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Abstract

We describe an approach which mixes testing, slic-
ing, transformation and formal veri�cation to inves-
tigate speculative hypotheses concerning a program,
formulated during program comprehension activity.
Our philosophy is that such hypotheses (which are

typically undecidable) can, in some sense, be `an-
swered' by a partly automated system which returns
neither `true' nor `false', but a program (the `test
program') which computes the answer.
The motivation for this philosophy is the way in

which, as we demonstrate, static analysis and manip-
ulation technology can be applied to ensure that the
resulting test program is signi�cantly simpler than
the original program, thereby simplifying the process
of investigating the original hypothesis.

1 Introduction
Often the task of legacy system, source code com-

prehension begins with a series of questions about
properties for the system. These questions repre-
sent speculative hypotheses about the supposed be-
haviour of the system.
Ideally it would be attractive to have a fully auto-

mated formal reasoning tool, which would be suÆ-
ciently powerful to decide these propositions for us.
With such a system we would be able to insert pre-
and post- conditions into a legacy system to cap-
ture our hypotheses and then ask the tool to decide
whether the post-condition was implied by the pre-
condition. Clearly, this would be of considerable as-
sistance in comprehension e�ort.

Unfortunately, because all but the most trivial
propositions will concern properties of the system
which are undecidable, such a quixotic tool is im-
possible. In its place, testing is often relied upon as
the mechanism to investigate hypotheses.

In this paper, we introduce an approach in which
aspects of formal proof are included in a process
which resembles testing using a `test harness'. The
`test harness' tests whether or not the hypothesis is
valid, not for some speci�c input, but statically at
compile time, and therefore, in general. The test
harness is constructed from pre- and post-conditions
and the resulting composition of test harness and
subject program are simpli�ed using amorphous slic-
ing [15, 16, 6]. The formal component consists, not of
attempting to prove the proposition, but in attempt-
ing to simplify the composition of the test harness
and the subject program. This combination creates
a method for approximating the answers to undecid-
able propositions using program simpli�cation tech-
nology.

By recasting the problem as one of simpli�cation,
we circumvent the undecidability problem because
the simpli�cation process consists of approximating
the ideal simplest program. This allows a tool to
make progress in deciding the truth or otherwise of
the proposition, in cases where it is impossible to
fully decide it. This gives us a way of partially au-
tomating support for comprehension, based on the
formulation and investigation of hypotheses.

The rest of this paper is organized as follows:
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In section 2 we introduce a theory of `programs
as answers' and in section 3 we show how `test pro-
grams' can be simpli�ed. Section 4 argues that the
simpli�ed test programs are partial (i.e. approxi-
mate) answers to generally undecidable propositions
and section 5 contains a worked example which illus-
trates the relationship between pre-conditions and
conditioned slicing. Sections 6 and 7 discuss the im-
plementation of the approach, the philosophy which
underlies it and future work.

2 Theoretical Foundations
The thesis of this paper is that a program (which

we call the `Test Program') can be used as the an-
swer to a `question' about another program (which
we call the `Subject Program'). This `question' also
can be phrased as a program which tests a property
of the state produced by the subject program. Of
course, the property may only be required to hold
when the subject program is executed in some set of
well de�ned initial states. This means that we may in
practice split the question into two parts, one which
establishes the pre-condition on the initial state and
one of which checks the post-condition on the �nal
state.
The `question program' is thus nothing more than

a test harness. The crucial di�erence between the
approach we advocate here and the traditional ap-
proach of testing a program using a test harness, is
that conventional testing is dynamic whereas our ap-
proach is static. That is, rather than executing the
Test Programwith a series of inputs which satisfy the
pre-condition and checking the corresponding post-
condition, we simplify the Test Program, making it
easier for a human to investigate the hypothesis man-
ually.
We shall assume that the Test Harness tests propo-

