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Abstract. Mixed Boundary Value Problems (BVPs) for a second-order quasi-linear el-

liptic partial differential equation with variable coefficients dependent on the unknown

solution and its gradient are considered. Localized parametrices of auxiliary linear par-

tial differential equations along with different combinations of the Green identities for

the original and auxiliary equations are used to reduce the the BVPs to direct or two-

operator direct quasi-linear Localized Boundary-Domain Integro-Differential Equations

(LBDIDEs). Different parametrix localizations are discussed, and the corresponding non-

linear LBDIDEs are presented. Mesh-based and mesh-less algorithms for the LBDIDE

discretization are described that reduce the LBDIDEs to sparse systems of quasi-linear

algebraic equations.

Keywords: Partial Differential Equations, Integro-Differential Equations, Mesh-based & Mesh-

less Algorithms, Heat Transfer, Compressible Flow

1 Introduction

It is well-known that a Boundary Value Problem (BVP) for a nonlinear Partial Differential

Equation (PDE) can be reduced to a non-linear Boundary-Domain Integral Equation

(BDIE), see e.g. [1, Ch. 7, 8; Sec. 12.6], [2, Ch. 6], [3, Ch. 13, 15], [4, Sec. 8.9] [5, Ch. 6],

using the fundamental solution of an auxiliary linear PDE with coefficients evaluated either

for zero or for the currant value of the unknown variable in the source point. However, the
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fundamental solution is generally not available in an explicit and/or cheaply computable

form if the coefficients of the auxiliary PDE depend on the space variables. Moreover, the

fundamental solution of the auxiliary PDE is usually highly non-local, which leads, after

discretization, to a system of nonlinear algebraic equations with a fully populated matrix.

To prevent such difficulties, localized parametrices were constructed in [6], reducing a

linear elliptic BVP with variable coefficients to a direct linear Localized Boundary-Domain

Integral Equation (LBDIE). Some numerical implementations of the linear LBDIE were

presented in [7]. Following [8], this method is generalized in Section 2 to reduce of a

mixed BVP for a second-order quasi-linear elliptic PDE with variable coefficients, de-

pendent also on the unknown solution, to direct quasi-linear single-operator Localized

Boundary-Domain Integro-Differential Equations (LBDIDEs). However, if the coefficients

of the BVP depend not only on the unknown solution but also on its gradient, the single-

operator approach leads to LBDIDEs involving second-order derivatives. To obtain a

direct LBDIDE with first derivatives at most, a two-operator Green identity for the orig-

inal and an auxiliary PDE is derived in Section 3, following [9]. In principle, one could

then reduce the single-operator as well as the two-operator direct LBDIDEs to non-linear

boundary-domain integral equations (involving Cauchy–singular integrals over the domain

and hyper–singular integrals over the boundary), using the integral representations for the

solution gradients considered as separate unknown variables similar to [1, Ch. 7], [2, Ch.

6], [3, Ch. 13], [5, Ch. 6]. We will not follow this route and describe instead in Section 4

the straightforward discretization of the LBDIDEs, employing either a mesh–based or a

mesh–less collocation approach and the corresponding solution approximation in terms of

the nodal values. Both discretizations reduce the LBDIDEs to sparse systems of quasi-

linear algebraic equations.

2 Direct integro-differential formulations

To illustrate the general approach of reducing a mixed BVP for a second-order quasi-

linear elliptic PDE with variable coefficients dependent on the unknown solution to direct

LBDIDEs, we consider in this section the mixed BVP of stationary nonlinear heat transfer

in an isotropic inhomogeneous medium.
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2.1 Nonlinear BVP of stationary heat transfer in inhomogeneous body

and Green’s identity

Let us consider a body occupying an open domain, Ω ⊂ IRn, where n = 2 or n = 3, with

a prescribed temperature ū(x) on a closed part ∂DΩ of the boundary ∂Ω and prescribed

heat flux t̄(x) on the remaining open part ∂NΩ,

[L(u)u](x) :=
∂

∂xi

[
a(u(x), x)

∂u(x)
∂xi

]
= f(x), x ∈ Ω (1)

u(x) = ū(x), x ∈ ∂DΩ (2)

[T (u)u](x) := a(u(x), x)
∂u(x)
∂n(x)

= t̄(x), x ∈ ∂NΩ. (3)

Here u(x) is the unknown temperature, [L(λ)u](x) :=
∂

∂xi

[
a(λ(x), x)

∂u(x)
∂xi

]
is a linear

differential operator, [T (λ)u](x) := a(λ(x), x)∂u(x)/∂n(x) is a linear surface flux operator

and a(λ(x), x) > C > 0 is a variable thermo-conductivity coefficient dependent on a

function λ(x), f(x) is a known distributed heat source, n(x) is the outward unit normal

vector to the boundary ∂Ω, ū(x) and t̄(x) are known functions. Summation over repeated

indices is assumed from 1 to 2 in the 2D case, and from 1 to 3 in the 3D case, unless

stated otherwise. BVP (1)-(3) becomes the pure Neumann problem if ∂DΩ = ∅, and the

pure Dirichlet problem if ∂NΩ = ∅. Note that the well-known Kirchhoff transform (see

e.g. [4, Sec. 4.6]) cannot be used to linearize this problem, since a(u(x), x) depends not

only on the unknown variable u but also on the coordinate x.

The second Green identity for the differential operator L(u) takes the form
∫

Ω
{u(x)[L(u)v](x)− v(x)[L(u)u](x)} dΩ(x) =

∫

∂Ω
{u(x)[T (u)v](x)− v(x)[T (u)u](x)} dΓ(x),

(4)

where u(x) and v(x) are arbitrary functions for that the integrals make sense (either

classical or distributional).

If L(u) is a linear operator, L(u) = L, and F (x, y) is its fundamental solution, i.e.,

[LF (·, y)](x) = δ(x− y),

where δ(x − y) is the Dirac delta-function, then one could take v(x) = F (x, y), identify
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u(x) with a solution of equation (1), and thus arrive at the third Green identity,

c(y)u(y)−
∫

∂Ω
{u(x)[TF (·, y)](x)− F (x, y)[Tu](x)} dΓ(x)

=
∫

Ω
F (x, y)f(x)dΩ(x), y ∈ IRn (5)

c(y) = c(y; Ω) =





1 if y ∈ Ω,

0 if y /∈ Ω̄

α(y; Ω)/(2π) if y ∈ ∂Ω and Ω ⊂ IR2

α(y; Ω)/(4π) if y ∈ ∂Ω and Ω ⊂ IR3

(6)

where α(y; Ω) is the interior solid angle at a corner point y of the boundary ∂Ω; in

particular, c(y) = 1/2 if y is a smooth point of the boundary. Substituting the boundary

conditions into the Green identity (5) and applying it for y ∈ ∂Ω leads to a direct Boundary

Integral Equation, see e.g. [1, Sec. 2.4].

2.2 Parametrix and quasi-linear direct integro-differential equations

For the partial differential operator L(λ) with a variable coefficient a(λ(x), x), a fundamen-

tal solution is generally not available in an explicit form. Instead, however, a parametrix

P (λ; x, y) can be defined as a function of x, y and λ, such that

[L(λ)P (λ; ·, y)](x) = δ(x− y) + R(λ; x, y),

where the remainder term R(λ; x, y) is at most weakly singular (i.e., integrable with respect

to x ∈ Ω), which is always available.

For a given operator L(λ), the parametrix is evidently not unique. A particular

parametrix P (λ; x, y) is given by a fundamental solution F (y)(λ; x, y) = F (λ(y), x, y) of

the corresponding operator with ”frozen” coefficient,

[L(y)(λ)v](x) :=
∂

∂xi

[
a(λ(y), y)

∂v(x)
∂xi

]
.

