emulators
(CSPEs). In this paper, we contribute to the development of
the Type I IF that represents the HLA-based solution to the
problem outlined by the Type I IRM (asynchronous entity pass-
ing) by developing the entity transfer specification (ETS) data
exchange representation. We show the use of the ETS in a case
study implemented using a prototype CSPE. We also highlight
the importance of event granularity and lookahead in the perfor-
mance and development of the Type I IF, and discuss methods
to automate the capture of appropriate values of lookahead.

The paper is structured as follows. Sections II and III intro-
duce the background to our work, CSPs and the HLA and its
approach to heterogeneity. Section IV discusses our emerging
standards-based approach introduced by the CSPI-PDG. The
problem outlined by the Type I IRM (asynchronous entity
passing) is presented. Within this context, the main contribution
of this paper, the ETS, a data exchange representation intended
to support entity transfer is developed. Section V presents
an illustrative case study implemented in our version of a
type I CSPE to demonstrate how the ETS is intended to be
used in the Type I IF. The section also presents results from
experimentation to highlight the role of event granularity and
lookahead in the Type I IF. Section VI discusses these results
and possible methods to automate the capture of appropriate
values of lookahead in the Type I IF. Section VII concludes the
paper with some reflections on our standards-based approach
and the future directions of this work.

II. HETEROGENEOUS CSPS

Visual interactive simulation has played an important role
in DES for around 25 years [3], [4], [23]. Today, these have
evolved into CSPs. These DES support environments use visual
programming approaches that allow simulation modelers to
build discrete-event models using drag and drop interfaces and
provide a range of facilities for DES [e.g., two-dimensional
(2-D)/three-dimensional (3-D) animation and visualization,
replication control, experimentation and statistical analysis util-
ities, optimization support, etc.] There are around 30 of these
CSPs available commercially [50]. All support DES in that
each CSP supports the building of models that change state
at events. Generally, such DES models are typically composed
of networks of alternating queues and activities that represent,
for example, the series of buffers and operations composing a
manufacturing system. Entities, consisting of sets of typed vari-
ables termed attributes, represent the elements of the manufac-
turing system undergoing machining. Entities are transformed
as they pass through these networks and may enter and exit the
model at specific points. Additionally, activities may compete
for resources that represent, for example, the operators of the

machines. To simulate a model, a CSP will typically have a
simulation executive, an event list, a clock, a simulation state,
and a number of event routines. The simulation state and event
routines are derived from the simulation model. The simulation
executive is the main program that (generally) simulates the
model by first advancing the simulation clock to the time of
the next event and then performing all possible actions at that
simulation time. For example, this may change the simulation
state (e.g., ending a machining activity and placing an entity in
a queue) and/or schedule new events (e.g., a new entity arriving
in the simulation). This cycle carries on until some terminating
condition is met.

Virtually every CSP is based on a variant of a simulation
world view. A world view, or conceptual framework, is “. . . a
structure of concepts and views under which the simulationist
(developer) is guided for the development of a simulation
model” [1]. The most well-known of these are event schedul-
ing, activity scanning [9], the three-phase approach [58], and
process interaction. In the 1960s, these gave rise to simulation
programming languages such as GPSS, SIMAN, SIMSCRIPT,
SIMULA, and SLAM. Many of these were the predecessors
to the CSPs used today [35]. CSPs also have widely differing
terminology, representation, and behavior [46]. For example,
an entity in one CSP may be termed as an item and in another
object. In one CSP, the data types might be limited to integer
and string, while in another, the data types might include those
found in any object-oriented programming language. The same
observations are true for the other model elements of queue,
activity, resource, and entry and exit points. Behavior is also
important as the set of rules that govern the behavior of a
network of queues and activities subtly differ between CSPs
(e.g., the rules that govern behavior when an entity leaves a
machine to go to a buffer). Indeed, even the representation of
time can differ. This is also further complicated by variations
in model elements over and above the “basic” set (e.g., trans-
porters, conveyors, flexible manufacturing cells, robots, etc.)

The result of this is that it is entirely plausible to argue that
there are now as many world views as there are CSPs. With our
goal of developing distributed DES tools, this degree of het-
erogeneity presents a substantial challenge. We now introduce
distributed simulation and our standards-based approach to the
issue of heterogeneity in this field.

III. IEEE 1516 HLA

A. HLA and Heterogeneity

The IEEE 1516 standard HLA [25] is a general standard
for the heterogeneous integration of distributed simulations.
This and its predecessor, the IEEE 1278 standard DIS [24],
both came from the need of the U.S. Department of Defense
(DoD) to reduce the cost of training military personnel by
reusing computer simulations linked via a network, i.e., through
the creation of distributed simulations of real-time military
applications.

The DIS standard described the format of data exchanged
by simulators linked together over a network for military ap-
plications. The limited domain of DIS (military and real-time
applications) and technical problems, such as time management

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

TAYLOR et al.: INTEGRATING HETEROGENEOUS DISTRIBUTED CSPs: AN EMERGING STANDARDS-BASED APPROACH 111

and limited bandwidth, led to the creation of the HLA. In the
HLA, a distributed simulation is called a federation, and each
individual simulator (in our case, the combination of a CSP
and its model) is referred to as a federate. An HLA runtime
infrastructure (RTI) provides for federates to interact with one
another, as well as to control and manage the simulation. The
HLA is composed of four parts, namely: 1) a set of rules;
2) the object model template (OMT); 3) the federate interface
specification (FIS); and 4) the federate development process
(FEDEP). The rules are a set of ten basic conventions that define
the responsibilities of federates and their relationship with the
RTI. The FIS is an application interface standard for distributed
simulation middleware, which defines how federates interact
within the federation, and is implemented by an RTI. The OMT
provides a common presentation format for HLA federates.
Using the OMT, each federate defines, in its simulation object
model (SOM), the data that it is willing to share (publish) with
other federates and the data it requires from other federates
(subscribe). The federation object model (FOM) combines the
federate SOMs into a single object model for the federation
and defines the overall data to be exchanged (published and
subscribed) between federates. The FEDEP defines the rec-
ommended practice processes and procedures that should be
followed by users of the HLA to develop and execute their
federations.

Federates do not communicate with one another directly.
Instead, they exchange information using only the services
provided by the RTI. Each federate has an RTI ambassador
and a federate ambassador. A federate invokes an operation on
the RTI ambassador whenever it needs an RTI service (e.g., a
request to advance simulation time). In the reverse direction,
the RTI invokes an operation on the federate ambassador when-
ever it needs to pass data to the federate (e.g., to inform the
federate that the request to advance simulation time has been
granted). Thus, operations in the federate ambassador need to
be implemented by the federate, as part of the federate code or
as part of some interface service. An RTI provides six classes
of services.

1) Federation management: These services allow federates
to create and destroy federation executions, and join or
resign from an existing federation.

2) Declaration management: These services allow federates
to publish federate data and to subscribe to updated data
produced by other federates.

3) Object management: These services allow federates to
create and delete object instances, and produce and re-
ceive data.