sitions by storing either the value true or the value
false in some identi�able variable. We shall write Tv
for a Test Harness which stores its result in the vari-
able v. A Test Harness can be composed with a sub-
ject program to form a Test Program. We shall write
CTvp to denote the composition of the Test Harness
Tv with the subject program p. In practice this com-
position will either be sequential composition, or will
simply consist of inserting the test program `some-
where in the middle' of the Test Harness.
We refer to M, the denotational meaning of pro-

grams. M[[p]] is the state-to-state mapping denoted
by the program p, where states are simply environ-
ment mappings from variable names to the values
they denote. For a set of variables, V , we shall write
S(p; V ) for a simpli�ed version of p which preserves
its e�ect upon the variables in V . More formally, if
p terminates when executed in some initial state �

then

8v:v 2 V )M[[S(p; V )]]�v =M[[p]]�v

This is a formalization of the semantic projection
preserved by an end slice [19] constructed for the
slicing criterion V .
In our approach, the programmer writes a Test

Harness, Tv to test some property of a program p by
storing a suitable value in a `test variable', v. The
Test Harness, Tv can then be composed with the Sub-
ject Program, p, to form the Test Program, CTvp . The

system responds with S(CTvp ; fvg), a simpli�ed ver-
sion of the Test Program which preserves its e�ect
upon the test variable.
Using this notation we may now de�ne formally

the relationship, which we call the `Test Program
Requirement (TPR)', which must exist between the
Test Harness and the hypothesis it tests. It is the
programmer's responsibility to meet the TPR by
constructing a suitable Test Harness. If the TPR is
met, the system will guarantee to produce a (hope-
fully) much simpli�ed Test Program which also sat-
is�es the TPR.

De�nition 1 (Hypothesis) A hypothesis is a pair,
containing two predicates which map states to
booleans. The two predicates are the pre- and post-
condition of the hypothesis

For example, let � = ��:�(x) > 0 and ! =
��:�(z) < 0, then the hypothesis (�; !) states for-
mally:

\If the initial value of x is positive then the
�nal value of z is negative."

De�nition 2 (Test Program Requirement)
Let h = (�; !) be a hypothesis.
Let Tv be a Test Harness that tests h, storing the
result in the variable v.
The Test Program Requirement (TPR) is

8p:8�:M[[p]]� 6= ?
)

M[[CTvp ]]�v =

�
true if �(�) ) !(M[[p]]�)
false otherwise

Observe that the TPR says nothing about non-
terminating computations, and thus we are con-
cerned only with the partial correctness of the hy-
pothesis under test.
Now, S(p; V ) is a simpli�ed version of p which pre-

serves its e�ect upon the variables in V . Since

8v:v 2 V )M[[S(p; V )]]�v =M[[p]]�v

2
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We know that should CTvp satisfy the TPR then

S(CTvp ; fvg) will also do so.
Notice that �(�) ) !(M[[p]]�) is not generally

decidable, but neither is deciding whetherM[[CTvp ]]�v
is true or false.
If the hypothesis is true for the program fragment

under analysis, then the simplest program which will
be obtainable, will be simply:

T = true;

If the hypothesis is untrue for the program under
investigation, then this will manifest itself as a sim-
pli�ed program (the simpli�ed Test Program), which
stores false in the Test Variable for at least one pos-
sible input to the Test Program.
To illustrate, suppose the program fragment is

simply the single assignment

x = y*y;

If the hypothesis is that, in all states, this assignment
stores y2 in x, then the simpli�ed test program will
be

T = true;

If, on the other hand, the hypothesis is that the pro-
gram stores y�2 in x, then the simplest Test Program
will be

if (x==2) T = true; else T = false;

Notice that this program suggests a pre-condition

��:�(x) = 2

Under this pre-condition, the post condition is satis-
�ed.
As an example of how this approach might be used

to investigate hypotheses during comprehension ac-
tivity, consider the simple program fragment in Fig-
ure 1. In this �gure the subject program is depicted
on the left and the test program on the right. We
have assumed for simplicity that the pre-condition
is true and therefore there is no component of the
test harness required to establish that the subject
program is to be executed in a state which satis�es
the precondition. (We shall return to this issue in
section 5.)
The post-condition is that every element of the ar-

ray A is no larger than the value stored in the variable
b. More formally, the pre-condition is

��:true

and the post-condition is1

��:8i:0 � i < MAX:�(A) # i � b

The hypothesis is that the program computes the
biggest array value in b.

