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1 Introduction

The Boundary Integral Equation (BIE) method (boundary element method,
elastic potential method) has been intensively developed over recent decades
both in theory and in engineering applications. Its popularity is due to the
possibility (at least for some problems with constant coefficients) of reducing a
Boundary Value Problem (BVP) for a linear partial differential equation in a
domain to an integral equation on the domain boundary, that is, to diminish
the problem dimensionality by one. It leads to a diminution of the linear
algebraic equations system, which results from discretization, and allows to
obtain numerical solutions using small computer resources. The main thing
necessary for the reduction of a BVP to a BIE is a fundamental solution to
the original partial differential equation, available in an analytical form and/or
cheaply calculated. After the fundamental solution is used in the corresponding
Green formulae, one can reduce the problem to a boundary integral equation.

However, such a fundamental solution is generally not available if the coeffi-
cients of the original BVP are not constant. The BVPs of heat transfer with
variable heat conductivity coefficients and the BVPs of elastic shells partic-
ularly belong to this category. One can use, in this case, a parametrix (Levi
function), which is usually available, instead of the fundamental solution in the
Green formulae. Parametrix correctly describes the main part of the funda-
mental solution but is not required to satisfy the original differential equations
apart from the singular point. This allows a reduction of the problem not to
boundary but to Boundary-Domain Integral or Integro-Differential Equation
(BDIE or BDIDE) [1–3], see also [4–7]. For numerical solving the BDIE or
BDIDE, one should discretize not only the domain boundary but also the
domain itself and arrives after discretization at a system of linear algebraic
equations, as in the Finite Element Method (FEM), without any dimension
diminution. Unfortunately, this system unlike FEM is fully populated which
prevents the use of economical methods developed for sparsely populated sys-
tem solution.

To prevent this difficulty and to make the BDIE/BDIDE method competi-
tive with the FEM, some localized parametrixes are constructed and used in
this paper to reduce BVPs with variable coefficients to localized BDIEs or
BDIDEs, developing the approach of [8]. This results, after discretization,
in sparsely populated systems of linear algebraic equations, which can be
solved by well known efficient methods. The local boundary integral equation
method of [9,10] can be considered as a particular realization of the localized
BDIE/BDIDE method described here.
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2 BVP, fundamental solution, parametrix, integral and integro-
differential equations

2.1 Stationary heat transfer problem in an inhomogeneous body

The presented approach is sufficiently general but for illustration of the idea
we consider a stationary heat transfer boundary value problem in an isotropic
inhomogeneous 2D or 3D body Ω, with a prescribed temperature ū(x) on a
closed part ∂DΩ of the boundary ∂Ω and prescribed heat flux t̄(x) on the
remaining part ∂NΩ of ∂Ω. That is, we consider an equation

(Lu)(x) :=
∂

∂xi

[
a(x)

∂u(x)

∂xi

]
= f(x), x ∈ Ω (1)

with the mixed boundary conditions

u(x) = ū(x), x ∈ ∂DΩ (2)

Tu(x) = t̄(x), x ∈ ∂NΩ (3)

where Ω is an open (without boundaries) domain, u(x) is an unknown tem-
perature, a(x) is a known variable thermo-conductivity coefficient, f(x) is
a known distributed heat source, T is a surface flux operator, (Tu)(x) :=
a(x)∂u(x)/∂n(x), n(x) is an external normal vector to the boundary ∂Ω, ū(x)
and t̄(x) are known functions. Summation in repeated indices is supposed from
1 to 2 in the 2D and from 1 to 3 in the 3D case unless stated otherwise.

The Green formula for the differential operator L has the form

∫

Ω

[uLv − vLu] dΩ =
∫

∂Ω

[uTv − vTu] dΓ (4)

2.2 Fundamental solution, integral and integro-differential equations

Suppose F (x, y) is a fundamental solution for the operator L, that is, a solution
to the equation

LxF (x, y) = δ(x− y),

where δ(x − y) is the Dirac delta-function. Then taking u(x) in (4) as an
unknown solution of (1) and v(x) as the fundamental solution F (x, y), one
obtains, by the usual way (see e.g. [11]), the integral equality:
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c(y)u(y)−
∫

∂Ω

[u(x)TxF (x, y)− F (x, y)Tu(x)] dΓ(x)

=
∫

Ω

F (x, y)f(x)dΩ(x), (5)

c(y) = c(y; Ω) =





1 if y ∈ Ω,

0 if y /∈ Ω̄

α(y)/(2π) if y ∈ ∂Ω and Ω ⊂ IR2

α(y)/(4π) if y ∈ ∂Ω and Ω ⊂ IR3

(6)

where α(y) is an interior space angle at a corner point y of the boundary ∂Ω,
particularly, c(y) = 1/2 if y is a smooth point of the boundary. (Note that the
signs in front of the surface integrals in (5) throughout this paper differ from
those in [8], where they correspond in fact to the use of the internal normal
vector n in the flux operator T definition.)

Different combinations of representation (5) with boundary conditions (2) and
(3) lead to different integral or integro-differential systems, which, in turn, can
lead to different numerical realizations. We will in particular consider two of
them in this paper.

