
The Effectiveness of Refactoring, Based on a Compatibility Testing
Taxonomy and a Dependency Graph

 S. Counsell and R. M. Hierons, R. Najjar and G. Loizou, Y. Hassoun,
 School of Information Systems, School of Computer Science Dept. of Computing.
 Computing and Mathematics, and Information Systems, Imperial College, London.
 Brunel University, Uxbridge, Middlesex. Birkbeck, London. yhassoun@doc.ic.ac.uk
{steve.counsell, rob.hierons}@brunel.ac.uk rajaa@dcs.bbk.ac.uk

Abstract

In this paper, we describe and then appraise a testing
taxonomy proposed by van Deursen and Moonen
(VD&M) [9] based on the post-refactoring
repeatability of tests. Four categories of refactoring
are identified by VD&M ranging from semantic-
preserving to incompatible, where, for the former, no
new tests are required and for the latter, a completely
new test set has to be developed. In our appraisal of
the taxonomy, we heavily stress the need for the
inter-dependence of the refactoring categories to be
considered when making refactoring decisions and
we base that need on a refactoring dependency graph
developed as part of the research. We demonstrate
that while incompatible refactorings may be harmful
and time-consuming from a testing perspective,
semantic-preserving refactorings can have equally
unpleasant hidden ramifications despite their
advantages. In fact, refactorings which fall into
neither category have the most interesting properties.
We support our results with empirical refactoring
data drawn from seven Java Open-Source Systems
(OSS) and from the same analysis form a tentative
categorization of code smells.

1. Introduction

A key software engineering discipline to emerge over
recent years is that of refactoring [2, 12, 15, 16, 18,
21, 22, 24]. Refactoring can be defined as a change
made to software to improve its structure without
necessarily changing the program’s semantics. The
benefits of undertaking refactoring include reduced
complexity and increased comprehensibility of the
code. Improved comprehensibility makes
maintenance of that software relatively easy and thus
provides both short-term and long-term benefits. In
the seminal text by Fowler et al., [13] it is suggested
that refactoring is the reversal of software decay and,

in that sense any refactoring effort is worthwhile. In
the same text, seventy-two refactorings are proposed,
all of which have specific mechanics and all of which
incorporate re-testing along the way. For example, to
‘rename a method’ so that the purpose of the method
is expressed more clearly, the method’s name is
changed and all references to the originally-named
method are changed also; tests are carried out after
every changed reference to ensure the refactoring has
not been broken during this process.

A key assumption made about refactoring is that the
external behaviour of the program does not change as
a result of refactoring (only its structure changes); in
this paper we take a different view and investigate,
from a testing perspective, the features of all
refactorings, many of which by their nature change
the semantics of the program. We analyze a testing
taxonomy proposed by van Deursen and Moonen
(VD&M) [9] based on the post-refactoring
repeatability of tests. The taxonomy of VD&M was
informed by the difficulty of applying post-
refactoring tests. In their words, refactoring a system
should not: ‘change its observable behaviour.
Ideally, this is verified by ensuring that all the tests
pass before and after a refactoring. In practice, it
turns out that such verification is not always
possible: some refactorings restructure the code in
such a way that tests can only pass after the
refactoring if they are modified.’

In our analysis, we postulate that the inter-relatedness
(and hence the dependencies) between refactorings
needs to be of paramount consideration when making
refactoring decisions - we base that inter-relatedness
on a refactoring dependency graph developed as part
of the research. Given our taxonomy analysis, we
then assess a set of empirical refactoring data
extracted from seven Java OSS and, based on the
same analysis, the potential for eliminating code
smells [13] where minimum disruption to testing
effort is the goal. Results indicate that adopting a

Proceedings of the Testing: Academic & Industrial Conference – Practice And Research Techniques (TAIC PART'06)
0-7695-2672-1/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:35 from IEEE Xplore. Restrictions apply.

framework such as that proposed by VD&M firstly,
provides a useful starting point for developers and
project managers alike for making decisions on
which refactorings are preferable from a testing
perspective and secondly, can inform our
understanding about empirical data and code smells.

2. Motivation and related work

The motivation for this research stems from two
sources. Firstly, most definitions of refactoring are
expressed in terms of semantic-preserving operations
(i.e., the external behaviour of a system stays the
same – its internal structure is what changes).
Surprisingly, very little theoretical or empirical work
has focused on the practical limitations imposed on
developers by refactorings that explicitly change the
program interface. In this paper, we are able to assess
the testing implications of such refactorings through
VD&M’s taxonomy. Secondly, the link between
testing, itself the subject of much work [20, 25], and
refactoring permeates Fowler’s text; again,
surprisingly little work has investigated the formal
link between the two. In VD&M’s paper [9], and
upon which the work in this paper is based, the
taxonomy is described and the concept of a
refactoring ‘session’ which uses knowledge about the
link between testing and refactoring to inform
changes in both is introduced. The authors coin the
term ‘test-first refactoring’ to mean refactoring
‘which uses the existing test cases as the starting
point for finding suitable code level refactorings’; we
describe the finer details of the taxonomy in more
detail later in this paper. A number of other works
have also investigated the related topics of class
testability and refactoring of the test code itself [5,
10, 26].

