Static Program Slicing Algorithms
are Minimal for Free Liberal Program
Schemas

SEBASTIAN DaNicic!, CHris Fox?, MARK HARMAN?, RoB
HieroNs?, JoHN HOWROYD® AND MICHAEL R. LAURENCE®

!Dept. of Computing, Goldsmiths College, University of London, New Cross, London SE1}
6NW, UK.
?Dept. of Computer Science, University of Essex, Colchester CO4 35Q, UK.
3Dept. of Computer Science, King’s College London, WC2R 2LS, UK.

4School of Information Systems, Computing and Mathematics, Brunel University, Uzbridge,

Middlesex, UB8 8PH, UK.
>@UK PLC,5 Jupiter House,Calleva Park,Aldermaston, Berkshire,RG7 8NN, UK.

’Dept. of Computer Science, University of Liverpool, Peach Street, Liverpool L69 3BX, UK.

Email: S.Danicic@gold.ac.uk

Program slicing is an automated source code extraction technique that has been
applied to a number of problems including testing, debugging, maintenance,
reverse engineering, program comprehension, reuse and program integration. In
all of these applications the size of the slice is crucial; the smaller the better. It
is known that statement minimal slices are not computable, but the question of
dataflow minimal slicing has remained open since Weiser posed it in 1979. This
paper proves that static slicing algorithms produce dataflow minimal end slices
for programs which can be represented as schemas which are free and liberal.

Keywords: program slicing, minimal slicing, static slicing

Received month date, year; revised month date, year; accepted month date, year

INTRODUCTION

Program Schemas [56] are ‘programs’ where all

In program slicing [69], statements are deleted from a
program, leaving a resulting program called a slice. The
slice must preserve the effect of the original program on
a set of variables of interest at a particular program
point. The set of variables and the program point are
known as the ‘slicing criterion’. Slicing has applications
in many areas of computing including: reverse
engineering [13, 65], program comprehension [22, 34],
software maintenance [12, 18, 26, 25], debugging [2,
45, 57, 71], testing [7, 30, 31, 39, 40], component re—
use [5, 17], program integration [10, 42], and software
metrics [6, 52, 59]. There are several surveys of slicing
techniques, applications and variations [8, 9, 21, 35, 67].

In all applications of slicing, the size of the
slice is crucial. = The more code removed by the
slicing algorithm the better. It is known however,
that statement minimal slices are not, in general,
computable [69]. However, since Weiser posed the
question in 1979, the question of dataflow minimality
has remained open [69]. This paper reformulates the
dataflow minimal slicing question in terms of program
schematology and proves that slicing algorithms do
produce minimal slices for free liberal program schemas.

expressions in the program have been replaced by
symbolic expressions of the form n(vy,...,v,) where
n is a function or predicate name and vi,...,vn
are variables (see Figure 1). A program can be
transformed into a program schema, simply by replacing
all expressions by symbolic expressions, each with an
uninterpreted function or predicate name. A schema
where the function and predicate names are all unique
is called a linear schema [53]. The variables mentioned
in the expression correspond to the referenced variables
in the node of the annotated CFG. Figure 1 shows
a program, its corresponding annotated CFG and its
corresponding program schema (program schemas are
defined more formally in the sequel). An assignment
in the program is represented by an assignment to a
symbolic expression in the schema.

Weiser’s dataflow based approach [69, 70] and the
program dependence graph approach [44], produce the
same slices for the same slicing criterion, so the results
of this paper apply equally to both. Furthermore,
both approaches operate at a level of abstraction
where, in a program, the only information that can be
utilised about each expression, e, is the set of variables

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 2004

S. Danicic, C. Fox, M. HARMAN, R. HIERONS, J. HOWROYD, M. LAURENCE

while i > 0 while p1 (i)
do do
begin begin
ife=1 if pa(c)
then then
begin begin
c =4 c:= f3();
r:=5 x = fa()
end ; end ;
i=i—1 i= f5(i)
end end
Program P1 Schema S

Annotated CFG

FIGURE 1. A program, its schema and its annotated CFG

referenced by e. Weiser termed this approach dataflow
analysis, but we call it DefRef abstraction”, as the term
dataflow analysis now has more general connotations.

Figure 2 shows two distinct programs which are
identical to each other under DefRef abstraction.
Algorithms that use DefRef abstraction are limited
in the sense that they cannot take advantage of
situations where expressions in the program are equal,
nor can any form of expression simplification be used.
All the information required to do such things has
been ‘abstracted away’. For example, after DefRef
abstraction of {y:=x+1; z:=x+1} the only remaining
information is that the variable y is assigned an
expression which references x and the variable z is
assigned an expression which references z, and the
assignments happen in that order.

Analysing a program, P, after DefRef abstraction,
is identical to first converting P into a corresponding
linear schema, S, and then analysing S. In this
paper, this connection between program schemas and
the level of abstraction for slicing is used to define
dataflow minimal slicing in terms of program schemas
and to prove the primary results of the paper: slicing
algorithms are minimal for Free, Liberal Schemas. In
this paper, only intraprocedural slicing is considered.
Throughout the paper references to ‘Weiser’s algorithm’
may be interpreted as references also to the System
Dependence Graph slicing algorithm of Horwitz, Reps
and Binkley [44], since this algorithm produces the same
intraprocedural slices as Weiser’s algorithm.

In this paper we shall be concerned only with end
slicing [52], so the point of interest will always be the
end of the program and a slicing criterion will, therefore,
simply be a set of variables.

7Other approaches to program slicing exist [32, 24, 66, 12, 18]
which do not use DefRef abstraction, but we are concerned with
the theoretical properties of traditional static slicing which do.

As an example of the dataflow minimal slicing
problem, consider slicing P;, in Figure 1, at the end
of the program, with respect to variable . Weiser’s
algorithm fails to delete any statements at all. However,
the assignment c:= f3() can be deleted to produce a valid
slice. To see this, observe that the assignment c:= f3() is
executed if and only if the constant assignment x:=f4()
is executed. Having been assigned a constant value, the
value of z cannot be further changed by the body of the
loop. The initial value of ¢ is important, but the later
assignment to ¢ cannot affect the final value of z. The
assignment ¢:=f3(), therefore, need not be included in
the slice. The reason that Weiser’s algorithm includes
c:=f3() is that the assignment x:=f4() is controlled by
the predicate p»(c), which, in turn, is data dependent
on c:=f3() and so, since Weiser’s algorithm computes
the transitive closure, it infers that x:=f4() depends on

CZ:f3().

Importantly, the reason that the assignment, c:=f3(),
can be left out of a slice can be justified purely by
analysing the CFG in Figure 1 and not the program.
That is, the reasoning that allows it to be removed can
be conducted at the DefRef level of abstraction. The
example shows that Weiser’s algorithm is not dataflow
minimal. However, as this paper shows, Weiser’s
algorithm is dataflow minimal for an important class
of program schemas.

The rest of this paper is organised as follows: In
Section 2, program schemas and their properties are
formally defined. In Section 3, a schema based theory
of slicing is introduced and the main result of the paper
is proved in terms of this theory. Section 4 discusses
related work and finally, Section 5 presents conclusions
and future work.

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 2004

STATIC PROGRAM SLICING ALGORITHMS ARE MINIMAL FOR FREE LIBERAL PROGRAM SCHEMAS 3

s = f1(); s := s = 1;
while b1 (1) while @ > 0 while © > 0
do do do
begin begin begin
s = fa(s,i); s 1= s+1; § 1= §%1i;
i = fa(i) i1 i=i—1
end end end
Schema Sa Program P» Program P

FIGURE 2. A schema and two programs in its equivalence class

2. PROGRAM SCHEMAS

2.1. Basic Terminology

In this section, for completeness, the basic definitions
and terminology used in the theory of program schemas
introduced. Similar definitions can be found in
Manna [58]. For a complete and excellent survey of
the theory of program schemas see Greibach [29].

