
ConSIT: A Conditioned Program Slicer

Sebastian Danicic, Chris Fox, Mark Harman,
Goldsmiths College, Kings College, Rob Hierons,

University of London, University of London, Brunel University,
New Cross, Strand, Uxbridge, Middlesex,

London SE 14 6NW, UK.
Tel: +44 (0)20 7919 7856
Fax: +44 (0)20 7919 7853

London, WC2R 2LS, UK.
Tel: +44 (0)20 7848 2588
Fax: +44 (0)20 7848 285 1

UB8 3PH, UK.
Tel: +44 (0) 1895 274 000
Fax: +44 (0) 1895 25 1 686

sebastian@mcs.gold.ac.uk foxcj@dcs kcl.ac.uk mark.harman@brunel.ac.uk

Abstract

Conditioned slicing is a powerful generalisation of static
and dynamic slicing which has applications to many problems
in software maintenance and evolution, including re-use, re-
engineering and program comprehension.

However; there has been relatively little work on the imple-
mentation of conditioned slicing. Algorithms for implementing
conditioned slicing necessarily involve reasoning about the val-
ues of program predicates in certain sets of states derived from
the conditioned slicing criterion, making implementation partic-
ularly demanding.

This paper introduces ConSIT a conditioned slicing system
which is based upon conventional static slicing, symbolic exe-
cution and theorem proving. ConSIT is the jirst fully automated
implementation of conditioned slicing.

An implementation of ConSIT is available for experimenta-
tionat http://www.mcs.gold.ac.uk/"mas0lsd/
consit. html.

1. Introduction

Program slicing is a source level code extraction technique
that has been extensively applied to many problems in soft-
ware maintenance, including, debugging [19, 21, 24, 281, re-
engineering [7, 16,231 and program comprehension [17, 181.

Traditionally, slices have been constructed using either purely
static or purely dynamic analysis techniques [1, 20, 22, 291. The
traditional static slicing criterion consists of a pair, (V, n) , where
V is a set of variables of interest and n is some point of inter-
est in the program. Statements which cannot affect the value of
any variable in V when the next statement to be executed is at
position n in the program are removed to form the static slice.
Figure 1 presents a simple C program', for which the static slice

with respect to the criterion (28, {sum}) is depicted in Figure 2.
The traditional dynamic slicing criterion augments the static cri-
terion with an input sequence, I . Statements which cannot affect
the value of any variable in V when the next statement to be ex-
ecuted is at position n and the input is I are removed to form the
dynamic slice.

Static slices are thus constructed with respect to no additional
information about the state in which the program is to be exe-
cuted, while dynamic slices are constructed with respect to com-
plete information about the initial state.

Conditioned slicing is a generalisation of both static and dy-
namic slicing. The conditioned slicing criterion augments the
static criterion with a condition, which captures a set of possible
initial states for which the slice and the original program must
agree [5] . Definition 1.1 provides a more formal definition of
conditioned slice.

Definition 1.1 (Conditioned Slice)
A Conditioned slice is constructed with respect to a tuple,
(V, n, 7 r) , where V is a set of variables, n is a point in the pro-
gram (typically a node of the Control Flow Graph) and 7r is some
condition. A statement may be removed from a program p to
form a slice, s of p , iff it cannot affect the value of any variable
in V when the next statement to be executed is at point n and the
initial state satisfies 7 r .

For example, Figure 3 shows the conditioned slice con-
structed from the program in Figure 1 for the criterion
({sum}, end,V'i.ai > 0), where end is the end of the program
and Vi.ai > 0 indicates that all values read into the variable a
are positive.

Conditioned slicing is of both theoretical and practical im-
portance. It is theoretically important because i t subsumes both
static and dynamic slicing [5]. It is practically important be-
cause of its application to problems in re-use [7, 8, 9, 101, re-
engineering [7,23] and program comprehension [5, 14, 181.

'This example is Due to Canfora, Cimitile and DeLucia [5] . The figure 28

1063-6773/00 $10.00 0 2000 IEEE

refers to the exit node of the program

216

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:07 from IEEE Xplore. Restrictions apply.

mailto:sebastian@mcs.gold.ac.uk
http://kcl.ac.uk
mailto:mark.harman@brunel.ac.uk
http://www.mcs.gold.ac.uk/"mas0lsd

Currently, there is little work on the implementation of condi-
tioned slicing. Existing proof of concept prototype conditioned
slicers, such as that described in [5], are interactive. The human
is used to answer questions about conditions which arise during
the process of analysis [13]. These prototypes serve to illustrate
the importance and application of conditioned slicing. However,
for conditioned slicing to achieve its potential, fully automated
conditioned slicers must be implemented. Such implementations
will need to be able to reason about the effect of the condi-
tions mentioned in the slicing criterion. This paper shows how
a traditional static slicer can be combined with a theorem prover
and symbolic executor to achieve the goal of implementing a
fully automated conditioned slicing system. The implementa-
tion, ConSIT, produces conditioned slices for an intraprocedural
subset of C, the syntax of which is defined in Figure 4.

