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Abstract

Program slicing is a source code extraction technique
that can be used to support reverse engineering by auto-
matically extracting executable subprograms that preserve
some aspect of the original program’s semantics. Although
minimal slices are not generally computable, safe approx-
imate algorithms can be used to good effect. However, the
precision of such slicing algorithms is a major factor in de-
termining the value of slicing for reverse engineering.

Amorphous slicing has been proposed as a way of re-
ducing the size of a slice. Amorphous slices preserve the
aspect of semantic interest, but not the syntax that denotes
it, making them generally smaller than their syntactically
restricted counterparts. Amorphous slicing is suitable for
many reverse engineering applications, since reverse engi-
neering typically abandons the existing syntax to facilitate
structural improvements.

Previous work on amorphous slicing has not attempted
to exploit its potential to apply loop–squashing transforma-
tions. This paper presents an algorithm for amorphous slic-
ing of loops, which identifies induction variables, transfor-
mation rule templates and iteration–determining compile–
time expressions. The algorithm uses these to squash certain
loops into conditional assignments. The paper also presents
an inductive proof of the rule templates and illustrates the
application of the algorithm with a detailed example of loop
squashing.

1. Introduction

Program slicing is an automated source code extrac-
tion technique which produces a version of a program that
preserves a projection of the original program’s semantics
[7, 17, 22, 33, 36]. Traditionally, this projection is defined
in terms of a subset of variables of interest and is con-
structed using the sole transformation of statement deletion

[36]. The slice is therefore a subprogram which preserves a
subcomputation.

Program slicing has been applied to several stages of the
reverse engineering process, such as program restructuring
[4, 9, 10, 28, 31] program comprehension [14, 18, 28, 29,
30] regression testing [5] and program integration [26]. In
all these applications, the important aspect of slicing is the
way in which it allows the reverse engineer to extract a se-
mantically meaningful sub–computation, based on a slicing
criterion which captures the aspect of the overall computa-
tion.

Program slicing can simplify a program. However, the
resulting slice may remain large; perhaps too large to be
useful for reverse engineering. Amorphous slicing [23, 21]
has been proposed as a way of reducing the size of a slice.
Amorphous slices preserve the aspect of semantic interest,
but not the syntax that denotes it, making them generally
smaller than their syntactically restricted counterparts.

Amorphous slicing is suitable for many reverse engi-
neering applications, since when re–engineering a system,
the program is typically restructured; thus the existing syn-
tax is modified. It is unlikely that a re–engineered system
will faithfully preserve a subset of the syntax of the pro-
gram from which it is constructed. In this situation amor-
phous forms of slicing are more attractive than their syntax–
preserving counterparts because amorphous slices are al-
ways no bigger than (and typically are smaller than) their
syntax–preserving counterparts.

This paper presents an algorithm that improves the amor-
phous slicing of loops. The algorithm incorporates a type of
loop transformation, which is employed to further reduce
dependences while amorphous slicing. When this depen-
dence reduction transformation is applied to a loop, it trans-
forms the loop into a conditional assignment; thus, further
reducing the slice size.

Figure 1 shows an example of a syntax–preserving slice.
The left–hand column shows a program that takes as in-
put number n, and computes the sum and product of the
first n positive integer. The right–hand column of the fig-
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ure is the syntax–preserving slice with respect to variable
sum at the end of the program. The slice captures a seman-
tic projection of the original program.

i:=1; i:=1;
sum:=0; sum:=0;
product:=1;
while i <= n do while i <= n do

sum:=sum+i; sum:=sum+i;
product:=product*i;
i :=i+1; i:=i+1;

od od

Original program A slice w.r.t sum

Figure 1. Syntax–preserving program slicing

The example in Figure 1 is well–known and is widely
used in the literature to illustrate slicing. One would be for-
given for thinking that nothing more can be said about it.
However, as this paper will show, it is possible, using loop
squashing, to further reduce the size of the slice (and many
like it). Observe that, though the slice is reduced, the restric-
tion to syntax–preservation prevents the slicer from achiev-
ing any further simplification. Previous work on amorphous
slicing [6, 23] also cannot reduce this program further, since
no attempt is made to squash loops into conditionals. How-
ever, applying loop–squashing reduces the slice to the code
shown in Figure 2.

