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Abstract

Side-effects are widely believed to impede program
comprehension and have a detrimental effect upon soft-
ware maintenance.

This paper introduces an algorithm for side-effect re-
moval which splits the side-effects into their pure expres-
sion meaning and their state-changing meaning. Sym-
bolic execution is used to determine the expression mean-
ing, while transformation is used to place the state-
changing part in a suitable location in a transformed ver-
sion of the program. This creates a program which is se-
mantically equivalent to the original but guaranteed to be
free from side-effects.

The paper also reports the results of an empirical
study which demonstrates that the application of the al-
gorithm causes a significant improvement in program
comprehension.

1 Introduction

A side-effect is any change of state which occurs when
an expression is evaluated. In this paper we are con-
cerned with the side-effect problem for C programs and
will only1 consider those side-effects which consist of the
assignments to variables that occur when an expression
is evaluated. Such side-effects are created using the as-
signment operator in an expression and the pre- and post-
increment and decrement operators. In C the behaviour
of side-effects is further complicated by the ability to se-
quence side-effects with the comma operator and to ex-
press conditional side-effect computation, both through

1The C standard [1], gives a slightly more general description, en-
compassing file-updates and other forms of state change, but in this
paper we will concentrate purely on assignments in expressions.

short circuit evaluation of boolean operators and through
the use of the conditional operator.

Side-effects are almost universally deprecated, partic-
ularly in the maintenance community, because of their
harmful effect upon program comprehension and main-
tenance [5, 9, 16, 17, 22]. Despite this, reliance upon
side-effect remains prevalent in production code.

Our approach allows the programmer to construct
a side-effect free equivalent program from an original
which contains side-effects. Programmers often rely
upon side-effects (despite the advice against using them)
because of perceived performance gains. Our approach
allows us to have the best of both worlds. The program-
mer can execute the version of the program with side-
effects, but use the side-effect free version for compre-
hension. Thus, the human is presented with a human-
optimised version of the program, while the machine is
presented with a machine-optimised equivalent.

In addition to psychological concerns about their im-
pact upon program comprehension, side-effects also cre-
ate many problems for tools and techniques commonly
used as part of the maintenance and evolution process.

For example, the Maintainers’ Assistant [25] trans-
formation tool has been applied to reverse engineering
problems [24], but the language upon which it operates,
WSL, is side-effect free. In order to reverse engineer pro-
grams with side-effects, the maintainer therefore needs
converters to transform a side-affecting program into a
side-effect free equivalent.

In software testing, one of the hardest problems is the
automated construction of systematic test data which sat-
isfies some adequacy criterion, such as branch or state-
ment coverage. Recent work [15, 18, 19, 20, 23, 26, 27]
has concerned the application of evolutionary algorithms
to the problem of searching for good quality test data.
This work represents part of a more general move within
the software engineering community towards consider-
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ing search-based techniques as solutions to hard prob-
lems where there are a wide variety of potential solutions
and where analytic algorithms are infeasible or incom-
plete [13]. Unfortunately, side-effects reduce the appli-
cability of evolutionary testing, because they prevent the
definition of fitness functions which optimise sub-terms
of boolean expressions in parallel.

The principle contribution of this paper is the intro-
duction of our side-effect removal algorithm, but the pa-
per also contains the initial results of an empirical study
on the impact of side-effects on program comprehension.
This study shows that the performance of program com-
pressions tasks is significantly improved when the sub-
jects are dealing with the side-effect free versions of the
programs produced by our algorithm. Despite the large
body of work on the harmful nature of side-effects, this
paper represents (to the author’s knowledge) the first pa-
per to present either empirical evidence for these harmful
effects or an algorithm which ameliorates them.

Currently, our work is concerned with applications to
program comprehension and in using side-effect removal
to pave the way for application of our amorphous slicing
algorithm [11], but we also believe our approach may cir-
cumvent some of the difficulties side-effects present for
testing and reverse engineering.

The rest of this paper is organised as follows. Sec-
tion 2 presents some preliminary definitions. Section 3
presents our side-effect removal algorithm. Section 4
provides a worked example. Section 5 presents the initial
results of an empirical study which confirms that side-
effects are harmful and that our algorithm helps to im-
prove comprehension.