Evidently, F (λ(y), x, y) = F∆(x, y)/a(λ(y), y), where F∆(x, y) is a fundamental solution
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of the Laplace operator. Thus, denoting |x− y| =
√

(xi − yi)(xi − yi), we can take,

2D : P (λ; x, y) = P (λ(y), x, y) =
ln |x− y|

2πa(λ(y), y)
, (7)

R(λ; x, y) = R(λ(x), λ(y),∇λ(x), x, y)

=
xi − yi

2πa(λ(y), y)|x− y|2
[
∂a(λ, x)

∂λ

∂λ(x)
∂xi

+
∂a(λ, x)

∂xi

]

λ=λ(x)

; (8)

3D : P (λ; x, y) = P (λ(y), x, y) =
−1

4πa(λ(y), y)|x− y| , (9)

R(λ; x, y) = R(λ(x), λ(y),∇λ(x), x, y)

=
xi − yi

4πa(λ(y), y)|x− y|3
[
∂a(λ, x)

∂λ

∂λ(x)
∂xi

+
∂a(λ, x)

∂xi

]

λ=λ(x)

. (10)

Identifying u(x) with a solution of PDE (1), assuming that λ(x) = u(x), using P (u; x, y)

as v(x) in Green’s second identity (4), and employing the usual limiting procedure at y

(see e.g. [10, Sec. I.9]) similar to that for the fundamental solution, we arrive at the

parametrix-based nonlinear counterpart of Green’s third identity (5),

c(y)u(y)−
∫

∂Ω
{u(x)[T (u)P (u; ·, y)](x)− P (u; x, y)[T (u)u](x)} dΓ(x)

+
∫

Ω
R(u;x, y)u(x)dΩ(x) =

∫

Ω
P (u; x, y)f(x)dΩ(x), y ∈ IRn, (11)

where c(y) is given by (6). As one can see from (8) and (10), the remainder R(u;x, y) in

(11) does depend not only on the values of solution u but also on its gradient ∇u.

Identity (11) can be used for formulating different boundary domain integro-differential

equations with respect to u and its derivatives. We consider below some of the formula-

tions.

United formulation: We can substitute boundary conditions (2) and (3) in the inte-

grals in (11) and use (11) at y ∈ Ω = Ω∪∂Ω, to reduce BVP (1), (2), (3) to the quasi-linear

direct Boundary–Domain Integro–Differential Equation, BDIDE, for u(x) at x ∈ Ω,

c(y)u(y)−
∫

∂NΩ
u(x)[T (u)P (u; ·, y)](x)dΓ(x) +

∫

∂DΩ
[T (u)u](x)P (u;x, y)(x)dΓ(x) +

∫

Ω
R(u;x, y)u(x)dΩ(x) = F(u; y), (12)

F(u; y) :=
∫

∂DΩ
ū(x)[T (u)P (u; ·, y)](x)dΓ(x)−

∫

∂NΩ
P (u; x, y)t̄(x)dΓ(x) +

∫

Ω
P (u; x, y)f(x)dΩ(x), y ∈ Ω.
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The second kind form of BDIDE (12) looks attractive for constructing iterative algorithms

of its numerical solution.

Partly segregated formulation: In a slightly different approach, we apply (12) at

y ∈ Ω substitute ū(y) for u(y) also in the out-of-integral term when y ∈ ∂DΩ and introduce

a new variable t(x) for the unknown boundary flux [T (u)u](x) on ∂DΩ. This reduces BVP

(1), (2), (3) to another quasi-linear direct Boundary-Domain Integro-Differential Equation,

BDIDE, for u(x) at x ∈ Ω ∪ ∂NΩ and t(x) at x ∈ ∂DΩ,

c0(y)u(y) −
∫

∂NΩ
u(x)[T (u)P (u; ·, y)](x)dΓ(x) +

∫

∂DΩ
t(x)P (u;x, y)dΓ(x) +

∫

Ω
R(u; x, y)u(x)dΩ(x) = F0(u; y), (13)

F0(u; y) := [c0(y)− c(y)]ū(y) + F(u; y), y ∈ Ω ∪ ∂Ω, (14)

c0(y) = 0 if y ∈ ∂DΩ, c0(y) = c(y) if y ∈ Ω ∪ ∂NΩ. (15)

We will consider the unknown boundary variable t on ∂DΩ as formally segregated from

the internal field u, that is, we will not use its relation to the boundary flux [T (u)u](x),

while solving (13).

Even for boundary points y, the domain integrals in (13) and (14) include the unknown

values of u over the whole domain Ω. This prevents us from reducing the BDIDEs to a

Boundary Integral Equations for u(x) on ∂NΩ and t(x) on ∂DΩ, as in the case when the

parametrix is a fundamental solution.

Evidently, the united and partly segregated formulations coincide for the pure Neu-

mann problem i.e., when ∂DΩ = ∅. Equations (12) and (13) are integro-differential, since

they both include dependence on the gradient ∇u in R, and BDIDE (12) includes the

differential flux operator T (u)u on ∂DΩ as well. Note that not only the left hand sides of

BDIDEs (12) and (13) but also their right hand sides F and F0 do depend on the unknown

solution, u. Because of this and the dependence of the functions P , R and operator T on

u, the BDIDEs are non-linear. We call them quasi–linear for the form resembling their

linear counterparts. If the original BVP (1)-(3) is linear, i.e. the coefficient a does not

depend on u, then T , P , R, F and F0 depend neither on u nor on ∇u, and BDIDEs (12)

and (13) degenerate into the linear BDIDE and BDIE respectively, with the known right
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hand sides F and F0; c.f. [6] where the linear analog of (13) is presented.

2.3 Localized parametrices and direct BDIDEs

Although a parametrix is not unique, all parametrices P (λ; x, y) of a differential operator

L(λ) exhibit the same singularity at x = y but can differ at other points. Thus, we can

perturb an available (not localized) parametrix P (λ; x, y) to localize it. Particularly, we

can consider Pω(λ;x, y) = χ(x, y)P (λ; x, y), where χ(x, y) is a cut-off function, such that

χ(y, y) = 1 and χ(x, y) = 0 at x not belonging to a closed localization domain ω̄(y), where

y belongs to the corresponding open domain ω(y) or to its boundary ∂ω(y), as shown in

Fig. 1.

ΩΩΩΩ

Ω∂N

Ω∂D

y1•

• ω(y2)

•y
3

ω(y3)

ω(y1)

y2

•
y4

ω(y4)

Figure 1: A body Ω with localization domains ω(yi)

Then Pω(λ;x, y) possesses the same singularity as P (λ; x, y) at x = y but is localized

(non zero) only in ω(y). Further we have,

[L(λ)Pω(λ; ·, y)](x) = [Lx(λ){χ(·, y)P (λ; ·, y)}](x) =

[L(λ)P (λ; ·, y)](x)− [L(λ){(1− χ(·, y))P (λ; ·, y)}](x) = δ(x− y) + Rω(λ; x, y),

Rω(λ; x, y) = R(λ;x, y)− [L(λ){(1− χ(·, y))P (λ; ·, y)}](x).

Consequently, Rω will have the necessary properties of the remainder, that is, Pω(λ;x, y)

is also a parametrix, at least if χ is sufficiently smooth.
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2.3.1 Discontinuous localization

Let the localization domain ω(y) be an open domain, y ∈ ω̄(y), and χ(x, y) be piece-wise

continuous in IRn,

χ(x, y) =





χ1(x, y) if x ∈ ω̄(y)

0 if x /∈ ω̄(y)
(16)

where χ1(x, y) is a smooth function in x ∈ ω̄(y) such that χ1(y, y) = 1. Then

Pω(λ; x, y) = χ(x, y)P (λ; x, y) =





χ1(x, y)P (λ; x, y) if x ∈ ω̄(y)

0 if x /∈ ω̄(y)
(17)

is a discontinuous localized parametrix.

The simplest example of the cut-off function is piecewise constant,

χ(x, y) =





1 if x ∈ ω̄(y)

0 if x /∈ ω̄(y)
, Pω(λ;x, y) =





P (λ; x, y) if x ∈ ω̄(y)

0 if x /∈ ω̄(y)
(18)

Assume that y lies either inside the domain ω(y) or on the intersection of the bound-

aries of the localization and global domains, ∂ω(y) ∩ ∂Ω, such that α(y; Ω) = α(y; ω(y)).