4) Ownership management: These services allow federates
to transfer the ownership of object data during the feder-
ation execution.

5) Time management: These services coordinate the ad-
vancement of simulation time of the federates.

6) Data distribution management (DDM): These services
can reduce unnecessary information transfer between fed-
erates by filtering out irrelevant data.

This overcame the shortcomings of DIS by being simulation-
domain neutral (the OMT) and specifying functionality for time

management and bandwidth control (in the FIS modules). In
terms of heterogeneity, the HLA, therefore, provides facilities
to describe any data exchange format as required. Specifically,
the OMT provides neutral data representation types that are
mapped to/from the RTI. These are the basic representation
types of HLAinteger16/32/64BE/LE, HLAfloat32/64BE/LE,
HLAoctetPairBE/LE, and HLAoctet (16/32/64 represents bit
size and BE/LE represents big/little endian representation),
the simple data representation types of HLAASCIIchar,
HLAunicodeChar, HLAbyte, and user-defined enumerated
types (including HLAboolean represented as an HLAinte-
ger32BE with possible values of 0 and 1), the array data type
representation types of HLAASCIIstring, HLAunicodeString,
HLAopaqueData (uninterpreted), and user-defined array types,
user-defined fixed record data types, and user-defined variant
record data types. The OMT also provides 14 tables to define
various aspects of the SOMs and FOM of a distributed simula-
tion using the HLA.

1) Object model identification table: This associates impor-
tant identifying information with an HLA object model
(SOM/FOM).

2) Object class structure table: This records the namespace
of all federate or federation object classes and describes
their class–subclass relationships.

3) Interaction class structure table: An interaction is a type
of data exchange that models “(a)n explicit action taken
by a federate that may have some effect or impact on
another federate within a federation execution.” This
table records the namespaces of all federate or federa-
tion interaction classes and describes their class–subclass
relationships.

4) Attribute table: An attribute is a type of data exchange
that models “(a) named characteristic of an object class
or object instance” and is semantically different to at-
tributes mentioned in Section II. This table specifies
the object attributes in a federate or federation that can
be exchanged.

5) Parameter table: This specifies the parameters of interac-
tion classes in a federate or federation.

6) Dimension table: This specifies the dimensions used to
filter instance attributes and interactions (used in DDM).

7) Time representation table: This is used specify the
common representation of time values (including
lookahead—see Section IV).

8) User-supplied tag table: This specifies the representation
of tags used in HLA services.

9) Synchronization table: This specifies the representation
and data types used in HLA synchronization services
(typically used to synchronize the federation at the start
and end of the simulation).

10) Transportation type table: This table describes the trans-
portation mechanisms used in the federation (essentially
following UDP and TCP semantics).

11) Switches table: This specifies the initial settings for para-
meters used by the RTI.

12) Data type table: This specifies details of data representa-
tion in the object model (as described above).

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

112 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 1, JANUARY 2006

Fig. 1. Simple distributed simulation.

13) Notes table: This table expands explanations of any OMT
table item as required.

14) FOM/SOM lexicon: This defines all of the objects, at-
tributes, interactions, and parameters used in the HLA
object model.

We shall return to both the OMT and FIS in the next section
as we present our emerging standard to support the integration
of heterogeneous distributed CSPs with HLA.

IV. INTEGRATING HETEROGENEOUS DISTRIBUTED CSPS

AND THE HLA: A STANDARDS-BASED APPROACH

A. Previous Work

Although initial work on the use of the HLA to integrate het-
erogeneous distributed CSPs can be traced back to pioneering
work done by Straßburger in the late 1990s [47], this area is still
emerging [52]. Research has mainly focussed on technological
challenges using combinations of various CSPs and HLA-
based and non-HLA-based approaches. Mertins et al. [32],
Rabe and Jäkel [40], [41], Hibino et al. [19], McLean and
Riddick [34], and Linn et al. [30] discuss the use of the
HLA and the associated adapter technologies of the MISSION
project to support the distributed simulation of manufacturing
systems. Lendermann et al. [29] and Straßburger et al. [48]
also discuss strategies for HLA use in the same domains.
In terms of non-HLA approaches, the following contributions
have been made. Taylor et al. [54], [55] discuss the use of
the generic runtime infrastructure for distributed simulation
(GRIDS) to support the distributed simulation of supply chains
and automotive engine production. Fujii et al. [12] present
an approach to the distributed simulation of virtual factories.
Zülch et al. [61] show how distributed simulations of manufac-
turing systems can be composed hierarchically. Gan et al. [17]
compare HLA against an MPI-based implementation extended
from the protocol described in [16]. Boer et al. [6] discuss the
use of distributed simulation to link to real-time data sources
using the first all modes all sizes (FAMAS) backbone and use
the same technology to support the distributed simulation of
a port. All of these approaches are largely incompatible due
to the format of the data exchanged between federates and
the protocol used to perform the exchange, and the type of
simulation information exchanged.

B. Heterogeneous Distributed CSP Integration Problem

In our discussion, a distributed simulation (federation) is
composed of CSPs and their models (federates) that exchange
data (interactions and/or attributes) via an RTI in a time-
synchronized manner. Consider the simple distributed simu-
lation of Fig. 1. Two factories F1 and F2 interact in various
ways as denoted by the black double-headed arrow. Each model
consists of an arrival source Soi, a queue Qi, a workstation
Wi, a resource Ri, and an exit sink Sii (where i is the factory
identifier). There are various types of model information that
we might share. For example, entities might be passed between
models (i.e., the two factories are linked together—entities
leave F1 at Si1 and arrive in F2 at So2) and the resources
R1 and R2 might be shared to reflect a shared set of op-
erators that can operate workstations W1 and W2. Factory
F1 must, therefore, publish and send information to the RTI
in an agreed format and time-synchronized manner and fac-
tory F2 must subscribe to and receive that information in the
same agreed certain format and time-synchronized manner,
i.e., both federates must agree on a common representation
of data and both must use the RTI in a similar way. Further,
the “passing” of entities and the sharing of resources require
different distributed simulation protocols. In entity passing, the
departure of an entity at a sink and the arrival of an entity
at a source is effectively the same scheduled event in the
two models—most distributed simulations represent this as a
timestamped event message sent from one federate to another
[6], [49]. The sharing of resources cannot be handled in the
same way. For example, when resource (R1) is released or an
entity arrives in queue Q1, a CSP executing the simulation
of F1 will determine if workstation W1 can start process-
ing an entity. If resources are shared, each time R1 or R2
changes state, a timestamped communication protocol is re-
quired to inform and update the changes of the shared resource
state [31].

Our heterogeneous distributed CSP integration problem,
therefore, consists of several parts, namely: What are the syn-
chronization demands of data exchanged between federates,
how should these be implemented through the RTI, what format
should the data take, and what relationship should this have to
the CSPs and their models? While the citations for past work go
some way to solving these problems, these are incompatible.

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

TAYLOR et al.: INTEGRATING HETEROGENEOUS DISTRIBUTED CSPs: AN EMERGING STANDARDS-BASED APPROACH 113

Fig. 2. Type I IRM.

