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Abstract

Generalized durability diagrams and their properties are considered for a ma-
terial under a multiaxial loading given by an arbitrary function of time. Mate-
rial strength and durability under such loading is described in terms of durabil-
ity, safety factor, and normalized equivalent stress. Relations between these func-
tionals are analysed. Some material properties including time and load stability,
self-degradation (aging), monotonous damaging are discussed. Phenomenological
strength conditions are presented in terms of the normalized equivalent stress. It is
shown that the damage based durability analysis is reduced to a particular case of
such strength conditions. Examples of the reduction are presented for some known
durability models. The approach is applicable to the strength and durability de-
scription at creep and impact loading and their combination.
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1 Introduction

Different forms of durability description are commonly used for time or history dependent

materials possessing plasticity, creep and/or serving under fatigue or impact loadings. A

usual auxiliary means for this is introduction of a damage measure and an evolution law

for this measure, see, e.g., [1]–[7] and also some remarks in Appendix A. Together with the

limiting damage value, which when reached means rupture, this gives a strength condition.

Such damage measure is often associated with a geometrical change, that is, with the

defect cross-section fraction or the defect volume fraction in a representative volume
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element or with the stiffness change of the damaged material or it is taken as an abstract

internal material parameter. The geometrical damage measures involve difficulties in their

experimental evaluation, the stiffness damage measure is not always representative, e.g.,

for high cyclic fatigue. For abstract damage measures, a value of the measure below the

critical one delivers no direct information about the safety or the residual life durability.

Different abstract measures and their evolution laws are not easy to compare. In addition,

most evolution laws do not take into account a dependence of the damage measure rate

on the process history. We remark that such a dependence is considered in [5].

In this paper, we will try to show that the phenomenological durability description

and analysis can be done completely without such additional means as a damage measure

if the loading process σij(τ) is known. Note however that a damage analysis can be

useful for prediction of the loading process σij(τ, x) at each point x, particularly for

softening materials. Some damage measures can be also quite helpful for obtaining a

phenomenological durability description from micro-mechanical considerations.

We shall discuss here a material under a uniform multiaxial stress state. Using some

ideas of [8], durability, safety factor and normalized equivalent stress (load factor) are pre-

sented in this paper, which are mechanically meaningful and experimentally measurable

on the one hand and accumulate process history on the other hand.

Generally, durability analysis includes the following main items: (i) determination of

the durability t∗(σ) for a prescribed loading process σij(τ); (ii) determination of the safety

factor λ(σ; t) at an instant t for a prescribed process σij(τ); (iii) determination of a damage

ω(σ; t) at an instant t for a prescribed process σij(τ); (iv) interpolation of the functionals

t∗(σ), λ(σ; t), and ω(σ; t) along their values for some processes σr
ij(τ), r = 1...R. We call

t∗(σ), λ(σ; t), ω(σ; t) functionals since each of them maps a function σij(τ) into a number.

Note that although a damage measure is mentioned between the main items, it can be

considered as an auxiliary parameter, helping in some models to determine the practically

interesting parameters t∗(σ) and λ(σ; t). This paper is devoted chiefly to a discussion of

definitions, properties and mutual connections of the functionals t∗(σ), λ(σ; t), and of

the normalized equivalent stress functional Λ(σ; t) = 1/λ(σ; t). It develops the results of

Mikhailov (1999).

2 Generalized durability diagram

2.1 Durability and strength stability in time

Let a material undergo a loading program (process) σij(τ). We will discuss here rupture

without specifying the rupture type and only assume that (i) one can unambiguously

detect at any time instant whether the body is ruptured or not, and (ii) if the body is

ruptured at an instant t, it will be ruptured also at any instant t1 > t (no repairing
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mechanism). We say that strength is stable in time (or t−stable) at an instant t under

a loading process σij(τ) if there is no rupture at t and there exists an instant t′(σ; t) > t

where also no rupture occurs. (This means that the time interval, where strength is stable,

is open.) From this definition, strength is unstable in time (or t−unstable) at an instant

t under a loading process σij(τ) if there is no rupture at t but the body is ruptured at any

instant t′(σ; t) > t (an example is given by the discontinuous loading process presented

on Fig. 5a at t = τ ∗ if σ1 < σr ≤ σ2, see below).

If the strength is t−stable at all instants where no rupture appears, then the time

t∗(σ), at which a rupture for the material appears is called durability or life time. If there

exists an instant where the strength is t−unstable, we implement a more general definition

of the durability as an instant t∗(σ) such that there is no rupture at any t < t∗(σ) and the

body is ruptured at any t > t∗(σ); if there is no rupture at any time t < ∞, we say the

durability is infinite, t∗(σ) = ∞.

Thus the t < t∗(σ) is condition of t−stable strength at the instant t. On the other

hand, the equality t = t∗(σ) < ∞ means rupture or strength t−instability at the instant

t.

The life time seems to be the main relevant measurable parameter in the durability

analysis and all other parameters are derived from it. For different loading processes

σ1
ij(τ), σ2

ij(τ), the durability has different values t∗(σ1), t∗(σ2) (see Fig. 1).

2.2 Durability diagrams

Let H(τ) =





0, τ ≤ 0

1, τ > 0



 be the Heaviside step-like function. Under a uniaxial step-

like loading σ(τ) = H(τ)σ0, where σ0 is a constant, it is usual to determine experimentally

the durability diagram in the axes σ0 7→ t∗(σ0). Its counterpart in fatigue under a constant

stress range oscillation ∆σ0 = σ0
max− σ0

min is the Wöhler diagram ∆σ0 7→ n∗(∆σ0), where

n∗(∆σ0) is the number of cycles before rupture.

An example of a simple durability diagram given by a power law (a straight line in

the double logarithmic coordinates) can be written as

t∗(σ0) = A|σ0|−b.

where A and b are positive constants depending on the stress state type (tension, com-

pression or shear). A similar power dependence for a constant in time multiaxial loading

σ0
ij = const. can be written in the form

t∗(σ0) = |σ0|−b(σ̃0)A
(
σ̃0

)
. (1)

Here |σ0| is a matrix norm of the tensor σ0
ij, for example, |σ0| =

√∑3
i,j=1 σ0

ijσ
0
ij; σ̃0

ij =

σ0
ij/|σ0| is the normalized stress tensor, presenting the tensor σ0

ij shape; A(σ̃0) and b(σ̃0)

are positive parameters depending on the tensor σ0
ij shape but not on the tensor norm.
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To present a generalised diagram for a multiaxial process described by an arbitrary

tensor function σij(τ), let us consider a family of proportional processes λσij(τ), obtained

from the original process σij(τ) after its multiplication by a non-negative constant number

λ, Fig. 2.

The generalised durability diagram for a process σij(τ) is the dependence of the dura-

bility t∗(λσ) on a parameter λ ≥ 0.

The concept propounded in the paper concerns mainly time and history dependent

materials but should work also in the particular case of materials independent of time

and history. We will extensively use the latter for illustrations.

Let us consider, for example, a material independent of time and history, uniaxially

loaded by a step-like process σ(τ) = H(τ)σ0, where σ0 is a constant, and obeying the

strength condition σ < σr, where σr is constant. Then the durability diagram is given by

the line λ = σr/σ
0, that is, t∗(λσ) =




∞, λ < σr/σ

0

0, λ ≥ σr/σ
0



.

If the loading process for the same material is σ(τ) = aτ , where a is a constant, then

the durability diagram is a hyperbola t∗(λσ) = σr/(aλ).

Let us consider an arbitrary material. Suppose σij(τ) is a multiaxial step-like process

σij(τ) = H(τ)σ0
ij, where σ0

ij is a constant tensor, |σ0| = 1. It is evident, that the gen-

eralised durability diagram λ 7→ t∗(λσ) coincides with the classical durability diagram

|σ| 7→ t∗(σ) for the step-like processes σij(τ) = |σ|H(τ)σ0
ij.

Similarly, the generalised durability diagram λ 7→ t∗(λσ) for a periodic loading process

{σij(τ) = H(τ)f(τ)σ0
ij, where σ0

ij = const., |σ0| = 1, f(τ) is a t0-periodic function with

the unit range, ∆f = fmax − fmin = 1}, coincides with the classical Wöhler diagram

∆σ 7→ n∗(∆σ) for the oscillating processes σij(τ) = ∆σH(τ)f(τ)σ0
ij, where n∗ = t∗/t0.

Let us consider general properties of the generalised durability diagram t∗(λσ) for an

arbitrary material under a given process σij(τ). This function is defined on the half axis

λ ∈ [0,∞) and is non-negative. When λ varies, different situations can arise. We plot

schematically a durability diagram on Fig. 3a. Although we consider t∗(λσ) as a function

of λ, the choice of the axes directions on the plot is traditional for the durability analysis.

The curves a, b, c at large λ and curves d, e, f at small λ present different possible

cases of the diagram behaviour, that is, one of the curves a, b or c continues by one of the

curves d, e or f for a particular material under a particular loading σij(τ).

We analyse first small durabilities t∗, that is, large λ.

(A): The rupture can occur at t = t∗(λ0σ) = 0 for a finite but sufficiently large λ0,

curve a on Fig. 3a. It can happen, for example, for some materials under the step-like

loading σij(τ) = H(τ)σ0
ij where σ0

ij is a constant tensor. Particularly, as mentioned above,

this diagram is the horizontal line λ = λ0 = σr/σ
0 for a time and history independent

material under such loading.