2 Preliminary Definitions

In previous work we suggested that transformation
might be an answer to the problem of side-effects and
gave three strategies for side-effect removal transforma-
tion [12]. The strategies concern what to do with the
statements which denote the side-effects of an expression.
These can be placed before the side-effect free version of
the expression (pre-placement), after it (post-placement)
or temporary variables can be introduced to avoid the
concern about where to place them.

In this paper we introduce an algorithm for side-effect
removal, using the post-placement algorithm. This is
chosen because pre-placement is not possible in all cases
[12] and because one of the applications we have in mind
is slicing [28, 8, 14, 7, 10], for which the introduction of
additional (temporary) variables is counter-productive.

The algorithm used in this paper relies upon the con-
cept of referenced and defined variable sets [2]. The func-
tions REF and DEF will be used to denote the ref-
erenced and defined variables of an expression, respec-

tively. The DEF function will also be applied to state-
ments.

We shall adopt the definitions and terminology intro-
duced in previous work [12]. That is, a side-effect free
program will be a program in which the only way in
which a variable may change its value is as the result of
an assignment statement of the form x = e; where e is
a side-effect free expression (that is one which has only
referenced variables and for which the defined variables
are empty). A side-effect removal algorithm takes a pro-
gram (which possibly contains side-effects) and produces
a functionally equivalent program which is guaranteed to
be side-effect free.

3 The Side-Effect Removal Algorithm

The side-effect removal algorithm uses a top level
transformation step T . This is a syntax directed trans-
formation algorithm, which walks over the abstract syn-
tax tree of the side-affecting version of the program and
replaces statements which contain side-affecting expres-
sion with side-effect free equivalents. The top level trans-
formation uses an auxiliary function SPLIT to split the
expression meaning of a side-affecting expression from
the ‘state-changing part’ which captures the meaning
of the side-effects. The SPLIT function uses a sym-
bolic executor, E to perform the split. The components
VALID, E and T are formally defined in Figures 1, 2
and 3. The following subsections describe how they are
combined to implement side-effect removal. A prototype
implementation is available for non-commercial use at

http://www.brunel.ac.uk/
˜csstmmh2/linsert

3.1 Symbolic Execution

The transformation function T uses a symbolic execu-
tor E , to split expressions with side-effects. E takes an ex-
pression, e, and returns a function from symbolic states
to a triple, containing a side-effect free version of e, a
statement sequence which performs the side-effects of e
and the new symbolic state after the evaluation of e.

It will be assumed that E is applied to a valid expres-
sion (one for which the semantics are not ‘undefined’ ac-
cording to the C standard). This can be guaranteed by first
checking an expression with the function VALID (de-
fined in Figure 1).

The symbolic executor E makes use of an auxiliary
function, Combine, which combines the effect of two
modifications of a base state �. The Combine function
takes as parameters the base state, � and the two modified
states, �0 and �00. The algorithm is so-constructed that, in
all calls to Combine, the states �0 and �00 are produced
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by the evaluation of two sub-expressions, which occur be-
tween the same two sequence points. Therefore (since the
expression is valid according to VALID), it is known that
the defined variables of the two expressions cannot non-
trivially intersect. This is exploited in the definition of
Combine, which can only be applied to states �, �0 and
�00 such that at most one of �0 and �00 update the value
of each variable defined in �. The Combine function is
defined as follows:

Combine(�; �0; �00) = ((�0 [ �00)� �) [ (�0 \ �00)

The type of symbolic states, S, is a mapping from vari-
able names to expressions:

S
def
= I ! E

The distfix function �[�  �] denotes an update to a
symbolic state. That is, �[y  x] is identical to the state
� except that the variable name y is mapped to the ex-
pression x, more formally:

�[y  x]z =

�
�z z 6= y
x z = y

The algorithm uses a simple approach to symbolic
execution to maintain the current value of the symbolic
state. Symbolic execution is typically problematic in the
presence of loops, but is relatively straightforward for
loop-free programs [6]. Fortunately, although the algo-
rithm does handle loops, it will not be necessary to sym-
bolically execute them to remove side-effects.

The remainder of this subsection explains the effect of
each case in the definition of E .

The rules for pre- and post- increment and decre-
ment operators are straightforward: Each returns the side-
effect free version of the expression and updates the sym-
bolic state accordingly. The rule for negation simply
propagates side-effect removal into the negated expres-
sion.