In an attempt to solve this, we now present our emerging
standards-based approach.

C. Emerging Standards and the CSPI-PDG

In August 2002, the HLA COTS Simulation Package Inter-
operability Forum (HLA-CSPIF) was created in an attempt to
produce a generalizable solution to the problem of distributed
heterogeneous CSP integration. Over 2 years, discussions led
by the forum resulted in the splitting up of the integration
problem into different requirements. The rationale is this. If
we consider all possible distributed simulation requirements in
this area, three important observations can be made, namely:
1) not all distributed simulations need all integration ap-
proaches; 2) some integration approaches are relatively
straightforward and some are extremely complex; and 3) not
all integration requirements are known. In the simple example
of Fig. 1, some distributed simulations only require entities
to be passed between them. The problem of entity passing is
somewhat simpler than synchronous shared state in the case of
resource sharing. The issue of not being able to know all inte-
gration requirements has been demonstrated by the experiences
of the forum. Entity passing and resource sharing were the first
requirements that were identified. However, the requirements
to integrate models with shared (global) events, various data
structures, and conveyors were later identified by members. It is
expected that as simulation modelers use distributed simulation,
more requirements will emerge.

The above requirements have been encapsulated into (cur-
rently) six IRMs [51]. These are:

1) Type I: asynchronous entity passing;
2) Type II: synchronous entity passing (bounded buffer);
3) Type III: shared resources;
4) Type IV: shared events;
5) Type V: shared data structures;
6) Type VI: shared conveyor.

Briefly, the Type I IRM, asynchronous entity passing, deals
with the common requirement of transferring entities between
simulation models. The Type II IRM, synchronous entity pass-
ing, deals with the case where a receiving queue is bounded,
i.e., in the above example, queue Q2 has limited capacity. In
this case, the requirement means that the federate containing
the sending workstation W1 must, when the processing of an
entity is complete, check to determine that there is space in Q2.
If there is space available, then the entity may be transferred. If
there is none, the federate must ensure that W1 is blocked until
space becomes available. The Type III IRM, shared resources,
deals with the sharing of resources across simulation models.
For example, a resource R might be common between two

models and represents a pool of workers. In this scenario,
when a machine in a model attempts to process an entity
waiting in its queue it must also have a worker. If a worker is
available in R, then processing can take place. If not, then work
must be suspended until one is available. The Type IV IRM,
shared events, deals with the sharing of events across simulation
models. For example, when a variable within a model reaches
a given threshold value (a quantity of production, an average
machine utilization, etc.), it should be able to signal this fact
to all models that have an interest in this fact (to throttle
down throughput, route materials via a different path, etc.). The
Type V IRM, shared data structures, deals with the sharing of
variables and data structures across simulation models that are
semantically different to resources (e.g., a bill of materials or a
shared inventory). Finally, the Type VI IRM, shared conveyor,
deals with the problem of sharing transportation systems such
as conveyor or barges across simulation models (as distinct to
the representation of these in Type I IRMs [30]). Note that not
all IRMs will be applicable to all CSPs.

The creation of the IRMs has proven to be a powerful tool in
the development of standards in this area as it is now possible
to create solutions for specific integration problems (rather than
the general notion of integration as is currently the case). These
have formed the basis for the creation of a new SISO-based
standards group that arose from the HLA-CSPIF. Led by Taylor,
this group is called the CSPI-PDG (http://www.cspif.com).
They propose a suite of CSPI standards consisting of the
IRMs that outline different integration needs of CSPI, IFs that
define the HLA-based solution to each IRM, appropriate data
exchange representations to specify the data exchanged in an IF,
and benchmarks termed CSPE [20]. The creation of an efficient
link between CSPs and an RTI is problematic as it requires
investment by the vendor of the CSP [52]. While there are
several good examples of this [5], [19], [32], [34], [47], it is
difficult to judge the performance of the distributed simulation
approach as the latency between a CSP and an RTI is hidden.
The use of a CSPE is intended to form a common platform
to compare different proposed approaches to each IF. It is
anticipated that there will be several data exchange formats to
cover the possible needs of the IRMs. However, our concern in
this paper is a data exchange format specification that can deal
with the passing of entities between federates and is relevant to
Type I and II IRMs and their HLA-based IFs (as each of these
IRM specifically deals with entities). We term this the ETS. To
discuss our ETS, we first present the Type I IRM in detail.

D. Type I IRM

Fig. 2 shows the Type I IRM (asynchronous entity pass-
ing). This IRM represents models that interact on the basis of

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

114 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 1, JANUARY 2006

Fig. 3. ETS architecture.

entities; models are linked together so that one model may
“pass” an entity to another at a given timestamp. This model
is termed “asynchronous,” as there is no immediate or direct
feedback when an entity is passed (note that feedback can still
exist, but it must happen at a different time to when an entity is
passed—our case study shows an example of this). The model
elements in each model are there to indicate in a simple manner
the relationships between models, i.e., the internal structure of a
model can be far more complex—it is the relationship between
the last workstation (W1), sink (S1), source (S2), and queue
(Q2) that is important. A model could have more than one
set of links and more than two models could be connected in
arbitrary topologies. This IRM is intended to show the simplest
relationship between models, one that can be extrapolated to
many different scenarios.

In terms of minimum technological support of the logical
link between the two models, all that is required is the transmis-
sion of timestamped entity information between models Mo1
and Mo2 in such a way that Mo2 receives the timestamped
entity information in correct order with its own events. This
IRM has been termed “asynchronous,” as no synchronous
message exchange is needed to transfer the entity information
between the two models (as is required in Type II IRM). An IF
solution to Type I IRM must, therefore, be able to: 1) transfer
timestamped entity information from one model to another via
a timestamped message or such; 2) allow a model to correctly
receive timestamped entity messages from one or more models;
and 3) correctly coordinate this information with the receiving

model events being processed by the COTS simulation package
[53]. We now discuss our contribution to this, the representation
of entity information.

E. Entity Transfer Specification

The ETS deals with the representation of entities in Type I
and II IRMs, since both IRMs deal with the transfer of entities
between CSPs. The difference between the IRMs is that type II
requires additional synchronization to deal with the bounded
buffer problem [51]. The following discussion is based on the
current version of this emerging standard, version 1.1.1 [21],
[56]. Fig. 3 shows the relationship between a CSP, interfacing
software called the CSP Handler (CH) and an RTI (a candidate
architecture for the CSPI IFs). We define a source model as one
from which a timestamped entity leaves and a destination model
as one at which the timestamped entity arrives. There may be
different possible routings between models (as defined by the
model, not the RTI) and enough information must be conveyed
between a CH and an RTI to accomplish the model routing.
Models may also have multiple entry points, and there must be
some way of indicating at which entry point an entity enters a
model. In this version of the ETS, we assume only one receiving
point in the destination model for a specific entity type from a
specific source model, i.e., for different entity types, there are
different single receiving points. We define time as being the
time when an entity leaves a source model and instantaneously
arrives at the destination model.