(B): The durability t∗(λσij) can be non-zero at any finite λ but tends to zero as λ
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tends to infinity, curve b on the Fig. 3a; then λ0 = ∞. Particularly, this is the case for

a loading process growing continuously from zero, e.g. for σij(τ) = τσ0
ij where σ0

ij is a

constant tensor. This is the case also under the step-like loading σij(τ) = H(τ)σ0
ij for

materials obeying some dynamic strength conditions, see e.g. Sections 6.2, 6.3.

(C): There exist loadings for some materials (or material models), that do not cause

rupture however large these loadings are. An example is the uniform three-axes compres-

sion, σij = δij. Suppose a loading process σij(τ) is represented by such a loading on a

beginning time interval 0 ≤ τ ≤ t+ followed by a loading able to cause rupture at some

time. Then there is no rupture on 0 ≤ τ ≤ t+ for any non-negative λ, curve c on the Fig.

3a, and we can put λ = λ0 = ∞ on this segment.

Let us consider the durability behaviour at large t∗, that is, at small λ.

Let λ = 0. The durability t∗(0), when no loading is applied, is either finite or infinite.

(0): The first case means that rupture at t = t∗(0) < ∞ is caused not by a mechanical

load σij(τ), τ ≥ 0 but for another reason, for example, by a previous loading history at

τ < 0. Other possible reasons for such behaviour can be radiation, corrosion or other

chemical reactions, dissolution etc., which we can refer to as natural or artificial ageing

leading to the complete degradation of the material at the time t∗(0). We call the material

self-degrading if t∗(0) < ∞.

Note that ageing does not necessarily lead to complete degradation. Generally, a

material is said to be ageing in strength if t∗(σ∆) 6= t∗(σ)+∆, where σ∆
ij (τ) = σij(τ +∆),

for some σij(τ) and ∆. This means, a shift of a loading process in time does not cause

the same shift in durability for an ageing material.

Return to the description of Fig.3a.

(D): The durability t∗(λσ) tends to a finite value t∗0(σ) ≤ t∗(0) as λ tends to 0, curve

d on Fig. 3a. Usually one can expect continuity, i.e. t∗0(σ) = t∗(0) but it is not always

the case since t∗0(σ), unlike t∗(0), is determined not only by the material properties but

also by loading. For example, t∗0(σ) < t∗(0) for a singular stress σij(τ) infinitely growing

as τ tends to t∗0, i.g., for σij(τ) = σ0
ij/(t

∗0 − τ). Obviously, t∗0(σ) can be finite also for

non-self-degrading materials, i.e. for t∗(0) = ∞.

If t∗(0) = ∞, that is, the material is not self-degrading, we can have three possible

situations.

(E): t∗(λσ) → t∗0(σ) = ∞ as λ → 0 and there exists no non-zero threshold, that is,

the durability t∗(λσ) monotonously grows up to infinity with diminishing λ but is always

finite at λ > 0, curve e on Fig. 3a.

(F): t∗(λσ) → t∗0(σ) = ∞ as λ → 0 and there exists a threshold value λth(σ) > 0 such

that t∗(λσ) = ∞ for all λ such as 0 ≤ λ ≤ λth(σ) and t∗(λσ) < ∞ for all λ > λth(σ),

curve f on Fig. 3a.

(G): t∗(λσ) has no definite limit t∗0(σ), this means it is not monotonous as λ → 0.

This can happen for materials and processes that are not monotonously damaging (see
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below).

Cases E and F seem to be most usual in the durability analysis.

Let us analyse the durability diagram for intermediate λ.

First, the dependence t∗(λσ) on λ can be either monotonously non-increasing or not.

In the former case, that is, if t∗(λ1σ) ≥ t∗(λ2σ) for any numbers λ2 > λ1 ≥ 0, the process

will be called monotonously damaging (MD). A material is monotonously damaging if all

processes are monotonously damaging for it.

Note that there exist materials that are not monotonously damaging. For example,

strength and durability of solidifying or cemented materials can be essentially increased,

if the contracting loading is increased during the solidification or cementation phase, see

Fig. 4.

Second, the durability diagrams can have finite jumps along λ as well as along t∗(λσ)

axes. Fig. 5, 6, and 7 give some examples of such loading processes for a material

independent of time and history, in which rupture appears at σ = σr.

2.3 Strength stability in proportional load perturbations

Strength is said to be stable with respect to proportional load perturbations (λ−stable)

under a process σij(τ) at an instant t < ∞, if there is no rupture at and before the instant

t under σij(τ) and under slightly higher or lower loading. More precisely, there exists

ε > 0 such that there is no rupture at and before the instant t under the process λσij(τ)

for any λ ∈ (1− ε, 1 + ε).

This implies that if the strength in a body is λ−unstable at an instant t1, it can not

become λ−stable at any instant t2 > t1.

We will denote by t∗st(σ) the critical time, that is such that strength is λ−stable at all

instants t < t∗st(σ) but either rupture or strength λ−instability exists at all t > t∗st(σ). If

strength is λ−stable at all instants t < ∞, we take t∗st(σ) = ∞.

It is evident, that the critical time t∗st(σ) is not greater than the durability t∗(σ) and

the strength is not only λ−stable but also t−stable at t < t∗st(σ). If t∗st(σ) = t∗(σ),

then either rupture exists or strength is t−unstable and λ−(stable or unstable), at time

t = t∗st(σ). If t∗st(σ) < t∗(σ), then strength is t−stable and λ−(stable or unstable) at time

t = t∗st(σ) but t−stable and λ−unstable at t ∈ (t∗st(σ), t∗(σ)). This means, the durability

diagram has at λ = 1 a horizontal jump on the half-interval [t∗st(σ), t∗(σ)), where the

diagram has no values (see Fig. 7b at σm = σr).

Strength is said to be absolutely stable (tλ−stable) under a process σij(τ) at an instant

t, if strength is t−stable at and before the instant t under σij(τ) and under a slightly higher

or lower loading. More precisely, there exists ε > 0 such that such that t < t∗(λσ) for any

λ ∈ (1− ε, 1 + ε).

Evidently, if strength is absolutely stable at an instant t, it is also t−stable and
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λ−stable at the same instant t. On the other hand, strength is absolutely stable under a

process σij(τ) at any instant t < t∗st(σ). However, strength can be t−stable and λ−stable

but not absolutely stable at t = t∗st(σ) < t∗(σ).

For t = ∞, the above reasoning can be modified by the following way.

Endurance is said to be stable with respect to proportional load perturbations (λ−stable)

under a process σij(τ), if there is no rupture under σij(τ) and under a slightly higher or

lower loading at any time. More precisely, there exists ε > 0 such that there is no rupture

at all time instants t < ∞ under the process λσij(τ) for any λ ∈ (1− ε, 1 + ε).

Evidently, λ−stable endurance under a process σij(τ) imlies t∗st(σ) = ∞. However,

the equality t∗st(σ) = ∞ does not generally imply λ−stable endurance.

Returning to the examples description, we note that the discontinuous monotonous

process on Fig. 5a generates a continuous durability diagram λ 7→ t∗(λσ), Fig. 5b, with a

finite jump along the λ axis. The strength under the process is λ−stable but t−unstable

at τ = τ ∗ if σ1 < σr ≤ σ2; t∗st(σ) = t∗(σ) = τ ∗ for this case.

The continuous non-monotonous process on Fig. 6a, generates a discontinuous (right-

continuous) durability diagram λ 7→ t∗(λσ), Fig. 6b. If there exists strength at an instant

t, the strength is absolutely stable. Rupture appears at t = τ1 if σm = σr.

The discontinuous (right–continuous) non-monotonous process Fig. 7a generates a dis-

continuous (left-continuous) durability diagram λ 7→ t∗(λσ), Fig. 7b. The strength under

the process is t−stable but λ−unstable at t ∈ [τ ∗1 , τ ∗2 ) if σm = σr; t∗st(σ) = τ1 < t∗(σ) = τ ∗2
for this case. (Recall that one should turn the diagrams on Fig. 6b, 7b appropriately

making the axis λ horizontal, to interpret the diagrams right-(left-)continuity literally).

Some relations between strength λ−stability and continuity of the durability diagram

are given in Appendix B.

3 Safety factor and normalized equivalent stress

For a given process σij(τ), we can determine (experimentally) a unique finite, infinite,

or zero value of durability t∗(λσ) for any number λ ≥ 0. Consider the inverse task: for

any t ≥ 0, to determine a number λ∗(σ; t) such that t∗(λ∗(σ; t)σ) = t. This is equivalent

interpreting the durability diagram λ 7→ t∗(λσ) as the dependence t 7→ λ∗(σ; t). Examples

of the diagrams on Fig. 3a, 4b, 5b, 6b, 7b show this is not always uniquely possible since

the dependence is either not defined or not unique for some instants t. The following

definition concerns the cases when this is possible.

Definition 1CM If the durability t∗(λσ) is a continuous and monotonously decreasing

function of λ, the temporal safety factor λT (σ; t) is the non-negative number, by which the

loading process σij(τ) must be multiplied to obtain the durability t, that is, t∗(λT (σ; t) σ) =

t.
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This simple definition of the safety factor is however not applicable if the durability

diagram t∗(λσ) is not a monotonously decreasing function of λ as on Fig. 4b and on Fig.

5b at τ = τ ∗, since λ∗(σ; t) then appears to be multiply defined. It is also not applicable

if t∗(λσ) has a horizontal jump as on Fig. 6b since λ∗(σ; t) appears to be not defined for

τ1 < t < τ2 .

