
Evolving Transformation Sequences using Genetic Algorithms

Deji Fatiregun, Mark Harman and Robert M. Hierons
Department of Information Systems and Computing,

Brunel University,

Uxbridge, Middlesex, UB8 3PH.

email �ayodeji.fatiregun, mark.harman, rob.hierons�@brunel.ac.uk

Abstract

Program transformation is useful in a number of appli-
cations including program comprehension, reverse engi-
neering and compiler optimization. In all these applica-
tions, transformation algorithms are constructed by hand
for each different transformation goal. Loosely speaking,
a transformation algorithm defines a sequence of trans-
formation steps to apply to a given program. It is noto-
riously hard to find good transformation sequences au-
tomatically, and so much (costly) human intervention is
required.

This paper shows how search-based meta-heuristic al-
gorithms can be used to automate, or partly automate the
problem of finding good transformation sequences. In this
case, the goal of transformation is to reduce program size,
but the approach is sufficiently general that it can be used
to optimize any source–code level metric. The search
techniques used are random search (RS), hill climbing
(HC) and genetic algorithms (GA).

The paper reports the result of initial experiments on
small synthetic program transformation problems. The re-
sults are encouraging. They indicate that the genetic algo-
rithm performs significantly better than either hill climb-
ing or random search.

1 Introduction

Program transformation [2, 3, 7, 9, 11, 16] has been
widely described as the changing of one program into
another. It involves altering the program syntax while
leaving its semantics unchanged. It has been exten-

sively applied to various software engineering disciplines
such as program synthesis, optimisations [1, 14], refac-
toring, reverse-engineering [15], program comprehension
[4], software maintenance [17]. Transformation has also
been shown to be a useful supporting technology for
search–based software testing using evolutionary search
techniques [10, 11]. Amorphous Slicing is a further ap-
plication scenario where the source-to-source transforma-
tions proposed in this work may be applied.

In program transformation, we typically apply a num-
ber of small simple atomic transformation rules called ax-
ioms (some authors refers to them as transforms) to parts
of a program’s source code. These axioms are formally
proven to be correct in that they are semantic equivalence
preserving transformations.

Consequently, in the search for transformation se-
quences, we presume that if each axiom preserves seman-
tic equivalence then a whole sequence of axioms ought to
preserve semantic equivalence. Examples of simple trans-
formation axioms (rules) are:
�� : x:= x + 1; x := x + 1; � x := x + 2;
�� : if (true) s1; else s2; fi;� s1;
�� : if (e1) s1; else s2; � if (!e1) s2; else s1;
�� : x := x + 1; y := y + 1; � y := y + 1; x := x + 1;
�� : for (s1; e2; s2) s3; � s1; while (e2) s3; s2;

Consider the program fragment shown in figure 1. We
show the application of a sequence of transformations
[T4, T1, T1, T5, T2] (given that the current pro-
gram cursor position along the program parse tree is on
line 1) to the fragment. and the resultant output program
shown in figure 2.

Typically, with most transformations systems currently
in use today, the order of application of the transforms

1

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

1. x := x+1;

2. y := y+1;

3. x := x+1;

4. IF (x>y) THEN

5. a := a+1;

6. ELSE

7. b := b+1;

8. FI;

9. a := a+1;

Figure 1: Source fragment: source program before sequence is
applied

1. y := y+1;

2. x := x+2;

3. IF (x>y) THEN

4. a := a+1;

5. ELSE

6. b := b+1;

7. FI;

8. a := a+1;

Figure 2: Output fragment: resulting program from the appli-
cation of sequence [T4, T1, T1, T5, T2] to �����

are pre-determined by the designers of the transforma-
tion engine. This pre-fixing of the order of execution is
obviously very dependent upon the particular input pro-
gram and not generic and as such assumes apriori knowl-
edge of the input program. The effectiveness of a given
sequence is also dependent upon the order in which the
transforms occur. That is, two sequences with identi-
cal axioms but with different placements in the sequence
such as [T1,T2,T3] and [T2,T1,T3] could poten-
tially produce different results for a given source program.
Cooper et al. [5] describe this as interplay, where a trans-
formation may create opportunities for other transforma-
tions and similarly, may eliminate opportunities.