Schemas
A schema S is a possibly empty sequence of statements.
Each statement in S is called a sub-statement of S.

Statements
A statement, S, satisfies:

skip

V.=F

if E then S else S
while E do S

K
1114

Where V' is a variable name and E is an expression
of the form n(vy,---,v;) where n is a (function or
predicate) name and vy, --- , v is a possibly empty list
of variable names. The name n is called the head of the
expression n(vy,- -+ ,Ug)-

The schemas S; and Sy are called sub-schemas of the
statement if e then S else Sy. The expression e is called
the guard of if e then Sy else Sy. Similarly, the schema
S is called a sub-schema of the statement while e do S
and the expression e is called the guard of while e do S.

Structured Statements
if e then Sy else Sy and while loops are called structured
statements.

Predicate Expressions
Given a schema S, a predicate expression in S is one
which occurs as the guard of a structured statement.

Function Names

The head of an expression that occurs on the right hand
side of an assignment statement is called a function
name.

Predicate Names

The head of a predicate expression is called a predicate
name. In a Schema, the sets of function names and
predicate names are disjoint.

Names
For conciseness, it is useful to define a name to be either
a function name or a predicate name.

The Alphabet of a Schema
For each schema, S, the alphabet, «(S), of S is defined
by:

a(S)=AuBUC

where

e A= {uv=e | vi=eis an assignment in S};
e DB ={e=True | eis a predicate expression in S};
e (= {e=False | eis a predicate expression in S}.

Elements of A are called assignment symbols and
elements of B and C are called predicate symbols.

Sequences

We write A\ to represent the empty sequence.

If A is a set of symbols, we write A* for the set of finite
words over A.

If L is a set of words, we write L* for the set of finite
concatenations of words in L.

If ¥q,--+,3, are sets of words, we write ¥ ---3,, to
represent the set of words

{o1---on|oi € E;}.

Also, if ¥ is a set of words and @ is a symbol we will
write Ya to represent the set of words

{oalo € £}.

Similarly, we will write a¥ to represent the set of words

{aolo € £}.

Following the usual conventions, we use a to represent
both the symbol, ¢ and also to represent the word of
length one which contains the symbol a. The meaning
is always obvious from the context.

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 2004

4 S. Danicic, C. Fox, M. HARMAN, R. HIERONS, J. HOWROYD, M. LAURENCE

The Set of Finite Words of a Schema
The set of all finite words of schema S is defined
inductively as follows:
If S is empty:
(N = {7}

If S is a non—empty sequence, 5155 ... S, of statements:

$(81Ss...8,) = £(S1) ... £(S,).

The Set of Finite Words of a Statement
The set, £(S) C (a(S))*, of all finite words of a
statement is defined inductively as follows:

S(skip) = {\}.

Y(v:=e) = {uv:=e}.

Y(if e then T, else Ty) = e = TrueX(Ty) U
e = FalseX(T»)

Y(while e do T') = [e = TrueX(T)]*e = False

In other words, a path is generated by recording
the value of the guard followed by a path of the
corresponding branch.

Prefixes
Given a schema S, any prefix of an element of (S) is
called a prefix of S.

Infinite Words
Formally, an infinite word is a mapping from the natural
numbers to a set of symbols. A prefix of an infinite word
is its restriction to an initial segment O, ..., n.

Given a schema S, 7 is an infinite word of S if and
only if 7 is an infinite word over the alphabet of S such
that all prefixes of 7 are prefixes of S.

Terms
A term is either

e A variable
Of the form n(ty,- - ,t;) where n is a name and
t1,--- ,tx is a possible empty list of terms.

State
A state A is either L or a (total) function from terms
to terms such that

An(ty,- tg) =n(A t, -+ A ty)

for all terms n(ty,---).

We use v to stand both for the variable v and the
term v. It is always clear from the context whether an
expression is a term or a variable. Similarly, it can be
seen expressions are also terms. Note that a state is
fully defined by stating how it maps variables.

The Identity State
The identity function on terms is written Z.

Predicate Terms
Given a predicate expression e and a state A, the result
of evaluating e in A, A e, is called a predicate term.

2.2. Semantics

The Semantics of Prefixes
The meaning of a prefix is a state. It is the sequential
composition of the meanings of its elements. i.e.

N=1

[a1...ar] =[a1] o...0 [ag]
The Semantics of an Assignment Symbol

The meaning of an assignment symbol v:=e is the state
[v:=e] defined by

if
Ulize]’UZ = {U2 1 U1 75 2,
e ifv =0
The Semantics of Predicate Symbols
The meanings of e = True and e = False are both the
identity state Z.

Herbrand Interpretations
A Herbrand interpretation is a function from predicate
terms to {True, False}.

In order to give the semantics of a general schema
S, first the path, P[S]i, of S with respect to Herbrand
interpretation, 4, is defined:

The Semantics of Schemas

Given a Herbrand interpretation i, P[S]i is defined
to be the unique word 7 of S satisfying the property
that for every prefix, n'p =X, of 7, (where X €
{True, False}) we have

i [7]p) = X

The meaning of a schema is a mapping from Herbrand
interpretations to states, defined as follows:

[P[S]i] if P[S]i is finite
L otherwise.

M[S]i = {

2.3. Further Definitions

Simple Herbrand Interpretations

A simple Herbrand interpretation is a Herbrand
interpretation that does not map infinitely many terms
to True.

Terminating Herbrand interpretations

A Herbrand interpretation ¢ is said to be terminating
for S if and only if P[S]i is finite. The interpretation i
is said to be non-terminating for S if and only if P[S]i
is infinite.

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 2004

STATIC PROGRAM SLICING ALGORITHMS ARE MINIMAL FOR FREE LIBERAL PROGRAM SCHEMAS 5

Paths of S
For every Herbrand interpretation, i, P[S]i is called a
path of S.

Legal Prefixes
A (finite) prefix of a path of S is called a legal prefix of
S.

Liberal prefixes

A word (finite or infinite) o is said to be liberal if and
only if for all distinct prefixes ojvi:=e; and oyvy:=e5
of o we have

[o1v1:=e; vy # [o2v2:=€3]va.

2.4. Classes of Schema

Free Schemas
A schema S is said to be free if every word of S is a
path of S.

Informally, a schema is free if all words are possible.
An example of a free schema Sy in Figure 2. For all n
there is an interpretation which will take Sy exactly n
times round the loop. There is also an interpretation
which will take S5 infinitely many times round the loop.
Schema Sp, in Figure 1, on the other hand, is not
free. Since the variable ¢ is assigned a constant value,
f3(), there is no Herbrand interpretation, for example,
that will execute the loop exactly four times alternating
between the true and false branches of the if statement
in the loop.

Linear Schemas

A Linear Schema is one where each name in the schema
occurs at most once. All the schemas mentioned
in this paper are linear (apart from the following
onel). A simple example of a non-linear schema is
x:=f(z); z:=f(z). This is non-linear because the name
f occurs more than once.

Liberal Schemas
A schema is liberal [63] if and only if all its legal prefixes
are liberal.

Informally, a schema is liberal if no variable gets
assigned the same term more than once. Schema S,
in Figure 1, is non liberal since the variable ¢ may be
assigned the same constant value more than once. An
example of a liberal is schema S, in Figure 2 since a
repetition of terms is not possible as the terms assigned
to variables s and i getter bigger each time round the
loop.