The rest of this paper is organised as follows: Section 2 de-
scribes the implementation of ConSIT, 'which relies upon sym-
bolic execution and theorem proving subsystems described in
Sections 3 and 4 respectively. Section 5 presents two examples
of slices produced using ConSIT. The first is the example used
by Canfora, Cimitile and DeLucia [5] , which is presented as a
'benchmark' against which ConSIT is compared to prior work
in this area. The second illustrates the application of conditioned
slicing to business rule extraction. Section 6 concludes with di-
rections for future work.

2. The Implementation of ConSIT

The ConSIT system operates on a subset of C, for which a
tokeniser and symbolic executor were written in Prolog.

The top level algorithm is quite simple. It is depicted in Fig-
ure 5. Phase 1 propagates state information from the condition
in the slicing criterion, to all points in the program, using the
symbolic execution algorithm described in more detail in Sec-
tion 3. Phase 2 produces a conditioned program by eliminating
statements which are never executed when the initial state satis-
fies the condition mentioned in the slicing criterion. These are
precisely those for which the state information defines an incon-
sistent set of states. Such statements become unreachable when
the program is executed in a state which satisfies the condition
of the slicing criterion and are 'sliced away'. The test of con-
sistency of each set of states is computed using the Isabelle
theorem prover, as described in more detail in Section 4. Phase 3
removes statements from the conditioned program which do not
affect the static part of the conditioned slicing criterion. Phase 3
is implemented using the Espresso static slicing system [1 11.

The architecture of the ConSIT system is illustrated in Fig-
ure 6. The system is built from various components written in
different languages. For the purpose of rapid prototyping, the
symbolic executor and conditioner were written in Prolog. These
were developed to work on a bespoke imperative programming
language called Haste that includes loops, input statements and
conditionals. The conditions of Haste are defined to be a good
match for legal Isabelle propositions, and it is easy to parse

main0 {
int a, test0, n, i;
int posprod, negprod, possum, negsum;
int sum, prod;
scanf ("%d", &testO) ;
scanf ("%d" , &n) ;
i = 1;
posprod = 1;
negprod = 1;
possum = 0;
negsum = 0;
while (i <= n) {

scanf ("%d" , &a) ;
if (a > 0) {
possum = possum + a;
posprod = posprod * a; }
else if (a < 0) {

negsum = negsum - a;
negprod = negprod * (-a) ; }
else if (testa) {

if (possum >= negsum)
possum = 0;

else negsum = 0;
if (posprod >= negprod)

posprod = 1;
else negprod = 1; }

i=i+l; }
if (possum >= negsum)

sum = possum;
else sum = negsum;
if (posprod >= negprod)

prod = posprod;
else prod = negprod; }

Figure 1. Example from Canfora et al [5]

using a Definite Clause Grammar within Prolog.
The Isabelle theorem prover [26,27, 251 is used to check

the reachability of a statement. This is written in Standard ML. A
wrapper script written in Expect acts as an Isabelle server
process. It runs the theorem prover on a pseudo terminal and lis-
tens for connections on a socket. When the conditioner requires
the services of Isabelle, it spawns an Expect client process
which connects to the Isabelle server, via its socket, and re-
quests that the symbolic state be analysed (using Isabelle's
auto-tacticals). The server then interacts with Isabelle over
the pseudo terminal, returning the result of the query back to the
client process. The exit code of the client process is then used to
indicate the result of the query.

This architecture means that there was no need to develop the
symbolic executor within Isabelle, and that several proces-
sors can make use of Isabelle without additional overheads
of running several copies of the theorem prover. It also avoids
the long delays that would result if the theorem prover process
was started every time it was needed. An alternative would be to
link the Prolog code with ML via C interface libraries, but such

217

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:07 from IEEE Xplore. Restrictions apply.

int pos,Sum, negsum, sum;
scanf ("'kd" , &testO) ;
scanf ("%d", &n) ;
i = 1;
possum := 0;
negsum == 0;
while (i <= n) {

scanf ("%d", &a) ;
if (a > 0)

else if (a < 0)
pOSSUm = possum + a;

negsum = negsum - a;
else if (testo) {

if (possum >= negsum)
possum = 0;

else negssum = O;}
i=i+l; }

if (possum >= negsum)
sum =: possum;

else sum = negsum;}

Figure 2. Static Slice of Figure 1 w.r.t. ({sum}, e n d)

main0 {
int a, n, i, possum, negsum, sum;
scanf ("%d" , &n) ;
i = 1;
possum = 0;
negsum = 0;
while (i <= n) {

scanf ("%d", &a) ;
if ((3 > 0)

i=i+l; }

sum = possum; 1

po.ssum = possum + a;

if (possum >= negsum)

Figure 3. Conditioned Slice of Figure 1 w.r.t.
({sum},end,V'i.ai > 0)

a solution is not as portable nor as flexible; with the current ar-
chitecture the resource intensive theorem prover can be run on a
separate high-performance server, and the system is dependent
on particular versions of neither Prolog nor ML.

A similar client-server approach is adopted with the slicer.
However, in this case the slicer and its server process are written
in Java, based upon the Espresso slicing system [1 11. Espresso
uses a parallel slicing algorithm [121 which takes advantage of
inherent CFG parallelism, where each node of the CFG of the
subject program is compiled into a separate Java thread.

A pre- and post- processor, written in JavaCup and JLex,
are used to translate between C and the internal language Haste.