Substituting Pω(u;x, y) from (17) for v(x) in the second Green identity for the intersection

of Ω̄ with ω̄(y) and taking u(x) as a solution to (1), we arrive at the third Green identity

with integrals localized on ω̄(y) ∩ Ω̄,

c(y)u(y) −
∫

ω̄(y)∩∂Ω
u(x)[T (u)Pω(u; ·, y)](x)dΓ(x) +

∫

ω̄(y)∩∂Ω
Pω(u; x, y)[T (u)u](x)dΓ(x)

−
∫

Ω∩∂ω(y)
u(x)[T (u)Pω(u; ·, y)](x)dΓ(x) +

∫

Ω∩∂ω(y)
Pω(u; x, y)[T (u)u](x)dΓ(x)

+
∫

ω(y)∩Ω
Rω(u; x, y)u(x)dΩ(x) =

∫

ω(y)∩Ω
Pω(u; x, y)f(x)dΩ(x), y ∈ IRn, (19)

where c(y) = c(y; Ω) is given by the same formula (6).

United formulation: We can now substitute (2) and (3) in the first and the second

integral terms of the left hand side of equality (19) and use it at y ∈ Ω, thus arriving at
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the following quasi-linear direct LBDIDE ,

c(y)u(y) −
∫

ω̄(y)∩∂NΩ
u(x)[T (u)Pω(u; ·, y)](x)dΓ(x) +

∫

ω̄(y)∩∂DΩ
Pω(u; x, y)[T (u)u](x)dΓ(x)

−
∫

Ω∩∂ω(y)
u(x)[T (u)Pω(u; ·, y)](x)dΓ(x) +

∫

Ω∩∂ω(y)
Pω(u; x, y)[T (u)u](x)dΓ(x)

+
∫

ω(y)∩Ω
Rω(u; x, y)u(x)dΩ(x) = Fω(u; y), y ∈ Ω, (20)

Fω(u; y) :=
∫

ω̄(y)∩∂DΩ
ū(x)[T (u)Pω(u; ·, y)](x)dΓ(x)−

∫

ω̄(y)∩∂NΩ
Pω(u; x, y)t̄(x)dΓ(x)

+
∫

ω(y)∩Ω
Pω(u; x, y)f(x)dΩ(x). (21)

Partly segregated formulation: Alternatively, substituting ū(y) also for the out-of-

integral term u(y) at y ∈ ∂ΩD and introducing a new variable t(x) = [T (u)u](x) for

the unknown flux at x ∈ ∂ΩD in (20) reduce BVP (1), (2), (3) to the following partly

segregated quasi-linear direct LBDIDE for u(x) at x ∈ Ω ∪ ∂NΩ and t(x) at x ∈ ∂DΩ,

c0(y)u(y)−
∫

ω̄(y)∩∂NΩ
u(x)[T (u)Pω(u; ·, y)](x)dΓ(x) +

∫

ω̄(y)∩∂DΩ
Pω(u;x, y)t(x)dΓ(x)

−
∫

Ω∩∂ω(y)
u(x)[T (u)Pω(u; ·, y)](x)dΓ(x) +

∫

Ω∩∂ω(y)
Pω(u; x, y)[T (u)u](x)dΓ(x)

+
∫

ω(y)∩Ω
Rω(u; x, y)u(x)dΩ(x) = F0

ω(u; y), y ∈ Ω, (22)

F0
ω(u; y) := [c0(y)− c(y)]ū(y) + Fω(u; y), (23)

where c0(y) is given by (15) and Fω by (21).

Not only the left hand sides but also the right hand sides, Fω(u; y) and F0
ω(u; y), of

LBDIDEs (20) and (22) depend on the unknown function u(x), x ∈ ω̄(y) ∩ Ω̄.

As discussed in [6] for the linear case, BDIDEs (20) and (22) can also be interpreted as

a domain decomposition method, if a finite number of the localization domains ω covers

the whole body Ω and the localization domains do not change during the discretization

refinement but the point y is allowed to vary inside the corresponding domain ω 3 y.

Although more general cut-off functions (e.g., given by functions χ1 in (16), which are

piece-wise smooth in ω̄(y), c.f. [6]) might be also considered, we will concentrate in this

9



paper mainly on the cut-off functions piece-wise continuous in IRn but smooth in ω̄(y).

The general integral equality (19) and LBDIDEs (20), (22) will be simplified for special

choices of χ(x, y).

2.3.2 Continuous localizations

To get rid of the integrals involving T (u)u on ∂ω(y), i.e. the fourth integrals on the left

hand sides of (19), (20) and (22), one can construct a localized parametrix Pω(u;x, y)

vanishing on the boundary ∂ω(y).

The Green function for a corresponding BVP with ”frozen” constant coefficients in

the differential operator L on ω(y) was employed in [11, 12] as a parametrix Pω(x, y)

vanishing on ∂ω(y). However, the Green function is available in an analytical form only

for sufficiently simple shapes of the localization domain ω(y), e.g., for a ball.

It seems simpler and more universal to use the cut-off approach and construct a proper

localized parametrix as Pω(λ; x, y) = χ(x, y)P (λ; x, y). Here P is an available parametrix

(e.g., a fundamental solution for a corresponding differential operator with ”frozen” coef-

ficients) and a cut-off function χ(x, y) is smooth in x ∈ ω̄(y) and equal to zero both on

the boundary and outside ω(y). Then, evidently χ(x, y) is continuous in x ∈ IRn.

Some examples of such cut-off functions χ(x, y) localized on a ball or on a cube with

y in its center were presented in [6]. Here we give an example of χ(x, y) localized on a

polyhedron ωp with p sides sj , j = 1, 2, ..., p. Let y be an internal point of a non-concave

polyhedron, as shown in Fig. 2. Then χ(x, y) can be taken as the product

χ(x, y) =
p∏

j=1

ρj(x)
ρj(y)

, x ∈ ω̄p(y),

where ρi(x) is the distance of point x from the side sj of the polyhedron. Here χ(x, y) = 0

for x /∈ ω̄p(y).

For y ∈ ∂Ω, one can take a localization domain ω(y) only partly intersecting Ω̄, like

ω(y2) in Fig. 1, and work further with the LBDIDEs in the intersection.

Another option is to use localization domains ω(y) belonging to Ω, like ω(y4) in Fig. 1,

for boundary points y ∈ ∂ω(y)∩∂Ω. To ensure χ(y, y) = 1, one should demand χ(x, y) = 0

not for all x ∈ ∂ω(y) but only for x on a part of ∂ω(y) not including a neighbourhood of
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y

s1

s2

sj

s3

sp

ρj(y) ρj(x)
x

Figure 2: Example of a polyhedral localization domain ωp(y) with an internal point y.

y ∈ ∂ω(y). An example of such a cut-off function for a polyhedron ωp(y) is

χ(x, y) =
∏

s̄j 63y

ρj(x)
ρj(y)

, x ∈ ω̄p(y),

and χ(x, y) = 0 for x /∈ ω̄p(y). In this case, one can relax the non-concavity condition

on the polyhedron for the sides, which y belongs to (see Fig. 3, where an extreme case is

shown, when y belongs to a vertex, that is, to several sides of the polyhedron).

y

s1

s2

sj

s3

sj+1

ρj(y)
ρj(x)

x

sp

Figure 3: Example of a polyhedral localization domain ωp(y) with a boundary point y.

To consider that way of localization for the case y ∈ ∂ω(y)∩∂Ω as continuous, one may

continue the cut-off function χ(x, y) through ∂ω(y)∩∂Ω outside Ω into a larger localization

domain ω′(y) ⊃ ω(y) by so that y ∈ ω′(y) and χ(x, y) is continuous in x ∈ IRn and equals
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zero for x /∈ ω̄′(y), although such continuation is not actually used in the BDIDEs.