3 Test Program Simpli�cation
The Test Program computes the answer that we

are interested in, but it is larger than the program we
started out with and so we have apparently gained
little. However, we can simplify the Test Program,
with the hope that the result will be (signi�cantly)
simpler than the original program.

3.1 Slicing

An obvious way to tackle the size of the test pro-
gram is to slice it with respect to the test variable.
This is likely to produce simpli�cation as the Test
Harness will typically be designed to test only a prop-
erty of the original program and therefore sections of
the original will have no e�ect upon the variables
mentioned in the Test Harness.
A program slice [22, 17] is constructed by delet-

ing from a program those statements and predicates
which cannot a�ect the value of a set of variables, V ,
at some point within the program, i. The pair (V; i)
is known as the slicing criterion.
Several authors have shown how slicing may be

used to aid the task of program comprehension and
testing [5, 12, 14, 18]. Slicing assists program com-
prehension because of the way it abstracts from a
program a thread (the slice) which captures the ef-
fect of the original upon some chosen sub domain of
its overall computation.
In this case we apply slicing to reduce the size of

the Test Program, with the aim of reducing the e�ort
required either to test it or to formally verify it. For
this purpose we shall only be interested in end slicing
[19], where the point of interest within the program
to be sliced is the end of the program. An end slice
on a set of variables, V , thus captures the portion
of the program which a�ects the �nal values of the
variables in V . In this case, V is simply the singleton
set containing the test variable. The slice for the Test
Program in Figure 1 is depicted in Figure 2.

3.2 Amorphous Slicing

Slicing the Test Program does reduce its size and
`weeds out' those parts of the original which are
not concerned with the particular property under
scrutiny. In the example we have just considered, it
removes the computation of the smallest element in
the array. However, traditional (syntax-preserving)
slicing does not produce the smallest program which

1# is the tuple selection operator.

3
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1 b=A[0]; 1 b=A[0];

2 s=A[0]; 2 s=A[0];

3 for(i=0;i<MAX;i++) 3 for(i=0;i<MAX;i++)

4 f if(A[i]>b) b=A[i]; 4 f if(A[i]>b) b=A[i];

5 if(A[i]<s) s=A[i]; g 5 if(A[i]<s) s=A[i]; g

6 T=true;
7 for(i=0;i<MAX;i++)

8 if(A[i]>b) T=false;

p: Original Program t: Test program

Figure 1: A Program and its Test Program

1 b=A[0]; 1 b=A[0];

2 s=A[0];

3 for(i=0;i<MAX;i++) 3 for(i=0;i<MAX;i++)

4 f if(A[i]>b) b=A[i]; 4 if(A[i]>b) b=A[i];

5 if(A[i]<s) s=A[i]; g
6 T=true; 6 T=true;
7 for(i=0;i<MAX;i++) 7 for(i=0;i<MAX;i++)

8 if(A[i]>b) T=false; 8 if(A[i]>b) T=false;

t: Test Program s: Slice on (fTg; 9)

Figure 2: Slicing the Test Program

preserves the e�ect of the original upon the slicing
criterion. In [15] an approach to slicing, called `amor-
phous slicing', is introduced which retains the re-
striction that a slice preserves the e�ect of the origi-
nal program with respect to the slicing criterion, but
drops the requirement that a slice be constructed by
command deletion alone.

An amorphous slice can therefore be constructed
using any transformation which preserves the e�ect
of the original upon the variables of interest. As such,
an amorphous slice is no larger (and often consider-
ably smaller) than the corresponding conventional
slice. The price paid for this improved simpli�ca-
tion power is that the slice produced is no longer
syntactically related to the original (the process is
`syntactically amorphous', though semantically it is
identical to conventional slicing).