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

TAYLOR et al.: INTEGRATING HETEROGENEOUS DISTRIBUTED CSPs: AN EMERGING STANDARDS-BASED APPROACH 115

Fig. 4. Interaction hierarchy.

In terms of entity representation, as we are concerned with
the transfer of a timestamped entity from a model in one feder-
ate to a model in another, our focus is a common data exchange
format of the entity that has been prepared for transfer. We
will assume that there is some translation mechanism between
the heterogeneous CSP and CH to convert to and from our
ETS representation. We shall also assume that time has been
converted into the same units and resolution in both models.
As with most distributed systems, the representation of an item
must be marshaled (flat) so that it can be sent as a stream
of bytes. We shall, therefore, represent a mapped entity as a
name and zero or more attributes. The form and type of the
attributes are the result of the entity–entity mapping between
the heterogeneous CSPs and their models.

An entity is, therefore, defined as: entity = {entityName,
attributes∗}. For example, widgetEntity = {widgetEntity, 24,
“Acme”}, which represents a widget entity with attributes of
(integer) 24 and (string) Acme.

When a CSP determines that an entity has left its model, the
CSP must be able to deliver the following information to the
CH: output(entity, time, source, destination). Similarly, when
the CH is ready to pass an entity to the CSP, indicating that an
entity has arrived, the CH must be able to deliver the following
information: input(entity, time, source), where entity is the
name of the entity entityName and zero or many attributes,
time is the time at which the entity left the model, source is
the name of the sending model, and destination is the name of
the destination model.

On output, the source and destination are used by the CH to
select the appropriate transfer mechanism. On input, the CSP
uses source to determine the appropriate entry point in a model
(i.e., where the entity has been transferred from). Time is used
to perform CSP time synchronization.

In this specification, HLA interactions are used to represent
the passing of an entity from one model to another at the RTI
level (see Section III for their definition). Fig. 4 shows the ETS
interaction class hierarchy. Features of this are as follows.

1) transferEntity—the superclass. This allows a federate to
conveniently subscribe to all instances of entity transfer
(for purposes of monitoring, visualization, etc.)

2) transferEntityToFedDest—a single subclass per receiving
federate where FedDest is the name or abbreviation of the

receiving federate’s model. It exists for the convenience
of the FedDest federate to subscribe to all instances of
transferEntity bound to the destination federate without
explicit naming.

3) transferEntityFedSoToFedDest—subclasses for each en-
tity transfer relation where FedSo is the name or abbrevi-
ation of the sending federate’s model. It allows the source
federate to send a timestamped interaction that represents
the transfer of an entity from source to destination at a
given time.

Note that in the above, for an actual implementation, FedSo
and FedDest are replaced by the source and destination federate
names, and Entity is replaced by the name of the entity as
appropriate. As we will see in our case study, a wheel entity
is transferred from the federate BAL to the federate WPL by
the interaction transferWheelEntityBALtoWPL.

In a federate’s SOM or the federation FOM, the three tables
are used in our exchange format.

1) Interaction class table: This contains the interaction
classes used to transfer the entities. These will be the
interaction superclass transferEntity, its interaction sub-
classes transferEntityToFedDest, and their interaction
subclasses transferEntityFedSoToFedDest.

2) Parameter table: Each transferEntityFedSoToFedDest in-
teraction will have a named parameter Entity with a
named data type EntityType. In the table, unless oth-
erwise stated, Available dimensions shall be NA (as
data distributed management is not used), Transportation
shall be HLAreliable (TCP semantics), and Order shall
be timestamp, i.e., messages must arrive in timestamp
order.

3) Data type table: A fixed record data type table shall exist
to represent the named EntityType and will consist of
entityName, source, destination, and attributes. The data
types of entityName, source and destination will be of
type HLAASCIIstring. The type of the attributes will be
defined using the HLA data types as appropriate to best
represent the type of the attribute.

These tables are shown in Fig. 5. We assume that in any
object model, these will be in addition to all other required
tables (as described in the previous section). Additionally, as

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

116 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 1, JANUARY 2006

Fig. 5. OMT tables used for ETS.

required by the OMT, the valid publish/subscribe options are
given as follows.

1) For an SOM:
a) P (Publish): The federate is capable of publishing the

interaction class.
b) S (Subscribe): The federate is capable of subscribing

to the interaction class.
c) PS (PublishSubscribe): The federate is capable of

publishing and subscribing to the interaction class.
d) N (Neither): The federate is incapable of either pub-

lishing or subscribing to the interaction class. HLAIn-
teractionRoot is always this.

2) In an SOM, transferEntity will be:
a) S if a federate wishes to get all entity transfer interac-

tions;
b) N if the federate is not interested in receiving this

global information.
3) In an SOM, transferEntityToFedDest will be:

a) S if the federate’s model is FedDest;
b) N if the federate’s model is not FedDest (i.e., it is

required to support the interaction class hierarchy for
a publish-only transferEntityFedSoToFedDest).

4) In an SOM, transferEntityFedSoToFedDest will be:
a) P if the federate is FedSo, i.e., its model sends entities

to FedDest’s model;
b) S if the federate is FedDest, i.e., its model receives

entities from FedSo.
5) For an FOM, these interactions will be:

a) transferEntity will be N if there is no “monitor” feder-
ate or S;

b) transferEntityToFedDest will be S;
c) transferEntityFedSoToFedDest will always be PS.

6) Classes designated as Subscribe or Neither are never sent,
but they can have subclasses that are sent.

7) It will be assumed that when an FOM is composed from
SOMs, there will be some kind of entity name resolution.

8) HLAinteractionRoot is a superclass of all other interac-
tion classes in an FOM or SOM and is mandatory.

This list is enough to define the representation of an entity
transferred from one model to another via the RTI. The trans-
lation of the data type of this representation and the internal
type representation of the CSP must be performed by the
CH according to the requirements of the CSP. The interaction
classes are meant to be used in the following way in a Type I
IF. During initialization, a federate will:

1) indicate that it is capable of sending entities to various
destination federates by publishing all transferEntityFed-
SoToFedDest interactions;

2) indicate that it is capable of receiving entities from any
other federate by subscribing to all transferEntityToFed-
Dest interactions.

During runtime, when the CSP sends the message equivalent
to output(entity, time, source, destination), the CH will use
destination to select the appropriate interaction class to use. It
will then parameterize an interaction instance with the details
supplied in the output message details. When the RTI passes an
interaction instance to the CH, the CH will use the instance’s
details to pass the entity to the CSP in some input message
with source to indicate which model the entity has arrived
from. We now present an illustrative case study showing the use
of the ETS to support the integration of heterogeneous CSPs
according to the Type I IRMs within the Type I IF.

