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Abstract. A static mixed boundary value problem of physically nonlinear elasticity for a continu-

ously inhomogeneous body is considered. Using the two-operator Green-Betti formula and the funda-

mental solution of an auxiliary linear operator, a non-standard boundary-domain integro-differential

formulation of the problem is presented, with respect to the displacements and their gradients. Using

a cut-off function approach, the corresponding localized parametrix is constructed to reduce the non-

linear boundary value problem to a nonlinear localized boundary-domain integro-differential equation.

Algorithms of mesh-based and mesh-less discretizations are presented resulting in sparsely populated

systems of nonlinear algebraic equations.

1 Introduction

Application of the Boundary Integral Equation (BIE) method (boundary element method, elastic

potential method) to linear elasticity problems for homogeneous bodies has been intensively developed

over recent decades. Using fundamental solutions of auxiliary linear elastic problems (with the initial

elastic coefficients), the non-linearly elastic or elasto-plastic problems for homogeneous material also

can be reduced to non-linear boundary-domain integral equations with hyper-singular integrals, see e.g.

[1–4]. However, the fundamental solution is usually highly non-local, which leads after discretization to

a system of algebraic equations with a dense matrix. Moreover, the fundamental solution is generally

not available in an explicit form if the coefficients of the auxiliary problem vary in space, i.e. if the

material is inhomogeneous (functionally graded).

To prevent such difficulties, some parametrices localized by cut-off function multiplication were con-

structed and implemented in [5] for linear scalar (heat transfer) equation in inhomogeneous medium.

This reduced the linear Boundary Value Problem (BVP) with variable coefficient to a linear Localized

1



Boundary-Domain Integral or Integro-Differential Equation (LBDIE or LBDIDE), which leaded after a

mesh-based or mesh-less discretization to a linear algebraic system with a sparse matrix. Some numer-

ical implementations of the linear LBDIE were presented in [6, 7], while slightly different LBDI(D)Es

were employed in [8, 9].

Another approach based on local parametrices that are Green functions for an auxiliary problem on

local spherical domains, was used in [10–12] to reduce some linear and nonlinear scalar problems with

variable coefficients, and in [13] a linear elasticity problem for a body with a special inhomogeneity, to

a local boundary-domain integral equations. Note also that the Green function of the plane Laplace

equation was used in [14] as a parametrix for the axially symmetric problem of heat transfer with

variable coefficients.

Extending approach of [5], the mixed BVP for a second order scalar nonlinear (quasi-linear) elliptic

PDE with the variable coefficient dependent on the unknown solution was reduced in [15,17] to quasi-

linear LBDIDEs. When the variable coefficient depends also on the BVP solution gradient, some

quasi-linear two-operator LBDIDEs were obtained in [16,17].

In this paper, we extend the approach of [5,16,17] to the mixed BVP for the system of quasi-linear

partial differential equations of physically nonlinear elasticity (with small deformation gradients) for

continuously inhomogeneous body. First, we reduce the BVP to a direct two-operator nonlinear

BDIDE of the second kind. The equation includes at most first derivatives of the unknown solution,

weakly singular integrals over the domain and at most Cauchy-type singular integrals over the bound-

ary. Then we present a localized version of the BDIDE and describe its mesh-based and mesh-less

discretizations. A short description of the method was presented in [18], while its formulation for

inhomogeneous elastoplasticity was given in [19].

2 Nonlinear Elasticity Problem, Two-operator Green-Betti Identity

and BDIDE

Let us consider an inhomogeneous material, occupying an n-dimensional domain Ω ∈ IRn, where

n = 2 or n = 3. Its physically-nonlinear elastic constitutive relations (presuming small displacement

gradients) can be written in the form

σij(∇u(x), u(x), x) = aijkl(∇u(x), u(x), x)
∂uk(x)

∂xl
, (1)

where σ = σij is the stress tensor, u(x) = ui(x) is the displacement vector; the tensor a = aijkl(∇u, u, x)

is a known function of u(x) and of its gradient ∇u(x) = ui,j . The comma in front of a superscript

means derivative in the corresponding coordinate, and summation in repeated indices is supposed

from 1 to n unless stated otherwise. The dependence of a and σ on the displacement u (in addition
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to the dependence on ∇u) is left here for generality.

Note that a dependence σij = σij(∇u(x), u(x), x), such that σij(0, u(x), x) = 0 can always be

presented in form (1), since the mean value theorem implies,

σij(∇u(x), u(x), x) =
∂σij(g, u(x), x)

∂gkl
uk,l(x), where g = t∇u(x)

for some t in the segment [0, 1].