For some applications, the syntactic relationship
between a subject program and its conventional slice
is crucial (for example for cohesion measurement
[4, 21] and for debugging [20]). For other applica-
tions (such as the problem of program comprehension
which presently concerns us) it is only the seman-
tic relationship between slice and subject program
which is important.

Using program transformation we can dramati-
cally improve upon the slice we constructed for the
Test Program in Figure 2. Figure 3 shows a pos-
sible sequence of transformations which yields the
`perfect' amorphous slice of the Test Program. We
give this example as an illustration of the `best case',
to motivate our approach. In section 7 we present a
more critical appraisal of the approach indicating the
barriers which will need to be overcome in order to
achieve the full promise of the approach.

The transformations we use in Figure 3 are given
in the form of a logical calculus in Figure 4. Three
auxiliary functions are used in the de�nition of these
rules. DEF(s) is the set of variables de�ned in state-
ment s. Note that all our transformations are ap-
plicable only to programs in which expressions are
side{e�ect free. That is, expressions have no de�ned
variables. REF(s) is the set of variables referenced
in statement or expression s. SUB(E; i; e) is the
expression which results from substituting all occur-
rences of the identi�er i, in the expressionE, with ex-
pression e. REXPS(s) is the set of expressions men-
tioned by s (including those used to index arrays on
either side of an assignment to an array element).

4
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4 Programs as Approximate Answers
The Test Harness tests some aspect of the pro-

gram. The Test Program which results from wrap-
ping the Test Harness around the original program
computes an answer to the hypothesis. Notice that
no matter how complicated the syntax of the Test
Program, it is semantically extremely simple; it as-
signs either true or false to the variable T. Of
course, it is also likely that the syntax of the Test
Program will be simpler, or, at least as simple as the
original. The approach thus simpli�es analysis of the
hypothesis under investigation in two ways

� Syntactically
Program slicing is used to reduce the shear
amount of syntax to be considered.

� Semantically
The test program's semantics is that of a pro-
gram which stores a single boolean value in a
variable.

The amorphous slice is thus an approximate an-
swer to the question posed in the hypothesis. more-
over, it is an answer expressed in the notation of
the programming language itself. We argue that this
goes some way towards the analysis in hand by per-
forming that which can be reasonably automated and
leaving that which cannot to the human.

5 Pre-conditions and Conditioned

Slicing
The example in Figure 3 had a trivial pre-

condition (true). In this section we consider amor-
phous slicing techniques which are applicable to Test
Programs which embody a nontrivial pre-condition.
Unsurprisingly, it turns out that what is required are
techniques associated with conditioned slicing. Con-
ditioned slicing was introduced by Canfora, Cimitile,
DeLucia and Munro [8, 7, 10, 12]. The conditioned
slicing criterion is an extension of the static slicing
criterion introduced by Weiser [22].
A conditioned slicing criterion is a 4{tuple,

(�; �; i; V ), where � is a predicate logic formula, the
free variables of which are �. V and i are the set
of variables and the point in the program for which
the slice is to be constructed (as in Weiser's static
formulation).
A conditioned slice preserves the meaning of the

original program on the set of variables in V when
the next statement to be executed is at i and the
program and its slice are executed in a state which
satis�es �. The conditional slicing paradigm also
extends naturally to amorphous conditioned slicing
[15], where the restriction to command deletion is

) (Code motion)

b=A[0]; T=true;

for(i=0;i<MAX;i++)

if(A[i]>b) b=A[i];

for(i=0;i<MAX;i++)

if(A[i]>b) T=false;

) (Loop Coalesce)

b=A[0]; T=true;

for(i=0;i<MAX;i++)

f if(A[i]>b) b=A[i];

if(A[i]>b) T=false;g

) (Then fold)

b=A[0]; T=true;

for(i=0;i<MAX;i++)

if(A[i]>b)

f b=A[i];

if(A[i]>b) T=false;g
else if(A[i]>b) T=false;