We propose a system where we can dynamically gen-
erate transformation sequences for a variety of programs
also using a variety of objective functions. In this paper,
we consider optimising the program with respect to the
size of the source–code i.e., the number of Lines of Code
(LoC), where we aim to minimise the number of lines of
code by as much as possible. For instance, in the exam-
ple fragments 1 and 2, a sequence that produces Program
����� is better than one that results in ����� because it

contains fewer nodes.
However, this approach is such that if we were inter-

ested in another singular metric or a combination of var-
ious metrics, then it would be relatively easy to include
our new objective function into the algorithm.

An obvious approach to solving the problem would be
to randomly traverse through the search space of possible
sequences for a fixed number of iterations, keeping the
best sequence found across each iteration. An exhaustive
search of the search space is clearly infeasible due to
there being an exponential number of combinations of
axioms and their nodes of application.

The contributions of this paper are to:

� Reformulate the transformation problem as a search
issue for optimisation.

� Provide evidence that evolutionary and/or local
search can be used to evolve good transformation se-
quences.

� Investigate the difference between Hill-Climbing
and the Genetic Algorithms. In summary, the GA
outperforms the HC in every case.

The rest of the paper is organised as follows: Section
2 describes the rationale for treating the transformation
problem as a search problem and the approaches taken.
Section 3 describes the source transformations used in the
study. Section 4 presents the experiments carried out and
a discussion of the findings. Section 5 describes the re-
lated work in this area while section 6 outlines some of
the outstanding issues for future consideration. Finally
section 7 presents the conclusions.

2 Transformation as a Search Prob-
lem

An overall transformation of a program � to an improved
version �� typically consists of many smaller transforma-
tion tactics [2, 3]. Each tactic consists of the application of
a set of rules. A transformation rule is an atomic transfor-
mation capable of performing the simple alterations like
those captured in examples �� � � � ��. At each stage of the

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

application of these rules, there are many points in a pro-
gram; typically one per node of the Control Flow Graph.
The set of pairs of possible transformation rules and their
corresponding application point is therefore large.

Furthermore, to achieve an effective overall program
transformation tactic, many rules may need to be applied,
and each would have to be applied in the correct order
to achieve the desired result. This explosion in the num-
ber of possible choice of transformation rules and their
appropriate sequencing has led to problems in the gener-
alisation of program transformation and while specialised
transformation algorithms exists for dedicated tasks, we
are currently unaware of any general purpose transforma-
tion algorithms.

Also, the search–space of possible transformation se-
quences make exhaustive search infeasible. Given a trans-
formation system with 20 possible transforms and a se-
quence length of 20, there are 20�� possible combinations
in the search–space which is huge. It is for these reasons
that we employ evolutionary and meta–heuristic search
algorithms to guide the search for good sequences and
maintain that any technique which outperforms random
search is perhaps useful.

2.1 Local Search - Hill–Climb

In a local search method such as the Hill–Climbing al-
gorithm (HC), one guesses a solution within the solution
space and then moves toward a better solution closer to
the goal.

We implement a HC algorithm to find good transforma-
tion sequences. In our implementation, an initial sequence
is generated randomly and serves as our starting point.
The fitness of this individual is computed. The algorithm
iterates through each neighbour to the current position and
when a better individual is found, this individual replaces
the old one as the current best individual. This process is
repeated and if no better neighbour is found, we assume
we have arrived at the top of the hill and the current solu-
tion remains our best.

The algorithm is restarted several times using a random
sequence as the starting individual each time. The aim is
that this would divert the algorithm from any local optima
and increase the chances of finding a global solution.

2.2 Global Search - Genetic Algorithm

A Genetic Algorithm (GA) is a population-based search
procedure, which starts with an initial random population
and evolves over several generations, such that the indi-
viduals in successive generations have better or at least
of no worse fitness values than those in preceding gener-
ations. An optimised individual is one which presents a
more desirable solution to the given problem.

GAs imitate the natural process of evolution and use
evolutionary operators such as crossover and mutation to
alter the population across several generations toward op-
timality.