Substituting (1) in the equilibrium equations

∂σij(∇u(x), u(x), x)
∂xj

= fi(x), i = 1, ..., n,

and taking into account boundary conditions, we arrive at the following mixed boundary–value problem

of physically nonlinear elasticity in a bounded domain Ω for the unknown displacement vector u,

[Lik(u)uk](x) :=
∂

∂xj

[
aijkl(∇u(x), u(x), x)

∂uk(x)
∂xl

]
= fi(x), x ∈ Ω, (2)

ui(x) = ǔi(x), x ∈ ∂DΩ, (3)

[Tik(u)uk](x) := aijkl(∇u(x), u(x), x)
∂uk(x)

∂xl
nj(x) = ťi(x), x ∈ ∂NΩ. (4)

Here aijkl = ajikl = aijlk = aklij ; fi(x) is a known volume force vector (taken with the opposite sign);

ni(x) is an outward normal vector to the boundary ∂Ω; [T (u)u](x) = [Tik(u)uk](x) is the traction

vector at a boundary point x, while T (u) = Tik(u) is the traction differential operator; ǔ(x) and ť(x)

are known displacements and tractions on the parts ∂DΩ and ∂NΩ of the boundary, respectively.

Let us fix a point y and consider the following auxiliary differential operators of the linear elasticity

with constant (frozen) coefficients,

[L(y)
ik (u)vk](x) :=

∂

∂xj

[
aijkl(∇u(y), u(y), y)

∂vk(x)
∂xl

]
, (5)

[T (y)
ik (u)vk](x) := aijkl(∇u(y), u(y), y)

∂vk(x)
∂xl

nj(x). (6)

Integrating by parts, we have the first Green identities for the differential operators

[L(u)u](x) = [Lik(u)uk](x) and [L(y)(u)v](x) = [L(y)
ik (u)vk](x),

∫

Ω
vi(x)[Lik(u)uk](x)dΩ(x) =

∫

∂Ω
vi(x)[Tik(u)uk](x)dΓ(x)−

∫

Ω

∂vi(x)
∂xj

aijkl(∇u(x), u(x), x)
∂uk(x)

∂xl
dΩ(x),

∫

Ω
ui(x)[L(y)

ik (u)vk](x)dΩ(x) =
∫

∂Ω
ui(x)[T (y)

ik (u)vk](x)dΓ(x)−
∫

Ω

∂ui(x)
∂xj

aijkl(∇u(y), u(y), y)
∂vk(x)

∂xl
dΩ(x),

where u(x) and v(x) are arbitrary vector-functions for that the operators and integrals in the above ex-

pressions have sense. Subtracting the identities from each other and taking into account the symmetry
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of the tensor aijkl, we derive the two-operator second Green-Betti identity,
∫

Ω

{
u(x)[L(y)(u)v](x)− v(x)[L(u)u](x)

}
dΩ(x) =

∫

∂Ω

{
u(x)[T (y)(u)v](x)− v(x)[T (u)u](x)

}
dΓ(x) +

∫

Ω
[∇v(x)]ã(u; x, y)∇u(x)dΩ(x), (7)

ã(u; x, y) = ãijkl(u; x, y) := [aijkl(∇u(x), u(x), x) − aijkl(∇u(y), u(y), y)]. (8)

Note that if L(u) = L(y)(u), i.e. L(u) is a linear operator with constant coefficients, then the last

domain integral disappears in eq (7), which thus degenerates into the classical second Green-Betti

identity.

For a fixed u and y, let F (y)(u;x, y) = F
(y)
km(u(y),∇u(y), x, y) be a fundamental solution for the

linear differential operator [L(y)
ik (u)vk](x) with constant (with respect to x) coefficients, i.e.,

[L(y)
ik (u)F (y)

km(u; ·, y)](x) := aijkl(∇u(y), u(y), y)
∂2F

(y)
km(u(y),∇u(y), x, y)

∂xj∂xl
= δimδ(x − y),

where δim is the Kronecker symbol and δ(x − y) is the Dirac delta-function. Note that generally

F (y)(u;x, y) is not a parametrix for the original operator L(u) if the tensor a depends on ∇u.

If the material is isotropic, then

aijkl(∇u(y), u(y), y) = λ(∇u(y), u(y), y)δijδkl + µ(∇u(y), u(y), y)(δikδjl + δilδjk), (9)

µ(∇u(y), u(y), y) > C > 0, λ(∇u(y), u(y), y) +
2
3
µ(∇u(y), u(y), y) > C > 0.