V. CASE STUDY

A. Bicycle Factory and Object Models

Consider the illustrative Type I IRM-based distributed sim-
ulation in Fig. 6. A company manufactures bicycles. Three
models exist in three possibly heterogeneous CSPs that rep-
resent a wheel production line (WPL), a frame production
line (FPL), and a bicycle assembly line (BAL) that assembles
two wheels to one frame to produce a bicycle. The BAL
checks wheels for faults and can return them to the WPL
for remachining (an example of valid feedback for Type I
IRMs). Frames have no such problems. Raw materials for the

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

TAYLOR et al.: INTEGRATING HETEROGENEOUS DISTRIBUTED CSPs: AN EMERGING STANDARDS-BASED APPROACH 117

Fig. 6. Bicycle factory model.

WPL arrive every 20 min at entry point En1a and wait for
processing in Q1a. When workstation W1a becomes free, raw
materials are taken from queue Q1a, processed into wheels
in 20 min and released. The newly created wheels then take
100 min to travel to the BAL’s entry point En3a. We assume
that the entry point, the queue, and the workstation are adjacent.
Frame entities have the attributes “frame_size,” which is of
type integer, and “frame_color,” which is of type string. Wheels
have a single attribute “wheel_size” of type integer. The rest of
the distributed simulation can be described in a similar manner
with the various times to perform actions shown on the models.
Note that, in our example, all distributions are fixed instead of
probabilistic as in most real simulations. It is appropriate for
purposes of illustration as we are concerned with distributed
simulation (implications of both these points will be addressed
in Section VI). Each simulation model in our example runs in
a CSP or in different CSPs, with each CSP/model combination
a federation in our approach (the models WPL, FPL, and BAL
and their CSPs becoming federates Fd1, Fd2, and Fd3).

Fig. 7(a)–(c) shows the SOMs for Fd1, Fd2, and Fd3.
Fig. 7(d) shows the composite FOM for the federation as a
whole. As can be seen, these tables provide a neutral represen-
tation of data that the various heterogeneous CSPs are required
to translate to and from as they send and receive entities. This
illustrates our contribution to emerging standards in this area in
support of the Type I and II IRMs and their IFs.

B. Illustrative Protocol

As part of the IF, the CH provides an interface consisting
of a set of functions to be invoked by the CSP when needed.
Through the interface, the CH invokes necessary calls to the
RTI ambassador on behalf of the CSP and transfers the in-
formation received from the federate ambassador to the CSP.
Fig. 8 shows the basic communication protocol between the
CSP, CH, and RTI and its relationship with the ETS output
and input.

There are various different approaches to time management
using an HLA RTI to support distributed DES [13]. The

approach described here is based around nextEventRequest
(others are currently under investigation as part of the work
developing the Type I IF). When the CSP wishes to advance
to the time of its next event, it issues an advanceTime request
to the CH. The CH invokes the corresponding RTI service
nextEventRequest. The response from the RTI is zero, or many
ETS interactions received via receiveInteraction and a new sim-
ulation time granted via timeAdvanceGrant. The interactions
represent the arrival of entities at the time granted by timeAd-
vanceGrant and may be less than the time initially requested
by the CSP (i.e., entities arrive before the time of the original
next event—the new time of next event is that of the arriving
entities). If no interactions appear, the time granted is exactly
the requested time. Either way, this grant time is returned to
the CSP with the entities received (if any) via input(entity,
time, source), the CSP advances its local simulation time and
continues execution. If, as a consequence of this, any entities
leave the simulation model, the CSP will send to CH as many
output(entity, time, source, destination) as appropriate. CH will
translate these into ETS interactions and then forward these to
the RTI by invoking sendInteraction. This continues until some
terminating condition is met.

C. Experiments and Results

A critical factor in the development of an effective IF is
the role that lookahead plays in the integrated heterogeneous
distributed simulation [13]–[15]. Lookahead is a guarantee
from a federate that it will not generate any external message
with a timestamp smaller than its current time plus the value
of lookahead. Lookahead is used in the RTI to increase the
degree of concurrency in the distributed simulation, i.e., when
the CH makes the nextEventRequest to the RTI, the time
granted by timeAdvanceGrant, the time to which the CSP is
allowed to move forward, is dependent on the simulation time
and lookahead of other federates in the distributed simulation.
Lookahead, therefore, contributes to the amount of progress in
simulation time a CSP can make against real time. To further
contribute to the development of the Type I IF, we performed

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

118 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 1, JANUARY 2006

Fig. 7. (a) ETS—WPL SOM. (b) ETS—FPL SOM. (c) ETS—BAL SOM. (d) ETS—bicycle manufacturing system FOM.

Fig. 8. Protocol outline.

a set of experiments with our case study to investigate how
lookahead is related to the processing demands of the dis-
tributed simulation. To capture these demands, we used event
granularity. We define event granularity as the computation
time taken to process an event. In this case study, the event
granularity is only used for each workstation to schedule a new
event. This allows us to vary computation time to reflect the
actions taken during the execution of an event (e.g., updating of
statistical counters, saves to a trace file, etc.) and, therefore, to
compare the sharing of the processing demand of the simulation
over three computers against a sequential simulation.

For reasons discussed earlier, experimentation was carried
out using software based on the CSPE standard [60] instead
of an actual CSP. Taylor et al. [57] discuss another example

of a CSPE used to investigate the performance of HLA versus
non-HLA approaches. Our version of CSPE used in these
experiments specifically allows our two experimental factors
to be varied. In this context, our federates, therefore, consist
of a CSPE, a model (the WPL, FPL, or BAL) and the CH
interface to the RTI. The time at which an entity leaves a model
is dependent on the travel time (for all cases fixed at 100). In
our experiments, lookahead is calculated using this travel time
between models as a basis. Note that the sequential simulation
uses the same CSPE but with a single bicycle factory model
consisting of the three lines.

The experiments were run on four DELL 2.8 GHz P4
1048 MB memory computers connected via a 1 Gb/s network.
The RTI used was the DMSO RTI1.3NG-V6. One computer

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

TAYLOR et al.: INTEGRATING HETEROGENEOUS DISTRIBUTED CSPs: AN EMERGING STANDARDS-BASED APPROACH 119

Fig. 9. Performance results for bicycle factory distributed simulation [travel time (fixed 100); simulation end time = 100 000].

Fig. 10. Speedup versus lookahead for bicycle factory [event granularity 0.0001, 0.001, and 0.01; travel time (fixed 100)].

was used to run the rtiexec, the initialization process for the
RTI, and the other three for three separate federates (WPL,
FPL, and BAL models, respectively). The event granularity was
varied between 0.0001, 0.001, and 0.01 to investigate the effect
of varied processing demands of the distributed simulation. For
each event granularity, the travel time lookahead was 0, 20, 50,
and 100. Fig. 9 shows the results from the experimentation.
The simulations were run for 100 000 time units with each
experiment repeated three times to derive an average. The
execution time for the distributed simulation is for the last
federate to reach the end time. Speedup is calculated against the
sequential simulation execution time. Fig. 10 shows speedup
versus lookahead for the different event granularities. As can
be seen, performance for this distributed simulation improves
as both event granularity and lookahead increases.