) (redundant if)

b=A[0]; T=true;

for(i=0;i<MAX;i++)

if(A[i]>b)

f b=A[i];

if(A[i]>b) T=false;g

) (push if)

b=A[0]; T=true;

for(i=0;i<MAX;i++)

if(A[i]>b)

f if(A[i]>A[i]) T=false;

b=A[i];g

) (axioms & if reduce false)

b=A[0]; T=true;

for(i=0;i<MAX;i++)

if(A[i]>b) b=A[i];

) (Slice on T)

T=true;

Figure 3: Test Program Transformation
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Axiom 1 [[e�e]] ) [[0]]

Axiom 2 [[e+0]] ) [[e]]

Axiom 3 [[i=i]] ) [[]]

Axiom 4 [[e1 && e2]] ) [[e2 && e1]]

Axiom 5 [[e && e]] ) [[e]]

Axiom 6 [[E > E]] ) [[false]]

Rule 1 (Push assign)

i2 =2 REF(e1) ^ e3 = SUB(e2; i1; e1) ^ i1 6= i2
[[i1 = e1; i2 = e2; ]]) [[i2 = e3; i1 = e1; ]]

Rule 2 (Unfold assign)

e3 = SUB(e2; i; e1)

[[i = e1; i = e2; ]]) [[i = e3; ]]

Axiom 7 (Then fold) [[if(p) S1 S2 ]]) [[if(p) fS1S2g else S2]]

Rule 3 (Redundant if)

p � q

[[if(p) S else if(q) S0]]) [[if(p) S]]

Rule 4 (Push if)

[[i = e;S2]]) [[S0

2
i = E;]] ^ p0 = SUB(p; i; E)

[[i = E; if(p) S2]]) [[if(p0) S0

2
i = E; ]]

Rule 5 (Loop coalesce)

8e 2 REXPS(S1):8e0 2 REXPS(S2):i 2 REF(e0) ^ i 2 REF(e)) [[e<=e0]] � [[true]]

[[for(i = e1;e2;i++) S1 for(i = e1;e2;i++) S2]]) [[for(i = e1;e2;i++) fS1S2g ]]

Rule 6 (Code motion)

REF(S1) \DEF(S2) = ; ^ REF(S2) \DEF(S1) = ;

[[S1S2]]) [[S2S1]]

Axiom 8 (if reduce false) [[if(false) S1 else S2]]) [[S2]]

Figure 4: Transformation Axioms and Rules

6
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1 T=true;
2 if(c<0) f

3 for(i=0;i<MAX;i++) 3 for(i=0;i<MAX;i++)

4 if(A[i]<0) 4 if(A[i]<0)

5 A[i]=A[i]*c; 5 A[i]=A[i]*c;

6 for(i=0;i<MAX;i++)

7 if(A[i]<0)

8 T=false; g
p: Original Program t: Test program

Figure 5: A Test Program with a Pre-condition

dropped in the slice construction process. By setting
i to be the end of the program we obtain amorphous
conditioned end slicing, which preserves the �nal val-
ues of variables in V when the program is executed
in a state satisfying �.
To see how techniques associated with conditioned

slicing have a role to play in slicing Test Programs
with pre-conditions, consider the subject program
and its Test Program in Figure 5.
In this program the pre-condition is

��:�(c) < 0

and the post-condition is

��:8i:0 � i < MAX:�(A) # i � 0

The pre-condition is established by enclosing the
Test Program in the then branch of an if statement
whose predicate is c<0, thereby leaving the subject
program `untested' if the pre-condition is not met
(and leaving the value true in the result variable
T).
Using the transformations from Figure 4 and con-

ventional slicing we can transform the Test Program
in Figure 5 to the simpler version depicted in Fig-
ure 6.
Now, using the path condition approach employed

in the construction of conditioned slices [12], we can
establish that the path condition at the statement

if((A[i]*c)<0) T=false;

is

c<0 ^ A[i]<0

In the conditioned slicing paradigm, such path
conditions are used to simplify conditional state-
ments, where the truth or falsity of the predicate