In this case, F
(y)
im (u; x, y) is the Kelvin-Somigliana solution,

F
(y)
im (u; x, y) =

−1
4π

{ −δim ln r − r,ir,m

λ(∇u(y), u(y), y) + 2µ(∇u(y), u(y), y)
+
−δim ln r + r,ir,m

µ(∇u(y), u(y), y)

}
(10)

for the plane strain state; for the plane stress, λ in (9) and (10) should be replaced by λ∗ = 2λµ/(λ+2µ).

In the 3D case,

F
(y)
im (u; x, y) =

−1
8πr

{
δim − r,ir,m

λ(∇u(y), u(y), y) + 2µ(∇u(y), u(y), y)
+

δim + r,ir,m

µ(∇u(y), u(y), y)

}
(11)

Here r :=
√

(xi − yi)(xi − yi), r,i := ∂r/∂xi = (xi−yi)/r. For anisotropic material, the fundamental

solution can be written down in an analytical form for arbitrary anisotropy in the 2D case and for

some particular anisotropy in the 3D case; otherwise, it can be expressed as a linear integral over a

circle [20–22].

Assuming u(x) is a solution of nonlinear system (2) and using the fundamental solution F (y)(u; x, y)

as v(x) in the Green identity (7) similar to the linear case, c.f. [5,23], we obtain the following non-linear

two-operator third Green identity,

c(y)u(y)−
∫

∂Ω
u(x)[T (y)F (y)(u; ·, y)](x)dΓ(x) +

∫

∂Ω
F (y)(u; x, y)[T (u)u](x)dΓ(x)−

∫

Ω
[∇(x)F (y)(u; x, y)]ã(u;x, y)∇u(x)dΩ(x) =

∫

Ω
F (y)(u; x, y)f(x)dΩ(x), (12)
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where c is a tensor, cij , such that cim(y) = δim if y ∈ Ω; cim(y) = 0 if y /∈ Ω̄; cim(y) = 1
2δim if y is a

smooth point of the boundary ∂Ω; and cim(y) = cim(a(y), α(y)) is a function of the anisotropy tensor

a(y) and the interior space angle α(y) at a corner point y of the boundary ∂Ω.

Substituting boundary conditions (3), (4) into eq (12) and using it at y ∈ Ω, we arrive at a (united)

nonlinear two-operator BDIDE for u(x) at x ∈ Ω

c(y)u(y)−
∫

∂NΩ
u(x)[T (y)(u)F (y)(u; ·, y)](x)dΓ(x) +

∫

∂DΩ
F (y)(u; x, y)[T (u)u](x)dΓ(x)−

∫

Ω
[∇(x)F (y)(u; x, y)]ã(u; x, y)∇u(x)dΩ(x) = F(y), y ∈ Ω, (13)

F(y) :=
∫

∂DΩ
ǔ(x)[T (y)(u)F (y)(u; ·, y)](x)dΓ(x)−

∫

∂NΩ
F (y)(u; x, y)ť(x)dΓ(x)+

∫

Ω
F (y)(u; x, y)f(x)dΩ(x).

BDIDE (13) is the second kind equation, which includes at most the first derivatives of the unknown

solution u(x), both directly in the domain integral term in the left hand side and through the coefficient

a(∇u, u, ·) in the operators T (u), T (y)(u) and the functions F (y)(u;x, y) and ã(u; x, y). The function

[∇(x)F (y)(u; x, y)] is at most weakly singular in Ω, and taking into account that ã(u;x, y) → 0 as

x → y, we obtain that the domain integral is a smoothing operator with respect to u, for (sufficiently)

smooth functions a and u. The boundary integrals have at most the Cauchy-type singularity.

Some other (e.g. segregated) BDIDEs can be obtained if one substitutes ǔ(x) for u(x) also in

the out-of-integral term of (13) at y ∈ ∂DΩ, considers the unknown boundary displacements u on

∂NΩ and/or tractions T (u)u on ∂DΩ as new variables formally segregated from u in Ω, or applies the

boundary traction operator to (13).

BDIDE (13) can be reduced after some discretization to a system of nonlinear algebraic equation

and solved numerically. The system will include unknowns not only on the boundary but also at inter-

nal points. Moreover, since the fundamental solutions, c.f. (10), (11), are highly non-local, the matrix

of the system will be fully populated and this makes its numerical solution more expensive. To avoid

this difficulty, we present below some ideas of constructing localized parametrices and consequently

Localized BDIDEs (LBDIDEs).