If σij(τ) is an MD process, that is the durability t∗(λσ) is a monotonously non-

increasing although generally discontinuous function of λ, we generalise the definition

by the following way:

Definition 1MD The temporal safety factor λT (σ; t) for a monotonously damaging pro-

cess σij(τ) is supremum of non-negative numbers λ such that the durability t∗(λσ) is

greater then t; if there is no such λ, we take λT (σ; t) = 0.

To overcome the difficulties with non-monotonously damaging processes, we introduce

the following general definition of the safety factor λ(σ; t) embracing also the previous

particular cases.

Definition 1 The temporal safety factor λT (σ; t) is supremum of λ ≥ 0 such that

t∗(λ′′σ) > t for any λ′′ ∈ [0, λ]; if there is no such λ, we take λT (σ; t) = 0. The mapping

(σ; t) 7→ λT (σ; t) defined on a set of processes σij(τ) and time instants t is called the

(strength) safety factor functional λT .

Note that we can equivalently define λT (σ; t) as a non-negative number such that

t∗(λσ) > t for any λ ∈ [0, λT (σ; t)) but for any λ > λT (σ; t) there exists a number

λ′′ ∈ [λT (σ; t), λ] such that t∗(λ′′σ) ≤ t; if there is no such λT (σ; t), one should take

λT (σ; t) = 0.

Definition 2 The temporal normalized equivalent stress ΛT (σ; t) is defined as 1/λT (σ; t);

if λT (σ; t) = 0, we take ΛT (σ; t) = ∞.

The mapping (σ; t) 7→ ΛT (σ; t) defined on a set of processes σij(τ) and time instants t

is called the temporal normalized equivalent stress functional (TNESF) ΛT .

From the definition, if the durability t∗(σ) is known, the value of the TNESF ΛT (σ; t) is

a solution of the scalar equation

t∗(σ/Λ) = t

for each instant t and loading process σ(τ) such that dependence of the durability t∗(λ σ)

on λ is continuous and monotonous; if t∗(λ σ) is not continuous or not monotonous,

ΛT (σ; t) is given by Definitions 1-2.

As follows from Definitions 1 and 2, the functionals λT and ΛT do exist for any material

with unambiguous detection of strength/rupture status and without repairing mechanism,
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and are unique, that is, are material characteristics for a prescribed environment (tem-

perature, pre-history, etc.).

Remark 1 One can observe from Definitions 1MD and 2 (see Appendix C) that one can

replace the durability t∗(λσ) by the critical time t∗st(λσ) in the definitions to arrive at

exactly the same functionals λ, Λ for MD processes σ(τ).

The temporal safety factor λT (σ; t) and the temporal normalized equivalent stress ΛT (σ; t)

are counterparts of the non-local safety factor λ(σ; x) and non-local normalized equivalent

stress (load factor) Λ(σ; x) defined in [8]

The safety factor and the TNESF introduced by Definitions 1–3 are durability–based.

One can introduce also the corresponding strength–based functionals, coinciding with

durability–based ones everywhere except the points of their discontinuity in t and we will

describe them elsewhere.

For brevity, we will drop the superscript T sometimes further in the paper.

To justify the title normalized equivalent stress for Λ, we consider a constant in time

process σij(τ) = const. Let, for example, the material strength be associated with the

von Mises equivalent stress σe(σ) =
√

[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]/2, that is the

strength condition has the form σe(σ) < σr(t), where the function σr(t) is a material

characteristic (classical durability diagram under the uniaxial tension) and σ1, σ2, σ3 are

the principal stresses. Then Λ(σ; t) is defined from the equation σe(σ/Λ) = σr(t), that is

Λ(σ; t) = σe(σ)/σr(t). (2)

Formula (2) holds true not only for the von Mises equivalent stress but also for the

Tresca and any other equivalent stress representations σe(σ) that are functions positively

homogeneous of the order +1.

One can see from Definitions 1 and 2 that the safety factor is a non-increasing and

the normalized equivalent stress is a non-decreasing function of time, that is,

λ(σ; t2) ≤ λ(σ; t1), Λ(σ; t2) ≥ Λ(σ; t1) if t2 > t1. (3)

Since, suppose the opposite: there exists t2 > t1 such that λ(σ; t2) > λ(σ; t1). From λ

definition then there exists λ such that λ(σ; t2) > λ > λ(σ; t1) and t2 < t∗(λσ) ≤ t1. This

contradicts to the condition t2 > t1.

As follows from Definitions 1 and 2 (see Appendix D), for any t, the safety factor

functional and the TNESF are non-negative positively-homogeneous functionals of the

orders -1 and +1 respectively, that is

λ(kσ; t) =
1

k
λ(σ; t) ≥ 0, Λ(kσ; t) = kΛ(σ; t) ≥ 0, for any k > 0. (4)

For infinite time t we get from here the corresponding definition of the endurance

safety factor and temporal endurance normalise equivalent stress
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Definition 3 The temporal endurance (threshold) safety factor λT
th(σ) is supremum of

λ ≥ 0 such that there is no rupture for all t < ∞ under the process λ′′σ for any λ′′ ∈ [0, λ];

if there is no such λ, we take λT
th(σ) = 0.

The temporal endurance (threshold) normalized equivalent stress is defined as ΛT
th(σ) =

1/λT
th(σ); if λT

th(σ) = 0, we take ΛT
th(σ) = ∞.

The mappings σ 7→ λT
th(σ), σ 7→ ΛT

th(σ) defined on a set of processes σij(τ) are called

the temporal endurance (threshold) safety factor functional λth and the temporal endurance

(threshold) normalized equivalent stress functional Λth, respectively.

Owing to monotonicity (3), we can define the endurance functionals also as

λT
th(σ) = λT (σ;∞) := inf

t<∞λT (σ; t), ΛT
th(σ) = ΛT (σ,∞) := sup

t<∞
ΛT (σ; t). (5)

We can point out the cases, described in the previous section, for which λth(σ) = 0:

case (0) when material is self-degrading, i.e. t∗(0) < ∞; case (D), i.e. t∗(λσ) → t∗0(σ) 6=
∞ as λ → 0; case (E); case (G) since the absence of a limit of the function t∗(λσ) as

λ → 0 implies that there exists t < ∞ such that λ(σ; t) = 0.

Evidently, the endurance safety factor and the endurance normalized equivalent stress

make sense as material characteristics only for non-self-degrading materials. As follows

from the self-degradation definition above, a material is self-degrading, if and only if there

exists an instant t∗(0) such that λ(0; t) = ∞ for t < t∗(0) and λ(0; t) = 0 for t ≥ t∗(0).

This statement gives an equivalent definition of self-degradation in terms of the safety

factor λ behaviour.

The safety factor λ(σ; t) as a function of t at a given process σ(τ), can also be consid-

ered as a generalised durability diagram t 7→ λ(σ; t). It coincides with the monotonous

continuous parts of the corresponding diagram λ 7→ t∗(λσ) = t giving there λ(σ; t∗(λσ)) =

λ, it cuts off the non-monotonous (multi-valued) parts of the diagram λ∗(σ; t) (taking

the branch with the lowest λ∗ and making a corresponding finite jump in λ(σ; t) in

the branch beginning, see Fig. 4) and continues the diagram onto the jump segment

[t∗((λ − 0)σ), t∗((λ + 0)σ)] where λ∗(σ; t) does not exist, see Fig. 6, 7. As a result, the

diagram looks like a curve on Fig. 3a consisting of corresponding branches with, in ad-

dition, possible vertical jumps but without complications like on Fig. 4b, 6b or 7b. As

shown above in this section, the diagram is monotonously non-increasing in time. The

collection of such diagrams for all possible processes in fact defines the functional λ.

From the generalised durability diagram t 7→ λ(σ; t) for a given process σij(τ), pre-

sented e.g. on Fig. 3a, we can obtain the corresponding diagram t 7→ Λ(σ; t) = 1/λ(σ; t)

for the normalized equivalent stress Λ(σ; t), Fig. 3b. Different curves correspond to dif-

ferent possible cases of its behaviour described in points (A)-(F) of Section 2. Generally,

the t 7→ Λ(σ; t) diagram can have vertical jumps and is a non-decreasing function of time,

see (3). Some examples are given on Fig. (4c), (5c), (6c), (7c).
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The diagram t 7→ Λ(σ; t) can be used in two ways. First, it shows a number Λ(σ; t)

such that there is no rupture up to time t for any process σij(τ)/Λ′ with Λ′ > Λ(σ; t). For

example, if the diagram includes the curve f (Fig. 3), then the process σij(τ)/Λ′ with

Λ′ > Λth(σ) causes no rupture for any t. Another way is to use the diagram together with

the stable strength condition (6) below for given σij(τ) and t. For example, if the diagram

includes the curve f , then the process σij(τ) causes no rupture for any t if Λth(σ) < 1.

4 Strength and endurance conditions

Let σij(τ) be a process and t be a time instant. The following conclusions can be drown

from Definitions 1, 2 for TNESF,

(i) The inequality

Λ(σ; t) < 1 (6)

implies absolutely stable strength under the process σij(τ) at any instant τ ≤ t.

(ii) The equality

Λ(σ; t) = 1 (7)

implies

(a) either strength t−stable at any τ ≤ t but not absolutely stable at an instant τ ≤ t

under the process σij(τ), that is, t∗(σ) > t but for any λ > 1 there exists λ′′ ∈ (1, λ]

such that t∗(λ′′σ) ≤ t;
(b) or rupture (or t−unstable strength) under the process σij(τ) at an instant τ ≤ t,

that is, t∗(σ) ≤ t.
(iii) If σij(τ) is an MD process, the inequality

Λ(σ; t) > 1 (8)

implies rupture (or t−unstable strength) under the process σij(τ) at an instant τ ≤ t,

that is, t∗(σ) ≤ t.