T=true;
if(c<0) f
for(i=0;i<MAX;i++)

if(A[i]<0) f
if((A[i]*c)<0)

T=false;
A[i]=A[i]*c; gg

Figure 6: Simpli�ed Test Program

guard can be inferred from the path condition. In
this case, using simple theorem proving, we can es-
tablish

c<0 ^ A[i]<0) !(A[i]*c < 0)

thereby allowing us to remove the statement

if((A[i]*c)<0) T=false;

from the Test Program. The only remaining state-
ment which a�ects the �nal value of T is now the
initial assignment T=true;, and so we have reached
a �nal answer (a minimal slice).
Of course we have, once again, chosen an illustra-

tive example where it is relatively easy to produce a
minimal slice. In general, we may not be so fortu-
nate.

6 Implementation
There are two approaches to the implementation

of amorphous slicing, both of which roughly follow
the general `algorithm template' in Figure 7.
Step 2 merely serves to improve the eÆciency of

the algorithm and can be omitted with no e�ect on
the amorphous slices produced. Step 3.1 reduces
dependencies, improving the chance that the subse-
quent step will produce further simpli�cation.

7
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Step 2 Conventional slice
Step 3.1 Dependency reduction transformation
Step 3.2 Conventional slice
Step 3.3 Domain speci�c transformation
Step 3.4 if Step 3.3 had an e�ect

then repeat from Step 3.1

Figure 7: The Top Level Algorithm

The di�erence between the two approaches lies in
the implementation of Steps 3.1 and 3.2. In [16] Step
3.1 is implemented using a simple symbolic execu-
tor (implemented using `assignment push' transfor-
mations) directly on the program's Abstract Syntax
Tree, and Step 3.3 is implemented using an imple-
mentation of the parallel slicing algorithm described
in [11]. In [6] both steps are applied directly to the
Program Dependence Graph (PDG) [17, 13]. Sym-
bolic execution is replaced by a graph-unfolding pro-
cess and a dataow interpretation of the PDG. The
domain speci�c transformations of Step 3.3 are writ-
ten in terms of the PDG also. This has the advantage
that dependence information in the PDG is available
to inform the decision as to whether or not a trans-
formation applies, with considerable consequent im-
provements in algorithmic time complexity.
This general approach has been used to create

amorphous slices (often with quite dramatic simpli-
�cation) for the related problems of analyzing dy-
namic memory allocation properties [16] and array
subscripting safety [14, 6].
Speci�c algorithms deviate from this general tem-

plate in their choice of domain speci�c rules. Our
earlier work indicates that considerable leverage can
be gained by de�ning transformation rules with
knowledge of the domain of interest. In the present
paper the `domain of interest' is formed by the unde-
cidable question to be asked of the tool. For example,
in [14] and [6] the question was essentially:

\Is program p safe with respect to array
subscripting?"

In [16] the questions all concerned the state of heap
allocation, for example:

\Can program p leak memory?"

For the heap allocation application, the transfor-
mation rule2 Collapse If-Else below was found to be
extremely e�ective.

2Expressions are considered to be side{e�ect free.

Axiom 9 (Collapse If-Else)
[[if(e) c else c]]) [[c]]

In a general transformation system, there would be
little point in seeking to apply such a rule | it would
almost always turn out to be inapplicable. However,
in the domain of heap access the situation often arises
in which a program allocates identical quantities of
heap store (albeit for di�erent purposes) along the
then and else branches of a conditional statement.
When analyzing heap access, the purpose for which
the heap store is allocated is typically `sliced away'
and all that remains is the e�ect on the top of heap,
which can often be collapsed by rules like Collapse
If-Else.
The transformations employed in [16], [14] and [6]

are highly speci�c and would produce little simpli�-
cation if applied to an arbitrary program. However,
in the speci�c domains for which the rules were de-
signed, they often produce dramatic simpli�cation:
whole constructs such as conditionals and loops be-
ing `squashed' into single assignment statements.
We are currently experimenting with di�erent do-

main speci�c transformation steps, with the aim of
re�ning Step 3.3 of the amorphous slicing algorithm
and to produce generic guidelines for the selection of
appropriate domain speci�c transformation steps.