<program> : : =

. .= <decl> . .
<decl-list> : : =
<var-list> : : =
<stat> . .- . . -

<stat-list> : : =
<empty> . . -
<string> . .
<amp-list> : : =
<expr> . .-

. . -

. .=

. . -

. .- <binop> . .-

<unaryop> : : =
cchar-const> : : =

main () { <decl-list>
<stat-list>)
<type> <var-list> ;
<decl> <decl-list> I <empty>
<van I <var> , <var-list>
{ <stat-list> 1 I
<var> = <expr>; 1
scanf(<string>,<amp-list>); I
if (<expr>) <stat> I
if (<expr>) <stat>
else <stat> I
while (<expr>) <stat> I
ASSERT(<expr>) ; I
<empty> ;
<stat> <stat-list> I <empty>

I' <char - 1 i s t >
&<van I &<var>, <amp-list>
<unaryop> <expr> I
<expr> <binop> <expr> 1
war> 1 <integer-constant> 1
(<expo) I <char-constant>
< I > 1 <=)>= I == I ! = I
l I I & & I + I * l - I /
- I !
<char> '

Figure 4. The subset of C accepted by ConSlT

Phase 1 : Symbolically Execute
Phase 2: Produce Conditioned Program
Phase 3: Perform Static Slicing

Figure 5. The Three Phases in Slice Construction

The slightly contrived acronym ConSIT stands for
Conditioned Slicer using the Isabelle Theorem prover.
The acronym is chosen because ConSIT combines several
different systems and languages in concert.

2.1. Representing the Slicing Criterion

ConSIT uses a novel technique for representing the slicing
criterion and presenting it to the system, which the authors have
found to be very effective and worthy of mention. The slicing
criterion is effectively encoded into the source code of the pro-
gram to be sliced.
The Conditioned Part off the Criterion
The condition is inserted into the program using an ASSERT
statement, which takes a single boolean argument and asserts
that its value is true, allowing considerable flexibility in con-
structing a slicing criterion. This is because the ASSERT state-
ment can be inserted at any point in the program.

To perform a conditioned slice the ASSERT statement will

218

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:07 from IEEE Xplore. Restrictions apply.

Original program (C)

I Theorem Prover
Client(s)

Program (Haste)
I

'-

I Symbolic Executor

/

4
Program annotated with
Symbolic States and
Path Conditions

t

I I

Conditioned Slice (Haste)

Conditioned Slice (C) -
Figurk6. The Architecture of ConSlT

typically be added to the beginning of the program. However,
there is no reason why ASSERT statements may not be added to
arbitrary parts of the program.

The ASSERT statement is also used to handle conditions on
input variables. When defining a conditioned slicing criterion,
input variables present a problem because the value of the vari-
able may be read in a loop, causing it to have many values during
the execution of the program. Canfora et a1 [5] address this is-
sue by subscripting the variable name, allowing universal quan-
tification and ranges to be used. For example, the condition
in the slicing criterion for the example program in Figure 1 is
Vi.1 5 i 5 n.a, > 0, specifying that all values read into the
variable a are positive.

Unfortunately, this approach becomes inconvenient when it
is not easy to specify the range of subscripts of interest. For
example, in the code fragment below, it becomes hard to specify
that all values read into the variable a by the second while loop
are positive.

while (i>O) {
scanf ("%d" , &a) ;
. . .
i = i-1;

while (j > O) {
scanf ("%d" ,&a) ;

j = j - 1 ;
1
That is, suppose that the initial value of the variables i and j

are dependent upon the input in some arbitrarily complex way.
It will not be obvious how many times the first loop executed
and therefore difficult to delimit the subscripts which should be
applied to the variable a to capture the set of 'occurrences' of
interest.

Using the ASSERT statement, this becomes very easy. All
that is required, is to add an ASSERT in the second loop, giving:-

while (i>O) {

. . .

scanf ("%d" , &a) ;

i = i-1;
1

scanf ("%d", &a) ;
ASSERT(a>O) ;

while (j>O) {

j = j - 1 -

1
i From a theoretical point of view, the use of the ASSERT

statement does not make for a more general form of conditioned
slicing; all ASSERT statements could, theoretically, be moved
to the beginning of the program using predicate transformation
similar to that proposed by Dijkstra for program verification
[15]. However, the ASSERT statement allows for the specifica-
tion of local constraints in input variables and is thus very helpful
from a practical point of view in specifying conditioned slicing
criteria.
The Static Part of the Criterion
The static part of the slicing criterion is also inserted directly
into the program as program code. Recall that the static part
of the criterion consists of the set of variables of interest, V
and the point at which those variables' values are of interest,
n. The static part of the criterion is captured by a program vari-
able slice. The user inserts an assignment to this variable at
an arbitrary set of points in the program. If the assignment

slice = f (z, y, 2)

is inserted at point n in the program, then the slice must pre-
serve the values of z, y and z at point n in the program. This
notation allows for multi-slicing [12, 291, in which there may be
arbitrarily many slice points in the program, each of which is
concerned with a different set of variables of interest.

3. The Symbolic Execution Phase

The symbolic states consist of disjunctions of conditional
states, each of which in turn is a pair consisting of (in)equalities

219

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:07 from IEEE Xplore. Restrictions apply.

that arise from conditional expressions and equality statements
that arise from assignment and input statements.