3 Localized Parametrix and LBDIDE

Let χ(x, y) be a cut-off function, such that χ(y, y) = 1 and χ(x, y) = 0 at x not belonging to closure of

an open localization domain ω(y) (a vicinity of y), see Fig.1, and let P
(y)
ω (u; x, y) = χ(x, y)F (y)(u; x, y).

The simplest example is

χ(x, y) =





1, x ∈ ω̄

0, x /∈ ω̄
⇒ P (y)

ω (u; x, y) =





F (y)(u; x, y), x ∈ ω̄(y)

0, x /∈ ω̄(y)
(14)
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Other examples of the cut-off functions having different smoothness are presented in [5,6,17] for some

shapes of ω.

Then P
(y)
ω (u; x, y) is a localized parametrix of the linear operator L(y), i.e.,

L
(y)
ik (u)P (y)

kmω(u; x, y) = δimδ(x− y) + R
(y)
imω(u; x, y),

where the remainder

R
(y)
imω = −L

(y)
ik ((1− χ)F (y)

km) = aijkl(∇u(y), u(y), y)

[
F

(y)
km

∂2χ

∂xj∂xl
+

∂F
(y)
km

∂xj

∂χ

∂xl
+

∂F
(y)
km

∂xl

∂χ

∂xj

]

is at most weakly singular at x = y, at least if χ is smooth enough on ω̄(y). The parametrix P
(y)
ω (u; x, y)

has the same singularity as F (y)(x, y) at x = y. Both P
(y)
ω (u; x, y) and R

(y)
ω (u; x, y) are localized (non-

zero) only on ω̄(y).

ΩΩΩΩ

Ω∂N

Ω∂D

y1•

• ω(y2)

•y
3

ω(y3)

ω(y1)

y2

•
y4

ω(y4)

Figure 1: Body Ω with localization domains ω(yi)

Suppose χ(x, y) is smooth in x ∈ ω̄(y) but not necessarily zero at x ∈ ∂ω(y). Then P
(y)
ω (u; x, y)

is a discontinuous localized parametrix at x ∈ IRn and P
(y)
ω (u; x, y) = R

(y)
ω (u;x, y) = 0 if x /∈ ω̄(y).

Substituting P
(y)
ω (u;x, y) for v(x) in eq (7) and replacing Ω by the intersection ω(y)∩Ω, we arrive at

the localized parametrix-based two-operator third Green identity on ω̄(y) ∩ Ω̄,

cω(y)u(y)−
∫

ω̄(y)∩∂Ω

{
u(x)[T (y)(u)P (y)

ω (u; ·, y)](x)− P (y)
ω (u;x, y)[T (u)u](x)

}
dΓ(x)−

∫

Ω∩∂ω(y)

{
u(x)[T (y)(u)P (y)

ω (u; ·, y)](x)− P (y)
ω (u;x, y)[T (u)u](x)

}
dΓ(x)−

∫

ω(y)∩Ω
[∇(x)P (y)

ω (u;x, y)]ã(u; x, y)∇u(x)dΩ(x) +
∫

ω(y)∩Ω
R(y)

ω (u;x, y)u(x)dΩ(x) =
∫

ω(y)∩Ω
P (y)

ω (u; x, y)f(x)dΩ(x). (15)

The last integral in the left hand side of (15) disappears if χ(x, y) is given by (14). If the point y is

situated inside the localization domain ω(y) or on the intersection of the local and global boundaries,

∂ω(y) ∩ Ω, the coefficient cω(y) in (15) is the same as c(y) in equation (12). However, if y is situated
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inside the global domain Ω but on the boundary of localization domain ω(y), then cωim(y) = 1
2δim if y

is a smooth point of the boundary ∂ω; and cωim(y) = cωim(a(y), αω(y)) is a function of the anisotropy

tensor a(y) and the interior space angle αω(y) at a corner point y of the boundary ∂ω.