The rule for arithmetic operators is, by definition, con-
sidering two expressions which occur between sequence
points (because AOp is defined such that it contains no
operators which denote sequence points). Since all ex-
pressions supplied to E are deemed to be valid according
to VALID, each of the operands can be evaluated in the
same symbolic state and the resulting states combined us-
ing Combine.

The rules for binary logical operators must take ac-
count of short-circuit evaluation and therefore, convert
the operators into conditional expressions, the semantics
of which the original logical operators implicitly denote.

The rule for assignment is relatively straightforward.
It simply returns the side-effect free expression and up-
dates the symbolic state accordingly. The right-hand-side
of the assignment statement is also transformed using a
recursive call to the E function.

The rules for identifiers and numeric constants are triv-
ial as these are side-effect free, by definition.

The rule for array lookup, simply recurses into the in-
dex expression.

The rule for the comma operator takes account of the
sequencing of the evaluation of each operand by passing
the resultant symbolic state from the symbolic execution
of the first expression to the symbolic execution of the
second expression. The expression meaning of the first
expression is ‘thrown away’ as it can have no effect.

In the rule for conditional expressions, observe that
the equality test �2i = �3i is not computationally sim-
ple. In general it would require a theorem prover, though
for simple expressions resulting from side-effects a less
demanding algorithm might be possible. The rule is ex-
pressed in this way to indicate the possibility of deter-
mining when the condition of a conditional expression is
redundant, however it is safe to always adopt the ‘other-
wise’ case in the application of this rule. In our current
implementation, we use only syntactic equality.

3.2 Splitting Statement and Expression Mean-
ings

The function SPLIT (defined in Figure 3), takes an
expression, e, which may contain side-effects, and returns
an expression e0 and a statement sequence c. It uses the
symbolic executor, E to do this. The side-effects pro-
duced when e is evaluated are mimicked by the execution
of the statement sequence c. The expression e0 is guar-
anteed to behave identically to e when it is evaluated in
an identical state. The expression e0 is thus the ‘expres-
sion meaning’ of the original expression e, while c is the
‘state-changing’ meaning of e.

More formally, the behaviour of the SPLIT function
can be described in terms of the denotational meaning of
the language [21] as follows. LetS be the state, which is a
mapping from identifiers (I) to the values they denote (in
some value domain V , which we shall assume contains
at least numbers in some number set N). Let the meaning
of expressions be described by the function V :

V
def
= E ! (S ! (S � V ))

V takes an expression in E and returns a function
which maps a state to a new state and a value. The new
state is the state produced by any side-effects in E. The
value is the outcome of expression evaluation. It is use-
ful to define two projection functions which return the
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value and state components of a state-to-state meaning
function. These are the functions val and sta defined
below2:

val
def
= (S ! (S � V ))! (S ! V )

sta
def
= (S ! (S � V ))! (S ! S)
val(m) = ��:(m�) # 2
sta(m) = �� :(m�) # 1

Let the meaning of statements be described by the
function C:

C
def
= C ! (S ! S)

C maps a statement in C into a state-to-state trans-
former which denotes the effect of executing C. Let
SPLIT[[E]] = (E0; C). SPLIT has the following prop-
erties:

1. val(V [[E0]]) = val(V [[E]])
This requires that the expression produced by
SPLIT preserves the meaning of the original
expression with respect to the values it yields.

2. sta(V [[E0]]) = ��:�
This requires that the expression produced by
SPLIT is side-effect free, by demanding that it has
no effect upon the state in which it is evaluated.

3. C[[C]] = sta(V [[E]])
This requires the side-effects of the original expres-
sion to be correctly replicated by the execution of
the replacement statement sequence produced by
SPLIT.

3.3 The Top Level Transformation Algorithm

The transformation function T defined in Figure 3 im-
plements the post-placement side-effect removal strategy.
Each rule uses the SPLIT function to separate the side-
effects from expression meaning. The side-effects are
placed at a point at which they are guaranteed to be exe-
cuted just after the evaluation of the side-effect free ver-
sion of the expression and before the evaluation of any
other expressions. This mimics the behaviour of the orig-
inal.