One way is to substitute boundary conditions (2) and (3) into (5), to introduce
a new variable t(x) = Tu(x) for the unknown flux on ∂DΩ, and to use (5)
at y ∈ Ω ∪ ∂Ω to reduce BVP (1), (2), (3) to a Boundary-Domain Integral
Equation (BDIE) for u(x) at x ∈ Ω ∪ ∂NΩ and t(x) at x ∈ ∂DΩ,

c0(y)u(y) −
∫

∂NΩ

u(x)TxF (x, y)dΓ(x) +
∫

∂DΩ

F (x, y)t(x)dΓ(x) = F0(y), (7)

F0(y) := [c0(y)− c(y)]ū(y) + F(y), y ∈ Ω ∪ ∂Ω,

F(y) :=
∫

∂DΩ

ū(x)TxF (x, y)dΓ(x)−
∫

∂NΩ

F (x, y)t̄(x)dΓ(x)

+
∫

Ω

F (x, y)f(x)dΩ(x), (8)

c0(y) = 0 if y ∈ ∂DΩ, c0(y) = c(y) if y ∈ Ω ∪ ∂NΩ. (9)

Since the left hand side of integral equation (7) at the boundary points y ∈
∂Ω is expressed in terms of only boundary values u(x) (x ∈ ∂NΩ) and t(x)
(x ∈ ∂DΩ), one can split (7) and first solve the equation at y ∈ ∂Ω for u(x)
(x ∈ ∂NΩ) and t(x) (x ∈ ∂DΩ), and then use equation (7) at the remaining
points y ∈ Ω for calculating u(y) at the internal points. By this way one
reduces the original BVP (1), (2), (3) to a direct Boundary Integral Equation
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(BIE) with well known advantages (diminishing of the problem dimensionality
by one) and disadvantages (system of linear algebraic equations with a fully
populated matrix after discretization).

Another approach includes substituting boundary conditions (2) and (3) into
integral equality (5) but leaving T as a differential flux operator acting on u at
the Dirichlet boundary part ∂DΩ and using the resulting Boundary-Domain
Integro-Differential Equation only on Ω ∪ ∂ΩN ,

c(y)u(y)−
∫

∂NΩ

u(x)TxF (x, y)dΓ(x) +
∫

∂DΩ

F (x, y)Tu(x)dΓ(x) = F(y), (10)

y ∈ Ω ∪ ∂NΩ,

where F(y) is given by (8). Complementing the BDIDE with the Dirichlet
boundary condition (2) at y ∈ ∂DΩ reduces BVP (1), (2), (3) to a Boundary-
Domain Integro-Differential Problem, BDIDP (10), (2) for u(x), x ∈ Ω∪∂NΩ.

2.3 Parametrix, integral and integro-differential equations

For the partial differential operators with variable coefficients, like L in (1), a
fundamental solution is usually not available in an explicit form or the form is
too expensive to use for numerical solution of the BIE. However, a parametrix
is often available instead, which is a function P (x, y) satisfying

LxP (x, y) = δ(x− y) + R(x, y),

where the remainder term R(x, y) as function of x ∈ Ω has not more than a
weak (integrable) singularity at x = y.

One can check that a parametrix for (1) is given by the fundamental solution to
the same equation but with the ”frozen” coefficient a(x) = a(y). The equation
then becomes the Laplace equation up to the constant multiplier and the
parametrix for (1) is P (x, y) = F∆(x, y)/a(y), where F∆(x, y) is a fundamental
solution for the Laplace operator ∆,

F∆(x, y) =
ln |x− y|

2π
, x, y ∈ IR2; F∆(x, y) =

−1

4π|x− y| , x, y ∈ IR3,

where |x− y| =
√

(xi − yi)(xi − yi). Then

P (x, y) =
ln |x− y|
2πa(y)

, R(x, y) =
xi − yi

2πa(y)|x− y|2
∂a(x)

∂xi

, x, y ∈ IR2, (11)
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P (x, y) =
−1

4πa(y)|x− y| , R(x, y) =
xi − yi

4πa(y)|x− y|3
∂a(x)

∂xi

, x, y ∈ IR3. (12)

Substituting in (4) P (x, y) for v(x) and taking u(x) as a solution to (1), we
arrive at an integral equality,

c(y)u(y)−
∫

∂Ω

[u(x)TxP (x, y)− P (x, y)Tu(x)] dΓ(x)

+
∫

Ω

R(x, y)u(x)dΩ(x) =
∫

Ω

P (x, y)f(x)dΩ(x) (13)

where c(y) is given by (6).

As in the previous subsection, substituting boundary conditions (2) and (3)
into (13), introducing a new variable t(x) = Tu(x) for the unknown flux on
∂DΩ, and using (13) at y ∈ Ω∪ ∂Ω reduces BVP (1), (2), (3) to the following
BDIE for u(x) at x ∈ Ω ∪ ∂NΩ and t(x) at x ∈ ∂DΩ,

c0(y)u(y) −
∫

∂NΩ

u(x)TxP (x, y)dΓ(x) +
∫

∂DΩ

P (x, y)t(x)dΓ(x)

+
∫

Ω

R(x, y)u(x)dΩ(x) = F0(y), y ∈ Ω ∪ ∂Ω. (14)

F0(y) := [c0(y)− c(y)]ū(y) + F(y),

F(y) :=
∫

∂DΩ

ū(x)TxP (x, y)dΓ(x)

−
∫

∂NΩ

P (x, y)t̄(x)dΓ(x) +
∫

Ω

P (x, y)f(x)dΩ(x), (15)

where c0(y) is given by (9).

Since even for boundary points y, the last term in the left hand side of (14)
includes the unknown values of u over the whole domain Ω, this BDIE does
not lead to a Boundary Integral Equation as in the case when the parametrix
is a fundamental solution, described in the previous subsection.