Let us show that, inversely, if strength is absolutely stable for an MD process σij(τ)

at all τ ≤ t then (6) is satisfied. The strength absolute stability means that there exists

λ > 1 such that t∗(λ′′σ) > t for any λ′′ ∈ [1, λ]. In addition, t∗(λ′′σ) > t also for all

λ′′ ∈ [0, 1] since the process σij(τ) is monotonously damaging. Application of Definitions

1 and 2 completes the proof of the following statement.

Statement 1 Inequality (6) gives a sufficient (and necessary, if σij(τ) is an MD process)

condition of absolutely stable strength at all τ ≤ t under the process σij(τ).

For the endurance functionals, we similarly have from Definition 3 the following con-

clusions:

(i) The inequality

Λth(σ) < 1 (9)
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implies λ−stable endurance under the process σij(τ).

(ii) The equality

Λth(σ) = 1 (10)

implies

(a) either λ−unstable endurance, that is, there is no rupture under the process σij(τ)

at any time but for any λ > 1 there exists λ′′ ∈ (1, λ] such that t∗(λ′′σ) < ∞;
(b) or rupture at an instant t < ∞ that is, t∗(σ) < ∞.

(iii) If σij(τ) is an MD process, the inequality

Λth(σ) > 1 (11)

implies rupture at an instant t < ∞, that is, t∗(σ) < ∞.

Then we have the following statement.

Statement 2 Inequality (9) gives a sufficient (and necessary, if σij(τ) is an MD process)

condition of λ−stable endurance under the process σij(τ).

Conditions (6)-(11) together with the homogeneity of Λ and Λth also show that the

functionals do really play the role of normalized equivalent stresses.

It follows from the TNESF definition that if the durability diagram t∗(λσ) is known

for a process σij(τ) for all λ ≥ 0, then the normalized equivalent stress Λ(σ; t) can be

obtained for σij(τ) for any t ≥ 0. Let us consider an inverse task. Suppose values of the

TNESF Λ(σ; t) are known for a process σij(τ) for any t ≥ 0. Is it possible to obtain values

of the durability diagram t∗(λσ) for any λ ≥ 0 for the process σij(τ)?

It is evident that this is not possible if σij(τ) is not an MD process, since the informa-

tion about the non-monotonous behaviour of t∗(λσ) as function of λ is lost in Λ(σ; t). On

the other hand if not only inequality (3) hold but Λ(σ; t) is a monotonously increasing

and continuous function of t, then it is evident, that t∗(λσ) is a solution of the following

scalar equation

Λ(σ; t∗) = 1/λ (12)

and this solution exists and is unique if Λ(σ; 0) ≤ 1/λ ≤ Λ(σ;∞).

Note that generally equality (12) can be not satisfied even for arbitrary MD processes

but the following inequality holds for any process,

Λ(σ; t∗(λσ)) ≥ 1/λ for all λ > 0. (13)

Since, using Definition 1 for λ(σ; t∗(λσ)) we have t∗(λ̃σ) > t∗(λσ) for all λ̃ ∈
[0, λ(σ; t∗(λσ))). Then λ(σ; t∗(λσ)) ≤ λ since otherwise t∗(λσ) > t∗(λσ) which is ab-

surd.

The discussion above shows that in addition to the non-sensitivity to non-monotonous

behaviour of the durability diagram, the TNESF does not also distinguish rupture from
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not absolutely stable strength. For this reason it is not the durability t∗(σ) but the critical

time t∗st(σ) ≤ t∗(σ) which can be obtained from Λ(σ; t) generally. The following statement

is proved in Appendix E.

Statement 3 Let σij(τ) be an MD process. The critical time t∗st(σ) equals the supremum

of t such that

Λ(σ; t) < 1. (14)

Taking into account the homogeneity of Λ(σ; t), one can obtain from Statement 3 the

following slightly more general proposition.

Corollary 1 Let σij(τ) be an MD process. For any λ > 0, the critical time t∗st(λσ) equals

the supremum of t such that Λ(σ; t) < 1/λ.

The following corollary is proved in Appendix F.

Corollary 2 A time t∗∗ is critical, i.e. t∗∗ = t∗st(σ), for an MD process σij(τ) if and only

if

Λ(σ; t) < 1 ≤ Λ(σ; t∗∗) ∀ t < t∗∗ (15)

From inequality (15) we also have the following Corollary.

Corollary 3 If Λ(σ; t) is left–continuous in time at t = t∗st(σ) for an MD process σij(τ),

then Λ(σ; t∗st(σ)) = 1.

As was remarked before, one can replace the durability t∗(λσ) by the critical time

t∗st(λσ) in Definitions 1, 2 to arrive at exactly the same functionals λ and Λ for an MD

process σ(τ). Thus, if the critical time t∗st(λσ) is known for an MD process σij(τ) at all

λ ≥ 0, then values of the TNESF Λ(σ; t) are uniquely determined for the process σij(τ)

at any t. Conversely, if values of the TNESF Λ(σ; t) are known for an MD process σij(τ)

at all t, then values of the critical time t∗st(λσ) are uniquely determined for the process

σij(τ) at any λ ≥ 0 and particularly at λ = 1.

Note that namely the critical time t∗st(σ) is necessary for practical design since, as

mentioned above, for the cases when t∗st(σ) 6= t∗(σ), the material strength is λ−unstable

for t ∈ (t∗st(σ), t∗(σ)).

5 Existence and uniqueness of the TNESFs.

Suppose the material strength under a process σij(τ) at an instant t is described by a

(necessary and sufficient) strength condition

F (σ; t) < 1 (16)
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where F is a non-linear functional non-decreasing in time, known from experimental

data approximation or from a durability theory on the processes λσij(τ) for all λ ≥
0 and for all instants t′′ < t′ for some t′ > t. Non-decreasing in time for F means

absence of a repairing mechanism. Then necessity and sufficiency of strength condition

(16) implies unambiguous detection of the rupture/strength state at any instant t < t′ and

consequently of the durability t∗(λσ) for all λ ≥ 0 if t∗(λσ) < t′. Thus Definitions 1 and 2

are applicable to uniquely determine TNESF Λ(σ; t) on σij(τ) at that instant t, although

this not always leads to an analytical expression. Owing to the TNESF homogeneity, we

have then its values Λ(λσ; t) = λΛ(σ; t) for any λ ≥ 0.

Statement 4 (i) If F (σ; t) is a non-negative positively homogeneous functional of order

+1 on σ, then generally Λ(σ; t) ≥ F (σ; t).

(ii) If, in addition F (σ; t) is right-continuous in the second argument at the considered

time t, then simply Λ(σ; t) = F (σ; t).

The proof is given in Appendix G.

The statement will be used in Section 6 to obtain TNESFs from known strength

conditions of some durability theories.

6 Examples of normalized equivalent stress

functionals

Let us consider examples of calculation of the TNESFs Λ for several known durability

theories. It is supposed for all the examples that σij(τ) = 0 if τ ≤ 0.

6.0 TNESF for constant loading

Uniaxial constant loading

For a uniaxial constant loading σ(τ) = σ = const. at τ > 0, the temporal strength

condition can be written in the form

|σ| < σ∗(sign(σ); t), (17)

where the temporal strength σ∗(sign(σ); t) is a non-increasing function of time t depending

also on the sign of the applied stress σ. Inversely, the durability condition can be written

in the form

t < t∗0(σ),

where |σ| 7→ t∗0(σ) = t∗0(sign(σ)|σ|) is the classical durability diagram for constant

loading.
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From (17) and Definition 1, we have the strength condition in terms of TNESF,

Λ0(σ, t) =
|σ|

σ∗(sign(σ); t)
< 1. (18)

Multiaxial constant loading

For a multiaxial constant loading σij(τ) = σij = const., τ > 0, the temporal strength

condition can be written in the form

|σ| < σ∗(σ̃; t), (19)

where |σ| is a matrix norm of the tensor σij, and the temporal strength σ∗(σ̃; t) is a

non-increasing function of time t depending also on the shape σ̃ij = σij/|σ| of the applied

stress tensor σij. Inversely, the durability condition can be written in the form

t < t∗0(σ),

where |σ| 7→ t∗0(σ) = t∗0(σ̃ij|σ|) is the classical durability diagram for constant multiaxial

loading.