The rule for expression statements, ‘throws away’ the
expression meaning of the side-affecting version, be-
cause, by definition, it has no effect. The rule for condi-
tionals is forced to create an else branch if one is not al-
ready present and has to replicate the side-effects in both

2The operator # is the tuple selection operator, (a; b) # 1 =
a; (a; b) # 2 = b.

branches to ensure correct semantics. The rule for while
loops places a copy of the side-effect after the loop to take
account of the fact that the body is not executed on the
last test of the side-effect free version of the controlling
expression. The do : : : while rule has to take account of
the fact that the side-effects do not take place until after
the side-effect free expression has been evaluated on the
first iteration of the loop body. This involves copying of
the loop body and the side-effects.

The rule which handles for loops simply converts the
for loop into a while loop. This happens naturally be-
cause the side-effect free versions of the ‘initialisation
expression’ and the ‘incremental expression’ can, by def-
inition, have no effect. This behaviour is in keeping with
the ISO standard which states that the two are equivalent
“Except for the behaviour of a continue statement in
the loop body” [1].

4 An Example

Post placement of side-effects creates longer programs
than the original side-affecting programs which it takes
as input. This is, in part, a reflection of the fact that side-
effects are syntactically compact. However, it also arises
from the way in which post-placement requires copying
of the side-effects, where multiple execution paths are
possible (as is the case with conditionals and loops). For-
tunately, the side-effect free version of the program can
be transformed using standard transformation rules to re-
duce its size. Typically these standard transformations
would not be applicable to the original side-affecting pro-
gram, but become applicable as a result of side-effect re-
moval.

Example 1 below shows how side-effect removal can
be combined with well–known transformations to pro-
duce more readable programs. The side-affecting version
of the program fragment, vividly illustrates the way in
which even the tiniest fragment of code can be hard to
understand in the presence of side-effects.

Example 1
Consider the (apparently) simple example program frag-
ment below:

if ( ++i && i --) x=1;

The result of applying the symbolic executor E
to this example is illustrated in Figure 4. Thus
T [[if(++i&&i��)x = 1; ]]
produces:

if(i+ 1?i+ 1 : 0)
fif(i+ 1) fi = i+ 1; i = i� 1; g
else fi = i+ 1; g x = 1; g

else

fif(i+ 1) fi = i+ 1; i = i� 1; g
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V ALID
def
= E ! fT; Fg

V ALID[[ + +I ]]
V ALID[[��I ]]
V ALID[[I++]]
V ALID[[I��]]
V ALID[[!E]] iff VALID[[E]]

V ALID[[E1 AOp E2]] iff VALID[[E1]] ^VALID[[E2]] ^
REF[[E1]] \DEF[[E2]] = ; ^
DEF[[E1]] \REF[[E2]] = ; ^
DEF[[E1]] \DEF[[E2]] = ;

V ALID[[E1&&E2]] iff VALID[[E1]] ^VALID[[E2]]
V ALID[[E1jjE2]] iff VALID[[E1]] ^VALID[[E2]]
V ALID[[I = E]] iff VALID[[E]] ^ I =2 DEF[[E]]

V ALID[[I ]]
V ALID[[N]]

V ALID[[I [E]]] iff VALID[[E]]
V ALID[[E1; E2]] iff VALID[[E1]] ^VALID[[E2]]

V ALID[[E1?E2 : E3]] iff VALID[[E1]] ^VALID[[E2]] ^VALID[[E3]]

Figure 1. Valid Expressions: Those Not Undefined According to the C Standard

E
def
= E ! (I ! E)! E � C � (I ! E)

E [[++I ]]� = ([[�I + 1]]; [[I = I + 1; ]]; �[I  [[�I + 1]]])
E [[��I ]]� = ([[�I � 1]]; [[I = I � 1; ]]; �[I  [[�I � 1]]])
E [[I++]]� = ([[�I ]]; [[I = I + 1; ]]; �[I  [[�I + 1]]])
E [[I��]]� = ([[�I ]]; [[I = I � 1; ]]; �[I  [[�I � 1]]])
E [[!E]]� = ([[!E0]]; C; �0)

where (E0; C; �0) = E [[E]]�
E [[E1 AOp E2]]� = ([[E0

1
AOp E0

2
]]; [[fC1 C2g]];Combine(�; �0; �00))

where (E0

1
; C1; �

0) = E [[E1]]�
and (E0

2
; C2; �

00) = E [[E2]]�
E [[E1&&E2]]� = E [[E1?E2 : 0]]�
E [[E1jjE2]]� = E [[E1?1 : E2]]�
E [[I = E]]� = ([[E0]]; [[fI = E0; Cg]]; �0[I  E0])

where (E0; C; �0) = E [[E]]�
E [[I ]]� = (�I; [[]]; �)
E [[N] ]� = ([[N]]; [[]]; �)