Substituting boundary conditions (3) and (4) into the integral terms of eq (15) and employing it

at y ∈ Ω, we arrive at the united formulation of nonlinear two-operator Localized Boundary-Domain

Integro-Differential Equation (LBDIDE) of the second kind, for u(x), x ∈ Ω,

cω(y)u(y)−
∫

ω̄(y)∩∂NΩ
u(x)[T (y)(u)P (y)

ω (u; ·, y)](x)dΓ(x) +
∫

ω̄(y)∩∂DΩ
P (y)

ω (u;x, y)[T (u)u](x)dΓ(x)−
∫

Ω∩∂ω(y)

{
u(x)[T (y)(u)P (y)

ω (u; ·, y)](x)− P (y)
ω (u; x, y)[T (u)u](x)

}
dΓ(x)−

∫

ω(y)∩Ω

{
[∇(x)P (y)

ω (u; x, y)]ã(u; x, y)∇u(x)−R(y)
ω (u;x, y)u(x)

}
dΩ(x) = Fω(u; y), y ∈ Ω, (16)

Fω(u; y) :=
∫

ω̄(y)∩∂DΩ
ǔ(x)[T (y)(u)P (y)

ω (u; ·, y)](x)dΓ(x)−
∫

ω̄(y)∩∂NΩ
P (y)

ω (u;x, y)ť(x)dΓ(x) +
∫

ω(y)∩Ω
P (y)

ω (u;x, y)f(x)dΩ(x). (17)

If a cut-off function χ(x, y) vanishes at x ∈ ∂ω(y) with vanishing normal derivatives, then the

integral along Ω ∩ ∂ω(y) disappears in eq (16).

4 Discretization of Nonlinear Two-operator LBDIE

To reduce quasi-linear LBDIDE (16) to a sparsely populated system of quasi-linear algebraic equations

e.g. by the collocation method, one has to employ a local interpolation or approximation formula for

the unknown function u(x), for example associated with a mesh-based or mesh-less discretization.

4.1 Mesh-based discretization.

Suppose the domain Ω is covered by a mesh of closures of disjoint domain elements ek with nodes

set up at the corners, edges, faces, or inside the elements. Let J be the total number of nodes

xi (i = 1, 2, ..., J). One can use each node xi as a collocation point for the LBDIDE with a localization

domain ω(xi). Let the part of ω(xi) covered by an element ek is denoted by ωik = ω(xi) ∩ ek

Let the union of closures of the domain elements that intersect with ω(xi) be called the total

localization domain ω̃i, Fig. 2. Evidently the closure ω̄(xi) ∩ Ω̄ belongs to ω̃i. If ω(xi) is sufficiently

small, then ω̃i consists only of the elements adjacent to the collocation point xi. If ω(xi) is ab initio

chosen as consisting only of the elements adjacent to the collocation point xi, then ω̃i = ω̄(xi). Let

u{ω̃i} be the array of the function values u(xj) at the node points xj ∈ ω̃i and Jω̃i be the number of

those node points.
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Figure 2: Localization domain ω(xi) and a total localization domain ω̃i associated with a collocation

point xi of a body Ω for mesh-based discretizations

Let

u(x) =
∑

j

u(xj)φkj(x)

be a continuous piece-wise smooth interpolation of u(x) at any point x ∈ Ω along the values u(xj)

at the node points xj belonging to the same element ēk ⊂ Ω as x, and the shape functions φkj(x) be

localized on ēk. Collecting the interpolation formulae, we have for any x ∈ ω̃i,

u(x) =
∑

xj∈ω̃i

u(xj)Φj(x), Φj(x) =





φkj(x) if x, xj ∈ ēk

0 otherwise
(18)

∇u(x) =
∑

xj∈ω̃i

u(xj)∇Φj(x), ∇Φj(x) =




∇φkj(x) if x, xj ∈ ēk

0 otherwise
(19)

Consequently, Φj(x) = ∇Φj(x) = 0 if x ∈ ω̃i but xj /∈ ω̃i.

Since interpolation (18) is piece-wise smooth, expressions (19) deliver different values for ∇u(x)

on the element interfaces and particularly at apexes xi of different adjoint elements ek. For LBDIDE

(16), one has to estimate∇u(y) to calculate the coefficient a(∇u(y), u(y), y) and, consequently T (y)(u),

P (y)(u; x, y) and R(y)(u;x, y) at y = xi. For this reason, one can not directly substitute interpolation

(18)-(19) in LBDIDE (16) and employ the equation at the collocation points.