In terms of other related work, Najjar et al., has
shown that refactoring can deliver both quantitative
and qualitative benefits [21] - the refactoring
‘replacing constructors with factory methods’ of
Kerievsky [16] was used as a basis. The mechanics of
the refactoring require a class to have its multiple
constructors converted to normal methods, thus
eliminating the code ‘bloat’ which tends to occur
around constructors. Results showed quantitative
benefits in terms of reduced lines of code due to the
removal of duplicated assignments in the constructors
as well as potential qualitative benefits in terms of
improved class comprehension. Herein, we relate the
testing taxonomy to fifteen specific refactorings. An
in-depth analysis of the refactoring trends (and of

those fifteen refactorings) in OSS was originally
provided in [3]. Results showed the most common
refactorings of the fifteen we term the ‘Gang of Six’,
to be generally those with a high in-degree and low
out-degree when mapped on a dependency graph; the
same refactorings also featured strongly in the
remedying of bad code smells. Remarkably and
surprisingly, inheritance and encapsulation-based
refactorings were found to have been applied
relatively infrequently. The paper thus identified
‘core’ refactorings central to many of the changes
made by developers of open-source systems. A
‘peak’ and ‘trough’ effect in the pattern of
refactorings was observed across all but one of the
systems studied, suggesting that refactoring is done
in effort ‘bursts’. Developing heuristics for deciding
on different refactorings, based on system change
data, was earlier investigated by Demeyer et al. [8].
A study of the trends in changes, categorised
according to refactorings was also undertaken in [7]
and a full survey of relevant refactoring work can be
found in [18].

3. van Deursen & Moonen’s (VD&M’s)
taxonomy

According to van Deursen and Moonen [9],
henceforward referred to as ‘VD&M’, extreme
programmers improve the design of their programs
through constant refactoring - in Extreme
Programming (XP) [3], tests are fully automated and
documented. The analysis in this paper is of a
refactoring taxonomy proposed by VD&M based on
the impact that a refactoring has on the ability to use
the same set of tests ‘post-refactoring’. In other
words, to what extent can we use the same test ‘set’
after refactoring? Does the test set need to be
extended (or modified); if the latter, to what extent?
The taxonomy developed by VD&M is motivated as
follows: ‘One of the dangers of refactoring is that a
programmer unintentionally changes the systems’
behavior. Ideally, it can be verified that this did not
happen by checking that all the tests pass after
refactoring. In practice however, there are
refactorings that will invalidate tests (e.g., when a
method is moved to another class and the test still
expects it in the original class).’

VD&M distinguish between two types of refactoring;
firstly, refactorings that do not change an interface of
the classes of the system and secondly, refactorings
that do change an interface of the classes of a system.
The first type of refactoring does not affect the set of

Proceedings of the Testing: Academic & Industrial Conference – Practice And Research Techniques (TAIC PART'06)
0-7695-2672-1/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:35 from IEEE Xplore. Restrictions apply.

tests required as a result of the refactoring (since the
refactoring preserves tested behaviour). The second
type of refactoring is one that can have consequences
for the test set, since those tests still expect the old
interface rather than the new one). They thus define
two categories of refactoring:

1. Incompatible: The refactoring destroys the
original interface. All tests which rely on the
old interface must be adjusted in some way
to accommodate the new interface.

2. Backwards Compatible: The refactoring
extends the original interface. The tests keep
running via the original interface and will
pass if the refactoring preserves tested
behavior. Depending on the type of
refactoring, more tests may need to be added
to cover the extensions.

VD&M describe four separate categories into which
each of the seventy-two refactorings of Fowler fall.
Originally, five categories were described in their
paper – including a composite refactoring category.
These ‘Type A’ refactorings were dropped from their
analysis on the basis that the ‘big four’ refactorings
comprising this category were ‘performed as a series
of smaller refactorings’ and could not be analyzed in
the same way as the other four categories. We are
thus left with sixty-eight different refactorings for our
analysis. The four remaining categories (and
consequently, the four we adopt in this paper) are:

1. Compatible: Refactorings that do not
change the original interface.
Henceforward, we refer to these as Type B
refactorings.

2. Backwards Compatible: Refactorings that
change the original interface and are
inherently backwards compatible since they
extend the interface. Henceforward, we
refer to these as Type C refactorings.