In practice, symbolic states are represented as sets of pairs.
The first element of each pair is a set of bindings between vari-
ables and their symbolic values that arise from assignments and
input statements. Canfora et a1 [5] call this the symbolic state.
The second element of each pair is a set of (linear) inequalities.
Canfora et al [5] call this the path condition. The intended inter-
pretation is that each pair corresponds to a conditional symbolic
state; the variables will have the symbolic values given in the
first element of the pair when the (in)equalities in the second
element are true. This distinction between assignment of value
and other conditions is helpful when dereferencing a variable.

The symbolic executor is derived directly from the semantics
of the language. The semantics ~ (s) of a sequence of statements
s is a set of states { s l , sa,. . . , s,}. Each symbolic state s, (1 5
i 5 n) can be considered as the pair2:

Each ai is an assignment function from variables to expressions,
and c, is a path condition. g (s) denotes the effect of symboli-
cally>xecuting s, replacing each variable reference with its cur-
rent symbolic value (or a unique skolem constant, indicating an

~ unknown symbolic value).
Each element of a, is an assignment of the form (u ,e) , in-

tended to mean that variable 'U is assigned the value of the ex-
pression e. The conditions c, indicate the inequalities that must
hold between the values of variables and other expressions for
the program to be in a state of the form a,. We call ~ (s) the
symbolic (conditional) states of s.

3.1. Arithmetic arid Boolean Expressions

Functions are defined to evaluate expressions given an assign-
ment function. The definition of these functions simply prop-
agates the function through the syntax of the expressions in a
syntax directed manner. Variables are replaced by their current
symbolic values in the state g . Some example clauses from the
definition of these two functions are given below:

3.2. Statements

It is now possible to give a recursive definition of g (s) . In
general, a statement'is executed in the context of a symbolic as-
signment function; the'meaning of a statement depends upon the
symbolic values that have &en assigned to any defined program
variables. In the following, this is modelled with a contextual
effect using a A-abstracted assignment function g . All but one of
the following definitions interprets the meaning of a program as
a function that expects an assignment function as its argument.
The exception is at the top-most leyel of the program, where no
values have been assigned to any variables. The meaning of a
program s is thus the meaning-of s applied to the empty assign-
ment function 0 :

4 s > 0
Block Statements

The meaning of a block is the' meaning of the sequence of
statements it contains.

\

4{ s 1) = 4 s)

Empty Statements

An empty statement gives rise to an empty assignment func-
tion, and an empty condition set.

Assignment Statements ' \

An assignment var=expr produces an assignment function
consisting of variable var and the expression expr evaluated in
the context of the current assignment function g. No conditions
are created.

a(var=expr) = Ag.{({(var, E,(expr))} , 0))
Input Statements

When a scanf ("%d" , &x) ; statement is evaluated, noth-
ing can be assumed about the value input to the variable x. This
is modelled by setting x to some unique symbolic value that, in
the semantics, is intended to be interpreted as an existentially
quantified variable. That is, the value of the variable is set to
some unique skolem constant. It will be unique in the sense that
i t does not appear in the interpretation of the program leading
up to that scanf statement. For this purpose, the term sk i will
be used to refer to an "unused" skolem constant with respect
to an assignment function g. That is sk i will be an element of
{ s k , : n E Z+ A T~'u.('u, skn) E g } .

a(scanf ("%d" ,&var)) = A g . { ({ (v a r , s k ~) } , ~) }

Conditional Statements

*The notation, (2, y) is used for pairs i n this section, to aid the eye in distin- In the case of a conditional, the symbolic execution results in
two paths, one where the condition is t r u e , and the t h e n path guishing pair constructions from parenthetic sub-terms.

220

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:07 from IEEE Xplore. Restrictions apply.

is taken, and the second where the condition is f a l s e , and the
else path is taken.

Statement Sequences

In the symbolic semantics of sequences .of statements, s1 ; s2,

each statement gives rise to a set of pairs of symbolic assign-
ments and path conditions. Considering all the permutations,
sequencing two statements results in a set of conditional state-
ments where the total number of pairs of assignments and path
conditions is the product of the number of conditional states in
the symbolic execution of the constituent statements. As with in-
dividual statements, each of the conditional states will be a pair
consisting of an assignment function and a path condition. For
each combination of elements (al , c1) of o(sl) in the context
of an assignment function g. and elements (a2 , c2) of 4 3 2) in
the context of an assignment function g updated by the assign-
ment function a1 (formally, g @ al), there will be an element of
a(s1 ; s 2) consisting of a1 updated by a2, paired with the union
of c1 and c2: (a1 @ a2, c1 U CZ). The assignment update operator
@ is defined by

f @ h = {(U, e) : (v, e) E h V ((v, e) E f A +e’.(v, e’) E h) }

Using this, we can formalise the semantics of statement sequenc-
ing as

WHILE Statements

With w h i l e loops, there are various ways of computing a
symbolic execution. Perhaps one extreme is just to reset all vari-
ables that are assigned to so that it is not possible to infer any-
thing about their values on termination of the loop, other than
the fact that the termination condition is met. The other extreme
would be to try and build some fixed point construction that mod-
els the w h i l e loop. The first suffers from being excessively
weak; no loop invariant could be determined, for example. For
the application to conditioned slicing, the second extreme suffers
from being excessively complicated; although all relevant infor-
mation might be encoded in the fixed point construction it is not
readily accessible to the automatic theorem proving phase re-
quired to infer (relatively simple) theorems concerning boolean
predicates.