i := 1;
sum := 0;
if i <= n then
sum := n*(n+1)/2;

fi

Figure 2. An amorphous slice using loop–
squashing

Furthermore, under the assumption that all loops execute
at least once, this can be further transformed to a single as-
signment

sum := n*(n+1)/2;

Our experiments indicate that conditioned slicing [8, 13,
20] can detect when a loop must execute at least once.
In this case the example slice reduces to a single state-
ment. However, this paper focuses upon the problem of loop
squashing; all loops will be reduced to conditionals to en-
sure semantic preservation (in the case that the loop does

not iterate). The problem of integrating conditioned slicing
with loop squashing remains a problem for future work.

The primary contributions of this paper are as follows.

1. The paper presents a loop–squashing algorithm for
amorphous slicing,

2. The algorithm is based upon a set of rules for loop
transformation. The rules are proved correct using in-
ductive proofs.

3. The paper illustrates the application of the algorithm
with a detailed example.

The rest of this paper is organized as follows. Section 2
introduces the loop squashing algorithm and proves that the
transformation upon which it is based is correct. Section 3
illustrates the application of the algorithms with a simple
case study. Section 4 presents related work and Section 5
concludes with directions for future work.

2. Loop Squashing Algorithm in WSL

This section presents the loop squashing algorithm,
which has been incorporated into the DRT compo-
nent of GUSTT amorphous slicer [24]. The slicer con-
siders program written in a C-like language with con-
siderably cleaner semantics, named WSL [34, 35]. In
WSL, the while loop construct of interest in this pa-
per is

while e do
...

od

For presentation clarity, algorithm and examples appear-
ing herein treat while loops. The techniques extend to
other kind of loops. For example, for loops actually sim-
plify the application of the transformation as they syntac-
tically identify the loop induction variable. The examples
also ignore nested loops. The technique can be applied to
nested loops by processing the innermost loop and work-
ing its way out until a loop that cannot be squashed is en-
countered.

The loop–squashing transformation has five steps: induc-
tion variable identification, normalization, pattern match-
ing, iteration computation, and loop replacement. Each of
these steps is described and then they are combined into the
algorithm for loop squashing.

Step 1 identifies a loop induction variables using the
sets REF(e), the referenced variables in expression e, and
DEF(s), the variables assigned in the statement sequence
s. If the set “REF(e) ∩ DEF(s)” contains a single element,
v, that is incremented or decremented the same amount on
each loop iteration, then v can be used as a loop induction
variable. This definition is similar to the standard defini-
tion [1, 2].
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function Normalise(v: variable, sl: Statement Sequence) returns a Statement Sequence
declare

cl, WorkList, DoneList, TopList: Statement Sequences
b: Predicate Expression
c, s, s1, s2: Statements
Stuck: Booleans

begin
WorkList ← sl
DoneList ← []
TopList ← []
while WorkList �= [] do

if head(WorkList) is an assignment statement
then

if assigned variable in head(WorkList) is v
then

(c,cl,Stuck) ← PUSH(head(WorkList),tail(WorkList))
if not(Stuck)
then

WorkList ← cl
DoneList ← Append(c,DoneList)

else
TopList ← Append(TopList, WorkList)
return (Append(TopList, DoneList))

fi
else

TopList ← Append(TopList,c)
WorkList ← tail(WorkList)

fi
else /* Head(WorkList) is not an assignment statement */

if head(WorkList) is an if statement
then

let [[if b then s1 else s2]] be head(WorkList)
TopList ← Append(TopList,[[if b then Normalise(v, s1) else Normalise(v, s2)]])

else /* unrecognized statement encountered: Leave head(WorkList) untransformed */
TopList ← Append(TopList,head(WorkList))

fi
WorkList ← tail(WorkList) /* move on to consider the next statement in WorkList */

fi
od

return (Append(TopList, DoneList))
end

Figure 3. The Normalise Function

Assuming a suitable induction variable exists, Step 2 at-
tempts to place the loop in canonical form using the func-
tion Normalise() shown in Figure 3. The normalization pro-
cess attempts to move and merge all assignments to the loop
induction variable to the end of the loop body.