Using another approach, one can substitute boundary conditions (2) and (3)
into integral equality (13) but leave T as a differential flux operator acting on
u on the Dirichlet boundary part ∂DΩ and use the following BDIDE only at
y ∈ Ω ∪ ∂ΩN ,
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c(y)u(y)−
∫

∂NΩ

u(x)TxP (x, y)dΓ(x) +
∫

∂DΩ

P (x, y)Tu(x)dΓ(x)

+
∫

Ω

R(x, y)u(x)dΩ(x) = F(y), y ∈ Ω ∪ ∂ΩN , (16)

where F(y) is given by (15). Complementing the BDIDE with the Dirichlet
boundary condition (2) at y ∈ ∂DΩ reduces BVP (1), (2), (3) to a BDIDP
(16), (2) for u(x), x ∈ Ω∪ ∂NΩ. As we will see below, this approach can lead,
after discretization, to a system with a diminished number of linear algebraic
equations.

3 Localized parametrix and BDIE/BDIDP

BDIE (14) as well as BDIDP (16), (2) can be reduced after some discretization
to a system of linear algebraic equations and solved numerically. However, the
system will include unknowns not only at the boundary but also at internal
points (similar to the Finite Element Methods). Moreover, since the commonly
used parametrixes, see e.g. (11), (12), are highly non-local, i.e. do not vanish
for virtually all x, the matrix of the system will be fully populated (unlike the
Finite Element Methods) - this prevents the use of well elaborated methods
for sparsely populated systems.

To avoid this difficulty, we present some ideas on how to construct localized
parametrixes and consequently localized BDIE/BDIDP (LBDIE/LBDIDP).
This is based on the fact that a parametrix is not unique and is defined up to
any function φ(x, y) such that Lxφ(x, y) has no more than weak singularities.
In other words, all parametrixes P (x, y) for a differential operator L have the
same singularity at x = y but can differ at other points. Thus we can perturb
an available (not localized) parametrix P 0(x, y) additively or multiplicatively
by a proper function so as to localize it.

Particularly, we can consider a function

P (x, y) = χ(x, y)P 0(x, y) (17)

where χ(x, y) is a cut-off function, such that χ(y, y) = 1 and χ(x, y) = 0 at x
not belonging to a localization domain ω(y) (a vicinity of y), see Fig. 1. Then
P (x, y) has the same singularity as P 0(x, y) at x = y but is localized (non
zero) only on ω(y). Further we have,

Lx(P ) = Lx(χP 0) = Lx(P
0) + Lx((1− χ)P 0) = δ(x− y) + R(x, y),

R(x, y) = R0(x, y) + Lx((1− χ)P 0).
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ΩΩ

Ω∂N

Ω∂D

ω(y1)
•

•
ω(y2)

∂ω

∂ω

•

ω(y3)
∂ω

Fig. 1. A body Ω with localization domains ω(yi)

Consequently, if χ is smooth enough, then R will have the necessary properties
of the remainder, that is, P (x, y) given by (17) is also a parametrix. Some non-
smooth cut-off functions are considered below as well.

3.1 Discontinuous localization

The simplest cut-off function is piecewise constant. Let a domain ω(y) 3 y
be an arbitrary open neighborhood of a point y. Then the piecewise constant
function χ(ω) which is the characteristic function of the set ω is given by

χ(ω) =





1, x ∈ ω̄

0, x /∈ ω̄





.

If one uses this function in (17), one arrives at a discontinuous localized
parametrix

P (x, y) =





P 0(x, y), x ∈ ω̄(y)

0, x /∈ ω̄(y)





.

Instead of further substituting this discontinuous parametrix into the Green
formula (4), which would demand a careful analysis of the LxP (x, y) behavior
in the distribution sense, we apply the Green formula not to the domain Ω
but to its intersection with ω(y) and arrive at the integral equality localized
on the intersection ω(y) ∩ Ω and on its boundary ∂[ω(y) ∩ Ω],

c(y)u(y)−
∫

ω̄(y)∩∂Ω

u(x)TxP (x, y)dΓ(x) +
∫

ω̄(y)∩∂Ω

P (x, y)Tu(x)dΓ(x)

−
∫

Ω∩∂ω(y)

u(x)TxP (x, y)dΓ(x) +
∫

Ω∩∂ω(y)

P (x, y)Tu(x)dΓ(x)
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+
∫

ω(y)∩Ω

R(x, y)u(x)dΩ(x) =
∫

ω(y)∩Ω

P (x, y)f(x)dΩ(x) (18)

Thus, the simplest localization by the piecewise constant cut-off function leads
to the localized integral equality. It includes the volume integral along the part
of ω(y) belonging to Ω with unknown function u and integrals along the part of
the boundary ∂ω(y) of the localization domain belonging to Ω with unknown
function u and its flux Tu, in addition to integrals along the part of the global
boundary ∂Ω intersecting with the closure ω̄(y) of the localization domain
ω(y) with unknown function u or flux Tu.

As for its non-localized counterpart (13), we can use equality (18) to arrive
either to BDIE or to BDIDP.