2.3.3 Globally smooth localization

To simplify integral representation (19) even further, one eliminate the remaining (third)

integral along Ω ∩ ∂ω(y), employing a cut-off function χ(x, y) smooth in x ∈ Ω̄ and

vanishing on ∂ω(y) together with its normal derivative in x. Then, evidently, χ(x, y) is

smooth in x ∈ IRn and the localized parametrix Pω(λ;x, y) = χ(x, y)P (λ; x, y) and its

normal derivative vanish on ∂ω(y). For such a parametrix, both the third and fourth

integrals disappear on the left hand sides of LBDIDEs (20) and (22). Some examples of

globally smooth cut-off functions localized on a ball or on a cube in IRn with a point y

in its center, are presented in [6]. Here we give also examples of globally smooth χ(x, y)

localized on a polyhedron ωp with p sides sj , j = 1, 2, ..., p. Let y be an internal point

of the non-concave polyhedron, Fig. 2, or a boundary point of the polyhedron with the

relaxed non-concavity described above, as in Fig. 3. Then χ(x, y) can be taken in one of

the following forms,

χ(x, y) =
∏

s̄j 63y

ρ2
j (x)

ρ2
j (y)

, x ∈ ω̄p(y), (24)

χ(x, y) =
∏

s̄j 63y

exp

(
1− ρ2

j (y)
ρ2

j (x)

)
, x ∈ ω̄p(y), (25)

where χ(x, y) = 0 for x /∈ ω̄p(y). Note that cut-off function (24) is continuous and has

continuous first derivatives in x ∈ IRn, while function (25) is infinitely smooth in x ∈ IRn

for y ∈ ωp(y).

3 Two-operator direct integro-differential formulations

In this section, we consider a more general quasi-linear PDE of the second order, whose a

coefficient dependent not only on the unknown solution u(x) but also on its gradient∇u(x).

In principle, one could apply the above direct (single-operator) approach of Section 2.2 to

such equations and arrive at a direct quasi-linear BDIDE, which include second derivatives

of the unknown solution in the remainder R, c.f. (8), (10). To avoid this, we derive below

a two-operator second Green identity combining the first Green identities of two different
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PDEs. This allows us to reduce the mixed BVP to a two-operator direct BDIDE with the

first derivatives of the unknown solution at most.

3.1 Non-linear ”stationary potential compressible flow” problem and

two-operator Green identities

Let us consider a mixed boundary–value problem for the following equation in a 2D or 3D

open domain Ω,

[L(u)u](x) :=
∂

∂xk

[
a(∇u(x), u(x), x)

∂u(x)
∂xk

]
= f(x), x ∈ Ω, (26)

u(x) = ū(x), x ∈ ∂DΩ, (27)

[T (u)u](x) := a(∇u(x), u(x), x)
∂u(x)
∂n

= t̄(x), x ∈ ∂NΩ, (28)

where u(x) is unknown, [L(λ)u](x) :=
∂

∂xk

[
a(∇λ(x), λ(x), x)

∂u(x)
∂xk

]
is a linear differential

operator, [T (λ)u](x) := a(∇λ(x), λ(x), x)∂u(x)/∂n(x) is a linear surface flux (or traction)

operator and a(∇λ(x), λ(x), x) > C > 0 is a variable coefficient depending on a function

λ(x) and on its gradient∇λ(x); f(x) is a known right hand side, n(x) is an outward normal

vector to the boundary ∂Ω, ū(x) and t̄(x) are known functions on the parts ∂DΩ and ∂NΩ

of the boundary, respectively.The problem becomes the pure Neumann problem if ∂DΩ = ∅
and the pure Dirichlet problem if ∂NΩ = ∅. Such BVPs are encountered particularly in

the stationary potential flow problem for a compressible fluid (for the stream function or

the velocity potential u(x)) and in the static anti–plane problem of non-linear elasticity

for an inhomogeneous body (for the displacement u(x)).

The first Green identity for the differential operator [L(u)u](x) has the form
∫

Ω
v(x)[L(u)u](x)dΩ(x) =

∫

∂Ω
v(x)[T (u)u](x)dΓ(x)

−
∫

Ω

∂v(x)
∂xk

a(∇u(x), u(x), x)
∂u(x)
∂xk

dΩ(x), (29)

where u(x) and v(x) are arbitrary functions for that the operators and integrals in (29)

make sense.

Let us fix a point y, consider the linear differential operator with constant coefficients

[L(y)(u)v](x) :=
∂

∂xk

[
a(∇u(y), u(y), y)

∂v(x)
∂xk

]

13



and write the first Green identity for the auxiliary operator L(y)(u),
∫

Ω
u(x)[L(y)(u)v](x)dΩ(x) =

∫

∂Ω
u(x)[T (y)(u)v](x)dΓ(x)

−
∫

Ω

∂u(x)
∂xk

a(∇u(y), u(y), y)
∂v(x)
∂xk

dΩ(x), (30)

where [T (y)(u)v](x) := a(∇u(y), u(y), y)∂v(x)/∂n(x). Subtracting (29) from (30), we ob-

tain the following two-operator second Green identity, c.f. (4),
∫

Ω

{
u(x)[L(y)(u)v](x)− v(x)[L(u)u](x)

}
dΩ(x) =

∫

∂Ω

{
u(x)[T (y)(u)v](x)− v(x)[T (u)u](x)

}
dΓ(x)+

∫

Ω

∂v(x)
∂xk

[a(∇u(x), u(x), x)− a(∇u(y), u(y), y)]
∂u(x)
∂xk

dΩ(x). (31)

Note that if L(u) = L(y)(u), i.e. L(u) is a linear operator with constant coefficient,

then the last domain integral disappears, and the two-operator Green identity degenerates

into its classical form (4).

3.2 Parametrix and quasi-linear two-operator direct integro–differential

equations

Let P (y)(u;x, y) be a parametrix for the linear differential operator [L(y)(u)v](x) with

constant coefficient associated with a point y, that is,

[L(y)(u)P (y)(u; ·, y)](x) :=
∂

∂xk

[
a(∇u(y), u(y), y)

∂P (y)(u; x, y)
∂xk

]

= δ(x− y) + R(y)(u; x, y), (32)

where the remainder term R(y)(u; x, y) = R(∇u(y), u(y), x, y) as function of x ∈ Ω has not

more than a weak (integrable) singularity.

If one chooses the fundamental solution F (y)(u;x, y) of the operator L(y)(u) as the

parametrix, then R(y)(u; x, y) = 0. Since L(y)(u) is a linear operator with constant (w.r.t.

x) coefficients, its fundamental solution is readily available from the fundamental solution

F∆(x, y) of the Laplace operator, F (y)(u; x, y) = F∆(x, y)/a(∇u(y), u(y), y). Denoting

|x− y| =
√

(xk − yk)(xk − yk), we have,

F (y)(u; x, y) =
ln |x− y|

2πa(∇u(y), u(y), y)
, x, y ∈ IR2 (33)

F (y)(u; x, y) =
−1

4πa(∇u(y), u(y), y)|x− y| , x, y ∈ IR3. (34)

14



Assuming u(x) is a solution of PDE (26) and using a parametrix P (y)(u;x, y) as v(x) in

the Green identity (31), one can obtain the following non-linear two-operator third Green

identity,

c(y)u(y)−
∫

∂Ω
u(x)[T (y)(u)P (y)(u; ·, y)](x)dΓ(x) +

∫

∂Ω
P (y)(u;x, y)[T (u)u](x)dΓ(x)

−
∫

Ω

∂P (y)(u; x, y)
∂xk

[a(∇u(x), u(x), x)− a(∇u(y), u(y), y)]
∂u(x)
∂xk

dΩ(x)

+
∫

Ω
R(y)(u; x, y)u(x)dΩ(x) =

∫

Ω
P (y)(u; x, y)f(x)dΩ(x), (35)

where c(y) is given by (6). If the parametrix is a fundamental solution of the linear

operator, P (y)(u; x, y) = F (y)(u;x, y), then the last integral disappears on the left hand

side of (35). The penultimate domain integral stays nonetheless, and will disappear only

if L(u) = L(y)(u), i.e. if L(u) is a linear operator with constant coefficient. As follows e.g.

from (33) and (34), the function ∂P (y)(u; x, y)/∂xk has generally a weak singularity at

x = y. That makes the penultimate domain integral on the left hand side of (35) weakly

singular, and moreover, the singularity order is further reduced by up to one unit owing to

the term [a(∇u(x), u(x), x)−a(∇u(y), u(y), y)] if a and u are sufficiently smooth functions

of their arguments.