Function Normalise walks through the abstract syntax
tree of the loop body, applying the auxiliary transforma-
tion tactic PUSH [23, 25]. The PUSH tactic takes a state-
ment list and attempts to push the first assignment statement
forward in a statement sequence. As the assignment passes
statements which reference its defined variable, they have
to be updated to reflect the symbolic effect of the assign-

ment’s execution. The pushing forward of an assignment is
achieved by applying the Push rule shown in Figure 4.

An assignment can get ‘stuck’ in the pushing process.
This happens when an attempt is made to push an assign-
ment which references a variable past a statement that de-
fines the variable. In this situation the PUSH tactic has no
effect upon the statement sequence through which the as-
signment is to be pushed.

For example, suppose that f(), g(), h(), and p() are lin-
ear functions in the following code sequence
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Rule 1 (Assignment to Assignment: Absorb)

e3 = SUB(e2, i, e1)
[[i := e1; i := e2]] ⇒ [[i := e3]]

Rule 2 (Assignment to Assignment: MoveToRight)

i1 �= i2, i2 /∈ REF (e1), e3 = SUB(e2, i1, e1)
[[i1 := e1; i2 := e2]] ⇒ [[i2 := e3; i1 := e1]]

Rule 3 (Assignment to if-then-else)

e′2 = SUB(e2, i, e1), [[i:=e1; c1]] ⇒ [[c′1 i:=e1;]], [[i:=e1; c2]] ⇒ [[c′2 i=e1;]]

[[i:=e1; if (e2) then c1 ELSE c2 fi]] ⇒ [[if (e′2) then c′1 ELSE c′2 fi; i:=e1]]

Rule 4 (Others: Statement to Statement)

DEF (st1) ∩ REF (st2) = φ, REF (st1) ∩ DEF (st2) = φ, DEF (st1) ∩ DEF (st2) = φ

[[st1; st2]] ⇒ [[st2; st1]]

Figure 4. A subset of Push Rules, where the term SUB(e2, i, e1) returns the expression that results
from substituting all occurrences of the variable i in the expression e2, with the expression e1, and
REF is a function which returns the referenced variables of an expression

while f(t) <= 0 do
x := x+g(t);
t := p(t);
y := y+h(t);

od

To normalise this loop with respect to induction variable t
requires computing

Normalise(t, [[x:=x+g(t);t:=p(t);y:=y+h(t);]])

which in turn requires computing

PUSH([[ t:=p(t); y:=y+h(t);]]).

The PUSH transformation applies Rule 2 of Figure 4, to
move the assignment t:=p(t) forward. The resulting nor-
malised loop is

while f(t) <= 0 do
x := x+g(t);
y := y+h(p(t));
t := p(t);

od

This loop is in the canonical form required in the next step.
Step 3 first checks that the transformed loop pattern

matches with the required canonical form as shown in Fig-
ure 5. It can fail to be in the form, for example, if the
PUSH tactic gets stuck. If the matching succeeds, it extracts
certain values from the loop. These include the values of the
variables p, n, d, r, and q as used in Figure 5.

Step 4 computes the number of the iterations the loop
will execute based on the increment (or decrement) of the
induction variable. For example, when p∗d �= 0 and r = 1,

while p ∗ i + q ≤ 0 do
S1 := a1 ∗ S1 + b1 ∗ i + c1;
S2 := a2 ∗ S2 + b2 ∗ i + c2;
...
Sm := am ∗ Sm + bm ∗ i + cm;
i := r ∗ i + d;

od;

Figure 5. The canonical form of while loop
to be considered, where m is an integer and
m ≥ 0

the maximum integer n that satisfies p ∗ (i + n ∗ d) + q ≤ 0
= Integer(−p∗i−q

p∗d ) is the iteration count.