Substitution of boundary conditions (2) and (3) in (18) and introduction of
a new variable t(x) = Tu(x) at x ∈ ∂ΩD reduces BVP (1), (2), (3) to the
following BDIDE for u(x), x ∈ Ω ∪ ∂NΩ and t(x) = Tu(x), x ∈ ∂DΩ,

c0(y)u(y)−
∫

ω̄(y)∩∂NΩ

u(x)TxP (x, y)dΓ(x) +
∫

ω̄(y)∩∂DΩ

P (x, y)t(x)dΓ(x) (19a)

−
∫

Ω∩∂ω(y)

u(x)TxP (x, y)dΓ(x) +
∫

Ω∩∂ω(y)

P (x, y)Tu(x)dΓ(x) (19b)

+
∫

ω(y)∩Ω

R(x, y)u(x)dΩ(x) = F0(y), y ∈ Ω ∪ ∂Ω, (19c)

F0(y) := [c0(y)− c(y)]ū(y) + F(y), (20)

F(y) :=
∫

ω̄(y)∩∂DΩ

ū(x)TxP (x, y)dΓ(x)−
∫

ω̄(y)∩∂NΩ

P (x, y)t̄(x)dΓ(x)

+
∫

ω(y)∩Ω

P (x, y)f(x)dΩ(x). (21)

Unlike its non-localized counterpart (16), the above equation is not integral
but integro-differential, since it includes an unknown flux Tu(x) on Ω∩∂ω(y).

We can also substitute boundary conditions (2) and (3) into integral equality
(18) but leave T as a differential flux operator, acting on u at the Dirichlet
boundary part ∂DΩ, and use the following BDIDE only at y ∈ Ω ∪ ∂ΩN ,

c(y)u(y)−
∫

ω̄(y)∩∂NΩ

u(x)TxP (x, y)dΓ(x) +
∫

ω̄(y)∩∂DΩ

P (x, y)Tu(x)dΓ(x) (22a)
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−
∫

Ω∩∂ω(y)

u(x)TxP (x, y)dΓ(x) +
∫

Ω∩∂ω(y)

P (x, y)Tu(x)dΓ(x) (22b)

+
∫

ω(y)∩Ω

R(x, y)u(x)dΩ(x) = F(y), y ∈ Ω ∪ ∂NΩ, (22c)

where F(y) is given by (21). We arrive then to BDIDP (22), (2) for u(x),
x ∈ Ω ∪ ∂NΩ.

Note that if P (x, y) is a fundamental solution at x ∈ ω(y), then the last
(volume) integrals with R(x, y) disappear in the left hand sides of (18), (19)
and (22).

3.2 Relation with the subdomain (domain decomposition) method

Let us cover the domain Ω by a subdomain closure set Ω̄i ⊂ Ω̄ and take
ω(y) = Ωi if y ∈ Ωi. Suppose parametrixes Pi(x, y) are used in each subdo-
main Ωi. Then localized integral representation (18) generates a subdomain
(domain decomposition) version of the BDIE if we replace c(y) = c(y; Ω) by
the coefficient c(y; Ωi) corresponding to Ωi. Particularly, for the case when the
Ωi do not intersect but can have interfaces with each other, one can introduce
a new variable t(x) = Tu(x) for the unknown flux also on ∂Ωi\∂NΩ and arrive
at the BDIE on the subdomains and their boundaries

c0(y)u(y) −
∫

∂Ωi∩∂NΩ

u(x)TxPi(x, y)dΓ(x) +
∫

∂Ωi∩∂DΩ

Pi(x, y)t(x)dΓ(x)

−
∫

Ω∩∂Ωi

u(x)TxPi(x, y)dΓ(x) +
∫

Ω∩∂Ωi

Pi(x, y)t(x)dΓ(x)

+
∫

Ωi∩Ω

R(x, y)u(x)dΩ(x) = F0(y), y ∈ Ω̄i, (23)

F0(y) := [c0(y)− c(y; Ωi)]ū(y) +
∫

Ω̄i∩∂DΩ

ū(x)TxPi(x, y)dΓ(x)

−
∫

Ω̄i∩∂NΩ

Pi(x, y)t̄(x)dΓ(x) +
∫

Ωi∩Ω

Pi(x, y)f(x)dΩ(x),

c0(y) = 0 if y ∈ ∂Ωi ∩ ∂DΩ, c0(y) = c(y; Ωi) if y ∈ Ω̄i\∂DΩ.

which should be complemented by the interface conditions for u and t in
neighboring subdomains Ωi.

Let some fundamental solutions Fi(x, y) be used as parametrixes Pi(x, y) on
each subdomain. Then the last volume integral disappears in BDIE (23) and
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it can be considered at y ∈ ∂Ωi along with the interface conditions as the well-
known subdomain (domain decomposition) version of the BIE for u(x), x ∈
∂Ωi\∂DΩ and t(x), x ∈ ∂Ωi\∂NΩ, and as an integral representation for u(y)
at y ∈ Ωi after the BIE is solved.

3.3 Continuous non-smooth localization

To get rid of integrals including Tu on ∂ω(y) in (18), (19) and (22), one can
construct a localized parametrix P (x, y) vanishing on the boundary ∂ω(y) but
not necessarily with vanishing parametrix flux TxP (x, y).

Internally smooth localization

If the parametrix P (x, y) is continuous in x ∈ Ω̄ and smooth in x ∈ ω(y)
except at x = y and vanishes on ∂ω(y), this reduces integral equality (18) to
the following one

c(y)u(y)−
∫

ω̄(y)∩∂Ω

u(x)TxP (x, y)dΓ(x) +
∫

ω(y)∩∂Ω

P (x, y)Tu(x)dΓ(x)

−
∫

Ω∩∂ω(y)

u(x)TxP (x, y)dΓ(x)

+
∫

ω(y)∩Ω

R(x, y)u(x)dΩ(x) =
∫

ω(y)∩Ω

P (x, y)f(x)dΩ(x) (24)

As a consequence, the second integral disappears in (19b) and BDIDE (19)
becomes BDIE. Similarly, BDIDP (22), (2) also simplifies since the second
integral disappears in (22b).