E [[E1; E2]]� = ([[E0

2
]]; [[fC1 C2g]]; �00)

where (E0

1
; C1; �

0) = E [[E1]]�
and (E0

2
; C2; �

00) = E [[E2]]�
0

E [[E1?E2 : E3]]� = ([[E0

1
?E0

2
: E0

3
]]; [[fC1 if(E

0

1
) fC2g else fC3g]]; �0)

where(E0

1
; C1; �1) = E [[E1]]�

and (E0

2
; C2; �2) = E [[E2]]�1

and (E0

3
; C3; �3) = E [[E3]]�1

and �0i =

�
�2i if �2i = �3i
[[E0

1
?�2i : �3i]] otherwise

Figure 2. Symbolically Evaluating Expressions
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SPLIT
def
= E ! (E � C)

SPLIT[[E]] = (E0; C)
where (E0; C; s) = E [[E]](�i:i)

T [[E; ]] = C
where (E0; C) = SPLIT[[E]]

T [[if(E) C]] = [[if(E0) fC 0 T Cg else fC 0g]]
where (E0; C 0) = SPLIT[[E]]

T [[if (E) C1 else C2]] = [[if(E0) fC 0 T C1g else fC 0 T C2g]]
where (E0; C 0) = SPLIT[[E]]

T [[while(E) C]] = [[while(E0) f C 0T C g C 0]]
where (E0; C 0) = SPLIT[[E]]

T [[do C while (E)]] = [[T C while (E0)fC 0 T Cg C 0]]
where (E0; C 0) = SPLIT[[E]]

T [[for (E1;E2;E3) C ]] = [[C 0

1
for (;E0

2
; ) T fC 0

2
T C C 0

3
g C 0

2

where (E0

1
; C 0

1
) = SPLIT[[E1]]

where (E0

2
; C 0

2
) = SPLIT[[E2]]

where (E0

3
; C 0

3
) = SPLIT[[E3]]

T [[fC1 C2g]] = [[fT C1 T C2g]]

Figure 3. The Side-Effect Removal Transformation T for Post-placement of side-effects

E [[( ++i&&i --)]](�x:x)
= E [[( ++i?i --: 0)]](�x:x)
= ([[E0

1
?E0

2
: E0

3
]]; [[if(E0

1
) fC1 C2g else fC1 C3g]]; s0)

where (E0

1
; C1; s1) = E [[++i]](�x:x) = ([[i+ 1]]; [[i = i+ 1; ]]; (�x:x)[i [[i+ 1]]])

and (E0

2
; C2; s2) = E [[i��]]s1 = ([[i+ 1]]; [[i = i� 1; ]]; s1[i [[i� 1]]])

and (E0

3
; C3; s3) = E [[0]]s1 = (0; [[]]; s1)

ands0i =

�
s2i ifs2i = s3i
[[E0

1
?s2i : s3i]] otherwise

= ([[i+ 1?i+ 1 : 0]]; [[if(i+ 1) fi = i+ 1; i = i� 1; g else i = i+ 1; ]])

Figure 4. Application of E to Example 1
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else i = i+ 1;

This is the raw output of the side-effect removal trans-
formation. It could hardly be argued to be an improve-
ment upon the original. It might be said that the appar-
ent complexity of the result of side-effect removal indi-
cates the level of implicit sophistication in the original.
However, the side-effect removal transformation adopts a
simple minded approach, producing a side-effect free re-
sult which can be significantly ‘cleaned up’ using existing
transformation.

In what follows the output will be transformed using
a set of standard transformations [25, 4]. In the Main-
tainers’ Assistant [25], there are a large number (approxi-
mately 500) of transformations. Figure 5 presents a small
set of rules which can be used to ‘clean up’ the result of
side-effect removal.