2.5. Basic Results

LEMMA 2.1. For every terminating Herbrand inter-
pretation, i of S, there is a simple Herbrand interpre-
tation, j, such that P[S]i = P[S]j.

Proof. Let j map every term that does not occur in
P[S]i to False.

LEMMA 2.2. If S is free and oe; = X and Te; =Y
are distinct prefizes of the same prefixz of S. Then

[0] e1 # [7] ea.

Proof. Let S be a free schema and let oe; = X and
Tes =Y be distinct prefixes of the same prefix of S.
Without loss of generality, let ce; = X be a prefix of
Tes =Y. Suppose

[0] e1 = [7] ea.

This means that the value of the expression e; after
executing prefix o is the same as the value of the
expression ey after executing prefix 7. Clearly, since S is
free, Tes = 1Y is a word of S but there is no Herbrand
interpretation that gives rise to this word, because the
same term cannot be mapped to different values by a
Herbrand Interpretation. This provides a contradiction
as required. [l

LEMMA 2.3. Let S be a free schema. If Herbrand
interpretation, i, is simple then i is terminating.

Proof. Follows immediately from Lemma 2.2.

3. SLICING AND SCHEMAS

We now show how the syntax and semantics of slicing
can be defined using schemas. Having defined Dataflow
minimality and Weiser’s algorithm in terms of schemas,
the theory is further developed, leading to the main
result of the paper that Weiser’s algorithm (and
consequently, other traditional approaches) produces
dataflow minimal slices for schemas which are liberal
and free.

Weiser defined the semantic relationship that must
exist between a program and its slice in terms of
state trajectories: A state trajectory is a sequence of
label, state pairs (I;,0;) where o; represents the state
immediately before executing the statement labelled ;.
It should be noted that here, a state is the program
state, namely a function from variable names to values;
not the states which map variable names to terms used
in the semantics of schemas introduced in Section 2.

DEFINITION 3.1. (Weiser Slices)
A slice s of a program p on a slicing criterion ¢ = (V1)
is any executable program with the following property.
Whenever p halts on an input I with a state trajectory
T then s also halts on input I with state trajectory 7"
with

Proj, (T) = Proj,(I")
Proj.(T) is obtained first by deleting all elements of T'

whose label component is not ¢ and then, by restricting
the state components to V8.

8This is a slight simplification of the true picture since we are

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 2004

6 S. Danicic, C. Fox, M. HARMAN, R. HIERONS, J. HOWROYD, M. LAURENCE

When slicing at the end of the program, the
trajectories will all be of length one (since the ‘exit’
statement is executed only once). This gives rise to a
simplified form of slicing called end slicing.

DEFINITION 3.2. (Weiser’s Semantic Definition of
an End-Slice)
Program p' is a v-semantic-end-slice® of p with respect
to a variable v if whenever p terminates so does p’ with
the same final value of v.

We now restate Weiser’s definitions in terms of linear
schemas and further develop our theory of end-slicing
schemas. Conventionally, a slice must be a syntactic
subset of the program being sliced. We express this in
terms of schemas.

DEFINITION 3.3. (Syntactic Subsets of a Schema)
Let S and T be schemas. Then T is said to be syntactic
subset of S whenever T can be produced by replacing
any sub-statements ¢ of S by a syntactic subset of ¢.

DEFINITION 3.4. (Syntactic Subsets of a Statement)
Let s and ¢ be statements. Then ¢ is said to be syntactic
subset whenever either

1. s =t,
2. tis skip

3. or t can be obtained from s by replacing any
subschema, T of s by a syntactic subset of 7.

Semantically, a v-semantic-end-slice with respect to
v must behave the same with respect to variable v. We
define this in terms of schemas as follows:

DEFINITION 3.5. (v-semantic-end-slices)
Let S be a schema, and let v be a variable. A wv-
semantic-end-slice of S is a schema T such that for all
terminating Herbrand interpretations ¢ for S we have

(M[T]i)v = (M[S]i)v.

The Luckham-Park-Paterson theorem [56] (also see
[58, Theorem 4-1]) ensures that if S’ is a v-semantic-
end-slice of S then for all interpretations, i, the
corresponding program p; of S’ will be a v-semantic-
end-slice of the program p; corresponding to S.

LemMA 3.1. (Syntactic Minimal Subsets) Given a
linear schema S and a set N of function and predicate
names of S, there is a unique minimal syntactic subset
of S that contains all the symbols in N.

Proof. First, replace all assignments whose function
name is not in N by skip. Then, if a structured
statement contains no elements of N then replace it by
skip. Clearly, the resulting schema is a syntactic subset
of S and is minimal. in the sense that if we cannot

assuming that ¢ is in the slice of p with respect to ¢. A more
complicated definition involving ‘nearest successors’ is required if
i is not in the slice

9This is our term - not Weiser’s.

further remove any more predicate names since this, by
definition will result in a schema which is not a syntactic
subset of the original. O

This tells us how to reconstruct a slice from a set of
function and predicate names.

DEFINITION 3.6. (Dataflow Minimal v-end-slice)
Let S be a schema and let v be a variable. Schema T’
is a dataflow minimal v-end-slice of S if and only if

1. T is a syntactic subset of S
2. and T is a v-semantic-end-slice of S

3. and every proper syntactic subset of 7" is not a v-
semantic-end-slice of S.

DEFINITION 3.7. (Dataflow Minimal Program Slices)
A program q is a dataflow minimal v-end-slice of p if and
only if there exist linear schemas S and 7" where S and
T are representations (under identical interpretations)
of p and ¢ respectively with 7" a dataflow minimal v-
end-slice of S.

Weiser’s algorithm (and most subsequent work on
program dependence) uses two relations [38] between
the nodes of a program’s control flow graph. These
are data dependence(D) and control dependence(C). In
order to compute these dependences, all that is required
is the set of variables mentioned at each node of the
program’s control flow graph. This coincides with our
notion of DefRef abstraction.

Data dependence is the transitive closure of direct
data dependence, where node mno is directly data
dependent on node n; if there is a variable v referenced
in ny which is defined in n; and there is a path in the
control flow graph from n; to ns with no intervening
assignments to v. We write n; D n» to mean n, is data
dependent on n;. Consider:

Node nq T:=y;

Node n» Zi=T

If there are no intervening assignments to = between
ni and ns, then node ny is data dependent on node n;
since the value of = at ns is ‘affected by’ the value of y
at ny. Similarly, consider:

while b do
begin
A
Node ns z:=r;
Node nq T:=y;
B
end

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 2004

STATIC PROGRAM SLICING ALGORITHMS ARE MINIMAL FOR FREE LIBERAL PROGRAM SCHEMAS 7

Again, if there are no assignments to x in the portions
of code labelled A and B then node n» is data dependent
on node n; since the value of = at ns is ‘affected by’ the
value of y at ny. This is an example of a loop carried
data—dependence [23].

Given a linear schema S, we can define data-
dependence in terms of the function and predicate
names occurring in the schema. f is data dependent
on g if and only if there is a finite prefix 7v:=f(y) of
a word of S with g occurring as the head name of an
outermost sub term of [7]f(y).

Informally, the execution of a predicate node
‘controls’ the execution of other nodes in the control
flow graph by determining whether or not control will
definitely pass to these nodes or not. For each predicate
node, b, the set of nodes that depend on the outcome
of b in this way are termed the controlled nodes of b.
For the structured programs considered in this paper,
the statements controlled by a predicate are simply the
‘top level’ statements in its body.

Weiser’s algorithm is now expressed in terms of
linear schemas. Since other slicing algorithms [20, 44]
produce the same slices, this definition also captures
these ‘traditional’ approaches to slicing.