Different methods can be used to obtain a parametrix P (x, y) vanishing on
∂ω(y). Particularly, the Green function on ω(y) (the difference between a
fundamental solution and a function called therein a ”companion solution”) for
a corresponding BVP with ”frozen” coefficients and without junior derivative
terms in the differential operator L, was employed as a parametrix P 0(x, y) in
[9,10]. However, the Green function is available in an analytical form only for
sufficiently simple shapes of the localization domain ω(y), e.g. for a ball.

It seems to be simpler and more universal to construct a proper localized
parametrix using formula (17), where χ(x, y) is a continuous in x ∈ Ω cut-
off function, which is smooth in ω(y) and equal to zero both on the boundary
and outside of ω(y), whereas P 0 is an available parametrix (e.g. a fundamental
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solution for a corresponding differential operator with ”frozen” coefficients and
without junior derivative terms).

Some examples of such cut-off functions localized on a ball ωB(y; ρ) := {x :
|x − y| < ρ} of a radius ρ around a point y or on a cube ωC(y; ρ) = {x :
|xi − yi| < ρ, i = 1, ..., n} with an edge 2ρ around a point y in IRn are

χ(x, y) =

(
1− |x− y|2

ρ2

)
, x ∈ ω̄B(y; ρ);

χ(x, y) =
n∏

i=1

(
1− (xi − yi)

2

ρ2

)
, x ∈ ω̄C(y; ρ),

while χ(x, y) = 0 at x outside the corresponding localization domain ω(y).
Here

∏n
i=1 ai := a1a2...an.

Internally piecewise smooth localization

Let us consider a piecewise smooth cut-off function χ(x, y) that is continuous
in x ∈ Ω̄, equal to zero at x /∈ ω, is continuously differentiable with respect to
x in open subdomains ωk(y), which constitute (together with their interfaces)
ω(y), and has some jumps in normal derivatives with respect to x on interfaces
γ between ωk(y). Such cut-off functions naturally appear if we consider a mesh
on Ω, take the mesh elements adjacent to a node point y as ωk(y) and shape
function corresponding to the node y as values of χ(x, y) in ωk(y).

For example, if ω(y) ⊂ IR2 consists of triangles ωk(y) with y being an apex of
all them, Fig. 2, then χ(x, y) can be taken to be piecewise linear,

χ(x, y) = 1− |(x(k1) − y)× (x− y) + (x− y)× (x(k2) − y)|
|(x(k1) − y)× (x(k2) − y)| , x ∈ ωk(y)

Here x(k1), x(k2) are corners of ωk(y) supplementary to y and a× b denotes the
vector product of vectors a and b.

If ω(y) ⊂ IR3 consists of tetrahedrons ωk(y) with y being an apex of all them,
then χ(x, y) also can be taken piecewise linear,

χ(x, y) = 1−{(x(k1) − y) · [(x(k2) − y)× (x− y)]

+(x(k1) − y) · [(x− y)× (x(k3) − y)]

+(x− y) · [(x(k2) − y)× (x(k3) − y)]}
/ {(x(k1) − y) · [(x(k2) − y)× (x(k3) − y)]}

for x ∈ ω̄k(y), where x(k1), x(k2), x(k3) are corners of ωk(y) supplementary to y.
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ω1

ω2

ω3

ω4

ω5

y

x(11)

x(12)

• x

Fig. 2. Localization domain ω(y) consisting of triangles ωk(y)

Here a · b denotes the inner product and a · [b× c] the mixed product of vectors
a, b, and c.

We can substitute this piecewise smooth (except at point x = y) parametrix
P (x, y) = χ(x, y)P 0(x, y) into the Green formula on the intersection of ωk(y)
with Ω and arrive at integral equalities similar to (18) but localized on the
intersection ωk(y) ∩ Ω and on its boundary ∂[ωk(y) ∩ Ω]. Summing up the
integral equalities generated by each subdomain ωk(y), we arrive at the BDIE
localized on ω(y) ∩ Ω, its boundary ∂[ω(y) ∩ Ω] and on the net interface γ
between the smoothness subdomains ωk(y),

c(y)u(y)−
∫

ω̄(y)∩∂Ω

u(x)TxP (x, y)dΓ(x) +
∫

ω(y)∩∂Ω

P (x, y)Tu(x)dΓ(x) (25a)

−
∫

Ω∩∂ω(y)

u(x)TxP (x, y)dΓ(x) (25b)

−
∫

γ∩Ω

u(x)
[
TxP (x, y)

∣∣∣
γ−

+ TxP (x, y)
∣∣∣
γ+

]
dΓ(x) (25c)

+
∫

[ω(y)\γ]∩Ω

R(x, y)u(x)dΩ(x) =
∫

ω(y)∩Ω

P (x, y)f(x)dΩ(x) (25d)

We account for continuity of χ(x, y) and consequently P (x, y) on γ and un-

derstand under the fluxes TxP (x, y)
∣∣∣
γ∓

the limiting values of the fluxes on γ

in the directions of the outer normal vectors n(x)|γ∓ for the adjacent subdo-
mains ωk(y), where n(x)|γ− = −n(x)|γ+ . Obtaining (25), it was also taken into
account that if y ∈ ω(y) belongs to an interface between some subdomains
ωk(y), k = 1, ..., K, and is an internal point of Ω, then

∑K
1 c(y; ωk)(y) = 1

owing to (6). However, if y ∈ ω(y) belongs to an interface between some subdo-
mains ωk(y), k = 1, ..., K, and is a boundary point of Ω, then

∑K
1 c(y; ωk ∩ Ω)(y) =

13



c(y; Ω). This means, the coefficients c(y) in (25) are given by the same expres-
sion (6), that is, are determined by the position of y in Ω and does not depend
on χ(x, y) and ω(y).