From (19) and Definition 1, we have the multiaxial strength condition in terms of

TNESF,

Λ0(σ, t) =
|σ|

σ∗(σ̃; t)
< 1. (20)

6.1 Time and history independent material

Let the material strength under an arbitrary (right-continuous) multiaxial loading process

σij(τ) be determined only by its instant stress tensor value. Then it can be described by

the strength condition

ΛI(σ(τ)) < 1 (21)

where ΛI(σ) is a known non-negative positively homogeneous function of order +1. For ex-

ample, ΛI can be the von Mises normalized equivalent stress ΛI(σ) =√
[(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2]/(2σ2

r) or the Tresca normalized equivalent stress

ΛI(σ) = maxk,m |σk − σm|/σr, where, as above, σ1, σ2, σ3 are the principal stresses and

σr is a known uniaxial tensile strength. Evidently, the strength condition on an interval

0 ≤ τ ≤ t can be rewritten in the form

Λ1(σ; t) < 1, Λ1(σ; t) = sup
0≤τ≤t

ΛI(σ(τ)) (22)

where Λ1 is the TNESF (for instants when it is right-continuous in t, cf. Statement 4).
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6.2 Temporal strength condition

Let the dynamic strength of a material under uniaxial loading be described by the

Nikiforovsky-Shemyakin temporal strength condition [10, 11]:
∫ t

0
σ(τ)dτ < Jr, (23)

where Jr is a material parameter. Then the durability t∗(λσ) under the process λσ(τ) for

σ(τ) > 0 is determined from the equation
∫ t∗

0
λσ(τ)dτ = Jr

and

λ = Jr

[∫ t∗

0
σ(τ)dτ

]−1

. (24)

If σ(τ) > 0 at τ > 0, the right hand side of (24) is a continuous monotonously decreasing

function of t∗, and we have from the Definitions 1CM and 2,

Λ2σ; t) =
1

Jr

∫ t

0
σ(τ)dτ. (25)

For arbitrary processes with not necessarily positive σ(τ) at τ > 0, we have from the

Definitions 1 and 2 a more general formula for the TNESF:

Λ2(σ; t) = max

[
0,

1

Jr

sup
0≤t′≤t

∫ t′

0
σ(τ)dτ

]
. (26)

6.3 Finitely-temporal strength condition

Let the dynamic strength of a material under uniaxial loading be described by the finitely-

temporal (structural-temporal) strength condition (see [12]) at an instant t:

sup
0≤t′≤t

1

tr

∫ t′

t′−tr
σ(τ)dτ < σr, (27)

where tr > 0 and σr > 0 are material parameters. Then the durability t∗(λσ) under the

process λσ(τ) is determined as a minimal non-negative solution of the equation

sup
0≤t′≤t∗

1

tr

∫ t′

t′−tr
λσ(τ)dτ = σr

and

λ = σrtr

[
sup

0≤t′≤t∗

∫ t′

t′−tr
σ(τ)dτ

]−1

. (28)

From the Definitions 1 and 2, then the TNESF is

Λ3(σ; t) = max

[
0,

1

σrtr
sup

0≤t′≤t

∫ t′

t′−tr
σ(τ)dτ

]
. (29)

It is evident that Λ2(σ; t) = Λ3(σ; t) for t ≤ tr if Jr = σrtr.
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6.4 Campbell strength condition

Campbell [13] introduced the following yielding criterion under uniaxial dynamic loading

σ(τ) ≥ 0,
∫ t∗

0

[
σ(τ)

σr

]b

dτ = tr, (30)

where tr > 0, σr > 0 and b are material parameters. We can treat this also as a dynamic

rupture criterion. Then the corresponding strength condition is

Λ4(σ; t) < 1, (31)

where

Λ4(σ; t) =


 1

tr

∫ t

0

[
σ(τ)

σr

]b

dτ




1/b

(32)

is the TNESF, Statement 4.

If b = 1, then evidently, Λ4(σ; t) degenerates into Λ2(σ; t) for Jr = σrtr. For b = 1 and

t ≤ tr it coincides also with Λ3(σ; t).

6.5 Modified Campbell strength condition

A finitely temporal modification of dynamic yield (rapture) criterion (30) presented in

[12] (see also references therein),

1

tr

∫ t∗

t∗−tr

[
σ(τ)

σr

]b

dτ = 1, (33)

leads to the following strength condition,

Λ5(σ; t) < 1, (34)

where

Λ5(σ; t) = sup
0≤t′≤t


 1

tr

∫ t′

t′−tr

[
σ(τ)

σr

]b

dτ




1/b

(35)

is the TNESF and tr > 0, σr > 0 and b are material parameters. If b = 1, then evi-

dently, Λ5(σ; t) degenerates into Λ3(σ; t). For t ≤ tr it coincides also with Λ4(σ; t) and if,

additionally, b = 1, then also with Λ2(σ; t) for Jr = σrtr.

6.6 Il’ushin durability theory

6.6.1 Linear theory

It was supposed in [5] that there exists an abstract damage tensor ωij(σ; t) which is a

functional defined on load processes σij(τ) (for simplicity, we neglect here dependence of
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ω also on stress moments considered in [5]). It was supposed that there is no rupture if

a set of m̃ strength conditions written in terms of ω(σ; t) is satisfied:

Mm(ω) < cm, m = 1, ..., m̃. (36)

Here functions Mm and constants cm are material characteristics associated with an m−th

rupture mode.

It was supposed in the linear version of the Il’ushin theory [5] that the tensor damage

functional ω(σ; t) can be taken in the form

ωij(σ; t) =
∫ t

0
ϕijkl(t− τ)dσkl(τ) (37)

where functions ϕijkl(τ) are material characteristics independent of σij(τ).

Denoting M(ωij) = maxm=1,...m̃(Mm(ωij)/cm), we can rewrite (36) - (37) in the form

M [
∫ t

0
ϕijkl(t− τ)dσkl(τ)] < 1. (38)

Since the left hand side of (38) can be non-monotonous in t at least for non-monotonous

processes σkl(τ), it should be corrected so as not to predict a life after rupture, e.g., in

the following way,

sup
0≤t′≤t

M [
∫ t′

0
ϕijkl(t

′ − τ)dσkl(τ)] < 1. (39)

The corresponding strength condition for a process λσij(τ) takes the form

sup
0≤t′≤t

M [λ
∫ t′

0
ϕijkl(t

′ − τ)dσkl(τ)] < 1. (40)

Suppose first that the function M is non-negative and positively homogeneous of the order

+1, i.e., M(λωij) = λM(ωij). Then according to Definitions 1CM and 2, we have the

following expression for the TNESF:

Λ6(σ; t) = sup
0≤t′≤t

M [
∫ t′

0
ϕijkl(t

′ − τ)dσkl(τ)]. (41)

If the function M is not positively homogeneous of the order +1, one should reduce (38)

to an equivalent form with a new function M which is already homogeneous. Another way

is to apply more general Definition 1, what probably demands some numerical calculations.

In this case λ6(σ; t) is supremum of numbers λ∗ such that inequality (40) is satisfied for

all λ ∈ [0, λ∗]. If M(λωij) is continuously monotonously growing with λ, then one can get

λ6(σ; t) more simply as a solution of the equation obtained from (40) (after replacing the

sign ”<” by the sign ”=”), instead of finding the supremum. Then Λ6(σ; t) = 1/λ6(σ; t)

according to Definition 2.

Suppose σ11(τ) is a uniaxial process. If we take ϕijkl(t−τ) = (t−τ)δikδjl and M(ω11) =

ω11/Jr, then the TNESF Λ6(σ; t) from the Il’ushin linear durability theory coincides with
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its counterpart Λ2(σ; t) given by the Nikiforovsky-Shemyakin temporal strength condition.

On the other hand, if we take ϕijkl(t − τ) = [t − τ − (t − τ − tr)H(t − τ − tr)]δikδjl and

M(ω11) = ω11/(σrtr), then the TNESF Λ6(σ; t) from the Il’ushin linear durability theory

coincides with its counterpart Λ3(σ; t) given by the finitely-temporal strength condition

(27).

6.6.2 Non-linear theory

In the non-linear version of the Il’ushin durability theory [5], representation (37) is re-

placed by a more general non-linear form for the damage tensor functional:

ωij(σ; t) =
∞∑

n=1

∫ t

0
...

∫ t

0
Φ

(n)
iji1j1...injn

(t− τ1, ..., t− τn)σi1j1(τ1)...σinjn(τn)dτ1...dτn (42)

Then as above, the corresponding strength condition for a process λσij(τ) takes the form

sup
0≤t′≤t

M

[ ∞∑

n=1

λn
∫ t′

0
...

∫ t′

0
Φ

(n)
iji1j1...injn

(t′ − τ1, ..., t
′ − τn)σi1j1(τ1)...σinjn(τn)dτ1...dτn

]
< 1.

(43)

If the left hand side of (43) is a monotonously and continuously growing function of

λ, then, according to Definition 1CM, one can get λ6(σ; t) as a solution of the equation

obtained from (43) (after replacement the sign ”<” by the sign ”=” there). Otherwise, one

can apply more general Definition 1. In this case λ6(σ; t) is the supremum of the numbers

λ∗ such that inequality (43) is satisfied for all λ ∈ [0, λ∗]. Then Λ6(σ; t) = 1/λ6(σ; t)

according to Definition 2.

6.7 Robinson linear rule of damage accumulation

Let a material obey the Robinson hypothesis of creep damage linear accumulation [14, 15]

(see also [3, 16]). Then the durability t∗(σ) under a multiaxial process σij(τ) can be

determined from the equation ∫ t∗

0

dτ

t∗0(σ(τ))
= 1. (44)

Here t∗0(σ(τ)) = t∗0(σij(τ)) = t∗(σ0
ij)|σ0

ij=σij(τ) is a function presenting the classical dura-

bility diagram under a multiaxial step-like loading, where σ0
ij = const. Then t∗(λσ) is

determined from equation ∫ t∗

0

dτ

t∗0(λσ(τ))
= 1. (45)

Suppose the classical durability diagram t∗(σ0
ij) is given by the power law (1). Then (45)

is reduced to ∫ t∗

0

(λ|σ(τ)|)b(σ̃(τ))

A(σ̃(τ))
dτ = 1. (46)
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Suppose additionally that σij(τ) is an in-phase (coaxial, proportional) multiaxial pro-

cess, that is, the shape of the tensor σij(τ) does not vary in time: σij(τ) = σ0
ij
|σ(τ)|
|σ0| , that

is, σ̃ij(τ) = σij(τ)/|σ(τ)| = σ0
ij/|σ0| = const. Then A(σ̃(τ)) = const, b(σ̃(τ)) = const and

we have from (46),

λ =

[
1

A(σ̃)

∫ t∗

0
|σ(τ)|b(σ̃)dτ

]−1/b(σ̃)

. (47)

Suppose b > 0. Then the right hand side of (47) is a continuous monotonously non-

increasing function of t∗. From the Definitions 1CM and 2, we then have the following

representations for the TNESF on in-phase processes,

Λ7(σ; t) =

[
1

A(σ̃)

∫ t

0
|σ(τ)|b(σ̃)dτ

]1/b(σ̃)

. (48)

Let now σij(τ) be an arbitrary multiaxial process but b = const is a positive material

parameter independent on σ̃ij(τ). Then in the similar way one obtains for this case the

TNESF

Λ7(σ; t) =

[∫ t

0

|σ(τ)|b
A(σ̃(τ))

dτ

]1/b

. (49)

If σ(τ) ≥ 0 is a uniaxial process, then TNESFs (48), (49) coincide for A = trσ
b
r with

the functional Λ4(σ; t) associated with the Campbell strength condition.