7 Discussion and Future Work
Since we are working in a paradigm where many

propositions are generally undecidable, it is clearly
futile to attempt to construct an automated system
which answers either `yes' or `no' to such proposi-
tions. While we may be fortunate in a few cases
(obtaining the elusive `yes' or `no'), in the majority
of cases we shall be frustrated by the answer `don't
know'. One approach to dealing with this problem
is to allow the human to intervene in the formal pro-
cess to guide a system towards the result. While this
is undoubtedly a step forward, it still consumes a
large amount of `interaction time'. The approach we
present here attempts to create a clean dividing line
between what an automated system can be reason-
ably expected to produce (a simpli�ed program), and
what remains for the human to consider (the essen-
tial `eureka step' that so often characterizes formal
proof, or a test set that achieves a reasonable cover-
age of the simpli�ed Test Program).
An important aspect of our approach is that

\everything is expressed as a program."

After all, a programming language is a formal no-
tation, with an algebra of programs and a set of `al-
gebraic transformations'. It is also an ideal language
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with which an automated tool and analyst can com-
municate as it is admissible to formal transformation
and will be better understood by the programmer
than formal notations or other extra-linguistic de-
vices.

The answers the system produces are programs
and so are admissible to any of the many source code
analysis, manipulation, testing and veri�cation tech-
niques the programmer has at their disposal.

The questions are phrased as programs, and the
goal of arriving at a solution is characterized as a
process of program simpli�cation. We claim that this
is a helpful demarcation of responsibility, because
the human analyst provides the test harness input
program and analyses the `residual' amorphous slice
while the CASE tool is solely concerned with simpli�-
cation. Though the tool only performs simpli�cation,
we believe that many if not all of existing automated
formal analysis systems can be brought to bear on
the problem as each can be characterized as a sim-
pli�cation problem. (For example, the simpli�cation
process required by conditioned amorphous slicing
requires transformation, theorem proving, symbolic
execution and slicing.)

In many applications which require program trans-
formation there is a problem associated with the se-
lection of a suitable transformation strategy. The
general problem of constructing amorphous slices
also su�ers from this problem. Fortunately, in this
case we are not faced with the general problem of
amorphous slicing. Instead we are presented with
a highly restricted version of the problem, in which
we have a great deal of information concerning the
slice we are constructing. For example, we know that
the simplest (thinnest) slice is one of two simple pro-
grams, and that we are approximating one of these
two programs in the slicing process. Furthermore,
we know that the program contains what could be
termed `testing' code and `generating' code, and so
the overall philosophy will be to bring together the
testing and generating code, to `cancel out' compu-
tation where possible.

This knowledge of the application to which sim-
pli�cation is being put, highlights the importance of
`coalescing' transformations such as the one we used
to merge two for loops in our simple examples. More
work is required to investigate such transformations
and to de�ne e�ective simpli�cation strategies based
upon them. We believe that with relatively simple
additions to existing systems [9, 2, 1] we will be able
to exploit this form of `coalescing' transformation,
but more work is required to achieve this in practice
and to evaluate the results.

8 Conclusion
We have introduced a philosophy of `programs as

answers to undecidable propositions', in which hy-
potheses concerning a subject program are them-
selves, expressed as programs. The truth or oth-
erwise of these hypotheses is also represented as a
program, allowing us to go some way towards the
formation of a bridge between formal program ver-
i�cation and program testing, much in the spirit of
Bernot, Gaudel and Marre [3].
In particular, we argue that the answer (whether

the hypothesis holds or not) can be approximated us-
ing program simpli�cation technologies such as con-
ditioned and amorphous slicing.
The approximate nature of the approach addresses

the undecidable nature of general program hypothe-
ses, providing a delineation between what can be
expected of an automated formal manipulation sys-
tem and what remains in the realm of human (non-
automated or semi-automated) investigation.
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