United formulation: Using integral relation (35) we can now proceed as in Section 2.2.

First, we substitute boundary conditions (27) and (28) into the integral terms of (35) and

use (35) at y ∈ Ω,

c(y)u(y)−
∫

∂NΩ
u(x)[T (y)(u)P (y)(u; ·, y)](x)dΓ(x) +

∫

∂DΩ
P (y)(u; x, y)[T (u)u](x)dΓ(x)

−
∫

Ω

∂P (y)(u; x, y)
∂xk

[a(∇u(x), u(x), x)− a(∇u(y), u(y), y)]
∂u(x)
∂xk

dΩ(x)

+
∫

Ω
R(y)(u;x, y)u(x)dΩ(x) = F(u; y), y ∈ Ω (36)

F(u; y) :=
∫

∂DΩ
ū(x)[T (y)(u)P (y)(u; ·, y)](x)dΓ(x)−

∫

∂NΩ
P (y)(u; x, y)t̄(x)dΓ(x)+

∫

Ω
P (y)(u; x, y)f(x)dΩ(x). (37)

The second-kind form of BDIDE (36) looks attractive for constructing iterative solution

algorithms.
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Partly segregated formulation: On the other hand, substituting ū(y) also for the

out-of-integral term u(y) at y ∈ ∂ΩD and introducing a new variable t(x) = [T (u)u](x)

for the unknown flux at x ∈ ∂ΩD in (36), reduce BVP (26)-(28) to the following partly

segregated quasi-linear two-operator direct LBDIDE for u(x) at x ∈ Ω ∪ ∂NΩ and t(x) at

x ∈ ∂DΩ,

c0(y)u(y)−
∫

∂NΩ
u(x)[T (y)(u)P (y)(u; ·, y)](x)dΓ(x) +

∫

∂DΩ
P (y)(u; x, y)t(x)dΓ(x)

−
∫

Ω

∂P (y)(u; x, y)
∂xk

[a(∇u(x), u(x), x)− a(∇u(y), u(y), y)]
∂u(x)
∂xk

dΩ(x)

+
∫

Ω
R(y)(u; x, y)u(x)dΩ(x) = F0(u; y), y ∈ Ω ∪ ∂ΩN (38)

F0(u; y) := [c0(y)− c(y)]ū(y) + F(u; y), (39)

where c0 is given by (15).

Note that BDIDEs (36) and (38) involve at most the first derivatives of the unknown

solution u(x) through the coefficient a(∇u, u, ·) both directly in the third (domain) inte-

gral term on the left hand side and in the operators T (u), T (y)(u), and in the functions

P (y)(u;x, y) and R(y)(u;x, y). Note also that not only the left hand sides of BDEDEs (36)

and (38) but also their right hand sides F and F0 do depend on the unknown solution u.

If the original BVP (26)-(28) is linear, i.e., the coefficient a is independent of u and ∇u,

then T , T (y), P (y), R(y), F and F0 do not depend on u and ∇u either, and BDEDEs (36)

and (38) degenerate into linear BDEDEs with the known right hand sides F and F0.

3.3 Localized parametrices and quasi-linear two-operator direct BDIDE

Each of BDIDEs (36) and (38) can be reduced after some discretization to a system of

nonlinear algebraic equation that can be solved numerically. The system will include

unknowns not only at the boundary but also at internal points. Moreover, since the

commonly used parametrices, e.g., fundamental solutions (33), (34), are highly non-local,

the matrix of the system will be fully populated and this makes its numerical solution more

expensive. C.f., for example [13, 14], where some indirect BDIEs for linear elastic shell

problems with variable coefficients were analysed and solved numerically. To avoid this

difficulty, one can construct localized parametrices and consequently Localized Boundary-
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Domain Integro-Differential Equations (LBDIDEs).

Thus, as in Section 2.3, we can consider a function P
(y)
ω (u; x, y) = χ(x, y)P (y)(u;x, y),

where P (y)(u) is an available (not localized) parametrix to the linear operator L(y)(u),

e.g., its fundamental solution F (y)(u; x, y), and χ(x, y) is a cut-off function, such that

χ(y, y) = 1 and χ(x, y) = 0 at x not belonging to the closure of an open localization

domain ω(y) (a vicinity of y), see Fig. 1. Then, similar to the reasoning in Section 2.3,

P
(y)
ω (u;x, y) is the localized parametrix of the linear operator L(y)(u), at least if χ is

sufficiently smooth, and the localized remainder is

R(y)
ω (u;x, y) = R(y)(u;x, y)− [L(y)(u){(1− χ(·, y))P (y)(u; ·, y)}](x)

= χ(x, y)R(y)(u; x, y) + P (y)(u; x, y)[L(y)(u)χ(·, y)](x)+

2
∂χ(x, y)

∂xi
a(∇u(y), u(y), y)

∂P (y)(u; x, y)
∂xi

. (40)

Note that if P (y)(u; x, y) is a fundamental solution of the operator L(y)(u), then

R(y)(u;x, y) = 0 but generally R
(y)
ω (u; x, y) 6= 0.

3.3.1 Discontinuous localization

Suppose χ(x, y) is smooth in x ∈ ω̄(y) but not necessarily zero at x ∈ ∂ω(y), as rep-

resented by (16). Then P
(y)
ω (u;x, y) is a discontinuous localized parametrix at x ∈ Ω̄

and P
(y)
ω (u; x, y) = R

(y)
ω (u; x, y) = 0 if x /∈ ω̄(y). Assume that y lies either inside the

domain ω(y) or on the coinciding part of the localization and global domain boundaries,

∂ω(y) ∩ ∂Ω, such that α(y; Ω) = α(y; ω(y)). Substituting P
(y)
ω (u; x, y) for P (y)(u; x, y) in

(35), where Ω̄ is replaced by the intersection ω̄(y) ∩ Ω̄, and taking u(x) as a solution to

(26), we arrive at the nonlinear two-operator third Green identity localized on ω̄(y) ∩ Ω̄,

c(y)u(y)−∫

ω̄(y)∩∂Ω
u(x)[T (y)(u)P (y)

ω (u; ·, y)](x)dΓ(x) +
∫

ω̄(y)∩∂Ω
P (y)

ω (u;x, y)[T (u)u](x)dΓ(x)−
∫

Ω∩∂ω(y)
u(x)[T (y)(u)P (y)

ω (u; ·, y)](x)dΓ(x) +
∫

Ω∩∂ω(y)
P (y)

ω (u;x, y)[T (u)u](x)dΓ(x)−
∫

ω(y)∩Ω

∂P
(y)
ω (u; x, y)

∂xk
[a(∇u(x), u(x), x)− a(∇u(y), u(y), y)]

∂u(x)
∂xk

dΩ(x)+
∫

ω(y)∩Ω
R(y)

ω (u; x, y)u(x)dΩ(x) =
∫

ω(y)∩Ω
P (y)

ω (u; x, y)f(x)dΩ(x), y ∈ IRn, (41)
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where c(y) = c(y; Ω) is given by (6).

Note that the last integral on the left hand side of (41) disappears if χ(x, y) is piecewise

constant function (18) and the parametrix before the localization is a fundamental solution,

P (y)(u;x, y) = F (y)(u; x, y).