Crossover facilitates the exchange of information be-
tween two chromosomes by dividing each chromosome
at a selected position and swapping adjacent sides across,
creating new child chromosomes. Selection is the process
by which the two individuals needed for crossover are
chosen. The crossover rate is the probability of crossover
execution. Mutation can allow the opportunity to intro-
duce diversity into the population by allocation a chance
for a gene to be altered. The probability that a gene within
a chromosome would be altered is referred to as the mu-
tation rate.

Population

Crossover Mutation

initial population

selection

Figure 3: Iterative stages of a Genetic Algorithm, from the
initial Population, crossover through to the application of
mutation operators.

The result is a new population and the evolutionary op-
erators are applied iteratively across each new population.
The GA is terminated after a finite number of generations.
Figure 3 summarises the iteration that occurs during the
main stages of a GA.

We employ a GA to evolve the sequences of transforms
that would result in the best possible program. Our ap-

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

proach is to use the transformation sequence to be applied
to the program as the individual to be optimised. Us-
ing the transformation sequence as the individual makes
it possible to define crossover relatively easily. In our
implementation, we combine two sequences of transfor-
mations using a single point crossover, selecting a point
at random along the chromosome and swapping adjacent
sides. The result is a valid transformation sequence and
since all transformation rules are meaning preserving, so
are all sequences of transformation rules. Each time a par-
ent sequence is applied to our source program, its fitness
value is computed and likewise for every child sequence
generated during crossover and re-admitted into the pop-
ulation space.

2.3 Fitness Function

We measure the fitness of a potential solution as the nom-
inal difference in the lines of code between the source
program and the new transformed program created by
that particular sequence.

This is evaluated by:

1. compute oldLength = length of the input program.

2. generate transformation sequence (randomly,
through crossover and mutation in the case of the
GA, or next neighbour in the HC)

3. apply the transformation sequence to the top of input
program.

4. compute newLength = the length of the program af-
ter sequence has been applied

5. compute the fitness of individual (oldLength -
newLength)

2.4 Encoding

We refer to each transformation sequence as an individual
which has a fixed sequence length of 20 possible transfor-
mations. In our implementation, we employ 22 different
transformations numbered serially from 1. An example of
an individual is:

[10,14,1,1,8,16,14,4,22,15,20,4,8,20,9,2,12,20,9,21].

13 13 7 10

13 13 7 10 1622 18 12 21 15 9 22

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Parent 1:

Parent 2

Child 1

Child 2

22 14 1

crossover point

1622 18 12 21 15 9 22

1218 7 5 8 11 20 1522 14 1

1218 7 5 8 11 20 15

Figure 4: Gene sequence showing single point crossover of two
parents creating two new children.

In our hill–climb implementation, we define the neigh-
bour as the mutation of a single gene from the original
sequence leaving the rest unchanged. The sequence

[10,14,1,18,16,14,...]

would therefore have as a possible neighbour

[9,14,1,18,16,14,..]

because the first gene would have been changed.

This search through each neighbour for a potentially
better gene sequence is continued until no better sequence
can be found. We restart the algorithm with a new random
sequence.

This encoding of the GA makes it possible to define
crossover relatively easily, we choose a random point and
swap genes creating two new children whose fitness can
then be evaluated. Figure 4 shows the process of crossover
and the creation of the two new child individuals.

3 FermaT Transformations

We implement our algorithms using the FermaT transfor-
mation tool, which has a number of built-in transforms
that could be applied directly to any point within the pro-
gram.

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

The transformations in FermaT could, if their applica-
tion is possible, either increase or decrease the size of the
program. Some transformations may leave the program
size unchanged. We do not include those transformations
that could transform an entire program in one single step
but rather atomic ones that work on pairs of nodes as pre-
viously shown in our examples.

In addition to transforms which alter the structure of
the source programs in some way, we also include in the
sequence, transforms such as @Right, @Left, @Up and
@Down, that do not change the syntax of the input pro-
gram but merely allow the movement of the current cursor
position along the parse tree for the source program.

The inclusion of such transforms mean that we also
need not statically determine the position of application
for the optimising transforms but allow the algorithm to
walk through the input program to determine when and
where a valid transform should be applied. Every other
transform apart from the four described above is a WSL-
to-WSL transformation of the input source designed to al-
ter the code in some way. In the experiments carried out,
the following 20 transformations were used 1:

@double-to-single-

loop:

This transformation will delete
all the ‘COMMENT’ statements
within the selected code.