Finally, assuming it is reached, Step 5 performs the ac-
tual squashing transformation. The result is in the form
shown in Figure 6. The rewriting of a canonical while loop
uses the five Loop Squashing Transformation Rules shown
in Figure 7. Each rule describes the transformation of the
entire loop. For loops with more than one loop–body state-
ment (i.e., where m of Figure 6 is more than one), only the
effect on the statement Si is of interest. This is because each
rule performs the same transformation on the other parts of
the loop.

The five rewriting rules from Figure 7 have been proved
correct using mathematical induction. There is insufficient
space in this paper to provide a proof of all the rules in full
detail. The proof for Case 3 is typical and it is presented in
Figure 9.
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while p ∗ i + q ≤ 0 do
S := a ∗ S + b ∗ i + c;
i := r ∗ i + d;

od;

If the number of iterations is n, then the while loop above can
be transformed to the if statement as below

(1) When a = 1, r = 1:
if p ∗ i + q ≤ 0 then

S := S + b ∗ (n ∗ i + n∗(n−1)∗d
2 ) + n ∗ c;

i := i + n ∗ d;
fi;

(2) When a = 1, r �= 1:
if p ∗ i + q ≤ 0 then

S := S + (b ∗ i − b∗d
1−r ) ∗ 1−rn

1−r + ( b∗d
1−r + c) ∗ n;

i := i ∗ rn + d ∗ 1−rn

1−r ;
fi;

(3) When a �= 1, r = 1:
if p ∗ i + q ≤ 0 then

S := S ∗ an + (b ∗ i + c) ∗ 1−an

1−a + b ∗ d ∗ ( an−1
(a−1)2 − n

a−1 );
i := i + n ∗ d;

fi;

(4) When a �= 1, r �= 1, and a = r:
if p ∗ i + q ≤ 0 then

S := S ∗ an + n ∗ (b ∗ i − b∗d
1−r ) ∗ rn + ( b∗d

1−r + c) ∗ 1−an

1−a ;
i := i ∗ rn + d ∗ 1−rn

1−r ;
fi;

(5) When a �= 1, r �= 1, and a �= r:
if p ∗ i + q ≤ 0 then

S := S ∗ an + (b ∗ i − b∗d
1−r ) ∗ an−rn

a−r + ( b∗d
1−r + c) ∗ 1−an

1−a ;
i := i ∗ rn + d ∗ 1−rn

1−r ;
fi;

Figure 7. Loop Squashing Transformation Rules

Combining the five steps produce the loop–squashing
transformation. An algorithm for carrying out this transfor-
mation is presented in Figure 8.

3. Case Study

This section illustrates the application of the loop
squashing algorithm using the example program shown
in Figure 10. The program, referred to as P0, com-
putes the weight and the coordinate (x, y) for the centre of

gravity given the density and the shape of the board. Fig-
ure 11 shows an example board shape.

Slicing program P0 with respect to the variable
gravity yields the syntax–preserving slice shown in Fig-
ure 12. Using the loop squashing algorithm, the while
loop from Figure 12 can be transformed to an if state-
ment shown in Figure 13; thus squashing provides addi-
tional simplification.

The rest of this section demonstrates the application of
loop squashing in conjunction with program conditioning.
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Function Squash(L : while loop) returns while loop × iteration count
assume L = while e do s od
If |REF(e) ∩ DEF(s)| �= 1 then return L × 0 – Step 1
let {< i >} = REF(e) ∩ DEF(s)
Lnorm = Normalise(L) – Step 2
let (p, q, r, d) = pattern match with canonical form(Lnorm, i) – Step 3
if the pattern match fails then return L × 0
if p ∗ d �= 0 and r = 1 then – Step 4

let iteration count = Integer(−p∗i−q
p∗d )