United formulation: We can now substitute boundary conditions (27) and (28) into the

first two integrals of two-operator Green’s third identity (41), leave T (u) as the differential

operator acting on u, at ∂DΩ, and use the following LBDIDE at y ∈ Ω. Then we arrive

at the following LBDIDE,

c(y)u(y)−∫

ω̄(y)∩∂NΩ
u(x)[T (y)(u)P (y)

ω (u; ·, y)](x)dΓ(x) +
∫

ω̄(y)∩∂DΩ
P (y)

ω (u; x, y)[T (u)u](x)dΓ(x)−
∫

Ω∩∂ω(y)
u(x)[T (y)(u)P (y)

ω (u; ·, y)](x)dΓ(x) +
∫

Ω∩∂ω(y)
P (y)

ω (u; x, y)[T (u)u](x)dΓ(x)−
∫

ω(y)∩Ω

∂P
(y)
ω (u; x, y)

∂xk
[a(∇u(x), u(x), x)− a(∇u(y), u(y), y)]

∂u(x)
∂xk

dΩ(x) +
∫

ω(y)∩Ω
R(y)

ω (u;x, y)u(x)dΩ(x) = Fω(u; y), y ∈ Ω, (42)

Fω(u; y) :=
∫

ω̄(y)∩∂DΩ
ū(x)[T (y)(u)P (y)

ω (u; ·, y)](x)dΓ(x)−
∫

ω̄(y)∩∂NΩ
P (y)

ω (u; x, y)t̄(x)dΓ(x) +
∫

ω(y)∩Ω
P (y)

ω (u; x, y)f(x)dΩ(x). (43)

Partly segregated formulation: On the other hand, substitution of ū(y) also for the

out-of-integral term u(y) at y ∈ ∂ΩD and introduction of a new variable t(x) = [T (u)u](x)

for the unknown flux at x ∈ ∂ΩD in (42) reduce BVP (26)-(28) to the following partly

segregated quasi-linear two-operator direct LBDIDE for u(x) at x ∈ Ω ∪ ∂NΩ and t(x) at
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x ∈ ∂DΩ,

c0(y)u(y)−∫

ω̄(y)∩∂NΩ
u(x)[T (y)(u)P (y)

ω (u; ·, y)](x)dΓ(x) +
∫

ω̄(y)∩∂DΩ
P (y)

ω (u;x, y)t(x)dΓ(x)−
∫

Ω∩∂ω(y)
u(x)[T (y)(u)P (y)

ω (u; ·, y)](x)dΓ(x) +
∫

Ω∩∂ω(y)
P (y)

ω (u; x, y)[T (u)u](x)dΓ(x)−
∫

ω(y)∩Ω

∂P
(y)
ω (u; x, y)

∂xk
[a(∇u(x), u(x), x)− a(∇u(y), u(y), y)]

∂u(x)
∂xk

dΩ(x) +
∫

ω(y)∩Ω
R(y)

ω (u;x, y)u(x)dΩ(x) = F0
ω(u; y), y ∈ Ω, (44)

F0
ω(u; y) := [c0(y)− c(y)]ū(y) + Fω(u; y). (45)

3.3.2 Continuous localizations

To eliminate the integrals involving T (u)u on Ω∩∂ω(y), that is the fourth integrals on the

left hand sides of (41), (42) and (44), one can construct a localized parametrix P
(y)
ω (u;x, y)

vanishing on the boundary part ∂ω(y) (except maybe a neighbourhood of y ∈ ∂ω(y)∩∂Ω)

but not necessarily with vanishing parametrix flux [T (y)(u)P (y)
ω (u; ·, y)](x). As described

in Section 2.3.2, this may be done choosing P
(y)
ω (u; x, y) as a Green function for ω(y) if

ω(y) is a ball. A more general way is to use an appropriate cut-off function χ(x, y); some

examples of such cut-off functions are given in Section 2.3.2.

3.3.3 Globally smooth localization

To simplify the BDIDEs even further by getting rid of the remaining (third) integral

along ∂ω(y), one can employ a globally smooth cut-off function χ(x, y), which vanishes

on ∂ω(y) together with its normal derivative in x (except maybe a neighbourhood of

y ∈ ∂ω(y) ∩ ∂Ω). Then the same holds true also for the parametrix P
(y)
ω (u;x, y) =

χ(x, y)P (y)(u; x, y). For such a parametrix, the third and fourth integrals disappear on the

left hand side of (41), (42) and (44). Some examples of globally smooth cut-off functions

are presented in Section 2.3.3.
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4 Discretization of quasi-linear LBDIDEs

To reduce any of the quasi-linear LBDIDEs obtained above to a sparsely populated system

of quasi-linear algebraic equations e.g., by the collocation method, one has to employ a

local interpolation or approximation formula for the unknown function u(x). As has been

demonstrated, there is a lot of flexibility in constructing appropriate cut-off functions. We

will consider the general case of the discontinuous localization and show the simplifications

for more smooth localizations.

4.1 Mesh-based discretization

4.1.1 Mesh-based interpolation

Suppose the domain Ω is covered by a mesh of closures of disjoint open domain elements

ek with nodes set up at the corners, edges, faces, or inside the elements. Let J be the

total number of nodes xi (i = 1, 2, ..., J). One can use each node xi as a collocation point

for an LBDIDE with a localization domain ω(xi). Let the union of closures of the domain

elements that intersect ω(xi) be called the total localization domain ω̃i, Fig. 4. Then the

closure ω̄(xi) ∩ Ω̄ belongs to ω̃i. If ω(xi) is sufficiently small, then ω̃i consists only of the

elements adjacent to the collocation point xi. If ω(xi) is chosen ab initio as consisting

only of the elements adjacent to the collocation point xi, then ω̃i = ω̄(xi). Let u{ω̃i} be

the array of the function values u(xj) at the node points xj ∈ ω̃i, and Jω̃i be the number

of these node points.

Ω∂

ω∂

ω~∂
x 
i

x 
i

 
i

Figure 4: A localization domain ω(xi) and a total localization domain ω̃i associated with

a collocation point xi of a body Ω at a mesh-based discretization

Let u(x) =
∑

j u(xj)φkj(x) be a continuous piece-wise smooth interpolation of u(x)
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at any point x ∈ Ω along the values u(xj) at the node points xj belonging to the same

element ēk ⊂ Ω as x, and the shape functions φkj(x) be localized on ēk. Collecting the

interpolation formulae for all x ∈ ω̃i, we have

u(x) =
∑

xj∈ω̃i

u(xj)Φj(x), Φj(x) =





φkj(x) if x, xj ∈ ēk

0 otherwise
(46)

∇u(x) =
∑

xj∈ω̃i

u(xj)∇Φj(x), ∇Φj(x) =




∇φkj(x) if x, xj ∈ ēk

0 otherwise
(47)

Consequently, Φj(x) = ∇Φj(x) = 0 if x ∈ ω̄i but xj /∈ ω̃i.

Since interpolation (46) is piece-wise smooth, expressions (47) deliver non-unique val-

ues for ∇u(x) on the element interfaces and particularly at the apexes xi of different

adjoint elements ek. This brings no complications for direct BDIDEs (20) or (22) of BVP

(1)-(3) since the solution gradients appear either in the domain integrals or in the bound-

ary integrals with the gradients taken from the corresponding side of the boundary. On

the other hand, for two-operator direct BDIDEs (42) or (44) of BVP (26)-(28) one has

to estimate ∇u(y) to calculate the coefficient a(∇u(y), u(y), y) and, consequently T (y)(u),

P (y)(u;x, y) and R(y)(u; x, y) at y = xi. A possible way out is to assign

∇u(xi) :=
∑

ēk3xi

αk(xi)
α(xi)

∇uk(xi), ∇uk(xi) :=
∑

xj∈ēk

u(xj)∇φkj(xi), (48)

where αk(xi) is an interior space angle at the apex xi of the element ek and α(xi) =
∑

ēk3xi αk(xi).

We can also use a local interpolation of the unknown flux variable t(x) along only

boundary nodes belonging to ω̃i ∩ ∂DΩ,

t(x) =
∑

xj∈ω̃i∩∂DΩ

t(xj)Φ′j(x), x ∈ ω̃i ∩ ∂DΩ. (49)

Here Φ′j(x) are the shape functions on the boundary obtained similar to Φj(x) in (46).