@else-if-to-elsif: This transformation will replace
an ‘Else’ clause which contains
an ’If’ statement with an ‘Elsif’
clause. The transformation can be
selected with either the outer ‘If’
statement, or the ‘Else’ clause se-
lected.

@elsif-to-else-if: This transformation will replace
an ‘Elsif’ clause in an ‘If’ state-
ment with an ‘Else’ clause which
itself contains an ‘If’ statement.
The transformation can be se-
lected with either the ‘If’ state-
ment, or the ‘Elsif’ clause se-
lected.

@merge-right: This transformation will merge the
selected statement into the state-
ment that follows it.

@merge-left: This transformation will merge the
selected statement (or sequence of
statements) into the statement that
precedes it.

@remove-redundant-

vars:

This transformation will remove
any redundant variables in the
source program

1Source for the description of FermaT transformations compiled
from the transformation manual

@absorb-right: A transformation that would ab-
sorb into the current statement, the
one that follows it.

@absorb-left: A transformation that would ab-
sorb into the current statement, the
one that precedes it.

@simplify: This transformation would sim-
plify any components as fully as
possible

@up: Moves up one level on the parse
tree from the current item if possi-
ble.

@down: Moves down one level on the
parse tree from the current item if
possible.

@right: Moves right into next item on pro-
gram parse tree

@left: Moves left into the next item on
program parse tree

@move-to-right: This transformation will move the
selected item to the right so that
it is exchanged with the item that
follows it.

@move-to-left: This transformation will move the
selected item to the left so that it is
exchanged with the item that pre-
cedes it.

@add-left: This transformation will add the
selected statement (or sequence of
statements) into the statement that
precedes it without doing further
simplification.

@delete-all-comments: This transformation will delete
all the ’COMMENT’ statements
within the selected code.

@combine-wheres: will combine two nested
WHERES into a single structure

@delete-all-

redundants:

deletes all redundant variables

@delete-all-skips: This transformation will delete all
the ’SKIP’ statements within the
selected code.

A test for validity is carried out before each transforma-
tion is applied at the current cursor position. Each trans-
formation is only performed if its application at that point
is valid. If the test for the application of a transformation
is invalid then it is not applied and the program remains
unchanged.

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

4 Experiments

4.1 Experimental Setup

In this paper, we examine heuristic search methods in or-
der to investigate the potential for finding good transfor-
mation sequences that optimise the size of source code.
We define a fixed length of 20 genes for our transfor-
mation sequence for all three algorithms researched. We
find that this value best represents the transformations se-
quence that would return the optimum program, with the
programs included in our tests.

We implemented a standard Genetic Algorithm using
single point crossover, a crossover rate of 100% and a
mutation rate of 7%. We adopt the tournament selection
technique for choosing the mating parents and create a
single offspring from the mating which in-turn replaces
the worse of the two parents in the population. We de-
fine a constant population size of 50 and run the algorithm
over 200 generations.

We also conduct some analysis using a hill–climbing
algorithm with multiple restarts, keeping the best individ-
ual over the different restarts. The HC algorithm uses
a first–ascent technique, where the first better sequence
found is our new current best position. We describe the
notion of neighbourhood in our hill–climb as a the mu-
tation of a single gene within an individual (keeping all
other genes fixed). The algorithm is restarted 10 times
with a new random individual each time.

We compare the results from both our GA and hill–
climb with those returned by a purely Random Search of
the search–space. The Algorithm for the random search
randomly generates individuals and the best individual
found so far is recorded across several iterations. The
three algorithms were tested using synthetic programs
with sequences, selections and iterations in order to get
a feeling of how the transforms handled these.