else if p �= 0 and r �= 1
let iteration count = Integer( ln(p∗d+q∗(1−r))−ln(p∗d−p∗i∗(1−r))

ln(r) )
else

return L × 0
fi
if a Loop Squashing Transformation Rule applies to each statement in Lnorm then – Step 5

return the transformed loop × iteration count
else

return the L × 0
fi

end

Figure 8. Loop Squashing Algorithm

if p ∗ i + q ≤ 0 then
S1 := φ1(a1, S1, b1, i, c1);
S2 := φ2(a2, S2, b2, i, c2);
...
Sm := φm(am, Sm, bm, i, cm);
i := ω(r, i, d, p, q);

fi;

Figure 6. The resulting conditional, where φ1,
φ2, ..., φm and ω are generated by loop–
squashing algorithm

This work remains experimental, but the initial results us-
ing the ConSUS conditioned slicing system [13, 16] are en-
couraging (though, at present, anecdotal).

Program conditioning [8, 15, 20] is a program simplify-
ing technique which has been used in conditioned slicing.
Program conditioning is used to identify and remove paths
which become infeasible when the execution conditions are
applied. The resulting program is called a conditioned pro-
gram, which can be computed using a symbolic executor.

Using the condition n > 1, conditioning of program P2

(Figure 13) followed by dependence reduction transforma-
tion (e.g., application of the PUSH tactic), yields the simpli-
fied program shown in Figure 14. Looking back at the orig-
inal program P0, we can observe that if a software engineer
is interested only in the computation of variable gravity

under condition n > 1, the resulting program P3 provides
the answer in the simplest possible form.

This case study illustrates that loop squashing can help
program comprehension by enhancing the power of the ex-
isting source code analysis and manipulation techniques.
Where these techniques are used as part of a re–engineering
approach, the precision of the slices produced may also of-
fer an additional advantage over and above that offered by
traditional slicing approaches.

4. Related Work

An induction variable is the simplest form of recurrence.
An induction variable may be computed efficiently by use
of indexing or simply as a function of a loop index. Induc-
tion variables may be used in program transformation, for
example, loop fusion and loop distribution.

Generally, induction variables must be recognized before
use can be made of their algebraic properties.

Ammarguellat et al. [2] suggest an approach to auto-
matic recognition of induction variables by abstract inter-
pretation [11, 12]. In their method, first a map, which asso-
ciates each variable assigned in a loop with a symbolic form
of its value, is constructed by abstract interpretation. Sec-
ond, the elements of this map are unified with patterns that
describe recurrence relations in which one is interested. The
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We use mathematical induction to prove Rule 3 in Fig-
ure 7, which is:

If the number of iterations is n, the following loop
while p ∗ i + q ≤ 0 do

S := a ∗ S + b ∗ i + c;
i := i + d;

od;
can be transformed to the if statement
if p ∗ i + q ≤ 0 then
S := S ∗ an + (b ∗ i + c) ∗ 1−an

1−a
+ b ∗ d ∗ ( an−1

(a−1)2
− n

a−1
);

i := i + n ∗ d;
fi;

Proof
(1). When n=1 the rule holds obviously.

(2). Suppose the rule holds for any given iteration
number k (k ≥ 1), then the result after the (k + 1)th iter-
ation can be worked out by the execution of the follow-
ing statements:

S := S ∗ak +(b∗ i+c)∗ 1−ak

1−a +b∗d∗ ( ak−1
(a−1)2 − k

a−1 );
i := i + k ∗ d;
S := a ∗ S + b ∗ i + c;
i := i + d;

By pushing the second line to the end, we obtain
S := S ∗ak +(b∗ i+c)∗ 1−ak

1−a +b∗d∗ ( ak−1
(a−1)2 − k

a−1 );
S := a ∗ S + b ∗ (i + k ∗ d) + c;
i := i + (k + 1) ∗ d;

Now let us compute the value of S. After substitut-
ing S in the first line into the second line, S is ex-
pressed as