VI. DISCUSSION: IMPLICATIONS OF

LOOKAHEAD TO THE TYPE I IF

The results of experimentation show that as event granularity
increases, so does the performance of the distributed simulation

as compared to the sequential one. Additionally, as lookahead
gets closer to the travel time, the output time of a federate
performance also increases. These results show that for this
type of IRM problem, it is possible to achieve performance
benefit, one of the motivations of distributed simulations cited
in Section I, and that careful selection of lookahead plays an im-
portant role. With regard to event granularity, we would expect
the performance benefit to improve with more complex models
consisting of, for example, many workstations and routings.
We must note, however, that experimentation was carried out
over a high-speed network. These performance gains would be
reduced somewhat over slower networks. We also note that the
results here relate to our case study. Future work will include
examining whether these results hold over larger numbers of
federates with more complex interrelationships.

In the selection of lookahead for our fixed travel times, it
would be sensible to fix this as the same time as the travel time
as lookahead is a guarantee that a federate will not generate
any external message with a timestamp smaller than its current
time plus the value of lookahead. Our artificially smaller values
of lookahead show the effect of smaller values of lookahead

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

120 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 1, JANUARY 2006

Fig. 11. Performance results for bicycle factory distributed simulation [Travel time (normal 100, 10); simulation end time = 100 000].

Fig. 12. Speedup versus lookahead for bicycle factory [event granularity 0.01; travel time (normal 100, 10)]. Bars show difference in speedup between fixed and
normal performances.

for our case study (i.e., performance increase tails off after
about 50). However, how will this affect “real” DESs and our
Type I IF?

In a “real” model, one would expect the output times of a
model to be stochastic, i.e., each time value is derived from a
probabilistic distribution sampled from the next value in a ran-
dom number stream. In theory, these distributions are capable
of producing values from zero to infinity. For most distribu-
tions, however, simulation modelers tend to select distributions
that will produce a range of values appropriate to the model.
Additionally, the range of values that can be sampled from
a distribution is dependent on the range of random numbers
used to calculate these values, i.e., the smallest random number
should (with certain caveats) produce the smallest value from a
distribution.

With this in mind, a new set of experiments was conducted.
Travel time was altered to be based on a normal distribution
with a mean of 100 and a standard deviation of 10. Experiments
were carried out for event granularity 0.01. The results of
these are presented in Fig. 11. Lookahead values of 0, 20,
50, 65, 80, and 100 were used. Values of 0, 20, 80, and 100
represent the lower bound on travel time that a simulation
modeler might place on this distribution. In the simulation
model, any values sampled lower than these values are rejected
(a possibly inappropriate statistical approach but enough for
this study). However, 65 represents the lowest possible value
that can be sampled from our normal distribution based on our

random number stream. Fig. 12 shows the resulting speedup
from using these values. The error bars show the difference
between values of experiments taken from the fixed distribu-
tion. The slight drop in performance can be explained by the
variance in the events generated from the normal distribution
(less events to process per time advance request). As can be
seen, once again, as lookahead gets closer to the mean travel
time, performance increases. This demonstrates that the choice
of the lower bound on the output time is crucial in terms of
performance, and, at least for this case study, it may be possible
to automatically determine this lower bound by investigating
the relationship between random numbers and distributions.
We note that this concept was briefly described for distributed
simulations composed of first-come-first-serve (FCFS) queues
by Nicol [37]. However, this is the first time to our knowledge
that this has been investigated with regard to CSPs. Our results
also demonstrate that in the development of the Type I IF, the
role of lookahead must be carefully considered.

VII. CONCLUSION

This paper has reported on progress made toward emerging
standards and technologies based on the HLA for distributed
simulations consisting of integrated heterogeneous CSPs. We
have outlined several problems encapsulated by the IRMs. We
have presented our contribution to the development of standard-
ized solutions to the Type I and II IRMs and their IFs, the ETS.

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

TAYLOR et al.: INTEGRATING HETEROGENEOUS DISTRIBUTED CSPs: AN EMERGING STANDARDS-BASED APPROACH 121

Both these IRMs need to transfer entities between their CSPs;
their corresponding IFs, therefore, need the ETS to represent
these entities. Further, our case study has shown how the ETS
might be used and have discussed the implications of lookahead
and processing demand (event granularity) to the realization of
the Type I IF. This forms part of an ongoing standardization
work being performed by the CSPI-PDG.

Against a background of continuous standards development,
our (near) future activities will focus on the realization of the
Type I and II IFs. The development of the ETS will allow the
classification of CSP world view against model element and
supported data representation type against the ETS, and also
the investigation of the different forms of time management
supported by the HLA standard (initial investigation into time
management for the Type II IF has been made [59]). Further-
more, the software developed in our case study has been in-
terfaced with the CSP AutoSched AP (http://www.brooks.com)
as part of an ongoing work in the distributed simulation of
semiconductor manufacturing. In terms of the other IRMs and
associated IFs, we now realize the importance of developing
appropriate data exchange representation as well as other issues
such as time management. The role of the CSPE has also
been successfully demonstrated as a way of reasoning about
these before integration with a CSP. The future development of
emerging standards-based approach to support the integration
of heterogeneous distributed CSPs represents a challenging
research area that will further enhance the methods and tools
available to those who practice simulation modeling.

REFERENCES

[1] O. Balci, “The implementation of four conceptual frameworks for simula-
tion modeling in high-level languages,” in Proc. Winter Simulation Conf.,
San Diego, CA, 1988, pp. 287–295.

[2] Handbook of Simulation: Principles, Methodology, Advances, Applica-
tions, and Practice, New York: Wiley, 1998.

[3] P. C. Bell, “Visual interactive modeling in operational research: Successes
and opportunities,” J. Oper. Res. Soc., vol. 36, no. 11, pp. 975–982,
1985.

[4] P. C. Bell and R. M. O’Keefe, “Visual interactive simulation—History,
recent developments, and major issues,” Simulation, vol. 49, no. 3,
pp. 109–116, Sep. 1987.

[5] C. A. Boer, A. Verbraeck, and H. P. M. Veeke, “Distributed simulation
of complex systems: Application in container handling,” in Proc. Eur.
Simulation Interoperability Workshop (EUROSIW), Orlando, FL, 2002,
pp. 134–142. 02E-SIW-034.

[6] ——, “The possible role of a backbone architecture in real-time control
and emulation,” in Proc. Winter Simulation Conf., San Diego, CA, 2002,
pp. 1675–1682.

[7] V. Bosilj-Vuksic, M. I. Stemberger, J. Jarklic, and A. Kovacic, “Assess-
ment of E-business transformation using simulation modeling,” Simula-
tion, vol. 78, no. 12, pp. 731–744, Dec. 2003.

[8] A. G. Bruzzone, “Preface to modeling and simulation methodologies for
logistics and manufacturing optimization,” Simulation, vol. 80, no. 3,
pp. 119–120, Mar. 2003.

[9] J. N. Buxton and J. G. Laski, “Control and simulation language,” Comput.
J., vol. 5, no. 3, pp. 194–199, Oct. 1962.