We observe two outputs from the execution of the three
algorithms: the most desirable sequence of transforma-
tions that it finds and the number of fitness evaluations
that it takes to arrive at that solution. In the implementa-
tion for the algorithms, we keep the source program static,
meaning that each new transformation sequence gener-
ated is applied to the same starting program as all other
sequences before it. The effects of a previous sequence
on the program are discarded before the next sequence is

applied.
As a means of fair comparison, we only analyse the

number of fitness evaluations it takes each algorithm to
find individuals with good fitness score. Each algorithm
is allocated a maximum of 3,000 fitness evaluations and
recorded the best fitness recorded so far at intervals of
100 fitness evaluations. The results presented are aver-
aged over 10 runs for each algorithm.

4.2 Results and Discussions

We find that perhaps unsurprisingly, the genetic algorithm
outperforms both the random search and the hill–climber
as the source program size increases. We observe in fig-
ures 5 and 6 that the gaps between the GA and the HC
and Random search seem to increase across successive
graphs. However also interestingly, we see that the ran-
dom search outperforms the hill–climb algorithm for cer-
tain test programs. Each graph represents the results of
executing the three algorithms on a single test program.
The mean fitness value over 10 runs is plotted on the y-
axis against the number of fitness evaluations on the x-
axis.

It takes fewer number of fitness evaluations for the GA
to match the fitness values for programs returned by the
random search and the HC algorithm. The differences in
the target programs from both algorithms were however
not significantly different. We think this might be due to
the synthetic nature of the test programs and are keen to
try the experiment on benchmark programs for an experi-
ence of what the results might be.

We observe that the hill–climber repeatedly performed
worse than RS over all tests. We feel that this is due
to the implementation of the hill–climb chosen where
we apply tight conditions for neighbourhood. We are
also keen to try out scenarios where our neighbourhood
criteria is randomised and more relaxed. We suggest
that the hill–climber cannot perform any worse in such
a scenario and also in one where the initial individual in
the hill–climb cycle is perhaps the best one returned by
the random search.

In the test cases where random search outperforms both
the GA and the HC (figure 7), we observe that the se-
quences being generated by the GA and HC are not ’mov-
ing’ toward areas where potential optimisations may be

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

Figure 5: Increasingly improving GA performance over RS and
HC. Successive test program requiring more advanced transfor-
mation sequences to produce high fitness values. The top line
represents average fitness values for the GA, the middle line
represents the values for Random Search and the bottom line
represents the HC.

Figure 6: Continuing increase in GA performance over those
of Random and Hill climbing. Top Line represents the average
GA values, Middle line represents the average Random values
while the bottom line represents the average HC values

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

Figure 7: Tests on programs with IF-THEN-ELSE blocks

GA v. Random GA v. HC Random v. HC
Test 1 .007 .011 .033
Test 2 .004 .005 .010
Test 3 .003 .004 .010
Test 4 .004 .005 .010
Test 5 .004 .004 .011
Test 6 .004 .005 .010
Test 7 .005 .005 .011

Figure 8: Results of Wilcoxon significance tests showing
strong significance in the results with the GA outperform-
ing both random search and the HC.

carried out, whereas the nature of the random search al-
lows for a certain percentage of luck in arriving at good
locations for optimisation.

Because we have no guarantee that the experimen-
tal data is normally distributed, we carried out the
Wilcoxon’s tests for significance of the results. This is
a non-parametric test to test the significance of the differ-
ence between two samples. The results of the tests pre-
sented in Figure 8 shows strong significance in the results
across various test cases.

In analysing our GA implementation, we believe that
the GA potentially kills off good subsequences of trans-
formation during crossover. There is a need to preserve
these subsequences whenever crossover occurs to im-

prove the overall quality of solutions. Finally, we suggest
is that there may be certain features intrinsic to some pro-
grams that may make random search not so bad against
the others. Examples of our test programs include a se-
quence of assignments such as those shown in Figure 9

For the example in Figure 9, program one, a good solu-
tion would be a sequence of six absorb-right transforma-
tions that would result in the following program:

x := x + 7;

Similarly, for programs two, a sequence of two
absorb-right, three move-right and then more
absorb-right transforms would produces the follow-
ing optimal programs:

a := a + 1;

b := b + 1;

c := c + 1;

x := x + 7;

while for program three, a sequence of two absorb-
right transforms and a down transform would allow
further simplifications possible inside the IF-block. Fur-
ther absorb-right transforms may then be applied.
A good result would be a sequence that produces the
following output:

x := x + 3;