As a consequence of the jumps of the parametrix flux inside ω(y) and van-
ishing the parametrix on ∂ω(y), BDIDE (19) changes for this case since the
second integral in (19b) is replaced by (25c) and the equation remains integro-
differential. Similarly, BDIDP (22), (2) also changes for this case since the
second integral in (22b) is replaced by (25c).

3.4 Globally smooth localization

To simplify the integral representation even further by getting rid of the re-
maining integral along ∂ω(y), one can employ a smooth in x ∈ Ω̄ cut-off func-
tion χ(x, y), which vanishes on ∂ω(y) together with its normal derivative in x.
Then the same holds true also for the parametrix P (x, y) = χ(x, y)P 0(x, y).

Some examples of smooth cut-off functions localized on a ball ωB(y; ρ) of a
radius ρ around a point y or on a cube ωC(y; ρ) with an edge 2ρ around a
point y in IRn, are

χ(x, y) =

(
1− |x− y|2

ρ2

)2

, x ∈ ω̄B(y; ρ)

χ(x, y) =
n∏

i=1

(
1− (xi − yi)

2

ρ2

)2

, x ∈ ω̄C(y; ρ)

χ(x, y) = exp

(
1− ρ2

ρ2 − |x− y|2
)

, x ∈ ω̄B(y; ρ)

χ(x, y) =
n∏

i=1

exp

(
1− ρ2

ρ2 − (xi − yi)2

)
, x ∈ ω̄C(y; ρ)

where χ(x, y) = 0, x /∈ ω̄(y). The first two functions χ are continuous and
have continuous first derivatives and the last two are infinitely smooth in IRn.

Integral representation (18) is reduced for such a parametrix to the following
one,

c(y)u(y)−
∫

ω(y)∩∂Ω

u(x)TxP (x, y)dΓ(x) +
∫

ω(y)∩∂Ω

P (x, y)Tu(x)dΓ(x)

+
∫

ω(y)∩Ω

R(x, y)u(x)dΩ(x) =
∫

ω(y)∩Ω

P (x, y)f(x)dΩ(x) (26)

14



If y is an internal point sufficiently far from the boundary ∂Ω, then the bound-
ary integrals along ω(y)∩∂Ω vanish in the left hand side of (26) while only the
volume integral along ω(y) remains. If y is a boundary point of Ω or an internal
point near the boundary of Ω, then the volume integral along the intersection
of ω(y) with Ω and the both boundary integrals along the intersection of ∂Ω
with ω(y) remain.

As a consequence, both integrals along Ω(y) ∩ ∂ω(y) disappear in (19b) and
BDIDE (19) becomes BDIE for this case. Similarly, BDIDP (22), (2) also
simplifies since the both integrals along Ω(y) ∩ ∂ω(y) disappear in (22b).

4 Discretization of LBDIE/LBDIDP

To reduce LBDIDE (19) or BDIDP (22), (2) to a system of linear algebraic
equations, one can first employ an interpolation or approximation formula to
express the unknown function u at any point of integration or source point
in terms of the values of the same or an auxiliary function at some node
points. To make sure the system will be sparsely populated, the interpola-
tion/approximation formula should be also local. After substitution of the
interpolation/approximation formula into a LBDIDE/LBDIDP, either the col-
location or the Petrov-Galerkin method can be applied. Only the first method
is discussed below.

As demonstrated above, there is a lot of flexibility in constructing appropri-
ate cut-off functions for rather arbitrary shapes and combinations of volume
elements. It seems to be preferable to use continuous cut-off functions to elim-
inate the unknown flux Tu from the formulation except on the global bound-
ary ∂Ω (or even smooth cut-off functions to get rid of all the surface integrals
along ∂ω(y) and γ) and work with the simplified LBDIEs or LBDIDPs. We
will consider below the sufficiently general case of the discontinuous localiza-
tion described in subsection 3.1 and show the simplifications for more smooth
localizations.

4.1 Mesh-based discretization

Suppose the domain Ω is covered by a mesh of closed volume elements ek with
nodes set up at the corners, edges, faces, and/or inside the elements. Let J be
the total number of nodes xi (i = 1, 2, ..., J), from which there are JD nodes
on ∂DΩ. One can use each node xi as a collocation point for an LBDIE with
a localization domain ω(xi). Let the union of closures of the volume elements
that intersect with ω(xi) be called the total localization domain ω̃(xi), Fig.
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3. Then the closure ω̄(xi) ∩ Ω̄ belongs to ω̃(xi). If ω(xi) is sufficiently small,
then ω̃(xi) consists only of the elements adjacent to the collocation point xi.
If ω(xi) is from the very beginning chosen as consisting only of the elements
adjacent to the collocation point xi, which seems to be reasonable in practical
calculations, then ω̃(xi) = ω̄(xi). Let Jω̃(xi) be the number of nodes belonging
to ω̃(xi).