[10] E. Demirci, “Simulation modelling and analysis of a port investment,”
Simulation, vol. 79, no. 2, pp. 94–105, Feb. 2003.

[11] T. Eldabi, R. J. Paul, and S. J. E. Taylor, “Simulating economic factors
in adjuvant breast cancer treatment,” J. Oper. Res. Soc., vol. 51, no. 4,
pp. 465–475, Apr. 2000.

[12] S. Fujii, T. Kaihara, and H. Morita, “A distributed virtual factory in
agile manufacturing environment,” Int. J. Prod. Res., vol. 38, no. 17,
pp. 4113–4128, Nov. 2000.

[13] R. M. Fujimoto, “Time management in the high level architecture,”
Simulation, vol. 71, no. 6, pp. 388–400, Dec. 1998.

[14] ——, Parallel and Distributed Simulation Systems. New York: Wiley,
2000.

[15] ——, “Distributed simulation systems,” in Proc. Winter Simulation Conf.,
New Orleans, LA, 2003, pp. 124–134.

[16] B. P. Gan and S. J. Turner, “An asynchronous protocol for virtual factory
simulation on shared memory multiprocessor systems,” J. Oper. Res. Soc.,
vol. 51, no. 4, pp. 413–422, Apr. 2000.

[17] B. P. Gan, L. Li, S. Jain, S. J. Turner, C. Wentong, and J. H. Wen,
“Distributed supply chain simulation across enterprise boundaries,” in
Proc. Winter Simulation Conf., Orlando, FL, 2000, pp. 1245–1251.

[18] S. Goel, D. R. Strong, N. Richards, and N. C. Goel, “A simulation-based
method for the process to allow continuous tracking of quality, cost, and
time,” Simulation, vol. 78, no. 5, pp. 330–336, May 2002.

[19] H. Hibino, Y. Fukuda, Y. Yura, K. Mitsuyuki, and K. Kaneda, “Manu-
facturing adapter of distributed simulation systems using HLA,” in Proc.
Winter Simulation Conf., San Diego, CA, 2002, pp. 1099–1107.

[20] HLA-CSPIF. (2004, Nov. 22). CSPI-PDG Product Nomination. [Online].
Available: www.cspif.com

[21] ——. (2004, Nov. 22). Entity Transfer Specification Version 1.1.1.
[Online]. Available: www.cspif.com

[22] M. A. Hofmann, “Criteria for decomposing systems into components
in modeling and simulation: Lessons learned with military simulations,”
Simulation, vol. 80, no. 7, pp. 357–365, Jul./Aug. 2004.

[23] R. D. Hurrion, “Visual interactive meta-simulation using neural net-
works,” Int. Trans. Oper. Res., vol. 5, no. 4, pp. 261–270, 1998.

[24] Standard for Distributed Interactive Simulation (DIS), IEEE Standard
1278, 1995.

[25] IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA), IEEE Standard 1516, 2000.

[26] D. C. Lane, “Social theory and system dynamics practice,” Eur. J. Oper.
Res., vol. 113, no. 3, pp. 501–527, Mar. 1999.

[27] A. M. Law and W. D. Kelton, Simulation Modeling and Analysis, 3rd ed.
New York: McGraw-Hill, 2000.

[28] J. K. Lee, Y. H. Lim, and S. D. Chi, “Hierarchical modeling and simulation
environment for intelligent transportation systems,” Simulation, vol. 80,
no. 2, pp. 61–76, Feb. 2004.

[29] P. Lendermann, B. P. Gan, and L. F. McGinnis, “Distributed simula-
tion with incorporated APS procedures for high-fidelity supply chain
optimization,” in Proc. Winter Simulation Conf., Arlington, VA, 2001,
pp. 1138–1145.

[30] R. J. Linn, C. S. Chen, and J. A. Lozan, “Development of distributed
simulation model for the transporter entity in a supply chain process,”
in Proc. Winter Simulation Conf., San Diego, CA, 2002, pp. 1319–1326.

[31] Y. H. Low, B. P. Gan, J. J. Wei, X. Wang, X. J. Turner, and W. Cai,
“Implementation issues for shared state in HLA-based distributed sim-
ulation,” in Proc. Eur. Simulation Symp., Delft, The Netherlands, 2003,
pp. 5–13.

[32] K. Mertins, M. Rabe, and F. W. Jäkel, “Neutral template libraries for
efficient distributed simulation within a manufacturing system engineer-
ing platform,” in Proc. Winter Simulation Conf., Orlando, FL, 2000,
pp. 1549–1557.

[33] K. Mertins and M. Rabe, “Inter-enterprise planning of manufacturing
systems applying simulation with IPR protection,” in Proc. 5th Int.
Conf. Design Information Systems Manufacturing (DIISM), Osaka, Japan,
2002, pp. 149–156.

[34] C. McLean and F. Riddick, “The IMS MISSION architecture for dis-
tributed manufacturing simulation,” in Proc. Winter Simulation Conf.,
Orlando, FL, 2000, pp. 1539–1548.

[35] R. E. Nance, “A history of discrete event simulation programming
languages,” in History of Programming Languages—II. New York:
ACM Press, 1996, pp. 369–427.

[36] R. E. Nance and R. Sargent, “Perspectives on the evolution of simulation,”
Oper. Res., vol. 50, no. 1, pp. 161–172, Jan./Feb. 2002.

[37] D. Nicol, “Problem characteristics and parallel discrete event simulation,”
in Parallel Computing: Paradigms and Applications. London, U.K.: Int.
Thomson Computer Press, 1996, pp. 499–513.

[38] R. J. Paul and S. J. E. Taylor, “What use is model reuse: Is there a crook
at the end of the rainbow?” in Proc. Winter Simulation Conf., San Diego,
CA, 2002, pp. 648–652.

[39] M. Pidd, Computer Simulation in Management Science, 4th ed.
Chichester, U.K.: Wiley, 1998.

[40] M. Rabe and F. W. Jäkel, “Non military use of HLA within distrib-
uted manufacturing scenarios,” in Proc. Simulation und Visualisierung,
Magdeburg, Germany, 2001, pp. 141–150.

[41] ——, “On standardization requirements for distributed simulation,” in
Production and Logistics. Building the Knowledge Economy. Twente,
The Netherlands: IOS Press, 2003, pp. 399–406.

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

122 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 36, NO. 1, JANUARY 2006

[42] S. Robinson, “Modes of simulation practice: Approaches to business
and military simulation,” Simul. Pract. Theory, vol. 10, pp. 513–523,
2002.

[43] ——, Simulation: The Practice of Model Development and Use.
Chichester, U.K.: Wiley, 2004.

[44] S. Robinson, R. E. Nance, R. J. Paul, M. Pidd, and S. J. E Taylor, “Sim-
ulation model reuse: Definitions, benefits and obstacles,” Simul. Model.
Pract. Theory, vol. 12, no. 7–8, pp. 479–494, 2004.

[45] S. Robinson, “Distributed simulation and simulation practice,” Simula-
tion, vol. 81, no. 1, pp. 5–13, Jan. 2005.