IF x > y THEN

b := b + 2;

x := x + 1;

ELSE

c := c + 2;

FI;

x := x + 3;

5 Related Work

Some prior work has been done in the area of using meta–
heuristic search algorithms to search for optimisation se-
quences. Cooper et al. [5, 6] focus on searching for se-
quences of compiler optimisation transforms which work
largely on compiled code using biased random sampling.
They compare the results of their experiments with those

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

program one program two program three
1. x := x + 1;
2. x := x + 1;
3. x := x + 1;
4. x := x + 1;
5. x := x + 1;
6. x := x + 1;
7. x := x + 1;

1. x := x + 1;
2. x := x + 1;
3. x := x + 1;
4. a := a + 1;
5. b := b + 1;
6. c := c + 1;
7. x := x + 1;
8. x := x + 1;
9. x := x + 1;

10. x := x + 1;

1. x := x + 1;
2. x := x + 1;
3. x := x + 1;
4. IF x > y THEN
5. b := b + 1;
6. b := b + 1;
7. x := x + 1;
8. ELSE
9. c := c + 1;
10. c := c + 1;
11. FI;
12. x := x + 1;
13. x := x + 1;
14. x := x + 1;

Figure 9: Sample test programs, showing the increasing number of moves to the right that a good sequence would require to
produce an optimal solution. Program one requires a sequence of absorb transformations to produce the optimal result. In order to
simplify program two and three, the algorithms need to be intuitive to realise where potential optimisations may be applied, e.g.,
in program three, the program cursor needs to go DOWN the Abstract Syntax Tree (AST) for the program, into the IF-block for
further simplifications to occur.

obtained against a fixed set of optimisations in a predeter-
mined order. Fatiregun et al. [8] conducted preliminary
investigation into search–based transformations. Ryan
[13] worked on using search techniques to automate par-
allelisation for supercomputers. Nisbet [12] focused on
using a GA to find program restructuring transformations
for FORTRAN programs to execute on parallel architec-
tures. Zou and Kontogiannis [17] have carried out re-
search on transforming procedural legacy codes to object-
oriented codes using the Markov model and the Viterbi
algorithm to identify an optimal sequence of transforma-
tions.

Our work continues in this area of merging search and
transformation problems, but specifically applied to trans-
formations performed at source–code level. We do not
predetermine the order of our sequences but compare dif-
ferent techniques for best results. The correct ordering of
good transformation sequences would be as much a goal
for our search algorithms.

6 Future Work

Currently, research into this problem has introduced a
number of issues that ought to be tackled in the imme-
diate future. We describe the need for a more responsive

fitness measure that rewards moves to potentially good
transformations. This problem of the evolutionary search
not adequately moving to potentially good locations may
be improved by an improvement in the fitness functions
being used. Presently, the fitness measure is rather too
fine grained where a better individual (sequence) is one
which definitely makes the new program size smaller than
the source program.

However, this technique punishes those transforma-
tions that may not necessarily make the program smaller
but may take the cursor to a point where a potentially good
optimisation may be exploited. This is especially impor-
tant because: Firstly, the order of the transformation se-
quence is essential and secondly, because it provides the
basis for the evolution of good building blocks or sub-
sequences.

We also advocate for the adoption of hybrid search, to
further enhance the performances of the meta–heuristic
and evolutionary searches. For instance, we could seed
our hill–climb with the best individuals found from the
execution of either the random search or GA. Similarly,
we could perhaps also seed the initial GA population with
a top percentile of the results found by either the hill–
climb and / or random, before applying the GA operators.

Lastly, another direction for future research is looking

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

at dynamic programs, where the input program changes
if a fitter individual is found. This in essence allows us
to create arbitrarily long sequences that potentially could
result in optimal results for any objective function.

7 Conclusion

This paper highlights the transformation problem and de-
scribes search–based approaches to solving this problem.
We look at using evolutionary and meta-heuristic search
algorithms, in our case, Genetic Algorithms and Hill–
Climbing algorithms to traverse a large search space of
individuals to find a good transformation sequence that
minimises the number of lines of source code. We find
that these techniques are useful for the problem described
and should be further explored and that the GA outper-
forms the HC algorithm in all test cases examined.