If the loading is not in-phase and b(σ̃) is not constant or the classical durability diagram

is more complicated than (1), then equation (45) can not be generally solved with respect

to λ analytically but this can be done numerically. The solution gives λ7(σ; t∗) and

Λ7(σ; t∗) = 1/λ7(σ; t∗), if t∗0(λσij(τ)) is a decreasing function of λ. Otherwise one should

apply general Definitions 1 and 2 to (45) (where the sign ”=” must be replaced by the

sign ”<”).

6.8 Hoff model for rod creep rupture

Consider an incompressible rod under a nominal stress σ0(τ) ≥ 0 at τ > 0. Its creep can

be described by the Norton creep law

dε(τ)

dτ
= aσb(τ), (50)

ε is the creep logarithmic strain, a, b > 0 are material constants. The creep rupture is

modelled by Hoff [17] (see also [3, Section 85], [4, Section 2.2]) taking into account the

increase of the actual stress σ, caused by the rod cross-section decrease due to the material

incompressibility,

σ = σ0(τ)eε(τ). (51)

The strength condition

sup
0≤τ≤t

σ(τ) < ∞ (52)
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is applied, which can be also rewritten in the form

Λ8(σ; t) < 1, Λ8(σ; t) =





0 if sup0≤τ≤t σ(τ) < ∞
∞ if sup0≤τ≤t σ(τ) = ∞ (53)

Substitution (51) into (50) and its integration with the initial condition ε(0) = 0 gives

the following relation between actual and nominal stresses

σ(t) = σ0(t)
[
1− ab

∫ t

0
σb

0(τ)dτ
]−1/b

. (54)

Using (52), we arrive for a process λσ0(τ) at the strength condition in terms of σ0 on a

time segment [0, t]:

sup
0≤τ≤t

λσ0(τ)
[
1− abλb

∫ τ

0
σb

0(ξ)dξ
]−1/b

< ∞. (55)

This means that, in terms of the nominal stress, the TNESF for this model is

Λ08(σ0; t) = max
{
Λ̂08(σ0; t), Λ8(σ0; t)

}
, (56)

where

Λ̂08(σ0; t) =
[
ab

∫ t

0
σb

0(τ)dτ
]1/b

. (57)

Up to the notation ab = 1/A = 1/(trσr), the functional Λ̂08 coincides with the TNESF

Λ4(σ; t) corresponding to the Campbell strength condition and with the functional Λ7(σ; t)

corresponding to the power law of durability and the linear rule of damage accumulation.

6.9 Kachanov damage model

In the Kachanov damage model [1] (see also, [3, Section 87], [4, Section 2.4]) the same

problem as in the Hoff model is considered and the same creep low (50) and expression

for the actual stress (51) are supposed. However the strength condition (52) is replaced

by the strength condition

sup
0≤τ≤t

σ(τ)

1− ω(τ)
< ∞, (58)

which is equivalent to (52) supplemented by the strength condition

ω(t) < 1. (59)

Here ω(t) is a damage measure, which behaviour is described by equation

dω(τ)

dτ
= B

(
σ(τ)

1− ω(τ)

)k

(60)

with the initial condition ω(0) = 0; B, k > 0 are material constants.
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Integrating (60), we can after some manipulations rewrite the strength condition (59)

in the form homogeneous with respect to σ,

Λ̂9(σ; t) < 1, Λ̂9(σ; t) =
[
(k + 1)B

∫ t

0
σk(τ)dτ

]1/k

. (61)

Note that Λ̂9 coincides with Λ4, Λ7 and Λ̂08 up to notations.

Recalling the strength condition (53), we finally obtain the TNESF in terms of the

actual stress σ,

Λ9(σ; t) = max(Λ8(σ; t), Λ̂9(σ; t)). (62)

To obtain the TNESF in terms of the nominal stress, we substitute (54) in (61) and

arrive for a process λσ0(τ) at the strength condition

λk
∫ t

0
σk

0(τ)
[
1− abλb

∫ τ

0
σb

0(ξ)dξ
]−k/b

dτ <
1

(k + 1)B
. (63)

completing strength condition (55) on a time segment [0, t].

Taking into account (55) and condition σ0 ≥ 0, one can see that the left hand side

of (63) is a monotonously increasing function of λ at fixed t and is a monotonously non-

decreasing function t at fixed λ. This means the TNESF in terms of the nominal stress

for this model is

Λ09(σ0; t) = max(Λ08(σ0; t), 1/λ09(σ0; t)). (64)

where Λ08(σ0; t) is defined in (56) and λ09(σ0; t) is a unique non-negative solution of the

equation obtained from (63) after replacement of the inequality by the equality sign (for

instants when it is right-continuous in t, see Statement 4). For each t and an arbitrary

process σ0(τ) ≥ 0, this equation is nonlinear transcendental and can be solved numerically.

For σ0(τ) = const at τ ≥ 0, this equation is reduced to

t =
1

ab(λσ0)b



1−

[
1− (b− k)a(λσ0)

b−k

(k + 1)B

] b
b−k



 ,

cf. [1], [3, Section 87], [4, Section 2.4].

6.10 Rabotnov damage model

In the Rabotnov damage model [2] (see also [3, Section 87] and [4, Section 2.4]), the

same problem for a rod under creep, as in the Hoff and Kachanov models is considered.

However an influence of the damage on the creep is taken into account in the form

dε(τ)

dτ
= aσb(τ)(1− ω(τ))−q, (65)

whereas the relation between the nominal σ0 and actual σ stresses is given by the same

formula (51).
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An expression for the damage rate more general than (60) is given in the form

dω(τ)

dτ
= Bσk(τ)(1− ω(τ))−r. (66)

Here a, b, q, B, k, r are considered as material constants. It is evident that (65), (66)

degenerate at q = 0, k = r into the relations (50), (60) used by Kachanov.

The strength condition (59) completed in fact by condition (52) was used by Rabotnov

on a time segment [0, t].

Integrating (66), we get

[1− ω(t)]r+1 = 1− (r + 1)B
∫ t

0
σk(τ)dτ. (67)

Then we can rewrite the strength condition (59) in the form

Λ̂10(σ; t) < 1, Λ̂10(σ; t) =
[
(r + 1)B

∫ t

0
σk(τ)dτ

]1/k

. (68)

Recalling the strength condition (53) equivalent to (52), we finally obtain the TNESF

for the Rabotnov model in terms of the actual stress σ,

Λ10(σ; t) = max(Λ8(σ; t), Λ̂10(σ; t)). (69)

To obtain the TNESF in terms of the nominal stress, we first substitute (51) in (65),

and integrate. Using the resulting expression for ε in (51) gives,

σ(τ) = σ0(τ)
{
1− ab

∫ τ

0
σb

0(ξ)[1− ω(ξ)]−qdξ
}−1/b

(70)

Substituting this in (66), after integration we obtain a non-linear integral equation con-

necting ω with σ0,

[1− ω(t)]r+1 = 1− (r + 1)B
∫ t

0
σk

0(τ)
{
1− ab

∫ τ

0
σb

0(ξ)[1− ω(ξ)]−qdξ
}−k/b

dτ. (71)

Let ω′′ be a solution of the equation

[1− ω′′(t)]r+1 = 1− (r + 1)B
∫ t

0
(λ′′σ0(τ))k

{
1− ab

∫ τ

0
(λ′′σ0)

b(ξ)[1− ω′′(ξ)]−qdξ
}−k/b

dτ.

(72)

Strength condition (59) for ω′′ generated by the process λ′′σ0(τ) gives

λ′′k
∫ t

0
σk

0(τ)
{
1− abλ′′b

∫ τ

0
σb

0(ξ)[1− ω′′(ξ)]−qdξ
}−k/b

dτ <
1

(r + 1)B
. (73)

Inequality (73) is reminiscent of (63) but there is the additional multiplier [1 − ω′′]−q in

(73), which also depends on λ′′ through (72).
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Let us define a functional λ̂010(σ0; t), according to the Definition 1, as the supremum

of non-negative numbers λ such that inequality (73), where ω′′ is a solution of (72), is

satisfied for any λ′′ ∈ [0, λ]. The functional λ̂010 can be also equivalently defined as a

minimal positive solution λ′′ of (72) and the corresponding equality obtained from (73),

if the solution does exist.