To circumvent this, let us consider LBDIDE (16) at a collocation point xi not over the whole

localization domain ω(xi) but over its pieces ωik = ω(xi) ∩ ek, substitute interpolation (18)-(19), and

then sum up the LBDIDEs for all k with non-empty ωik. The procedure is similar to the one for piece-

wise smooth localization considered in [5, Section 3.3]. The resulting out-of-integral coefficient cω(xi) =
∑

k cωik(xi) = c(xi) will correspond to the position of xi in the whole localization domain ω(xi)

(or, the same, in Ω) but a(∇u(xi), u(xi), xi) and, consequently ã(u; x, xi) T (xi)(u), P (xi)(u;x, y) and

R(xi)(u; x, y) will depend on the integration element ek and will be denoted by ak(∇u(xi), u(xi), xi),

ãk(u; x, xi), T ik(u), P ik(u;x, y) and Rik(u;x, y), respectively.

Then we arrive at the following system of J×n quasi-linear algebraic equations for J×n unknowns
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um(xj), xj ∈ Ω, m = 1, ..., n,

c(xi)u(xi) +
∑

xj∈ω̃i

Kij(u{ω̃i})u(xj) = Fω(u{ω̃i}; xi), xi ∈ Ω, no sum in i. (20)

For fixed indices i, j, the n× n tensor Kij(u{ω̃i}) is

Kij(u{ω̃i}) =
∑

k: ωik 6=∅

[
−

∫

ω̄ik∩∂NΩ
φkj(x)[T (xi)(u{ω̃i})P (xi)

ω (u{ω̃i}; ·, xi)](x)dΓ(x)+

∫

ω̄ik∩∂DΩ
P (xi)

ω (u{ω̃i}; x, xi)[T (u{ω̃i})φkj ](x)dΓ(x)−
∫

Ω∩∂ωik

φkj(x)[T (xi)(u{ω̃i})P (xi)
ω (u{ω̃i}; ·, xi)](x)dΓ(x)+

∫

Ω∩∂ωik

P (xi)
ω (u{ω̃i};x, xi)[T (u{ω̃i})φkj ](x)dΓ(x)−

∫

ωik∩Ω
∇(x)P (xi)

ω (u{ω̃i}; x, xi)]ã(u{ω̃i}; x, xi)∇φkj(x)dΩ(x)+
∫

ωik∩Ω
R(xi)

ω (u{ω̃i}; x, xi)φkj(x)dΩ(x)
]

, (21)

no sum in i. It is taken into account here that the domains ωik and Ω are open (do not include their

boundaries ∂ωik and ∂Ω). The approximate traction operators T (u{ω̃i}) and T ik(u{ω̃i}), the local-

ized parametrix P ik
ω (u{ω̃i}; x, xi) and the localized remainder Rik

ω (u{ω̃i};x, xi) in (21) are expressed

in terms of the set of unknowns u{ω̃i} := {u(xj), xj ∈ ω̃i}. The expressions are obtained after sub-

stituting interpolation formulae (18), (19) for u in the coefficient a(u; ·) in the definitions for T (u),

T (xi)(u), P
(y)
ω (u; x, y) and R

(y)
ω (u; x, y). The normal vector nj(x) for the operators T (u), T (xi)(u) in

the boundary integrals is taken outward to the corresponding domains, while for a its limiting values

are taken from inside of the domains. Integration is taken twice over the interfaces Ω∩ ∂ωik between

the adjoined domains ωik. The right hand side components Fω(u{ω̃i}, xi) in (20) are obtained after

similar employing interpolation formulae (18), (19) for u in (17).

Note that the term with Rik
ω disappears in the last integral of (21) if the parametrix P ik

ω (x, xi) is

given by (14). On the other hand, if the cut-off function χ(x, xi) and its normal derivative are equal

zero at x on the boundary ∂ω(xi), then the the third and fourth integrals along Ω∩ ∂ω(xi) disappear

in (21).

4.2 Mesh–less discretization

For a mesh–less discretization, one needs a method of local interpolation or approximation of a function

along randomly distributed nodes xi. We will suppose all the approximation nodes xi belong to Ω̄ and

will use them also as collocation points for the LBDIDEs discretization. Let, as before, J be the total

number of nodes xj (i = 1, 2, ..., J). Let us consider a mesh–less method, for example, the moving
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least squares (MLS) (see e.g. [24]), that leads to the following approximation of a function u(x)

u(x) =
∑

xj∈ω0(x)

û(xj)Φj(x), x ∈ Ω. (22)

Here Φj(x) are known smooth shape functions such that Φj(x) = 0 if xj /∈ ω0(x), ω0(x) is a localization

domain of the approximation formula, and û(xj) are unknown values of an auxiliary function û(x) at

the nodes xj , that is, the so-called δ−property is not assumed for approximation (22).