Ω∂

ω∂

ω~∂
x i

(x i)

(x i)

Fig. 3. A localization domain ω(xi) and a total localization domain ω̃(xi) associated
with a collocation point xi at a mesh-based discretization of a body Ω

Let us consider a continuous interpolation of u(x) at any point x ∈ Ω in terms
of the values of u(xj) at the node points xj belonging to the same element
ek ⊂ Ω as x,

u(x) =
∑

j

u(xj)φkj(x), x, xj ∈ ek,

where the shape functions φkj(x) are localized on ek. Collecting the interpo-
lation formulae for all x ∈ ω̃(xi), we have

u(x) =
∑

xj∈ω̃(xi)

u(xj)Φij(x), x ∈ ω̃(xi), (27)

Φij(x) =





φkj(x) if x, xj ∈ ek ⊂ ω̃(xi)

0 otherwise
(28)

Consequently, Φij(x) = 0 if xj /∈ ω̃(xi). We can also use a local interpolation
of t(x) = (Tu)(xj) along only boundary nodes belonging to ω̃(xi) ∩ ∂DΩ,

t(x) =
∑

xj∈ω̃(xi)∩∂DΩ

t(xj)Φ′
ij(x), x ∈ ω̃(xi) ∩ ∂DΩ. (29)

Here Φ′
ij(x) are the boundary shape functions obtained similar to Φij(x) in

(28) and such that Φ′
ij(x) = 0 if xj /∈ ω̃(xi) ∩ ∂DΩ.
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After substitution of interpolations (27), (29), e.g., in LBDIDE (19), we arrive
at the following system of J linear algebraic equations for J unknowns u(xj),
xj ∈ Ω ∪ ∂NΩ and t(xj) = (Tu)(xj), xj ∈ ∂DΩ,

c0(xi)u(xi) +
∑

xj∈Ω∪∂NΩ

K0
iju(xj) +

∑

xj∈∂Ω

Qijt(x
j)

= F0(xi)− ∑

xj∈∂DΩ

K0
ijū(xj), i = 1, ...J, no sum in i, (30)

where F0(xi) is calculated from (20),

K0
ij =−

∫

ω̄(xi)∩∂NΩ

Φij(x)TxP (x, xi)dΓ(x) +
∫

ω(xi)∩Ω

R(x, xi)Φij(x)dΩ(x) (31a)

−
∫

Ω∩∂ω(xi)

Φij(x)TxP (x, xi)dΓ(x) +
∫

Ω∩∂ω(xi)

P (x, xi)TΦij(x)dΓ(x), (31b)

Qij =
∫

ω̄(xi)∩∂DΩ

P (x, xi)Φ′
ij(x)dΓ(x) (32)

Instead, one can arrive at the system of only J − JD algebraic equations for
J−JD unknowns u(xj), xj ∈ Ω∪∂NΩ, if one substitutes interpolation formulae
(27) in BDIDP (22), (2),

c(xi)u(xi) +
∑

xj∈Ω∪∂NΩ

Kiju(xj) = F(xi)− ∑

xj∈∂DΩ

Kijū(xj), (33)

xi ∈ Ω ∪ ∂NΩ, (no sum in i),

where F(xi) is calculated from (21),

Kij =−
∫

ω̄(xi)∩∂NΩ

Φij(x)TxP (x, xi)dΓ(x) +
∫

ω̄(xi)∩∂DΩ

P (x, xi)TΦij(x)dΓ(x) (34a)

−
∫

Ω∩∂ω(xi)

Φij(x)TxP (x, xi)dΓ(x) +
∫

Ω∩∂ω(xi)

P (x, xi)TΦij(x)dΓ(x) (34b)

+
∫

ω(xi)∩Ω

R(x, xi)Φij(x)dΩ(x). (34c)
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4.2 Meshless discretization

For a meshless discretization, one needs a method of local interpolation or
approximation of a function along randomly distributed nodes xi, for example,
the moving least squares (MLS) approximation method, see e.g. [9,10] and the
references therein. This leads to an approximation of a function u(x) along
values of an auxiliary function û(x) in the nodes xi belonging to a localization
domain ω0(x) of the approximation method,

u(x) =
∑

j

û(xj)φj(x), xj ∈ ω0(x), (35)

where φj(x) are known shape functions.

We will suppose all the approximation nodes xi belong to Ω̄ and will use them
also as collocation points for the LBDIDE/LBDIDP discretization. Let, as
before, J be the total number of nodes xj (i = 1, 2, ..., J), JD from which be the
number of the nodes on ∂DΩ. Formula (35) can be used to approximate u(x)
both at a collocation point xi and at integration points x from a localization
domain ω(xi). Then (35) implies a total approximation of u(x), for all x ∈
ω̄(xi),

u(x) =
∑

xj∈ω̃(xi)

û(xj)Φij(x), x ∈ ω̄(xi); (36)

Φij(x) =





φj(x) if xj ∈ ω0(x) ⊂ ω̃(xi)

0 otherwise
(37)

where ω̃(xi) := ∪x∈ω̄(xi)∩Ω̄ω0(x) is a total localization domain, Fig. 4. Conse-
quently, Φij(x) = 0 if xj /∈ ω̃(xi). Let Jω̃(xi) be the number of nodes xj ∈ ω̃(xi).