Owing to (70), strength condition (52) for λ′′σ0 gives

sup
0≤τ≤t

σ0(τ)
{
1− abλ′′b

∫ τ

0
σb

0(ξ)[1− ω′′(ξ)]−qdξ
}−1/b

< ∞ (74)

where ω′′ is a solution of (72). Let a functional λ̂
0

010(σ0; t) be the supremum of non-negative

numbers λ such that inequality

λ′′ < sup
0≤τ≤t

{
ab

∫ τ

0
σb

0(ξ)[1− ω′′(ξ)]−qdξ
}1/b

(75)

where ω′′ is a solution of (72), is satisfied for any λ′′ ∈ [0, λ]. The functional λ̂
0

010 can

be equivalently defined as a minimal positive solution λ′′ of (72) and the corresponding

equality obtained from (75), if the solution does exist. Finally the TNESF in terms of

the nominal stress for the Rabotnov model has the form

Λ010(σ0; t) = max(Λ08(σ0; t), 1/λ̂
0

010(σ0; t), 1/λ̂010(σ0; t)) (76)

(for instants when it is right-continuous in t, see Statement 4).

Examples 6.8-6.10 particularly show that the TNESF and corresponding strength con-

dition for the same material (or model) can look quite different being presented in terms

of the nominal or actual stress and one should always carefully fix the used stress type.

6.11 TNESFs for other damage models

One of the general forms of the continuum damage mechanics (see e.g. [3, 4, 6, 7]) can

be written as an expression of effective (micro-)stress tensor σ̃(τ) in terms of the actual

(macro-)stress tensor σ(τ) and a damage (tensor) measure ω(τ)

σ̃(τ) = f1(ω, σ), (77)

a damage rate equation
dω(τ)

dτ
= f2(ω, σ) (78)

with the initial condition

ω(0) = 0, (79)

and a (necessary and sufficient) strength condition

F (ω; σ) < 1. (80)
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The functions f1, f2, and F are considered to be known material characteristics. The

models described in Sections 6.9 and 6.10 present particular cases of (77)-(80). To com-

plete the problem, corresponding constitutive equations of the material and equilibrium

equations written in terms of σ or σ̃, should be added to (77)-(80). However, we need

only equations (78), (79), and strength condition (80) to determine the TNESF for such

a model in terms of the actual (macro-)stress. Since, integrating (78) with the initial

conditions (79) we get, as in subsections 6.9, 6.10,

ω(t) = f3(σ; t), (81)

where the functional f3 is a solution of (78), (79) for a given process σ(τ). Substituting

this in (80), we get the following strength condition for a process σ(τ),

F (f3(σ; t); σ) < 1.

Assuming absence of a repairing mechnaism, this is equivalent to the condition

sup
0≤t′≤t

F (f3(σ; t′); σ) < 1. (82)

Then the left hand side of (82) is non-decreasing in time and the TNESF can be obtained

from Definitions 1–2, see Section 5.

Note that although the TNESF is determined in this way independently of the equation

(77) and of the material constitutive and equilibrium equations, the equations will be

necessary to determine the process σij(τ) and to calculate a corresponding value of the

TNESF.

7 Complex TNESF for combined creep, instant and

dynamic loading

The TNESF ΛT is a material characteristic which is not necessary connected with a

geometrical, stiffness-related or abstract damage measure and can be identified from some

durability tests. As shown in the previous sections, any strength condition written in terms

of a damage measure can be expressed in terms of a corresponding TNESF (although not

always analytically). Let us show some simple ways constructing TNESFs to include

e.g. instant overloading or dynamic effects in addition to creep durability. The Robinson

damage accumulation rules mentioned above did not take into account sequence effects,

that is damage caused by a stress in a particular instant is independent of where it occurs

in the load history. We will see that this shortcoming can be overcome in a simple way

by choosing a proper structure of TNESFs.
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Suppose one has a TNESF ΛT (σ; t) obtained e.g. from a damage measure approach,

which do not take into account any influence of instantaneous overloads of material,

especially a finite strength under instantaneous loading. Particularly, TNESFs (48) and

(49) based on the power-type durability diagrams give such examples. To avoid this

shortcoming, one can combine an instant normalized equivalent stress function ΛI and a

temporal TNESF ΛT and arrive at a complex strength condition e.g. in the form

ΛIT (σ; t) = sup
0≤t′≤t

{
ΛI(σ(t′)) + ΛT (σ; t′)

}
< 1. (83)

For example, if ΛI(σ) = σeq(σ)/σr, σeq(σ) is von Mises, Tresca or other instantaneous

equivalent stress, σr is an instant uniaxial strength, and ΛT (σ; t) is given by (49), then

the TNESF (83) will take form

ΛIT (σ; t) = sup
0≤t′≤t





σeq(σ(t′))
σr

+

[∫ t′

0

|σ(τ)|b
A(σ̃(τ))

dτ

]1/b


 . (84)

where b is a material parameter and A(σ̃(τ)) is a material functions of the normalized

stress tensor σ̃ij(τ) = σij(τ)/|σ(τ)| at an instant τ .

If there exist also dynamic effects on the material strength and the instant strength is

not well defined, one can replace the instant strength term by a corresponding dynamic

TNESF ΛD(σ(t′) and arrive e.g. at the following complex TNESF and strength condition,

ΛDT (σ; t) = sup
0≤t′≤t

{
ΛD(σ; t′) + ΛT (σ; t′)

}
< 1 (85)

For example, we can take ΛT (σ; t′) in form (49), and ΛD(σ; t′) associated with the

Morozov, Petrov and Utkin dynamic strength condition (27) generalised on the multiaxial

case in the form

ΛD(σ; t′) =
1

σr

σeq (σ̄(t′; tr)) , σ̄kj(t
′; tr) =

1

tr

∫ t′

t′−tr
σkj(t

′′)dt′′, (86)

where σeq(σ) is e.g. von Mises, Tresca or other instantaneous equivalent stress and σr, tr

are a material constants. Then the TNESF (85) will take form

ΛDT (σ; t) = sup
0≤t′≤t





1

σr

σeq (σ̄(t′; tr)) +

[∫ t′

0

|σ(τ)|b
A(σ̃(τ))

dτ

]1/b


 . (87)

Note that both strength conditions (84) and (87) lead to non-linear summation rules

since they include the fading memory terms σeq(σ(t′))/σr or σeq(σ̄(t′; tr)/σr).

Note also that presentations (83) and (85) are not uniquely possible and one can use

not only the sum but also other homogeneous combinations of the terms ΛI , ΛD and ΛT to

get other possible simple forms of the TNESFs describing interaction of instant, dynamic

and long-time effects on the durability. For example, one can take,

ΛDT (σ; t) = sup
0≤t′≤t

{
[ΛD(σ; t′)]q + [ΛT (σ; t′)]q

} 1
q , (88)

26



instead of (85), where q > 0 can be considered as a material parameter. If q = 1, (88) is

reduced to (85). The limiting case q →∞ corresponds to the TNESF

ΛDT (σ; t) = sup
0≤t′≤t

max
{
ΛD(σ; t′), ΛT (σ; t′)

}
. (89)

Evidently, which form fits better to a particular material behaviour, can be determined

from comparison with experimental data.

8 Conclusion and perspectives

The generalised durability diagrams introduced in the paper give an instrument to com-

pare irregular loading processes of different intensities and allow the introduction of no-

tions of the temporal safety factor and the temporal normalized equivalent stress for such

processes. The TNESF is a mechanically meaningful material characteristic, which can

be determined from the durability macro-experiments without any additional informa-

tion such as micro-cracks or micro-voids distribution or stiffness change. The concept

of normalized equivalent stress forms a basis for the durability and strength description

under creep and/or dynamic loadings, which do not need the introduction of any damage

measures. On the other hand, the durability analysis based on damage measures, is re-

duced to a particular case of the normalized equivalent stress concept. Nevertheless, the

continuum damage mechanics remains helpful also when the normalized equivalent stress

concept is applied. Particularly, the softening damage measures allow the calculation of

a stress redistribution in a structure element and the geometrical damage measures can

be used for estimation of macroscopic TNESFs from micro-mechanical modelling.

The TNESF concept reduces different durability models to a unique form what fa-

cilitates their comparison. Examples of the reduction are presented in the paper. The

durability–based TNESF, described in this paper, is deduced from the durability func-

tional t∗(σ) but the former seems to be more robust in design applications and corre-

sponding computer codes. Moreover, TNESF should be more convenient for identifica-

tion from experimental data owing to its better properties (homogeneity in stress and

monotonicity in time). Natural function classes for loading processes σij and properties

of the TNESFs Λ on those classes are to be studied. Strength–based TNESFs (coinciding

with the durability–based TNESFs at the points of continuity in time) and some meth-

ods of their direct interpolation along the durability diagrams under constant loading are

supposed to be described in a separate paper. Methods for refinement of the TNESF

identification (interpolation) from a finite number of experimental data need to be devel-

oped for an effective implementation of the concept in engineering practice. Adaptation

of the identification ideas of [18] to the TNESFs looks promising. Expansion of approach
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of [8, 19] to non-local durability analysis for bodies with stress concentration is to be done.

This approach can be also extended to fatigue strength analysis under cyclic [20, 21] and

non-cyclic loading.

Note also that the similar concept of the temporal normalized equivalent strain func-

tional can be introduced by in same way by replacing successively the stress loading

process σij(τ) by the strain loading process εij(τ) in the above reasoning.
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Appendix

A Remarks on some damage measures

Different damage measures are often introduced to reflect the material properties change

under loading in comparison with a reference state. We present several of the most popular

damage measures at an instant t under the loading process σ(τ).

Geometrical damage measures (see [1, 3, 7]:

ωS(~n; σ; t) := 1− S(σ; t)/S(0; 0) =⇒ S(σ; t) = (1− ωS(~n; σ; t))S(0; 0);

ωV (σ; t) := 1− V (σ; t)/V (0; 0) =⇒ V (σ; t) = (1− ωV (σ; t))V (0; 0).