The ConSIT system adopts a compromise which lies some-
where in between the two extremes. Observe that, either a loop
is executed at least once, or not at all. The latter case is trivial,
and is accounted for by adding the negation of the loop condition
to each of the current conditional states. In the former case, if

the loop terminates, it may have been executed more than once
prior to termination, and so the system cannot readily determine
the values of any variables. However, it can give the values of
the variables derived on the final execution of the loop as a func-
tion of the previous values of these variables, although it may
have to represent these previous values as being unknown, since
they might have been changed by previous executions of the loop
body. The loop condition is t r u e at the beginning of each iter-
ation, and f a l s e immediately after the loop.

To implement this, the system uses the set of variables which
are defined in the body of the loop. More formally, the set of
defined variables, v(s) of a statement s is defined as follows

v (s) = {V : Iear;.((w, e) E a A (a , K) E a (s) 0))

The defined variables are those whose values might have been
changed on prior executions of the loop. In the symbolic execu-
tion, we can take their unknown penultimate values to be unique
skolem constants. A unique set of skolemisations, U:k, of a list
of variables, [v ~ , v z , . . . ,U,], in the context of an assignment g,
is given by {(VI , s k i l) , (212, s k i 2) , . . . , (v,, skin)} where

1. 91 = 9

2. si = si-1 @ { (Vi-1 , sk;;-l)>

where @ is the previously defined assignment update operator.

by :

where 0 imposes some total ordering on the set of variables
v(s) , to give a list of variables.

The symbolic states obtained by a WHILE loop are then the
union of

Using U:k, a unique skolemisation of statements s is given

U,4, (O(43)))

1. The symbolic states prior to the w h i l e loop, with the addi-
tional constraint that the loop condition is f a l s e in those
states.

2. The symbolic states that result from the execution of the
loop body, in the context where all defined variables are
uniquely skolemised, with the additional constraint that the
loop condition was t r u e in the initial states, and f a l s e
in the final states.

4. The Theorem Proving Phase

The symbolic execution phase takes a sequence of program
statements and annotates it with symbolic state descriptions. The
implementation seeks to simplify these symbolic states by elim-
inating those conditional states that are inconsistent from each

221

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:07 from IEEE Xplore. Restrictions apply.

symbolic state description to determine the paths through the
structure of the program code that can never be taken. In 'nor-
mal' programs, these paths are unlikely to arise as they would
constitute 'bad programming'. However, in conditioned slicing,
the program is sliced with respect to an initial condition and the
whole point of conditioning is to identify parts of the code which
become unreachable as a result. (These are sliced away as ir-
relevant to the slicing criterion in the same way that statements
which have no effect upon the chosen variables are sliced away.)

More precisely, if a conditional state is universally valid, then
it will be the only state that can be reached. If all the condi-
tional states of a symbolic state are inconsistent, then that point
in the program will be unreachable. The theorem prover is thus
used to determine whether the outcome of a predicate must be
true or whether i t must be false or whether it is not possi-
ble to tell. This process is inherently conservative, because there
will be predicates which must be true and those which must be
false but for which this information cannot be deduced by the
theorem prover. However, this conservatism is safe: if a state-
ment is removed because of the outcome of the theorem proving
stage, then that stalement is guaranteed to be unnecessary in all
states which satisfy the initial condition mentioned in the condi-
tioned slicing criterion.

Using this symbolic execution semantics, each statement in
the program is associated with the set of all conditional contexts,
{(a~,cl), . . . (un,cn)} , in which that statement could possibly
be executed.

This set of contexts is transformed into a proposition using a
function P, where

and

If the proposition is inconsistent (false), then it is inferred
that the statement can never be executed: there is no path to the
statement as each of the possible pairs of assignments and path
conditions are inconsistent. The program is then equivalent to
one in which the statement is replaced by the empty statement. In
this way the conditioned program is constructed by considering
which statements have inconsistent path conditions.

4.1. Checking for Consistency using Isabelle

Automatic theorem proving can be of several flavours. The
simplest form might repeatedly apply a simple inference rule to
the negation of the statement to be proved in the hope that even-
tually, a contradiction will arise. This can be very inefficient.
The kinds of statements that need to be proved involve inequal-
ities. Such transitive relations can lead to a large search space,
making computations hopelessly slow.

Isabelle adopts a different approach, where more compli-
cated inference rules can be applied in the form of tactics. A
tactic is applied. If it fails to have the desired effect, then it is
undone and a different tactic is attempted in much the same way
as program transformation systems apply transformation tactics
[3]. In a sense, Isabelle can be regarded as an aid to rigor-
ous theorem proving. A collection of tactics is combined into a
strategy, or tactical. In this application, tactical are used which
attempt to perform the consistency check fully automatically.