4.1.2 Mesh-based discretization of quasi-linear direct LBDIDEs

Partly segregated formulation: After substituting the above interpolations in LBDIDE

(22) of the direct partly segregated formulation at the collocation points y = xi ∈ Ω̄, and
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taking into account (2), we derive the following system of J quasi-linear algebraic equations

for J unknowns: u(xj), xj ∈ Ω ∪ ∂NΩ and t(xj), xj ∈ ∂DΩ,

c0(xi)u(xi) +
∑

xj∈ω̃i\∂DΩ

K0
ij(u{ω̃i})u(xj) +

∑

xj∈∂DΩ∩ω̃i

Qij(u{ω̃i})t(xj)

= F0
ω(u{ω̃i}, xi)−

∑

xj∈∂DΩ∩ω̃i

K0
ij(u{ω̃i})ū(xj), xi ∈ Ω̄, (50)

K0
ij(u{ω̃i}) = −

∫

ω̄(xi)∩∂NΩ
Φj(x)[T (u{ω̃i})Pω(u{ω̃i}; ·, xi)](x)dΓ(x)−

∫

Ω∩∂ω(xi)
Φj(x)[T (u{ω̃i})Pω(u{ω̃i}; ·, xi)](x)dΓ(x) +

∫

Ω∩∂ω(xi)
Pω(u{ω̃i}; x, xi)[T (u{ω̃i})Φj ](x)dΓ(x)−

+
∫

ω(xi)∩Ω
Rω(u{ω̃i}; x, xi)Φj(x)dΩ(x), (51)

Qij(u{ω̃i}) =
∫

ω̄(xi)∩∂DΩ
Pω(u{ω̃i};x, xi)Φ′j(x)dΓ(x) (52)

(no sum in i).

United formulation: Instead, one can derive another system of J quasi-linear algebraic

equations for J unknowns u(xj), xj ∈ Ω, if one substitutes interpolation formulae (46) in

LBDIDE (20) of the direct united formulation,

c(xi)u(xi) +
∑

xj∈ω̃i

Kij(u{ω̃i})u(xj) = Fω(u{ω̃i}, xi), xi ∈ Ω, (53)

Kij(u{ω̃i}) = K0
ij(u{ω̃i}) +

∫

ω̄(xi)∩∂DΩ
Pω(x, xi)[T (u)Φj ](x)dΓ(x) (54)

no sum in i, and K0
ij is given by (51).

The approximate flux operator T (u{ω̃i}), localized parametrix Pω(u{ω̃i}; x, xi) and

localized remainder Rω(u{ω̃i}; x, xi) in (51), (52) and (54) are expressed in terms of the set

of unknowns u{ω̃i} := {u(xj), xj ∈ ω̃i}. The expressions are obtained after substituting

interpolation formulae (46), (47) for u in the coefficient a(u; ·) in the definitions for T (u),

Pω(u;x, y) and Rω(u;x, y) in Section 2. The right hand side components Fω(u{ω̃i}, xi) and
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F0
ω(u{ω̃i}, xi) are obtained after using interpolation formulae (46), (47) for u in (21) and

(23). The relations u(xj) = ū(xj), xj ∈ ∂DΩ, should be also employed while interpolating

u in the partly segregated formulation (50)-(52). On the contrary, u(xj), xj ∈ ∂DΩ, should

be considered as unknown while interpolating u in the united formulation (53), (54), (51).

Thus, algebraic systems (52) and (53) are non-linear (we call them quasi-linear since

”freezing” the unknown solution in the matrices of coefficients and right hand sides leads

to linear systems).

Note that if the cut-off function χ(x, xi) and its normal derivative are equal zero at x

on the boundary ∂ω(xi), then the second and third integrals (along Ω∩∂ω(xi)) disappear

on the right hand side of (51).

4.1.3 Mesh-based discretization of quasi-linear two-operator direct LBDIDEs

Partly segregated formulation: After substituting interpolations (46)-(49) in LB-

DIDE (44) of the two-operator direct partly segregated formulation and taking into ac-

count (27), we derive at the system of J quasi-linear algebraic equations for J unknowns:

u(xj), xj ∈ Ω ∪ ∂NΩ and t(xj), xj ∈ ∂DΩ. The system has a form similar to (50),

c0(xi)u(xi) +
∑

xj∈ω̃i\∂DΩ

K0
ij(u{ω̃i})u(xj) +

∑

xj∈∂DΩ∩ω̃i

Qij(u{ω̃i})t(xj)

= F0
ω(u{ω̃i}, xi)−

∑

xj∈∂DΩ∩ω̃i

K0
ij(u{ω̃i})ū(xj), xi ∈ Ω̄ (55)

(no sum in i). Here, however,

K0
ij(u{ω̃i}) = −

∫

ω̄(xi)∩∂NΩ
Φj(x)[T (xi)(u{ω̃i})P (xi)

ω (u{ω̃i}; ·, xi)](x)dΓ(x)−
∫

Ω∩∂ω(xi)
Φj(x)[T (xi)(u{ω̃i})P (xi)

ω (u{ω̃i}; ·, xi)](x)dΓ(x) +
∫

Ω∩∂ω(xi)
P (xi)

ω (u{ω̃i}; x, xi)[T (u{ω̃i})Φj ](x)dΓ(x)−
∫

ω(xi)∩Ω

∂P
(xi)
ω (u{ω̃i}; x, xi)

∂xk
[a(∇u(x), u(x), x)− a(∇u(xi), u(xi), xi)]

∂Φj(x)
∂xk

dΩ(x) +

+
∫

ω(xi)∩Ω
R(xi)

ω (u{ω̃i};x, xi)Φj(x)dΩ(x), (56)

Qij(u{ω̃i}) =
∫

ω̄(xi)∩∂DΩ
P (xi)

ω (u{ω̃i}; x, xi)Φ′j(x)dΓ(x), (57)
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(no sum in i).

United formulation: Instead, one can arrive at another system of J quasi-linear alge-

braic equations for J unknowns u(xj), xj ∈ Ω, if one substitutes interpolation formulae

(46)-(48) in LBDIDE (42) of the two-operator direct united formulation

c(xi)u(xi) +
∑

xj∈ω̃i

Kij(u{ω̃i})u(xj) = Fω(u{ω̃i}; xi), xi ∈ Ω, (58)

Kij(u{ω̃i}) = K0
ij(u{ω̃i}) +

∫

ω̄(xi)∩∂DΩ
P (xi)

ω (u{ω̃i}; x, xi)[T (u{ω̃i})Φj ](x)dΓ(x), (59)

no sum in i, and K0
ij is given by (56).

The approximate flux operators T (u{ω̃i}) and T (xi)(u{ω̃i}), localized parametrix

P
(xi)
ω (u{ω̃i}; x, xi) and localized remainder R

(xi)
ω (u{ω̃i};x, xi) in (56), (57) and (59) are

expressed in terms of the set of unknowns u{ω̃i} := {u(xj), xj ∈ ω̃i}. The expressions

are obtained after substituting interpolation formulae (46), (47) for u in the coefficient

a(u; ·) in the definitions for T (u), T (y)(u), P
(y)
ω (u; x, y) and R

(y)
ω (u; x, y) in Section 3. The

right hand side components Fω(u{ω̃i}, xi) and F0
ω(u{ω̃i}, xi) in (58) and (55) are obtained

after similar using interpolation formulae (46), (47) for u in (43) and (45). The relations

u(xj) = ū(xj), xj ∈ ∂DΩ, should be also employed while interpolating u in the partly

segregated formulation (55)-(57). On the contrary, u(xj), xj ∈ ∂DΩ, should be considered

as unknown while interpolating u in the united formulation (58), (59), (56).

Note that the last integral terms (with R
(xi)
ω ) disappear on the right hand side of

(56) if the parametrix P
(xi)
ω (x, xi) is the fundamental solution F (xi)(x, xi) (which implies

χ(x, xi) = {1 if x ∈ ω(xi), 0 if x /∈ ω(xi)}). On the other hand, if the cut-off function

χ(x, xi) and its normal derivative are equal zero at x on the boundary ∂ω(xi), then the

second and third integrals (along Ω ∩ ∂ω(xi)) disappear on the right hand side of (56).

4.2 Mesh–less discretization

4.2.1 Mesh-less approximation

For a mesh–less discretization, one needs a method of local interpolation or approximation

of a function along randomly distributed nodes xi. We will suppose that all the approxi-

mation nodes xi belong to Ω̄, and will use them also as collocation points for the LBDIDEs
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discretization. As before, let J be the total number of nodes xj (i = 1, 2, ..., J), including

JD nodes on ∂DΩ. Let us consider a mesh–less method, for example, the moving least

squares (MLS) method (see e.g. [15], [11,12] and the references therein), that leads to the

following approximation of a function u(x),

u(x) =
∑

xj∈ω0(x)

û(xj)Φj(x), x ∈ Ω. (60)

Here Φj(x) are known smooth shape functions such that Φj(x) = 0 if xj /∈ ω0(x), ω0(x) is

a localization domain of the approximation formula, and û(xj) are unknown values of an

auxiliary function û(x) at the nodes xj , that is, the so-called δ−property is not assumed

for approximation (60).