Here S(σ; t) is a representative element net cross-section area with a normal vector ~n at an

instant t, and S(0; 0) is the corresponding area before loading; V (σ; t) is a representative

element net volume at an instant t, and V (0; 0) is the corresponding volume before loading.

Softening damage measure (see [1, 3, 7]:

ωE(σ; t) := I − E(σ; t)E−1(0; 0) =⇒ E(σ; t) = (I − ωE(σ; t))E(0; 0).

Here E(σ; t) is the (macro-) stiffness tensor at an instant t and E(0; 0) is the tensor before

loading. Effective (micro-) stress tensor is taken as

σ̃(t) = (I − ωE(σ; t))−1σ(t) = E(0; 0)E−1(σ; t)σ(t). (90)

Assuming that the damage is isotropic, it is often supposed that the geometric and soft-

ening damage measures coincide. General relations between the anisotropic softening and

the geometrical damage measures for an elastic medium with cracks can be found in [22].

One of the main ideas of the continuum (softening) damage mechanics is an assumption

(see [7] that all constitutive relations known for an undamaged material hold true also for
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the damaged material if one replaces there the macro-stresses σ by the effective stresses

σ̃. There exists also a temptation to use this idea for the strength prediction, that is, to

write the strength condition for a damaged material in the form

Λ00([I − ωE(σ; t)]−1σ(t)) < 1 (91)

if we know a strength condition Λ00(σ) < 1 for the virgin material. The problem however

is that the function Λ00(σ) is principally unknown since the material at rupture is always

damaged (not virgin). An exclusion can be the case when only aging damage (caused by

non-mechanical reasons) is analysed. Another idea that the softening damage measure

is a perfect strength indicator and one can write the strength condition in the form

F (ωE(σ; t)) < 1 does also not always work: a ”paradoxical” example when adding damage

(crack array) increases strength is presented in [22, Section VII.A].

B Strength absolute stability and durability diagram

continuity

Statement 5 The strength is absolutely stable under a process σij(τ) at all t < t∗(σ) if

and only if the durability t∗(λσ) is a lower semi-continuous function of λ at λ = 1, that is,

for any δ > 0 there exists ε(δ) > 0 such that t∗(σ)− t∗(λ′σ) < δ for any λ′ ∈ (1− ε, 1+ ε).

Proof. For any δ > 0 we denote tδ = t∗(σ) − δ < t∗(σ). Suppose strength is absolutely

stable at all t < t∗(σ) and particularly at the instant tδ. Then there exists ε(δ) > 0 such

that t∗(λ′σ) > tδ for all λ′ ∈ (1−ε, 1+ε). Hence, t∗(σ)−t∗(λ′σ) < δ for all λ′ ∈ (1−ε, 1+ε)

which proves the lower semi-continuity of t∗(λσ).

Conversely, let t∗(λσ) be lower semi-continuous in λ at λ = 1. Then for any δ > 0

there exists ε(δ) > 0 such that t∗(σ) − t∗(λ′σ) < δ for all λ′ ∈ (1 − ε, 1 + ε). Hence for

any t < t∗(σ), we take δ(t) = t∗(σ) − t and have t < t∗(λ′σ) for all λ′ ∈ (1 − ε, 1 + ε),

what proves that the strength is absolutely stable under the process σij(τ) at all t < t∗(σ).

For MD processes, the lower semi-continuity of t∗(λσ) in λ coincides with the right

continuity of t∗(λσ) in λ and we can reformulate the above statement in the form

Statement 6 The strength is absolutely stable under an MD process σij(τ) at all t < t∗(σ)

if and only if the durability t∗(λσ) is a right continuous function of λ at λ = 1, that is,

for any δ > 0 there exists λ(δ) > 1 such that |t∗(σ)− t∗(λ′σ)| < δ for any λ′ ∈ [1, λ].

C Proof of Remark 1

We define λst(σ; t) := sup{λ : t∗st(λ
′′σ) > t ∀ λ′′ ∈ [0, λ]}. Since t∗st(λ

′′σ) ≤ t∗(λ′′σ) then

λst(σ; t) ≤ λ(σ; t).

29



Suppose λst(σ; t) < λ(σ; t). Then for any λ0 such that λst(σ; t) < λ0 < λ(σ; t), we

have,

t∗st(λ0σ) ≤ t < t∗(λ0σ). (92)

Consequently, strength is λ−unstable in any instant t′ ∈ (t, t∗(λ0σ)) under the process

λ0σ, that is, rupture appears at or before t′ under the process λ00σ for any λ00 > λ0.

Thus, strength is t−unstable under the process λ0σ for any λ0 ∈ (λst(σ; t), λ(σ; t)) and

hence t∗(λ0σ) ≤ t, and we arrive at a contradiction with the last inequality in (92). Thus

λst(σ; t) = λ(σ; t).

D Proof of positive homogeneity for strength functionals

Let k > 0. Denoting λ̃ = kλ, λ̃′′ = kλ′′, we have from Definition 1,

λ(kσ; t) := sup λ : {t∗(λ′′kσ) > t for all λ′′ ∈ [0, λ]}
=

1

k
sup(kλ) : {t∗(kλ′′σ) > t for all kλ′′ ∈ [0, kλ]}

=
1

k
sup λ̃ : {t∗(λ̃′′σ) > t for all λ̃′′ ∈ [0, λ̃]} =

1

k
λ(σ; t).

E Proof of Statement 3

Let T be the supremum of t such that (14) is satisfied. Suppose first T < t∗st(σ) ≤ ∞.

For any t > T , condition (14) is violated, that is λ(σ; t) ≤ 1. Consequently, t∗(λ′σ) ≤ t

for any λ′ > 1 and any t > T due to the definition of λ(σ; t) for MD materials. That

is, t∗(λ′σ) ≤ T < t∗st(σ) for any λ′ > 1. However this contradicts to the definition of the

critical time t∗st(σ) since the strength appears to be λ−unstable at the instant T < t∗st(σ)

under the process σij(τ). Consequently T can not be less than t∗st(σ).

Suppose now t∗st(σ) < T ≤ ∞. Then we obtain from the definition of T that condition

(14) holds for any t such that t∗st(σ) < t < T . Owing to Statement 1, this implies

λ−stable strength at the instant t > t∗st(σ) under the process σij(τ), which contradicts

to the definition of the critical time t∗st(σ). The contradiction proves that T can not be

greater than t∗st(σ).

Hence T = t∗st(σ).

F Proof of Corollary 2

Suppose first t∗∗ = t∗st(σ). Then the right hand side of (15) follows from Statement 1 and

the left hand side follows from Statement 3.
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Suppose now (15) is satisfied. Then t∗st(σ) ≥ t∗∗ owing to the left hand side of (15)

and to Statement 3. But if t∗st(σ) > t∗∗ then Λ(σ; t∗∗) < 1 owing to Statement 1 what

contradicts to the right hand side of (15). Consequently t∗∗ = t∗st(σ).

G Proof of Statement 4

Let F (σ; t) = ∞, then Λ(σ; t) can not be zero since then Statement 1 implies strength

and consequently F (σ; t) < 1. On the other hand, Λ(σ; t) can not be a finite number

since then Λ(σ/C; t) < 1 for any C > Λ(σ; t)), which means strength under the process

σ(τ)/C and consequently F (σ/C; t) < 1 and F (σ; t) < C.

Let F (σ; t) is finite. The homogeneity of F (σ; t) implies that any process σ is monotonously

damaging. Taking into account that t < t∗(λσ) implies F (λσ; t) < 1, we have from Defi-

nition 1MD,

λ(σ; t) = sup{λ > 0 : t < t∗(λσ)} ≤ sup{λ > 0 : F (λσ; t) < 1}
= sup{λ > 0 : F (σ; t) < 1/λ} = 1/F (σ; t).

This completes the proof of point (i).

Let now F (σ; t) is right-continuous in the second argument at the considered time t. If

t∗(λσ) is a durability under the process λσ, then F (λσ; t∗(λσ)) ≥ 1 since otherwise there

exists t > t∗(λσ) such that F (λσ; t) < 1 due to the right-continuity and non-decreasing

of F (λσ; t), which means t∗(λσ) is not the durability. Consequently, F (λσ; t) ≥ 1 if

t ≥ t∗(λσ). On the other hand, t ≥ t∗(λσ) if F (λσ; t) ≥ 1 owing to the durability

definition. Thus condition t < t∗(λσ) is equivalent to condition F (λσ; t) < 1.

Then we have from Definition 1MD,

λ(σ; t) = sup{λ : t < t∗(λσ)} = sup{λ : F (λσ; t) < 1}
= sup{λ : F (σ; t) < 1/λ} = 1/F (σ; t).

Consequently, Λ(σ; t) = 1/λ(σ; t) = F (σ; t). This completes the proof of point (ii).
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Figure 2: Proportional loading processes and durabilities, 0 < λ2 < 1 < λ1.
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Figure 3: (a) Durability diagram for a process σij(τ). (b) Normalized equivalent stress

vs. t for the process.
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λ > 1. (b) Durability diagram for the process. (c) The normalized equivalent stress for
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Figure 5: (a) Monotonous piecewise continuous loading process. (b) Piecewise continuous

durability diagram generated by the process. (c) The normalized equivalent stress for the

process. 37
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Figure 6: (a) Non-monotonous continuous loading process. (b) Piecewise continuous

durability diagram generated by the process. (c) The normalized equivalent stress for the

process. 38
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durability diagram generated by the process. (c) The normalized equivalent stress for the

process. 39