In the initial system that was developed, a range of differ-
ent tacticals had to be applied to solve the inequality puzzles.
In some cases, it was necessary to temporarily reorder the tac-
tics within a tactical. Given the obvious potential pitfalls of au-
tomating the theorem proving with Isabelle, the system was
designed to be robust; if a theorem cannot be proven, or should
an internal Isabelle error occur, the conditioning of the pro-
gram continues, although it might miss a potential simplifica-
tion. This gives rise to a safe construction of a conditioned slice,
but one which is conservative. Nonetheless, as the examples in
Section 5 illustrate, ConSIT is capable of reasonable program
simplification.

In cases where a boolean condition is neither true nor
false, but contingent upon the values of its variables, Is-
abelle can sometimes derive a simplification of the condition.
Future versions of ConSIT may exploit this, substituting the
simplified condition when conditioning the program. The in-
tention of this work is to develop amorphous slicing capability
[4, 171.

5. Examples

5.1. The Example from Canfora, Cimitile and DeLucia

Consider again, the example program in Figure 1. Figure 3
shows the conditioned slice produced by the ConSIT system.
This is identical to the conditioned slice produced by Canfora,
Cimitile and DeLucia using a mixture of automated slicing and
manual, human analysis to evaluate conditions.

5.2. Checking and Extracting Business Rules

Conditioned slicing can be used as a technique for business
rule extraction. For example, consider the simple tax calculation
program in Figure 7.

This program represents a computation of tax codes and
amounts of tax payable, including allowances for a United King-
dom citizen in the tax year April 1998 to April 1999. Each per-
son has a personal allowance which is an amount of un-taxed
income. The personal allowance depends upon the status of the
person, reflected by the boolean variables blind, married
and widowed and the integer variable age. There are three tax
bands, for which tax is charged at the rates of lo%, 23% and
40%. The width of the 10% tax band is subject to the status of
the person, while the 23% and 40% are fixed for all individuals.

222

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:07 from IEEE Xplore. Restrictions apply.

main0 {
int age, blind, widow, married, income

scanf ("%d", &age) ;
scanf ("%d", &blind) ;
scanf ("%d" ,&married) ;
scanf ("%d" , &widow) ;
scanf ("%d" ,&income) ;

if (age>=75) personal = 5980;
else if (age>=65) personal = 5720;
else personal = 4335;

if ((age>=65) && income >16800)
{ t = personal - ((income-16800)/2) ;

if (t>4335) personal = t;
else personal = 4335; }

if (blind) personal = personal + 1380 ;

if (married && age >=75) pcl0 = 6692;
else if (married && (age >= 65)) pcl0 = 6625;
else if (married I I widow) pcl0 = 3470;
else pcl0 = 1500;

if (married && age >= 65 & & income > 16800)
{ t = pc10-((income-l6800)/2);
if (t13470) pcl0 = t;
else pcl0 = 3470; }

if (income <= personal) tax = 0;
else { income = income - personal ;

if (income <= pclo) tax = income / 10;
else { tax = pc10 / 10;

income = income - pcl0;
if (income <= 28000) tax = ((tax + income) * 23) / 100 ;
else { tax = ((tax + 28000) * 23) / 100 ;

income = income - 28000;
tax = ((tax + income) * 40) / 100; }

1
1

if (!blind && !married & & age < 6 5) code = ' L ' ;

else if (!blind & & age 65 && married) code = 'H';
else if (age >= 65 && age < 75 && !married & & !blind) code = 'P';
else if (age >= 65 & & age < 75 && married && !blind) code = ' V I ;
else code = I T , ;

Figure 7. UK Income Taxation Calculation Program

This set of taxation rules constitutes a governmental 'business
system', and the program in Figure 7 represents an attempt to
capture these rules in program code.

Conditioned slicing allows us to extract from this program,
fragments which correspond to certain taxation scenarios. In so
doing, the conditioned slicer is identifying the portions of the

code which implement individual business rules. For example,
using conditioned slicing, it becomes possible to ask

"what is the personal allowance calculation for a blind
widow aged over 68?"

Slicing extracts from the program only the code concerned

223

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:07 from IEEE Xplore. Restrictions apply.

with computation on personal and from this only that code
which is relevant to computations which satisfy the scenario in
which the person concerned is blind, over 68 years of age and
widowed. Observe that as a runge of possible inputs is specified
by this condition, it i s not possible to simply run the program in
order to arrive at the answer.

For the blind widow over the age oft68, the conditioned slic-
ing computed by ConSIT is given in Figure 8.

scanf ("%d" , &age) ;
scanf ("%d" , &blind) ;

if (age>=75:1 personal = 5980;
else if (age>=65) personal = 5720;

if (age>=65 && income >16800)
{ t = personal - ((income-16800)/2);

if (t>433!5) personal = t ;
else personal = 4335; }

if (blind) personal = personal + 1380 ;

Figure 8. Specialised Personal Allowance

scanf ("%d" ,,&age) ;
scanf ("%d" ,.&blind) ;
scanf ("8d" , .&married) ;

if (!blind ,&& !married & & age < 65)
code = 'L' ;
else if (!blind && age < 65 && married)
code = 'H';
else if (age >= 65 && age i 75

&& !married && !blind)
else if (age >= 65 && age < 75

&& married && !blind)
else code = j T # :

Figure 9. Tax Codes for the Under 60s

For similar rule-based systems in which source-code effec-
tively captures business rules, this example suggests that condi-
tioned slicing might be effective in recovering business rules in
a similar way to the technique proposed by Canfora et al [6].