8 Acknowledgements

The authors would like to thank Martin Ward for use for
the FermaT transformation engine in this work and dis-
cussions on search-based transformations. The authors
would also like to thank Dr. Stephen Swift for discus-
sions on search-based transformations. They would also
like to thank Kiarash Mahdahvi for providing help with
the statistical analysis.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-

ples, techniques and tools. Addison Wesley, 1986.
[2] I. D. Baxter. Transformation systems: Domain-oriented

component and implementation knowledge. In Proceed-
ings of the Ninth Workshop on Institutionalizing Software
Reuse, Austin, TX, USA, Jan. 1999.

[3] K. H. Bennett. Do program transformations help reverse
engineering? In IEEE International Conference on Soft-
ware Maintenance (ICSM’98), pages 247–254, Bethesda,
Maryland, USA, Nov. 1998. IEEE Computer Society Press,
Los Alamitos, California, USA.

[4] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned
program slicing. In M. Harman and K. Gallagher, editors,
Information and Software Technology Special Issue on Pro-
gram Slicing, volume 40, pages 595–607. Elsevier Science
B. V., 1998.

[5] K. D. Cooper, P. J. Schielke, and D. Subramanian. Opti-
mising for reduced code space using genetic algorithms. In
Proceedings of the 1999 Workshop on Languages, Compil-
ers and Tools for Embedded Systems (LCTES), May 1999.

[6] K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive
optimising compilers for the ���� century. Journal of Super
Computing, 2002.

[7] J. Darlington and R. M. Burstall. A tranformation system
for developing recursive programs. J. ACM, 24(1):44–67,
1977.

[8] D. Fatiregun, M. Harman, and R. Hierons. Search based
transformations. In Genetic and Evolutionary Computation
Conference, pages 2511 – 2512, Chicago, USA, July 2003.
Springer.

[9] M. S. Feather. A system for assisting program transforma-
tion. ACM Transactions on Programming Languages and
Systems, 4(1):1–20, Jan. 1982.

[10] M. Harman, C. Fox, R. M. Hierons, L. Hu, S. Danicic, and
J. Wegener. Vada: A transformation-based system for vari-
able dependence analysis. In IEEE International Workshop
on Source Code Analysis and Manipulation (SCAM 2002),
pages 55–64, Montreal, Canada, Oct. 2002. IEEE Com-
puter Society Press, Los Alamitos, California, USA. Voted
best paper by attendees.

[11] M. Harman, L. Hu, R. Hierons, A. Baresel, and
H. Sthamer. Improving evolutionary testing by flag re-
moval. In GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, pages 1359–1366,
New York, 9-13 July 2002. Morgan Kaufmann Publishers.

[12] A. Nisbet. GAPS: A compiler framework for genetic al-
gorithm (GA) optimised parallelisation. In HPCN Europe,
pages 987–989, 1998.

[13] C. Ryan. Automatic re-engineering of software using ge-
netic programming. Kluwer Academic Publishers, 2000.

[14] E. Visser, Z. Benaissa, and A. Tolmach. Building pro-
gram optimizers with rewriting strategies. In Proceedings
of the International Conference on Functional Program-
ming (ICFP’98), Baltimore, USA, September 1998.

[15] M. Ward. Reverse engineering through formal transforma-
tion. The Computer Journal, 37(5), 1994.

[16] M. Ward. Assembler to C migration using the FermaT
transformation system. In IEEE International Conference
on Software Maintenance (ICSM’99), Oxford, UK, Aug.
1999. IEEE Computer Society Press, Los Alamitos, Cali-
fornia, USA.

[17] Y. Zou and K. Kontogiannis. Migration to object oriented
platforms: A state tranformation approach. In Proceedings
of the IEEE International Conference on Software Main-
tenance, (ICSM 02), pages 530 – 539, Montreal, Canada,
October 2002. IEEE Computer Society Press, Los Alami-
tos, California, USA.

Proceedings of the Fourth IEEE International Workshop on Source Code Analysis and Manipulation (SCAM’04)
0-7695-2144-4/04 $ 20.00 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 8, 2009 at 11:36 from IEEE Xplore. Restrictions apply.