Let ω(xi) be a localization domain around a node xi. Then for any x ∈ ω̄(xi), the total approxi-

mation of u(x) can be written in the following local form,

u(x) =
∑

xj∈ω̃i

û(xj)Φj(x), ∇u(x) =
∑

xj∈ω̃i

û(xj)∇Φj(x), x ∈ ω̄(xi), (23)

where ω̃i := ∪x∈ω̄(xi)∩Ω̄ω0(x) is a total localization domain, Fig. 3. Consequently, Φj(x) = ∇Φj(x) = 0

if x ∈ ω̄(xi) and xj /∈ ω̃i. Let Jω̃i be the number of nodes xj ∈ ω̃i and û{ω̃i} be the array of the

function values û(xj) at the node points xj ∈ ω̃i. Since our approximation (23) for u is smooth, its

gradient approximation ∇u(x) is continuous, and can be directly applied in LBDIDE (16), unlike the

mesh-based discretization.

Ω∂

ω~∂

ω∂ x
i

i

x
i

ω
0
x  

Figure 3: Localization domain ω(xi) and a total localization domain ω̃i associated with a collocation

point xi of a body Ω for mesh-less discretizations

After substitution of approximation (23) in LBDIDE (16), we arrive at the following system of

quasi-linear system of J × n algebraic equations with respect to J × n unknowns ûm(xj), xj ∈ Ω̄,

m = 1, ..., n,

∑

xj∈ω̃i

[
c(xi)Φj(xi) + K̂ij(û{ω̃i})

]
û(xj) = Fω(û{ω̃i}, xi), xi ∈ Ω̄, no sum in i. (24)

10



For any i, j, the n× n tensor K̂ij in (24) is

K̂ij(û{ω̃i}) = −
∫

ω̄(xi)∩∂NΩ
Φj(x)[T (xi)(û{ω̃i})P (xi)

ω (û{ω̃i}; ·, xi)](x)dΓ(x)+
∫

ω̄(xi)∩∂DΩ
P (xi)

ω (û{ω̃i}; x, xi)[T (û{ω̃i})Φj ](x)dΓ(x)−
∫

Ω∩∂ω(xi)
Φj(x)[T (xi)(û{ω̃i})P (xi)

ω (û{ω̃i}; ·, xi)](x)dΓ(x)+
∫

Ω∩∂ω(xi)
P (xi)

ω (û{ω̃i};x, xi)[T (û{ω̃i})Φj ](x)dΓ(x)−
∫

ω(xi)∩Ω
[∇(x)P (xi)

ω (û{ω̃i};x, xi)]ã(û{ω̃i}; x, xi)∇Φj(x)dΩ(x)+
∫

ω(xi)∩Ω
R(xi)

ω (û{ω̃i}; x, xi)Φj(x)dΩ(x), (25)

with the shape functions Φj from (23). Expressions for T (û{ω̃i}), Pω(û{ω̃i};x, xi) and Rω(û{ω̃i};x, xi)

in terms of the set of unknowns û{ω̃i} := {û(xj), xj ∈ ω̃i} are obtained after substituting interpolation

formulae (23) for u in the coefficient a(u; ·) in the definitions for T (u), Pω(u; x, y) and Rω(u; x, y). The

right hand side components Fω(û{ω̃i}, xi) are obtained after similar employing interpolation formulae

(23), for u in (17).

Concluding remarks

The parametrix localization by multiplication by a cut-off function with a local support allows to

reduce a BVP of the non-linear elasticity to a two-operator direct localized quasi-linear boundary-

domain integro-differential equation of the second kind. The equation includes at most the first

derivative of the unknown solution, weakly singular integrals over the domain, and at most Cauchy-

type singular integrals over the boundary. The second kind structure of the nonlinear LBDIDE and

of the corresponding mesh-based discrete system look very promising for constructing simple and fast

converging iteration algorithms.

From the definitions in both mesh based and mesh–less discretization methods, we have φkj(x) =

∇φkj(x) = Φj(x) = ∇Φj(x) = [T (u)φkj ](x) = [T (y)(u)φkj ](x) = [T (u)Φj ](x) = [T (y)(u)Φj ](x) = 0

if x ∈ ω̄(xi) but xj /∈ ω̃i. Consequently Kij = 0 and K̂ij = 0 if xj /∈ ω̃i, and moreover, Kij and

K̂ij depend only on u{ω̃i} or û{ω̃i}, respectively. Thus, each equation in (20) and (24) has not more

than Jω̃i × n ¿ J × n non-zero entries, i.e. the systems are sparse. The number Jω̃i × n of nonzero

entries is practically independent of the mesh refinement but depends on the domain element types

in the mesh-based discretization. The similar effect takes place also in the mesh-less discretization if

the global localization domain ω̃(xi) shrinks with the refinement of the nodes distribution.