Another example of a question that can be addressed using
ConSIT, is

"What are the possible tax codes that apply to people
under the age of 60?"

This computation is captured by the conditioned slice de-
picted in Figure 9.

The example clearly illustrates the program comprehension
advantages of removing 'unnecessary predicates' from a condi-
tioned slice. In deeply nested conditional structures it is helpful

to remove these unnecessary predicate tests, so that those tests
which play a part in the computation of interest become more
obvious. Doing this produces the further refined conditioned
slicing in Figure 10. The slice in Figure 10 satisfies the defini-
tion of a conditioned slice and is simpler than one which retains
the predicates, and so such a slice would appear to be better from
both a theoretical and a practical point of view. The current im-
plementation does not remove these predicates for compatibility
with the work of Canfora et al [5] .

scanf ("%d" , &age) ;
scanf ("?id", &blind) ;
scanf ("%d" , &married) ;

if (!blind && !married & & age < 65)
code = ' L ' ;

else if (!blind && age < 65 && married)
code = 'H';
else code = 'T';

Figure 10. Under 60s Without Unnecessary Pred-
icates

6. Conclusion and Future Work

This paper has described ConSIT, a conditioned slicing sys-
tem which uses symbolic execution, traditional static slicing and
the Isabelle theorem prover to implement conditioned slic-
ing for a simple intraprocedural subset of c.

The symbolic executor propagates state information to each
statement in the program. This information is passed to the
theorem prover, which determines (in a conservative and safe
manner) which statements have become unreachable under the
conditions imposed by the slicing criterion. This forms a con-
ditioned program which is further sliced using traditional static
slicing.

ConSIT is the first fully automated implementation of con-
ditioned slicing. However, the language handled by ConSIT is
somewhat limited. Pointers and procedures are the most notable
omissions. Work is in progress to extend ConSIT to handle fully
interprocedural conditioned slicing.

Another problem for future work is the adoption of the tech-
nologies used to implement ConSIT so that amorphous condi-
tioned slices [4, 17, 191 can be computed. Amorphous slices
share the semantic restriction that they preserve the effect of the
subject program on the slicing criterion, but are syntactically un-
restricted. In cases where the Isabelle theorem prover was
unable to decide the truth or otherwise of propositions put to i ~ ,
it was often able to simplify the proposition as a side effect of its
computation. This simplification has a direct counterpart in sim-
plification of arithmetic and boolean expressions which would
be useful in an implementation of amorphous conditioned slic-
ing.

224

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:07 from IEEE Xplore. Restrictions apply.

Isabelle is a very powerful and general purpose theorem
prover. This means that it can take considerable time to pro-
duce amorphous slices using Isabelle as the engine for deciding
propositions. For instances, the first example presented in this
paper, takes about 20 minutes to slice on a Pentium 11 running at
233MHz. While this may be acceptable for a proof of concept
implementation, it is clearly inadequate as a basis for extensive
development. However, the kind of propositions which arise in
conditioned slicing tend to be rather simple and it could be that
great speed improvement can be achieved with a more narrowly
focussed technology. To this end, the authors plan to investi-
gate the use of other tools for analysis of conditions, such as the
Stanford Validity Checker (SVC) [2]. The hope is that the use of
tools like the SVC will dramatically improve performance.

Acknowledgements
The authors would like to thank Andrea DeLucia and Gerard0
Canfora for several helpful discussions concerning conditioned
slicing. Lawrence Paulson and Tobias Nipkow kindly made
available a development version of Isabel le which contained
extra features of use in developing ConSIT. This work is sup-
ported in part by EPSRC grants G M 5 8 7 1 9 and GR/M78083.

References

[I] H. Agrawal and J. R. Horgan. Dynamic program slicing. In ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 246-256, New York, June 1990.

[2] C. Barrett, D. Dill, and J. Levitt. Validity checking for combi-
nations of theories with equality. In M. Srivas and A. Camilleri,
editors, Formal Methods In Computer-Aided Design, volume 1 166
of Lecture Notes in Computer Science, pages 187-201. Springer-
Verlag, November 1996. Palo Alto, California, November 6-8.

[3] K. Bennett, T. Bull, E. Younger, and Z. Luo. Bylands: reverse en-
gineering safety-critical systems. In IEEE International Confer-
ence on Software Maintenance, pages 358-366. IEEE Computer
Society Press, Los Alamitos, California, USA, 1995.

[4] D. W. Binkley. Computing amorphous program slices using de-
pendence graphs and a data-flow model. In ACM Symposium on
Applied Computing, pages 519-525, The Menger, San Antonio,
Texas, U.S.A., 1999. ACM Press, New York, NY, USA.

[5] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned program
slicing. In M. Harman and K. Gallagher, editors, Information
and Software Technology Special Issue on Program Slicing, vol-
ume 40, pages 595-607. Elsevier Science B. V., 1998.

[6] G. Canfora, A. Cimitile, A. D. Lucia, and G. A. D. Lucca. Decom-
posing legacy programs: A first step towards migrating to client-
server platforms. In 6th IEEE Intemational Workshop on Pro-
gram Comprehension, pages 136-144, Ischia, Italy, June 1998.
IEEE Computer Society Press, Los Alamitos, California, USA.