DEFINITION 3.8. (Weiser’s Algorithm Expressed in
Terms of Linear Schemas)
Given a linear schema S, Weiser’s algorithm produces
a set of predicate and function names. The slice at v,
produced by Weiser’s algorithm is the smallest set W,
satisfying the following definition:

Case 1: A function name f, is in W, if f is a function
name in the term [o]v for some finite word, o, of

S.

Case 2: If p is a predicate name of S such that there
is a function name f in the body of p which is in
W, then p is in W,,.

Case 3: A function name f is in W, if there exists a
predicate, p in W, such that for some prefix, o, of
S ending in p(wy -+ -wy) = X, f occurs in the term
[o] p(ws -+ wg).

We observe that a path of the control flow graph
corresponds to our notion of a word of the corresponding
linear schema. There is an assumption, therefore, in
conventional slicing that the control flow graphs are
‘free’. In general, this assumption leads to unnecessarily
large slices, because dependencies resulting from
infeasible paths will be inferred.

We now extend the theory of schemas in order to
express the dependences used in slicing.

DEFINITION 3.9. (Differing only at n)
Let n be a name and 7 and j Herbrand interpretations.
We say i and j differ only at n if and only if whenever a
term ¢ does not contain the name n, we have i(t) = j(¢).

We now define what it means for a variable to need a
function or predicate name in a schema. We then show
that the set of function and predicate names needed by
the variable v are in every v-semantic-end-slice.

DEFINITION 3.10. (v needs n in S)
Let v be a variable and let n be a name that occurs in
S. We say v needs n if either

1. nis a function name in the term (M [S]#)v for some
terminating Herbrand interpretation ¢ or

2. there exist two terminating Herbrand interpreta-
tions i, j differing only at n such that (M[S]i)v #
(M[SDi)v.

LEMMA 3.2. Let S be a linear schema, let v be a
variable and let n be a function or predicate name. If v
needs n then n is in every v-semantic-end-slice of S.

Proof. Let T be a v-semantic-end-slice of S. If i is a
terminating Herbrand interpretation and n is a function
name in the term (M[S]i)v then n is a function name
in the term (M[T]i)v since (M[S]i)v = (M[T]i)v. Tt
follows that n appears in T'. Alternatively, there exist
two terminating Herbrand interpretations i, j differing
only on terms containing n such that (M[S]i)v #
(M[S]j)v. Thus (M[T]i)v # (M[T]j)v and hence
n appears in T in this case as well. O

In this section we show that for linear free schemas,
names included by virtue of case 1 and 2 of
Weiser’s algorithm are needed. These cases are fairly
straightforward and do not require the schema to be
liberal.

DEFINITION 3.11. (Consequence of a Prefix)
Let t be a predicate term and X € {True, False}. We
say t = X is a consequence of the prefix ce = X if and
only if [o]e =t.

DEFINITION 3.12. (Consequence of a Path)
Let t be a predicate term and X € {True, False}. We
say t = X is a consequence of the path 7 if there
exists some prefix ce = X of 7w such that t = X is a
consequence of oe = X.

DEFINITION 3.13. (Differing at t)
Let X,Y € {True, False}. Let m; and 72 be paths and
let ¢t be a term. Then m; and m differ at ¢ means ¢t = X

is a consequence of m; and ¢t =Y is a consequence of 5
and X #Y.

LEMMA 3.3. Let S be a linear free schema and let
n be a name occurring inside a structured statement
whose guard has head p. For every finite path 7 passing
through n there exists another finite path w which
differs from w only at p such that ©' does not pass
through n.

Proof.

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 2004

8 S. Danicic, C. Fox, M. HARMAN, R. HIERONS, J. HOWROYD, M. LAURENCE

Case 1: p guards a while loop.

Let ¢ be a terminating Herbrand interpretation
which passes through n and let j be the same
as 7 except all terms containing p are mapped
to False. By Lemma 2.1, we can assume ¢ and
j are simple. By Lemma 2.3, j is terminating
and it avoids n (by linearity).

Case 2: p guards if e then S else Ss.
There are two cases to consider:

Case a: nisin S
Again, let 7 be a terminating Herbrand
interpretation which passes through n
and let j be the same as 7 except
all terms containing p are mapped to
False. By Lemma 2.1, we can assume
i and 7 are simple. By Lemma 2.3,
j is terminating and it avoids n by
linearity.

Case b: n is in Sy: The proof is essentially the
same as Case a.

O

Lemma 3.2 shows that if something is needed then it
is contained in the end-slice. Weiser showed [69] that
his algorithm always produces valid slices (although
they are not always dataflow minimal). All that
remains therefore, is to show that for the schemas
considered here, if Weiser’s algorithm includes it, it is
needed. Using our reformulation of Weiser’s algorithm,
Definition 3.8, there are three cases to consider. Clearly
for all assignments w:=f(v; ---vy) that are in W, by
virtue of case 1, we have v needs f. It is now shown
that the predicate names in W,,, by virtue of case 2, are
also needed by v.

PROPOSITION 3.1. Let S be a free linear schema, let
v be a variable in S and let p be a predicate name in S.
Suppose that f is a function name in the body of p such
that v needs f. Then v needs p.

Proof. The variable v needs f. By Definition 3.10,
this gives the two cases (1) and (2) to consider. First
suppose v needs f because of case (1) i.e. f is a function
name in the term [r]v for some finite path 7 of S. By
Lemma 3.3, there is a finite path «’ that differs from
m only at p such that 7' does not pass through f and
therefore f cannot be in [7']v. So v needs p.
Alternatively, now suppose that v needs f because
there exist two Herbrand Interpretations ¢ and j
differing only at f which give rise to finite paths with
different final values for v. We may assume that i and
j map to False every term that is not a consequence of
the corresponding path of S. First assume that p is a
while predicate. Let ¢’ be the Herbrand Interpretation
that is the same as i except that all terms containing
p are mapped to False and let j' be the Herbrand
Interpretation that is the same as j except that all

terms containing p are mapped to False. The paths of
S corresponding to ¢’ and j' must be identical because
i and j' differ only on terms containing f and their
paths do not pass through f. These paths must also be
terminating and hence give the same values of v. From
this it follows that, by transitivity of equality, either the
final values of v with respect to ¢ and ¢’ are different or
the final values of v with respect to j and j’ are different.
But these pairs of Herbrand Interpretations differ only
at p as required.

The case where p is an if predicate follows by an
identical argument so is omitted. O

This completes the proof of case 2.

For case 3, we require that if p is needed and n
percolates to p then n is also needed. This is not
necessarily true for non-liberal schemas as can be seen
by the example in Figure 3.

In order to prove the third case we first use a result
which does not require liberality, Lemma 3.4 called the
‘Difference Lemma’: If S is free and v needs p then there
exist two terminating Herbrand interpretations which
have different final values of v differing on exactly one
term, and this term contains p . The only result which
requires liberality is Lemma 3.6 called the ‘Prefixing
Lemma’: Let po and pr be liberal prefixes and v a
variable. If [o]v # [r]v then [po]v # [pr]v. The
importance of this result is that if two terms are distinct
after executing two sequences o and 7 they will be
different even if we prefix the same sequence of extra
‘instructions’ to the beginning of o and 7, provided that
these sequences are liberal. The proof for the third
case can be summarised as follows: As p is needed,
by the Difference Lemma there are two interpretations
differing only at one place with different final values
for v. If we remove from both corresponding paths the
initial segment up to this place where they differ, the
corresponding final values of v will still be different.
This follows from the fact that final values are produced
by composing the state function corresponding to each
symbol. Let o be a prefix in which f percolates to p.
By freeness, we can ‘prefix’ o at the beginning of our
shortened paths. By the prefixing lemma these new
paths will still only differ at this one term containing p
and have different final values of v. But this term also
contains f and so by definition v needs f.