Deriving two-operator BDIDE (13), we employed the auxiliary linear constant-coefficient operators

L(y) and T (y), given by (5), (6) in terms of the secant ”frozen” elastic tensor aijkl(∇u(y), u(y), y).

11



Another possible option would be to use for this purpose the initial linear constant-coefficient operators

L(0y) and T (0y) associated with the initial ”frozen” elastic tensor aijkl(0, 0, y). The resulting BDIDE

would then be given by the same equation (13) after replacing there aijkl(∇u(y), u(y), y) by aijkl(0, 0, y)

everywhere, including the operators L(y) and T (y), and fundamental solution F (y). The localization and

discretization procedures described for the secant-coefficient LBDIDE will be equally applicable also to

this initial-coefficient LBDIDE. However, the difference tensor ã0
ijkl(u; x, y) := [aijkl(∇u(x), u(x), x)−

aijkl(0, 0, y)] will not tend to zero as x → y, unlike its counterpart ãijkl(u; x, y) given by (8), which

can influence properties of the integral equation and its discrete counterparts.

Investigation of the equivalence of the BDIDEs to the original BVPs, solvability, uniqueness of

solution, and the iteration algorithm convergence, including analysis of spectral properties of the

corresponding linear BDIDEs, needs to be done for constructing robust numerical methods based on

this information (c.f. [25]), and for an optimal choice of the cut-off functions, localization domains and

node points.
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[2] Balaš J, Sladek J, Sladek V. Stress Analysis by Boundary Element Methods. Amsterdam-Oxford-

New York-Tokyo: Elsevier; 1989.

[3] Banerjee PK. The Boundary Element Methods in Engineering, London: McGraw-Hill; 1994.

[4] Aliabadi MH, The Boundary Element Method, Vol. 2, Applications in Solids and Structures,

Chichester: Wiley; 2002.

[5] Mikhailov SE. Localized boundary-domain integral formulations for problems with variable coef-

ficients. Engng Anal Bound Elem 2002;26:681–690.

[6] Mikhailov SE, Nakhova IS. Numerical solution of a Neumann problem with variable coefficients

by the localized boundary-domain integral equation method. In: Amini S. editor. Fourth UK

Conference on Boundary Integral Methods, Salford University; 2003. p. 175-184.

[7] Mikhailov SE, Nakhova IS. Mesh-based numerical implementation of the localized boundary-

domain integral equation method to a variable-coefficient Neumann problem. J Engng Math

2005;51:251-259.

[8] Sladek V, Sladek J. A new formulation for solution of boundary value problems using domain-type

approximations and local integral equations. Electronic J. Boundary Elements 2003;1:132-153.

12



[9] Sladek J, Sladek V, Zhang Ch. Local integro-differential equations with domain elements for

the numerical solution of partial differential equations with variable coefficients. J Engng Math

2005;51:261282.

[10] Zhu T, Zhang J-D, Atluri SN. A local boundary integral equation (LBIE) method in computa-

tional mechanics, and a meshless discretization approach. Comput Mech 1998;21:223-235.

[11] Zhu T, Zhang J-D, Atluri SN. A meshless numerical method based on the local boundary integral

equation (LBIE) to solve linear and non-linear boundary value problems. Engng Anal Bound

Elem 1999;23:375-389.

[12] Sladek J, Sladek V, Zhang Ch. A local BIEM for analysis of transient heat conduction with

nonlinear source terms in FGMs. Engng Anal Bound Elem 2004;28:1-11.

[13] Sladek J, Sladek V, Atluri SN. Local boundary integral equation (LBIE) method for solving

problems of elasticity with nonhomogeneous material properties. Comput Mech 2000;24:456-462.

[14] Sladek J, Sladek V, Krivacek J, Zhang Ch. Local BIEM for transient heat conduction analysis in

3-D axisymmetric functionally graded solids. Comput Mech 2003;32:169176.

[15] Mikhailov SE. About localized boundary-domain integro-differential formulations for a quasi-

linear problem with variable coefficients. In: Constanda C, Ahues M, Largillier A, editors. Integral

Methods in Science and Engineering: Analytic and Numerical Techniques, Birkhäuser; 2004. p.
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