Let Φ′
ij(x) be the shape functions obtained similar to Φij(x) in (37) for a local

approximation of t(x) = (Tu)(xj) along only boundary nodes belonging to
ω̃(xi) ∩ ∂DΩ, such that Φ′

ij(x) = 0 if xj /∈ ω̃(xi) ∩ ∂DΩ. Then

t(x) =
∑

xj∈ω̃(xi)

t̂(xj)Φ′
ij(x), x ∈ ω̄(xi) ∩ ∂DΩ. (38)

After substitution of approximations (36), (38), e.g., in LBDIDE (19) and
boundary conditions (2), we arrive at the following system of J + JD linear
algebraic equations with respect to the J unknowns û(xj), xj ∈ Ω̄ and JD

unknowns t̂(xj), xj ∈ ∂DΩ,
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ω∂ (xi)

(xi)
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ω0(x) 

Fig. 4. A localization domain ω(xi) and a total localization domain ω̃(xi) associated
with a collocation point xi at a meshless discretization of a body Ω

c0(xi)
∑

xj∈ω̃(xi)

û(xj)Φij(x
i) +

J∑

j=1

K0
ijû(xj) +

∑

xj∈∂Ω

Qij t̂(x
j) = F0(xi), i = 1, ...J (39)

∑

xj∈ω̃(xi)

û(xj)Φij(x
i) = ū(xi), xi ∈ ∂DΩ, no sum in i, (40)

where F0(xi) is calculated from (20), K0
ij and Qij are expressed by (31), (32)

with the shape functions Φij, Φ′
ij(x) from (37) and (38).

Alternatively, one can arrive at another system of J algebraic equations with
respect to J unknowns û(xj), xj ∈ Ω̄ if one substitutes approximation formulae
(36) in BDIDP (22), (2),

c(xi)
∑

xj∈ω̃(xi)

û(xj)Φij(x
i) +

J∑

j=1

Kijû(xj) = F(xi), xi ∈ Ω ∪ ∂NΩ, (41)

∑

xj∈ω̃(xi)

û(xj)Φij(x
i) = ū(xi), xi ∈ ∂DΩ, no sum in i, (42)

where F(xi) is calculated from (21) and Kij is expressed by (34) with the
shape functions Φij from (37).

4.3 Remarks on the discretizations

Application of the discretization algorithms to the both LBDIE (19) and
LBDIDP (22), (2) needs differentiation of the shape functions φkj(x) to cal-
culate TΦij(x) in the second integrals in (31b), (34a), and (34b). However,
if the parametrix is continuously localized, then the second integrals in (31b)
and (34b) disappear and the need to differentiate remains only for (34a) in
the discrete versions of LBDIDP (22), (2). If the parametrix is localized and
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globally smooth (except its singular point x = y), then all the integrals in
(31b) and (34b) disappear simplifying the matrix calculations for algebraic
systems (30), (33), (39)-(40), and (41)-(42) even further.

From the definitions in both mesh based and meshless methods, Φij(x) =
TΦij(x) = Φ′

ij(x) = 0 and consequently K0
ij = Qij = Kij = 0 if xj /∈ ω̃(xi).

This means, each of equations in systems (30), (33), (39)-(40), and (41)-(42)
has not more than Jω̃(xi) ¿ J non-zero entries, what manifests the systems
are sparsely populated.

5 Concluding Remarks

Partial differential equations with variable coefficients generally do not pos-
sess explicit and cheaply calculated fundamental solutions and this prevents
reduction of BVPs for such equations to BIEs. Fortunately, such equations
often possess simple and cheaply calculated parametrixes. Localization of a
parametrix by multiplication by a cut-off function with a local support al-
lows the reduction of a BVP to a localized boundary-domain integral or
integro-differential equation/problem, which ends up, after a discretization,
in a system of linear algebraic equations with a sparsely populated matrix.
This makes the method competitive with the finite element method. Exam-
ples of different cut-off functions with different smoothness leading to different
LBDIEs/LBDIDEs/LBDIDPs demonstrate the method high flexibility. Local-
ized algorithms for both mesh-based and meshless discretization are presented
showing the great potential of the LBDIE/ LBDIDE/LBDIDP method for nu-
merical applications to different BVPs in science and engineering.

Even in some situations when a cheap fundamental solution is available, it
seems to be profitable to treat it as a parametrix and obtain a localized
BDIE/LBDIDE/LBDIDP based on it. (For a particular localization, such an
approach was in fact employed in [9].) This make sense especially for elongated
or flattened bodies, where the nonlocal connection between remote points in
the traditional BIEs looks artificial from the physical point of view and leads
to ill-posed algebraic systems after discretization. The localized approach al-
lows to obtain a discrete algebraic system of higher dimension but with a very
sparsely populated and well-posed matrix.

As was mentioned at the end of subsection 3.1, the localized parametrix ap-
proach leads also to the domain decomposition (subdomains) method. Fol-
lowing this approach further, one can use BIE in some of the subdomains
(provided that there is a fundamental solution available there) and LBDIE/
LBDIDE/LBDIDP in the remaining subdomains. This seems particularly pro-
mising for infinite or semi-infinite domains, where BIE is employed in an
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infinite (semi-infinite) subdomain with constant BVP coefficients and LB-
DIE/LBDIDE/LBDIDP in the remaining finite subdomain with variable co-
efficients. Speaking more generally, in many problems, where the BIE/FEM
combination proved to be efficient, the subdomain combination of BIE with
LBDIE/LBDIDE/LBDIDP should be not less efficient and more natural.

So as not to obscure the main idea of the localization approach, we deliberately
avoided specification of appropriate function classes where the considered in-
tegral and integro-differential operators act. However this should be done to
consider some important features of the LBDIE/LBDIDE/LBDIDP such as
existence and uniqueness of solution, spectral properties, equivalence to the
original BVP, convergence of approximate solutions. This should be the sub-
ject of special investigations leading to an optimal choice of the cut-off func-
tions, localization domains, node points, and hopefully to effective iteration
methods based on this information [12].
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