DEFINITION 3.14. (d,(i, 7))
Let p be a predicate name and i and 7 be two simple
Herbrand interpretations. We define dp (i, j) to be the
number of terms containing p on which ¢ and j disagree.

LeEMMA 3.4. (The Difference Lemma) Let v be a
variable and let p be a predicate name. Suppose that
S is free and v needs p. Then there exist terminating
Herbrand interpretations ©,j differing only at p such

that (M[S]i)v # (M[S]j)v and d,(i,j) = 1.

Proof. Since p is a predicate name, p is not in the
term (M[S]i)v for any Herbrand interpretation i.

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 2004

STATIC PROGRAM SLICING ALGORITHMS ARE MINIMAL FOR FREE LIBERAL PROGRAM SCHEMAS

while i <0 while py (i) while 1 < 0
do do do
begin begin begin
ifc=3 if p2(c) ifc=3
then then then
begin begin begin
¢ = c—v; ¢ = f3(c,v);
x:=25 z = fa() x:=25
end ; end ; end ;
i:=1+1; i:= f5(1); i:=1+1;
c:=c+k c = fe(c, k) c:=c+k
end end end
Program P; Schema S5 Dataflow Minimal Slice

FIGURE 3. A non liberal example

Thus there exist terminating Herbrand interpretations
i,7 differing only on terms containing p such that
(M[S]i)v # (M[S]j)v. Without loss of generality it
may be assumed that, for all predicate names ¢ that
i(q(t)) = False = j(q(t)) whenever ¢(t) = True is not
a consequence of either of the paths, P[S]i or P[S]j.
Thus d, (i, j) is finite and hence it may be assumed that
i and j have been chosen so that dp (i, j) is minimal. By
Lemma 2.1, we may assume that ¢ and j are simple.
Suppose that d,(i,j) > 1.

Let p(u) be a term with i(p(u)) # j(p(u)). Notice, by
the minimality of d,,(i, j), that p(u) = i(p(u)) must be a
consequence of a prefix of the path, P[S]i, and similarly
p(u) = j(p(u)) must be a consequence of a prefix of
the path, P[S]j. Let i’ be the Herbrand interpretation
differing from i only at p(u). From Lemma 2.3, it
follows that ¢’ is terminating. Since d,(i,7) is minimal
and d,, (¢, 7) > 1 we must have that ¢ and i’ give the same
final values for v since dp(i,i') = 1 and thus, 7' and j
give different final values for v. But d,(i',7) < d,(i,7),
contradicting the minimality of d,(i,j). Therefore,
dp(ivj) =1 O

To make further progress with case 3 in the definition
of the Weiser slice, it is required that S be liberal. We
have not used that fact up to now.

LeMMA 3.5. Let a be a symbol and ac and at be
liberal prefizes and v a variable. If [o]lv # [r]v then
[aclv # [aT]v.

Proof. Let [o]v # [r]Jv. We show that [ac]v = [aT]v
implies that either [ao] is not liberal or [ar] is not
liberal.

Clearly a is not a predicate symbol, so assume a =
w:=e. By Definition 2.2, [ac]v = a([o]v) and [aT]v =
a([T]v). Now, since [o]v # [T]v, we must have w not in
e and e must be in one of [o]v or [r]v. Let e be in [o]v
without loss of generality.

As e is an expression, there is an assignment symbol
v:=e in o with no assignments to any of the variables in

e prior to v:=e. This gives a prefix pv:=e of o such that
[pu:=e]v = e. As w is not in e then [w:=epv:=ejv = e.
Then w:=e and w:=epv:=e are distinct prefixes of ac
with

[w:=e]w = [w:=epv:=e]v;

contradicting the liberality of ao. (|

LEMMA 3.6. (The Prefizing Lemma) Let po and pr
be liberal prefizes and let v be a variable. If [o]v # [T]v
then [polv # [pT]v.

Proof. Follows immediately from Lemma 3.5 by

induction.
O

ProproOSITION 3.2. Let S be a liberal free linear
schema. Let p be a predicate name such that variable
v needs p in S. If there exists a prefix of S of the
form op(w) = X with function name f in [o]p(w) then
v needs f in S.

Proof. Since v needs p there exist, by Lemma 3.4, two
terminating Herbrand interpretations 7, j differing only
at p such that (M[S]i)v # (M[S]j)v and d,(i,j) = 1.

Let P[S]i be of the form pp(w) = Y and P[S]j be
of the form pp(w) = Y'7" where [p](p(w)) is the unique
term where ¢ and j do not agree. By definition:

(M[S]i)v = [pp(w) =Y1] v

£
[pp(w) =Y'7' v = (M[S]j)v.
By Definition 2.2,
[p(w) =Y7v £ [p(w) = Y1')o.

By freeness, op(w) =Y 7 and op(w) =Y'7r" are also
both paths of S. So by Lemma, 3.6

[op(w) = Y7o # [op(w) = Y'7'Ju.

The paths op(w) = Y7 and op(w) = Y'7' differ only at
the term [o] p(w), since, by Lemma 3.6, if they differ at

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 2004

10 S. Danicic, C. Fox, M. HARMAN, R. HIERONS, J. HOWROYD, M. LAURENCE

any other predicate terms then so do pp(w) = Y7 and
pp(w) =Y'7'. Since there exist paths differing only
at the term [o] p(w), there must exist corresponding
Herbrand interpretations differing only at the term
[0] p(w). Hence, by Definition 3.10, v needs f in S. O

This completes the proof that if S is a linear, free,
liberal schema, and if a function name f ‘percolates’ to
a needed predicate, as in case 3 of Weiser’s algorithm,
then f is also needed.

Our main result now follows:

THEOREM 3.1. Weiser’s Algorithm produces dataflow
minimal end slices for programs which can be
represented as schemas which are free and liberal

Proof. Weiser proved [69] that his algorithm always
produces valid slices. In Lemma 3.2 it was shown that,
for linear schemas S, if name n in S is needed for v then
n is in every v-end-slice of S. For minimality, it suffices
to show, therefore, that if n € W, then n is needed.
There are three cases to consider:-

Case 1: if f is a function name in the term [o]v for
some finite word, o, of S then by Definition 3.10,
since S is free, f is needed.

Case 2: If p is a predicate name of S such that there is
a function name f in the body of p the sub—schema
guarded by p which is in W, then p is needed by
Proposition 3.1.

Case 3: If there exists a predicate, p in W, such that
for some prefix, o, of S ending in p(w; - -wg) = X
with f occurring in the term [o] p(w; - - wy,) then
v needsf by Proposition 3.2.

O

4. RELATED WORK ON SLICING AND ITS
SEMANTICS

The literature contains many different definitions of
a program slice. Slices can be backward or forward
[43, 68|, static or dynamic [3, 28, 47, 49|, intra—
procedural or inter—procedural [44, 43]. Slicing has
been applied to programs with arbitrary control flow
(goto statements) [33, 4, 16, 1] and even concurrent
programming languages like Ada [15, 73]. Most forms
of slicing use DefRef abstraction, though a few [66, 32]
exploit more detailed information.

A backward slice is the ‘conventional one’ [69] where
it is asked:

Which statements affect the slicing criterion?

Forward slicing [44] is the converse of this. The question
asked in forward slicing is:

Given a particular statement in a program,
which other statements are affected by this
particular statement’s execution?