Transformation axiom 1 can be used to simplify the
boolean expression i + 1?i+ 1 : 0 to i+ 1. Also, using
transformation axiom 2 the assignments fi = i + 1; i =
i� 1; g can be removed. These two transformations yield
the program below:

if(i+ 1)
fif(i+ 1) fg else fi = i+ 1; g x = 1; g
else

fif(i+ 1) fg else i = i+ 1;

Propagating the truth value of the boolean expression in
the outermost conditional statement to its consequent and
alternative branches (using axioms 6 and 7) allows for the
simplification of each of the two branches:

if(i+ 1)
ffgx = 1; g
else

i = i+ 1;

Using transformation axiom 3, the empty statement se-
quence fg can be removed. Also, transformation rule 1
can be used to re-write the conditional.

if((i+ 1)! =0) x = 1; else i = i+ 1;

Using transformation axiom 5, gives:

if((i+ 1)==0) i = i+ 1; else x = 1;

A final transformation step would be to simplify the side-
effect free expression to give:

if(i==� 1) i = i+ 1; else x = 1;

Work is in progress to extend the LinSERT implemen-
tation to support these facilities.

Observe that this example is one in which the pre-
placement strategy could not be used. The original value
of i is required to define the outcome of expression eval-
uation, but, unfortunately the original value is not avail-
able because i is assigned a new value as a side-effect.
This alone is not enough to prevent application of the pre-
placement approach. However, the assignment function
is not an injection, and so its inverse is not a function. The
assignment to i is captured by the state-to-value function

�� :

�
0 if �i = �1
�i otherwise

the inverse of which is the relation which maps 0 to both
0 and -1 and which maps all other values to themselves.
This means that after the side-effects have taken place,
the meaning of the side-effect free expression cannot be
captured by an expression: The expression requires the
original value of i, but this value is potentially destroyed
by the side-effects.

5 Empirical Evaluation

The empirical study explored the effect of side-effect
removal on program comprehension by 18 students from
the University of the Basque Country. The students were
allocated to two groups, according to ability, so that a
similar distribution of ability was present in each group.
A general C programming test was used to determine this
allocation. Each of the two groups were presented with
program comprehension questions, where each question
asked for the final values of certain variables used in frag-
ments of C code. In one version of the test, the fragments
of code contained side-effects. In the other version of the
test, the questions remained the same, but the side-effect
free versions of the code fragments were presented to the
subject.

In order to reduce the impact of other possible effects
which might affect the performance of the student and
to remove possible bias in the choice of questions, we
produced two versions of the test and used a ‘cross-over’
design for the experiment.

5.1 Two Versions of the Test

Two versions of the test were created. In both cases
the side-effect free programs were produced by applying
the algorithms so that there was no chance of bias in the
way side-effect free versions were selected, once the side-
affecting versions had been chosen. However, this still
leaves a possible source of bias in the selection of ques-
tions to ask. We addressed this concern by formulating
two different tests. In one test the questions were chosen
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Axiom 1 (Reduce false) [[e?e : 0]]) [[e]]

Axiom 2 (Fold Inverse) [[I = I + 1; I = I � 1; ]]) [[]]

Axiom 3 (Remove Empty Sequence) [[fg]]) [[]]

Axiom 4 (Idempotence of negation) [[!!E]]) [[E]]

Axiom 5 (Permute Conditional) [[if(e) c1 else c2]]) [[if(!e) c2 else c1]]

Axiom 6 (Collapse then) [[if(e)if(e)c1elsec2]]) [[if(e)c1]]

Axiom 7 (Collapse else) [[if(e)c1 else if(e)c2elsec3]]) [[if(e)c1 else c3]]

Rule 1 (Boolean Expression Meaning)

E is an arithmetic expression used as a boolean expression
[[E]]) [[E! = 0]]

Figure 5. General Transformation Axioms and Rules

by academics familiar with the side-effect removal algo-
rithm. We shall call this the ‘possibly biased test’. In the
other test, the questions were chosen by academics famil-
iar with C programming, but who had not been exposed
to the side-effect removal algorithm. We shall call this
the ‘unbiased test’.

In the ‘possibly biased’ test, no attempt was made to
optimise the questions to illustrate that the algorithm per-
formed well. Rather, we attempted to define simple and
commonly accruing side-affecting code fragments. The
reason for comparing results with a guaranteed ‘unbi-
ased’ test was thus to ensure that there was no subcon-
scious bias in the selection of questions.