[46] T. J. Schriber and D. T. Brunner, “Inside discrete-event simulation soft-
ware: How it works and why it matters,” in Proc. Winter Simulation Conf.,
New Orleans, LA, 2003, pp. 113–123.

[47] S. Straßburger, Distributed Simulation Based on the High Level Archi-
tecture in Civilian Application Domains. Ghent, Belgium: Soc. Comput.
Simulation Int., 2001.

[48] S. Straßburger, G. Schmidgall, and S. Haasis, “Distributed manufacturing
simulation as an enabling technology for the digital factory,” J. Adv.
Manuf. Syst., vol. 2, no. 1, pp. 111–126, 2003.

[49] R. Sudra, S. J. E. Taylor, and T. Janahan, “Distributed supply chain
management in GRIDS,” in Proc. Winter Simulation Conf., Orlando, FL,
2000, pp. 356–361.

[50] J. J. Swain, “Simulation reloaded: Sixth biennial survey of discrete-event
software tools,” OR/MS Today, vol. 30, no. 4, pp. 46–57, 2003.

[51] S. J. E. Taylor, “HLA-CSPIF: The high level architecture-COTS simula-
tion package interoperation forum,” in Proc. Fall Simulation Interoper-
ability Workshop, Orlando, FL, 2003. 03F-SIW-126.

[52] S. J. E. Taylor, B. P. Gan, S. Strassburger, and A. Verbraeck, “HLA-CSPIF
technical panel on distributed simulation,” in Proc. Winter Simulation
Conf., New Orleans, LA, 2003, pp. 881–887.

[53] S. J. E. Taylor and N. Mustafee, “An analysis of internal/external event
ordering strategies for COTS distributed simulation,” in Proc Eur. Simu-
lation Symp., Delft, The Netherlands, 2003, pp. 193–198.

[54] S. J. E. Taylor, S. Robinson, and J. Ladbrook, “An investigation into the
use of net-conferencing groupware in simulation modeling,” J. Comput.
Inf. Technol., vol. 13, no. 1, pp. 1–10, 2005.

[55] S. J. E. Taylor, R. Sudra, T. Janahan, G. Tan, and J. Ladbrook, “GRIDS-
SCS: An infrastructure for distributed supply chain simulation,” Simula-
tion, vol. 78, no. 5, pp. 312–320, May 2002.

[56] S. J. E. Taylor, S. J. Turner, and M. Y. H. Low, “A proposal for an entity
transfer specification for COTS simulation package interoperation,” in
Proc. Eur. Simulation Interoperability Workshop (EUROSIW), Edinburgh,
U.K., 2004. 04E-SIW-081.

[57] S. J. E. Taylor, S. J. Turner, N. Mustafee, H. Ahlander, and R. Ayani,
“COTS distributed simulation: A comparison of CMB and HLA inter-
operability approaches to type I interoperability reference model prob-
lems,” Simulation, vol. 81, no. 1, pp. 33–43, Jan. 2005.

[58] K. D. Tocher, The Art of Simulation. London, U.K.: English Universities
Press, 1963.

[59] X. Wang, S. J. Turner, M. Y. H. Low, and B. P. Gan, “Optimistic synchro-
nization in HLA-based distributed simulation,” Simulation, vol. 81, no. 4,
pp. 279–291, Apr. 2005.

[60] X. Wang, S. J. Turner, S. J. E. Taylor, M. Y. H. Low, and B. P. Gan,
“A COTS simulation package emulator (CSPE) for investigating COTS
simulation package interoperability,” presented at the Winter Simulation
Conf., Orlando, FL, 2005.

[61] G. Zülch, U. Jonsson, and J. Fischer, “Hierarchical simulation of complex
production systems by coupling models,” Int. J. Prod. Econ., vol. 77,
no. 1, pp. 39–51, 2002.

Simon J. E. Taylor received the B.Sc. (Hons.)
degree in industrial studies and the M.Sc. degree
in computer studies from Sheffield Hallam Univer-
sity, Sheffield, U.K., in 1986 and 1988, respectively,
and the Ph.D. degree in distributed simulation from
Leeds Metropolitan University, Leeds, U.K., in 1993.

He is currently a Senior Lecturer in com-
puter science at Brunel University, Uxbridge, U.K.
(since 2000), and a Visiting Associate Professor at
Nanyang Technological University, Singapore, Sin-
gapore (since 2003). He was previously a Lecturer

in computer science (1995–1999) at the same university. Prior to joining
Brunel, he was a lecturer at the University of Westminster (1991–1994). His
research interests are distributed simulation and applications of information
and communication technologies (ICT) to simulation modeling. His recent

work has focused on the development of standards for distributed simulation
in industry. He has served as the Chair of the ORS Simulation Study Group
since 1996 and was appointed Chair of ACM’s Special Interest Group on Sim-
ulation (SIGSIM). He is also the Founder and Chair of the COTS Simulation
Package Interoperability Product Development Group (CSPI-PDG) under the
Simulation Interoperability Standards Organization.

Dr. Taylor is the co-founding Editor-in-Chief of the UK Operational Re-
search Society’s (ORS) Journal of Simulation and the Simulation Workshop
Series.

Xiaoguang Wang received the B.Sc. degree in com-
puter science form the Nanjing University of Aero-
nautics and Astronautics, Nanjing, China, in 1997.
She is currently working toward the Ph.D. degree in
distributed simulation at the School of Computer En-
gineering (SCE), Nanyang Technological University,
Singapore, Singapore.

Her research interests lie in distributed simulation
and The High Level Architecture.

Stephen John Turner (M’01) received the M.A.
degree in mathematics and computer science from
Cambridge University, Cambridge, U.K., and the
M.Sc. and Ph.D. degrees in computer science from
Manchester University, Manchester, U.K., in 1975,
1974, and 1980, respectively.

He joined Nanyang Technological University, Sin-
gapore, in 1999 and is currently an Associate Pro-
fessor in the School of Computer Engineering and
the Director of the Parallel and Distributed Comput-
ing Centre. Previously, he was a Senior Lecturer in

Computer Science at Exeter University (UK). His current research interests
include parallel and distributed simulation, distributed virtual environments,
grid computing, parallel algorithms and languages, and multiagent systems.

Dr. Turner is the Steering Committee Chair of the Principles of Advanced
and Distributed Simulation (PADS) Conference and an Advisory Committee
member and the General Chair of the Distributed Simulation and Real Time
Applications (DS-RT) Symposium.

Malcolm Y. H. Low received the Dr.Phil. degree in
parallel computing from Oxford University, Oxford,
U.K., in 2002.

He is a Research Engineer with the D-SIMLAB
Programme at the Singapore Institute of Manufactur-
ing Technology, Singapore, Singapore. His research
interests are in the areas of adaptive tuning and load
balancing for parallel and distributed simulation sys-
tems, and the application of multiagent technology
in supply chain logistics coordination.

Authorized licensed use limited to: Brunel University. Downloaded on May 22, 2009 at 09:46 from IEEE Xplore. Restrictions apply.