A static slice is the conventional one where the slice
is required to agree with the program being sliced in all
initial states. Dynamic slicing [3, 28, 47, 46, 48, 50]
involves executing the program in a particular initial
state and using trace information to construct a slice
relevant to this particular initial state.

There are variants of slicing in-between the two
extremes of static and dynamic where some but not
all properties of the initial state are known. These are
known as quasi-static slicing [68], conditioned slicing
[34, 19, 11] and constrained slicing [24].

Intra-procedural slicing means slicing programs which
do not have procedures whereas inter—procedural [70,
43, 44, 47, 62] slicing tackles the more complex problem
of slicing programs where procedure definitions and
calls are allowed.

This paper considers traditional (syntax-preserving)
static backward slicing as introduced by Weiser. It also
assumes that slicing algorithms use DefRef abstraction.
In non-DefRef approaches [51, 66], infeasible paths are
detected using a less abstract approach than DefRef
analysis. Determining the fact that programs like:-

c:=1; c:=1;
ife>0 :=25
then x:=25 and

else x:=z

are semantically equivalent, can, in certain circum-
stances, be automated (although the general problem
is clearly not computable).

4.1. The Semantics of the PDG approach

Horwitz et al. [41] show that a program dependence
graph (where the nodes contain the atomic statements
and not just the defined and referenced variables) is
an adequate structure for representing a program’s
execution behaviour in the sense that two programs
with the same program dependence graph have the
same standard semantics. Reps and Yang [64] prove
that the program dependence graph approach to slicing
preserves Weiser’s semantics i.e. it was shown that for
any initial state where the original program terminates,
the slice also terminates with the same sequence of
values for each element of the slice. The converse is
not true i.e. in some states the slice may terminate
when the original program does not.

4.2. Cartwright and Felleisen’s Work

Cartwright and Felleisen [14] define a lazy semantics
of programs which they show is preserved by dataflow
slicing algorithms like Weiser’s Algorithm [69] and the
program dependence graph approach [60].

Lazy semantics is a term usually applied to functional
languages. An interpreter that performs lazy evaluation
will result in some programs terminating that would
not do so if the opposite form of evaluation called eager

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 2004

STATIC PROGRAM SLICING ALGORITHMS ARE MINIMAL FOR FREE LIBERAL PROGRAM SCHEMAS 11

1 while(y>0)
2 do y:=y+1;
3 x:=1;

FIGURE 4. Non-Termination Preservation

evaluation were used. The reason this happens is that
in lazy evaluation, when applying a function to some
arguments, the arguments are only evaluated if their
value is need. In eager evaluation, on the other hand,
the arguments are always evaluated before the function
is applied. If evaluating an argument, therefore, leads
to non-termination, and this argument is not needed,
then eager evaluation will lead to non—termination but
lazy evaluation may not.

The fact that slicing preserves lazy semantics has
the consequence that slicing is allowed to introduce
termination. While lazy semantics is the norm for
functional programming languages, it is not normally
associated with the meaning of imperative programs,
for which slicing is, almost exclusively, applied°.

Consider the example program in Figure 4. A
static slice constructed with respect to (x,3) will
(conventionally) contain line 3 alone. The fact that line
3 will never be executed when y is initially greater than
0 is of no consequence. In the lazy semantics of this
program the final value of the variable x is 1, whatever
the initial state. Harman, Danicic and Simpson [36]
show that slicing is also lazy with respect to faults and
use this description to show how slicing algorithms can
be modified to include faults in slices.

4.3. Venkatesh’s Work

The major aim of the work by Venkatesh [68] is to
separate definitions of slices from the algorithms which
compute them. He introduces and claims to formally
define the semantics of a variety of already existing
forms of slice as well as introducing some of his own.
Slices are programs which preserve some projection
of the semantics of the original program. Programs
are all slices of themselves. The main contribution of
Venkatesh’s work is that it introduces the idea that
there are many different feasible semantic definitions
of a slice.

4.4. Hausler’s Work

Two years before Venkatesh, Hausler [37] states the
same definition of a slice as Weiser. Namely that a slice
S of P can be obtained from P by deleting zero or more
statements and that if P halts on input 7 with values
for the variables in the slicing criterion, then so does S
with the same values for these variables. Hausler, like
Venkatesh and this paper, only considers end slicing. He
gives a denotational definition of a slice. His definition

10Slicing has also been applied to functional style notations [72].

is at the DefRef abstraction level. The strength of
Hausler’s work lies in the fact that he expresses a slicing
algorithm without explicitly mentioning a control flow
graph. His algorithm works directly on programs. He
does not, explicitly use data and control dependence but
they are, nevertheless, encoded in his algorithm.

5. CONCLUSIONS AND FUTURE WORK

In all applications of slicing, the size of the slice
is crucial. The more code removed by the slicing
algorithm the better. It is known that for programs
as opposed to schemas statement minimal slices are
not, in general, computable [69]. However, since Weiser
posed the question in 1979, the question of dataflow
minimality remained open [69]. This paper reformulates
the dataflow minimal slicing question in terms of
program schemas and proves that slicing algorithms do
produce minimal slices for free liberal program schemas.

Future work will develop the schema-based theory to
give semantic definitions of other forms of slicing and to
formally analyse their properties in terms of schemas.

The theory of program schemas is a rich one. Its
application to areas such as program slicing has started
to rekindle an interest in an area originally developed in
the 1960s. Work by the authors [54, 55] indicates that
the introduction of the linearity property, very natural
in dataflow analysis, will lead to further positive results
in program schematology.

For program dependence in general and program
slicing in particular it is now accepted that the most
appropriate program semantics is a form of lazy or
transfinite semantics which can ‘look beyond’ infinite
loops [14, 27, 61]. One of our aims is to extend
and generalise this semantics in terms of program
schemas. We believe that this may lead to further
insights into dataflow minimality and other areas of
program dependence.

REFERENCES

[1] Hiralal Agrawal. On slicing programs with jump
statements. In ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 302-312, Orlando, Florida, June 20-24 1994.
Proceedings in SIGPLAN Notices, 29(6), June 1994.

[2] Hiralal Agrawal, Richard A. DeMillo, and Eugene H.
Spafford. Debugging with dynamic slicing and
backtracking. Software Practice and Ezperience,
23(6):589-616, June 1993.

[3] Hiralal Agrawal and Joseph R. Horgan. Dynamic
program slicing. In ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 246-256, New York, June 1990.

[4] Thomas Ball and Susan Horwitz. Slicing programs
with arbitrary control-flow. In Peter Fritzson,
editor, 1% Conference on Automated Algorithmic
Debugging, pages 206-222, Linkoping, Sweden, 1993.
Springer. Also available as University of Wisconsin—
Madison, technical report (in extended form), TR-1128,

THE COMPUTER JOURNAL,

Vol. 00, No. 0, 2004

12

S. Danicic, C. Fox, M. HARMAN, R. HIERONS, J. HOWROYD, M. LAURENCE

[6

[7

]

]

December, 1992.

Jon Beck and David Eichmann. Program and interface
slicing for reverse engineering. In IEEE/ACM 15"
Conference on Software Engineering (ICSE’93), pages
509-518. IEEE Computer Society Press, Los Alamitos,
California, USA, 1993.

James M. Bieman and Linda M. Ott. Measuring
functional cohesion. IEEE Transactions on Software
Engineering, 20(8):644-657, August 1994.

David Wendell Binkley. The application of pro-
gram slicing to regression testing. In Mark Harman
and Keith Gallagher, editors, Information and Soft-

[19]

[20]

identifying reusable functions. Software maintenance:
Research and Practice, 8:145-178, 1996.