S := S ∗ ak+1 + (b ∗ i + c) ∗ (a−ak+1

1−a + 1) + b ∗ d ∗
(ak+1−a

(a−1)2 − a∗k
a−1 + k);

where
a−ak+1

1−a + 1 = a−ak+1

1−a + 1−a
1−a = 1−ak+1

1−a
and

ak+1−a
(a−1)2 − a∗k

a−1 + k

= (ak+1−1)−(a−1)
(a−1)2 − a∗k

a−1 + a∗k−k
a−1

= ak+1−1
(a−1)2 − 1

a−1 − a∗k
a−1 + a∗k−k

a−1

= ak+1−1
(a−1)2 − k+1

a−1

So after the (k + 1)th iteration, the state is
S := S∗ak+1+(b∗i+c)∗ 1−ak+1

1−a +b∗d∗(ak+1−1
(a−1)2 − k+1

a−1 );
i := i + (k + 1) ∗ d;

as required.

Figure 9. Proof of Case 3 in Figure 7, other
cases can be proved similarly

x := d/2;
y := h/2;
s := d*h;
i := 1;
while i <= n do

s0 := s;
s := s+d*h+i*h0;;
x := x+(1-s0/s)*(i*d-x);
y := y+(1-s0/s)*(h+i*h0/2-y);
i := i+1;

od;
gravity := density*S;

Figure 10. The original program P0

Figure 11. A shape to compute the gravity
and its centre

induction variables can also be detected by finding strongly
connected regions in directed graphs [37].

In this paper induction variable detection and loop trans-
formation are considered together. The algorithm starts by
detecting a loop induction variable. Provided it is found, it is
used as parameter to the loop pattern matching. If success-
ful, both the detection of the induction variable and loop
conversion are achievable.

Squashing combines the use of induction variables and

s := d*h;
i := 1;
while i <= n do

s := s+d*h+i*h0;
i := i+1;

od;
gravity := density*S;

Figure 12. Syntax–preserving slice P1 w.r.t
variable gravity
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s := d*h;
i := 1;
if i <= n then

s := s+h0*((n-1)*i+(n-1)*(n-2)/2)+(n-1)*d*h;
i := i+n;

fi;
gravity := density*S;

Figure 13. Program P2 obtained with loop
squashing algorithm

gravity :=
density*(h0*(n-1)*(n-1)/2+n*d*h);

Figure 14. Conditioned amorphous slice P3

w.r.t variable gravity and condition n > 1

transformation. By contrast, in the literature on source–
to–source loop transformation [3, 19], the transformations
preserve loop structure, i.e., such transformations are from
loop(s) to loop(s).

Finally, the amorphous slicing algorithm described
by Binkley [6] is capable of performing a rather lim-
ited form of squashing. The transformation, referred to as
loop–induction variable elimination, looks for subgraphs of
a program’s System Dependence Graph [27] that represent
while loops only two statements. The first statement up-
dates the induction variable. The second updates a boolean
variable and is of the form “S = S && i >= 0 && i < n”
This rule arises from work on finding array bound viola-
tions [21] where the array has been declared to have size n.
The second statement is tracking safety thus far in the vari-
able S.

5. Conclusion and Future Work

This paper shows how loop squashing can improve
amorphous slicing, making slices smaller by squash-
ing loops into conditionals. The algorithm for loop squash-
ing is proved correct using an inductive proof and is illus-
trated with a worked example.

Amorphous slicing is more suitable to reverse engineer-
ing applications than traditional, syntax–preserving slicing
because it tends to produce smaller slices (they are guaran-
teed to be no bigger). It does this at the expense of dropping
the restriction that a slice preserves the syntax of the pro-
gram from which it is produced. However, for reverse en-
gineering, this is typically an acceptable price to pay for a
smaller slice, because the program is usually transformed
during the re–engineering process.

Future work will consider the integration of the loop
squashing transformations into an amorphous conditioned

slicer. Such a tool would be able to detect many situations
where it can be shown that the loop must execute at least
once, and thereby reduce the conditional statement pro-
duced by quashing into a single assignment statement.
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