Let ω(xi) be a localization domain around a node xi. Then for all x ∈ ω̄(xi), the total

approximation of u(x) can be written in the following local form,

u(x) =
∑

xj∈ω̃i

û(xj)Φj(x), ∇u(x) =
∑

xj∈ω̃i

û(xj)∇Φj(x), x ∈ ω̄(xi), (61)

where ω̃i := ∪x∈ω̄(xi)∩Ω̄ω0(x) is a total localization domain, Fig. 5. Consequently, Φj(x) =

∇Φj(x) = 0 if x ∈ ω̄(xi) and xj /∈ ω̃i. Let Jω̃i be the number of nodes xj ∈ ω̃i and û{ω̃i} be

the array of the function values û(xj) at the node points xj ∈ ω̃i. Since our approximation

(61) for u is smooth, its gradient approximation in (61) is continuous, and we do not need

special formulae like (48) for calculating gradients ∇u(x(i)) at the collocation points x(i).

We can also use a local approximation of t(x) along only boundary nodes belonging to

ω̃i ∩ ∂DΩ,

t(x) =
∑

xj∈ω̃i∩∂DΩ

t̂(xj)Φ′j(x), x ∈ ω̄(xi) ∩ ∂DΩ. (62)

Here Φ′j(x) are the shape functions on the boundary, obtained similarly to Φj(x) in (61).

4.2.2 Mesh-less discretization of quasi-linear direct LBDIDEs

Partly segregated formulation: After substituting approximations (61), (62) in LB-

DIDE (22) and boundary condition (2), we arrive at the following system of J + JD

quasi-linear algebraic equations with respect to the J unknowns û(xj), xj ∈ Ω̄, and JD
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Figure 5: A localization domain ω(xi) and a total localization domain ω̃i associated with

a collocation point xi of a body Ω for a mesh-less discretization

unknowns t̂(xj), xj ∈ ∂DΩ,

∑

xj∈ω̃i

[
c0(xi)Φj(xi) + K0

ij(û{ω̃i})] û(xj) +
∑

xj∈∂DΩ∩ω̃i

Qij(û{ω̃i})t̂(xj)

= F0
ω(û{ω̃i}, xi), xi ∈ Ω̄, (63)

∑

xj∈ω̃i

û(xj)Φj(xi) = ū(xi), xi ∈ ∂DΩ, no sum in i. (64)

United formulation: Alternatively, one can derive another quasi-linear system of J

algebraic equations with respect to J unknowns û(xj), xj ∈ Ω̄, if one substitutes approxi-

mation formulae (61) in LBDIDE (20),

∑

xj∈ω̃i

[
c(xi)Φj(xi) + Kij(û{ω̃i})] û(xj) = Fω(û{ω̃i}, xi), xi ∈ Ω̄, no sum in i. (65)

The matrices K0
ij , Qij , Kij in (63) and (65) are given by expressions (51), (52), (54)

with the shape functions Φj , Φ′j from (61), (62) and u{ω̃i} replaced by û{ω̃i}. Expres-

sions for T (û{ω̃i}), Pω(û{ω̃i}; x, xi) and Rω(û{ω̃i}; x, xi) in terms of the set of unknowns

û{ω̃i} := {u(xj), xj ∈ ω̃i} in (51), (52) and (54) are obtained after substitution of interpo-

lation formulae (61) for u in the coefficient a(u; ·) participating in the definitions for T (u),

Pω(u;x, y) and Rω(u; x, y) in Section 2. The right hand side components Fω(û{ω̃i}, xi)

and F0
ω(û{ω̃i}, xi) are obtained similarly after using interpolation formulae (61), for u in

(21) and (23).

4.2.3 Mesh–less discretization of quasi-linear two-operator direct BDIDEs

Partly segregated formulation: After substituting approximations (61), (62) in LB-

DIDE (44) and boundary condition (27), we arrive at the following system of J + JD
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quasi-linear algebraic equations with respect to the J unknowns û(xj), xj ∈ Ω̄ and JD

unknowns t̂(xj), xj ∈ ∂DΩ,

∑

xj∈ω̃i

[
c0(xi)Φj(xi) + K0

ij(û{ω̃i})] û(xj) +
∑

xj∈∂DΩ∩ω̃i

Qij(û{ω̃i})t̂(xj)

= F0
ω(û{ω̃i}, xi), xi ∈ Ω ∪ ∂Ω, (66)

∑

xj∈ω̃i

û(xj)Φj(xi) = ū(xi), xi ∈ ∂DΩ, no sum in i. (67)

United formulation: Alternatively, one can arrive at another quasi-linear system of J

algebraic equations with respect to J unknowns û(xj), xj ∈ Ω̄, by substituting approxi-

mation formulae (61) in LBDIDE (42),

∑

xj∈ω̃i

[
c(xi)Φj(xi) + Kij(û{ω̃i})] û(xj) = Fω(û{ω̃i}, xi), xi ∈ Ω̄, no sum in i. (68)

The matrices K0
ij , Qij , Kij in (66), (68) are expressed by (56), (57), (59) with the

shape functions Φj , Φ′j from (61), (62), and u{ω̃i} replaced by û{ω̃i}. The expressions for

T (û{ω̃i}), T (xi)(û{ω̃i}), P
(xi)
ω (û{ω̃i};x, xi) and R

(xi)
ω (û{ω̃i};x, xi) in terms of the set of

unknowns û{ω̃i} := {û(xj), xj ∈ ω̃i} in (56), (57) and (59) are obtained after substituting

interpolation formulae (61) for u in the coefficient a(u; ·) in the definitions for T (u), T (y)(u),

P
(y)
ω (u;x, y) and R

(y)
ω (u; x, y) in Section 3. The right hand side components Fω(û{ω̃i}, xi)

and F0
ω(û{ω̃i}, xi) in (66), (68) are obtained similarly after using interpolation formulae

(61), for u in (43) and (45).

Sparsity: From the definitions in both mesh based and mesh–less methods, we have

Φj(x) = ∇Φj(x) = [T (u)Φj ](x) = [T (y)(u)Φj ](x) = Φ′j(x) = 0 if x ∈ ω̄(xi) but xj /∈ ω̃i

and consequently K0
ij = Qij = Kij = 0 if xj /∈ ω̃i. In addition, K0

ij , Qij , Kij depend only

on u{ω̃i} or û{ω̃i}, respectively. Thus, each equation in (50), (53), (55), (58), (63)-(64),

(65), (66)-(67), (68) has not more than Jω̃i ¿ J non-zero entries, i.e., the systems are

sparse.

5 Concluding Remarks

The parametrix localization by multiplication by a cut-off function with a local support

allows us to reduce a BVP for a second-order quasi-linear PDE to a direct or two-operator
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direct localized quasi-linear boundary-domain integro-differential equation. The equation

includes at most the first derivative of the unknown solution, weakly singular integrals

over the domain, and at most Cauchy-type singular integrals over the boundary.

Examples of different cut-off functions with different smoothness leading to different

LBDIDEs demonstrate the flexibility of the method. Algorithms of both mesh-based and

mesh-less discretization of LBDIDEs leading to sparse systems of quasi-linear algebraic

equations, similar to FEM, show the great potential of the LBDIDE method for numerical

solution of different BVPs of science and engineering.

For each mixed BVP, united and partly segregated formulations are presented (coin-

ciding for the pure Neumann problem). The first one leads to BDIDEs of the second kind,

which look promising for constructing simple and fast converging iteration algorithms of

their solution.

Investigation of the equivalence of the BDIDEs to the original BVPs, solvability,

uniqueness of solution, and the iteration algorithm convergence, including analysis of

spectral properties of the corresponding linear BDIDEs, needs to be done for constructing

robust numerical methods based on this information [16] and for an optimal choice of the

cut-off functions, localization domains and node points.
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