Sebastian Danicic, Chris Fox, Mark Harman, and
Rob Mark Hierons. ConSIT: A conditioned program
slicer. In IEEE International Conference on Software
Maintenance (ICSM’00), pages 216-226, San Jose,
California, USA, October 2000. IEEE Computer
Society Press, Los Alamitos, California, USA.
Sebastian Danicic, Mark Harman, and Yogasundary
Sivagurunathan. A vparallel algorithm for static
program slicing. Information Processing Letters,
56(6):307-313, December 1995.

ware Technology Special Issue. on Program Slicing, vol- [21] Andrea De Lucia. Program slicing: Methods and
ume 40, pages 583-594. Elsevier, 1998. applications. In 1°¢ IEEE International Workshop on
[8] David Wendell Binkley and Keith Brian Gallagher. Source Code Analysis and Manipulation, pages 142—
Program slicing. In Marvin Zelkowitz, editor, Advances 149, Florence, Italy, 2001. IEEE Computer Society
in Computing, Volume 43, pages 1-50. Academic Press, Press, Los Alamitos, California, USA.
1996. [22] Andrea De Lucia, Anna Rita Fasolino, and Malcolm
[9] David Wendell Binkley and Mark .H.arman. A survey Munro. Understanding function behaviours through
of empirical results on program slicing. Advances in program slicing. In 4" IEEE Workshop on Program
Computers, 62:105-178, 2004. Commnrehensi 9-18. Berlin. G March
)) prehension, pages , Berlin, Germany, Marc
[10] David Wendell Binkley, Susan Horwitz, and Tom Reps. 1996. IEEE Computer Society Press, Los Alamitos,
Program integration. for languages With prgcedure California, USA.
ijlltsﬁ ‘3(;M TZ??;gctggn§;971550ftware Engineering and [23] Jeanne Ferrante, Karl J. Ottenstein, and Joe D.
ethoaotogy, 9799, : Warren. The program dependence graph and its use
[11] Gerfmrdo Canfmja.7 Aniello Cimitile.7 .and Andrea De in optimization. ACM Transactions on Programming
Lucia. COIldI.tIOIled program slicing. In. Mark Languages and Systems, 9(3):319-349, July 1987.
Harman and Keith Gallagher, editors, Informatw@ gnd [24] John Field, G. Ramalingam, and Frank Tip. Para-
Software Technology Special Issue on Program Slicing, . .. nd .
. . metric program slicing. In 22" ACM Symposium on
volume 40, pages 595-607. Elsevier Science B. V., 1998. Principles of Programming Languages, pages 379-392
[12] Gerardo Canfora, Aniello Cimitile, Andrea De Lucia, San Francisco. CA. 1995. ’ ’
and G A. Di Lucca., .Software salvaging based on [25] Keith B. Gallagher and James R. Lyle. Using program
conditions. In International Conference on Software L . .

. s . . slicing in software maintenance. IEEE Transactions on
Maintenance (ICSM’96), pages 424-433, Victoria, Software Engineering, 17(8):751-761, August 1991
Canada, September 1994. IEEE Computer Society .] g 9 ’] 8 s
Press, Los Alamitos, California, USA. [26] Ke{th Brian Gallagher.. Evaluating the surgeon’s

[13] Gerardo Canfora, Aniello Cimitile, and Malcolm assistant: Results of a pilot study. In Proc.eedmgs of
2, . . the International Conference on Software Maintenance,
Munro. RE®: Reverse engineering and reuse re- .

. . . pages 236-244. IEEE Computer Society Press, Los
engineering. Journal of Software Maintenance Alami California. USA. N ber 1992
Research and Practice, 6(2):53-72, 1994. amitos, .alorma.u, » Yovember T

[14] Robert Cartwright and Matthias Felleisen. The [27] Roberto Glacoba.zm and Isabella Mfis.troem. 'Nonf
semantics of program dependence. In ACM SIGPLAN standard seman‘m.CS for program slicing. Higher-
Conference on Programming Language Design and Orde.r a.nd Symbolic .Computat?on, 16(4):29773.397 2003.
Implementation, pages 13-27, 1989. Special issue on Par’Flal Evalution and Semantics-Based

[15] Jingde Cheng. Slicing concurrent programs — a Prongram Manlpulatlon.. o
graph—theoretical approach. In Peter Fritzson, editor, (28] Rajiv Gopal. ~ Dynamic program slicing based on
1t Automatic Algorithmic Debugging Conference depfandence graphs. In IEEE Conference on Software
(AADEGUB’98), pages 223-240, 1993. Appears as Maintenance, pages 191-200, 1991.

Springer Lecture Notes in Computer Science vol 749. [29] Sheila Greibach. Theory of program structures:

[16] Jong—Deok Choi and Jeanne Ferrante. Static slicing scheme.s, semnantics, v?riﬁcation, volume 36 of Lecture
in the presence of goto statements. ACM Transactions Notes in Computer Science. Springer-Verlag Inc., New
on Programming Languages and Systems, 16(4):1097— York, NY, USA, 1975.

1113, July 1994. [30] Rajiv Gupta, Mary Jean Harrold, and Mary Lou

[17] Aniello Cimitile, Andrea De Lucia, and Malcolm Soffa. An approach to regression testing using slicing.
Munro. Identifying reusable functions using specifica- In Proceedings of the IEEE Conference on Software
tion driven program slicing: a case study. In Proceed- Maintenance, pages 299-308, Orlando, Florida, USA,
ings of the IEEE International Conference on Software 1992. IEEE Computer Society Press, Los Alamitos,
Maintenance (ICSM’95), pages 124-133, Nice, France, California, USA.

1995. IEEE Computer Society Press, Los Alamitos, [31] Mark Harman and Sebastian Danicic. Using
California, USA. program slicing to simplify testing. Software Testing,

[18] Aniello Cimitile, Andrea De Lucia, and Malcolm Verification and Reliability, 5(3):143-162, September

Munro. A specification driven slicing process for 1995.
THe COMPUTER JOURNAL, Vol. 00, No. 0, 2004

STATIC PROGRAM SLICING ALGORITHMS ARE MINIMAL FOR FREE LIBERAL PROGRAM SCHEMAS 13

[32]

Mark Harman and Sebastian Danicic. ~Amorphous
program slicing. In 5" IEEE International Workshop
on Program Comprenhesion (IWPC’97), pages 70-79,
Dearborn, Michigan, USA, May 1997. IEEE Computer
Society Press, Los Alamitos, California, USA.

Mark Harman and Sebastian Danicic. A new algorithm
for slicing unstructured programs. Journal of Software
Maintenance and Evolution, 10(6):415-441, 1998.
Mark Harman, Rob Mark Hierons, Sebastian Danicic,
John Howroyd, and Chris Fox. Pre/post conditioned
slicing. In IEEE International Conference on Software
Maintenance (ICSM’01), pages 138-147, Florence,
Italy, November 2001. IEEE Computer Society Press,
Los Alamitos, California, USA.

Mark Harman and Robert Mark Hierons. An overview
of program slicing. Software Focus, 2(3):85-92, 2001.
Mark Harman, Dan Simpson, and Sebastian Danicic.
Slicing programs in the presence of errors. Formal
Aspects of Computing, 8(4):490-497, 1996.

Philip A. Hausler. Denotational program slicing.
In 22", Annual Hawaii International Conference on

[47]

[48]

Gallagher, editors, Information and Software Technol-
ogy Special Issue on Program Slicing, volume 40, pages
637-645. Elsevier, 1998.