[7] G. Canfora, A. D. Lucia, and M. Munro. An integrated environ-
ment for reuse reengineering C code. Joumal of Systems and So#-
ware, 42:153-164, 1998.

[8] A. Cimitile, A. De Lucia, and M. Munro. Identifying reusable
functions using specification driven program slicing: a case study.
In Proceedings of the IEEE International Conference on Sofhvare
Maintenance (ICSM’95), pages 124-133, Nice, France, 1995.
IEEE Computer Society Press, Los Alamitos, California, USA.

[9] A. Cimitile, A. De Lucia, and M. Munro. Qualifying reusable
functions using symbolic execution. In Proceedings of the
Znd working conference on reverse engineering, pages 178-
187, Toronto, Canada, 1995. IEEE Computer Society Press, Los
Alamitos, California, USA.

[IO] A. Cimitile, A. De Lucia, and M. Munro. A specification driven
slicing process for identifying reusable functions. Software main-
tenance: Research and Practice, 8: 145-178, 1996.

[I 13 S . Danicic and M. Harman. Espresso: A slicer generator. In
ACM Symposium on Applied Computing, (SAC’OO), page To ap-
pear, Como, Italy, Mar. 2000.

[I21 S . Danicic, M. Harman, and Y. Sivagurunathan. A parallel algo-
rithm for static program slicing. Information Processing Letters,
56(6):307-313, Dec. 1995.

[I31 A. De Lucia. Private communication, 1999.
[I41 A. De Lucia, A. R. Fasolino, and M. Munro. Understanding func-

tion behaviours through program slicing. In 4th IEEE Workshop
on Program Comprehension, pages 9-1 8, Berlin, Germany, Mar.
1996. IEEE Computer Society Press, Los Alamitos, California,
USA.

[15] E. W. Dijkstra. A discipline ofprogramniing. Prentice Hall, 1972.
[I61 K. B. Gallagher. Evaluating the surgeon’s assistant: Results of

a pilot study. In Proceedings of the International Conference on
Software Maintenance, pages 236-244. IEEE Computer Society
Press, Los Alamitos, California, USA, Nov. 1992.

[I71 M. Harman and S . Danicic. Amorphous program slicing. In
5th IEEE International Workshop on Program Comprehesion
(IWPC’97), pages 70-79, Dearborn, Michigan, USA, May 1997.
IEEE Computer Society Press, Los Alamitos, California, USA.

[I81 M. Harman, C. Fox, R. M. Hierons, D. Binkley, and S. Dani-
cic. Program simplification as a means of approximating unde-
cidable propositions. In 7 t h IEEE International Workshop on
Program Comprehesion (IWPC’99), pages 208-217, Pittsburgh,
Pennsylvania, USA, May 1999. IEEE Computer Society Press,
Los Alamitos, California, USA.

191 M. Harman, Y. Sivagurunathan, and S. Danicic. Analysis of dy-
namic memory access using amorphous slicing. In IEEE Inter-
national Conference on Software Maintenance (ICSM’98), pages
336-345, Bethesda, Maryland, USA, Nov. 1998. IEEE Computer
Society Press, Los Alamitos, California, USA.

201 S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing us-
ing dependence graphs. ACM Transactions on Programming Lan-
guages and Systems, 12(1):26-61, 1990.

[21] M. Kamkar. Interprocedural dynamic slicing with applications
to debugging and testirzg. PhD Thesis, Department of Computer
Science and Information Science, Linkoping University, Sweden,
1993. Available as Linkoping Studies in Science and Technology,
Dissertations, Number 297.

[22] B. Korel and J. Laski. Dynamic program slicing. Information
Processing Letters, 29(3):155-163, Oct. 1988.

[23] A. Lakhotia and J.-C. Deprez. Restructuring programs by tucking
statements into functions. In M. Harman and K. Gallagher, edi-
tors, Information and Software Technology Special Issue on Pro-
gram Slicing, volume 40, pages 677-689. Elsevier, 1998.

[24] J. R. Lyle and M. Weiser. Automatic program bug location by
program slicing. In 2nd International Conference on Computers
and Applications, pages 877-882, Peking, 1987. IEEE Computer
Society Press, Los Alamitos, California, USA.

[25] L. C. Paulson. Isabelle: A generic theorem prover. Lecture Notes
in Computer Science, 828:xvii + 321, 1994.

[26] L. C. Paulson. Isabelle’s reference manual. Technical Report 283,
University of Cambridge, Computer Laboratory, 1997.

225

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:07 from IEEE Xplore. Restrictions apply.

[27] L. C . Paulson. Strategic principles in the design of Isabelle. In
CADE-15 Workshop on Strategies in Automated Deduction, pages
11-17, Lindau, Germany, 1998.

[28] M. Weiser. Program slices: Formal. psychological, and practical
investigations of an automaric program abstraction method. PhD
thesis, University of Michigan, Ann Arbor, MI, 1979.

[29] M. Weiser. Program slicing. IEEE Transactions on Software En-
gineering, 1 O(4): 352-357, 1984.

226

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 07:07 from IEEE Xplore. Restrictions apply.