In the ‘possibly biased’ test there were six questions,
chosen to exhibit a range of difficulties. In the unbiased
test there were four questions. In both the ‘possibly bi-
ased’ and ‘unbiased’ tests, each question presents a frag-
ment of code and contains several sub-questions, which
ask the student what the final values of variables will be
when the code fragment is executed.

5.2 Cross–over of Treatments

All the students were required to attempt all the ques-
tions (and all their parts) in both the ‘possibly biased’ and
‘unbiased’ tests, both for the side-affecting versions and
the side-effect free versions. This gives us the maximum
amount of data to analyse, but it raises the possibility of
unwanted ‘order effects’. That is, if we suppose that the
student performed the side-affecting test first and then the
side-effect free test second. It is possible that the expe-
rience gained from answering the questions in the first
version of the test could, perhaps, help (or indeed hinder)

the ability to answer those in the second.
We could have split the group of subjects in half, giv-

ing one half the treatment (i.e. side-effect free programs),
using the other as a ‘control’, but this would have pre-
sented us with the problem of selecting the groups and
would have reduced by half the amount of data we could
collect. Therefore, instead of removing the possibility of
order effects, we chose to measure whether such effects
had occurred. To achieve this, we used a cross-over de-
sign. For the ‘possibly biased’ test, one group sat the
side-effect free version of the test first, while the other sat
the side-affecting version of the test first. For the unbi-
ased test the order in which the groups sat side-effect free
and side-affecting versions was reversed. This allowed
us to test whether order had an impact upon the scores
obtained.

5.3 Results

Figure 6 shows the average score for each question in
both its Side-Effect Free (SEF) and Side-Affecting (SE)
versions, for the ‘possibly biased test’, while Figure 7
shows the average score for both versions of the four
questions for the unbiased test. Certainly, it can be seen
from the figures, that the results for all of the side-effect
free versions of the program are noticeably better than
those for the corresponding side-affecting versions.

It is also interesting to note that performance
(SCORE) appears to be consistently affected across the
range of questions asked; the results for the questions
containing the side-affecting versions of the code frag-
ments are essentially similar to those obtained for the
side-effect free equivalents; they are merely shifted down
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Figure 6. Results: Possibly Biased Test

by a relatively consistent amount. We might call this shift
the result of a ‘coefficient of inherent side-effect com-
plexity’.

These informal visual conclusions drawn from the pre-
sentation of the results in the figures can be substantiated
by performing t–tests and by calculating the F statistic
[3] on the data collected. Specifically, by performing a
t–test, we found that we cannot reject the null hypothe-
sis relating to order effects on the number of correct an-
swers (with t = 0:854 and p = 0:406). That is, there is
no evidence for differences between the two groups, di-
vided according to the order in which the test were taken.
However, by computing the F statistic for the two tests
we found that the performance was significantly affected
by the treatment (whether the side-affecting or side-effect
free version of the test was used). For the ‘possibly bi-
ased’ test the results were (F = 181:226; p << 0:0001),
and for the unbiased test they were (F = 34:89; p <<
0:0001).

This allows us to state that there is no statistically sig-
nificant difference between the scores for students who
sat the tests in each of the two orders. Also, we can state
that the scores were significantly better for both the ‘pos-
sibly biased’ and the unbiased tests when using the side-
effect free versions of the program. This gives us good
reason to believe that the removal of side-effects is the
principal cause of improved performance, and that this
improved performance is real. We therefore conclude that
side-effect removal using this algorithm improves pro-
gram comprehension.

6 Conclusion and Future Work

This paper has introduced an algorithm for side-effect
removal that uses syntax directed transformation and
symbolic execution to transform programs with side-
effects into equivalent side-effect free programs.

Figure 7. Results: Unbiased Test

The algorithm has been shown to significantly im-
prove program comprehension and may also have several
other applications in software maintenance such as im-
proving evolutionary testing and removing the barriers to
the application of tools such as the Maintainers’ Assis-
tant, which works with a side-effect free language, WSL.

Future work will combine the side-effect removal sys-
tem with the DaimlerChrysler Evolutionary Testing sys-
tem to explore the possibility of increasing the coverage
achieved by existing techniques for automated testing and
to reduce the effort required to generate good quality test
data.
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