Mariam Kamkar, Nahid Shahmehri, and Peter Fritzson.
Interprocedural dynamic slicing. In Proceedings
of the 4" Conference on Programming Language
Implementation and Logic Programming, pages 370—
384, 1992.
Bogdan Korel. Computation of dynamic slices for
programs with arbitrary control flow. In Mireille
Ducassé, editor, 2"? International Workshop on
Automated Algorithmic Debugging (AADEBUG’95),
Saint—Malo, France, May 1995.

Bogdan Korel and Janusz Laski. Dynamic program
slicing. Information Processing Letters, 29(3):155-163,
October 1988.

Bogdan Korel and Jurgen Rilling. Dynamic program
slicing methods. In Mark Harman and Keith Gallagher,
editors, Information and Software Technology Special
Issue on Program Slicing, volume 40, pages 647—-659.
Elsevier, 1998.

System Sciences, Volume II, pages 486-495, January [61] Jens Krinke and Gregor Sne%ting. Valid.a‘.uion of mea-
1989. surement software as an application of slicing and con-

[38] M. S. Hecht. Flow Analysis of Computer Programs. str.aint solving. In. Marl Harman and Keith Gallaghe'r,

Elsevier. 1977, editors, Information .mjld Software Technology Special
’ Issue on Program Slicing, volume 40, pages 661-675.

[39] Robert Mark Hierons, Mark Harman, and Sebastian Elsevier, 1998.

Dan1c1.c. Usmg program slicing to assist in .the [62] Arun Lakhotia. Rule-based approach to computing
detection of equivalent mutants. Software Testing, module cohesion. In Proceedings of the 158" Conference
Verification and. Reliability, 9(4):233-262, }999' on Software Engineering (ICSE-15), pages 34-44, 1993.

[40] Robert Mark Hierons, Mark Harman, Chris Fox, Lah- [53] Michael R. Laurence, Sebastian Danicic, Mark Harman,
cen Ouarbya, and Mohammed Daoudi. Conditioned Rob Hierons, and John Howroyd. Equivalence of
slicipg st}pports par'titi'o'n testing. Software Testing, conservative, free, linear program schemas is decidable.
Verification and Reliabulity, 12:23-28, March 2002. Theoretical Computer Science, 290:831-862, January

[41] S. Horwitz, J. Prins, and T. Reps. On the adequacy of 2003.
program dependence graphs for representing programs. [64] Michael Rupen Laurence. Equivalence of Linear, Free,
In ACM, editor, POPL ’88. Proceedings of the Liberal Program Schemas is Decidable in Polynomial
conference on Principles of programming languages, Time. PhD thesis, Goldsmiths College, University of
January 13-15, 1988, San Diego, CA, pages 146-157, London, 2004.

New York, NY, USA, 1988. ACM Press. [65] Mike Laurence, Sebastian Danicic, Mark Harman,

[42] Susan Horwitz, Jan Prins, and Thomas Reps. Robert Mark Hierons, and John Howroyd. Equivalence
Integrating non-interfering versions of programs. ACM of linear, free, liberal, structured program schemas is
Transactions on Programming Languages and Systems, decidable in polynomial time. Theoretical Computer
11(3):345-387, July 1989. Science. Submitted 28th July 2004.

[43] Susan Horwitz, Thomas Reps, and David Wendell [56] D C Luckham, D M R Park, and M S Paterson. On
Binkley. Interprocedural slicing using dependence formalised computer programs. Journal of Computer
graphs. In ACM SIGPLAN Conference on Program- and System Sciences, 4:220-249, 1970.
ming Language Design and Implementation, pages 25— [67] James R. Lyle and Mark Weiser. Automatic program
46, Atlanta, Georgia, June 1988. Proceedings in SIG- bug location by program slicing. In 2"¢ International
PLAN Notices, 23(7), pp.35-46, 1988. Conference on Computers and Applications, pages 877—

[44] Susan Horwitz, Thomas Reps, and David Wendell 882, Peking, 1987. IEEE Computer Society Press, Los
Binkley. Interprocedural slicing using dependence Alamitos, California, USA.
graphs. ACM Transactions on Programming Lan- [68] Zohar Manna. Mathematical Theory of Computation.
guages and Systems, 12(1):26-61, 1990. McGraw-Hill, 1974.

[45] Mariam Kamkar. Interprocedural dynamic slicing with [59] Linda M. Ott and Jeff J. Thuss. Slice based metrics
applications to debugging and testing. PhD Thesis, for estimating cohesion. In Proceedings of the IEEE-
Department of Computer Science and Information CS International Metrics Symposium, pages 71-81,
Science, Linkdping University, Sweden, 1993. Available Baltimore, Maryland, USA, May 1993. IEEE Computer
as LinkOping Studies in Science and Technology, Society Press, Los Alamitos, California, USA.
Dissertations, Number 297. [60] Karl J. Ottenstein and Linda M. Ottenstein. The

[46] Mariam Kamkar. Application of program slicing in program dependence graph in software development
algorithmic debugging. In Mark Harman and Keith environments. SIGPLAN Notices, 19(5):177-184, 1984.

THe COMPUTER JOURNAL, Vol. 00, No. 0, 2004

14 S. Danicic, C. Fox, M. HARMAN, R. HIERONS, J. HOWROYD, M. LAURENCE

[61] Lahcen Ouarbya. A Lazy Semantics for Program
Slicing. PhD Thesis, Department of Computing,
Goldsmiths College, University of London, 2005.

[62] Lahcen Ouarbya, Sebastian Danicic, Dave (Mo-
hammed) Daoudi, Mark Harman, and Chris Fox. A
denotational interprocedural program slicer. In IEEE
Working Conference on Reverse Engineering (WCRE
2002), pages 181 — 189, Richmond, Virginia, USA, Oc-
tober 2002. IEEE Computer Society Press, Los Alami-
tos, California, USA.

[63] M S Paterson. FEgquivalence Problems in a Model of
Computation. PhD thesis, University of Cambridge,
UK, 1967.

[64] Thomas Reps and Wuu Yang. The semantics of
program slicing. Technical Report Technical Report
777, University of Wisconsin, 1988.

[65] Dan Simpson, Samuel H. Valentine, Richard Mitchell,
Lulu Liu, and Rod Ellis. Recoup - Maintaining
Fortran. ACM Fortran forum, 12(3):26-32, September
1993.

[66] Gregor Snelting. Combining slicing and constraint
solving for validation of measurement software. In
Static Analysis Symposium (SAS’96), LNCS 1145,
pages 332-348, 1996.

[67] Frank Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3(3):121-189,
September 1995.

[68] Guda A. Venkatesh. = The semantic approach to
program slicing. In ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 2628, Toronto, Canada, June 1991. Proceedings
in SIGPLAN Notices, 26(6), pp.107-119, 1991.

[69] Mark Weiser. Program slices: Formal, psychological,
and practical investigations of an automatic program
abstraction method. PhD thesis, University of
Michigan, Ann Arbor, MI, 1979.

[70] Mark Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10(4):352-357, 1984.

[71] Mark Weiser and James R. Lyle. Ezperiments on
slicing—based debugging aids, chapter 12, pages 187—
197. Empirical studies of programmers, Soloway and
Iyengar (eds.). Molex, 1985.

[72] Martin R. Woodward and Stephen P. Allen. Slicing
algebraic specifications. Information and Software
technology, 40(2):105-118, 1998.

[73] Jianjun Zhao, Jingde Cheng, and Kazuo Ushijima.
Static slicing of concurrent object-oriented programs.
In 20" IEEE Annual International Computer Software
and Applications Conference (COMPSAC’96), pages
312-320, Seoul, Korea, August 1996. IEEE Computer
Society Press, Los Alamitos, California, USA.

THe COMPUTER JOURNAL, Vol. 00, No. 0, 2004