3. Make Backwards Compatible: Refactorings
that change the original interface and can
be made backwards compatible by adapting
the old interface. For example, the ‘Move
Method’ refactoring that moves a method
from one class to another can be made
backwards compatible through the addition
of a ‘wrapper’ method to retain the old
interface. (A wrapper is an object capable
of transforming the external view that an
interface shows in some way.)
Henceforward, we refer to these as Type D
refactorings.

4. Incompatible: Refactorings that change the
original interface and are not backwards
compatible because they may, for example,
change the types of classes that are
involved making it difficult to wrap the
changes. Henceforward, we refer to these
as Type E refactorings.

Type B and C refactorings from the sixty-eight
refactorings according to VD&M are listed in Table
1. In theory, a developer should always prefer type B
refactorings in preference to any other refactoring
Type since no change to the test suite is required after
those refactorings have been completed.
Alternatively, type C refactorings are still feasible
and, in theory, more desirable than Type D or E
refactorings, but they may still require extensions to
the test set after completion.

Table 1. Type B and Type C refactorings

Type B Change Bi-directional Association to Unidirectional, Replace Magic Number with Symbolic
Constant, Replace Nested Conditional with Guard Clauses, Consolidate Duplicate Conditional
Fragments, Replace Conditional with Polymorphism, Replace Delegation with Inheritance,
Replace Inheritance with Delegation, Replace Method with Method Object, Remove
Assignments to Parameters, Replace Data Value with Object, Introduce Explaining Variable,
Replace Exception with Test, Change Reference to Value, Split Temporary Variable, Decompose
Conditional, Introduce Null Object, Preserve Whole Object, Remove Control Flag, Substitute
Algorithm, Introduce Assertion, Extract Class, Inline Temp.

Type C Consolidate Conditional Expression, Replace Delegation with Inheritance, Replace Inheritance
with Delegation, Replace Record with Data Class, Introduce Foreign Method, Pull Up
Constructor Body, Replace Temp with Query, Duplicate Observed Data, Self Encapsulate Field,
Form Template Method, Extract Superclass, Extract Interface, Push Down Method, Push Down
Field, Extract Method, Pull Up Method, Pull up Field.

Proceedings of the Testing: Academic & Industrial Conference – Practice And Research Techniques (TAIC PART'06)
0-7695-2672-1/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:35 from IEEE Xplore. Restrictions apply.

We note that both ‘Replace Delegation with
Inheritance’ and ‘Replace Inheritance with
Delegation’ appear in both Type B and Type C
categories, since they can be in either category
depending on the case being considered [9]. The type
D and E refactorings again according to VD&M are
listed in Table 2. Developers would want to avoid

Type E refactorings at all costs since they destroy the
original interface and thus require large-scale
changes to the test set. Type D refactorings can be
made backwards compatible and would thus be
preferable to refactorings of type E, yet may still
require a modification to the code by introduction of
the wrapper as previously described.

Table 2. Type D and Type E refactorings

Type D Change Unidirectional Association to Bi-directional, Replace Parameter with Explicit Methods,
Replace Parameter with Method, Separate Query from Modifier, Introduce Parameter Object,
Parameterize Method, Remove Middle Man, Remove Parameter, Rename Method, Add
Parameter, Move Method.

Type E Replace Constructor with Factory Method, Replace Type Code with State/Strategy, Replace
Type Code with Subclasses, Replace Error Code with Exception, Replace Subclass with Fields,
Replace Type Code with Class, Change Value to Reference, Introduce Local Extension, Replace
Array with Object, Encapsulate Collection, Remove Setting Method, Encapsulate Downcast,
Collapse Hierarchy, Encapsulate Field, Extract Subclass, Hide Delegate, Inline Method, Inline
Class, Hide Method, Move Field.

One interesting observation from Table 1 is the high
number of inheritance-related refactorings in the
Type C category and the emphasis on parameter
manipulation in the Type D category. Inheritance
relationships are relatively easy to preserve through
refactoring since operations of pulling up and
pushing down class features, for example, can be
maintained through inheriting any behaviour passed
up the hierarchy. Equally, behaviour pulled down is
only normally pulled down because it was being used
by the subclass anyway. Manipulation, addition and
removal of method parameters (common to Type D
refactorings) can be relatively easily masked by the
wrappers (hence their inclusion as refactorings that
can be made backwards compatible).

Also noteworthy is the high proportion of
encapsulation-based and information hiding-oriented
refactorings in Type E. In one sense, this destructive
nature of the refactoring highlights the expressive
power of encapsulation/information hiding in
completely changing the program’s semantics for the
better. While this may not be beneficial from a
tester’s viewpoint because old tests will no longer
apply, added encapsulation/information hiding does
tend to improve program OO robustness through its
enforced semantics.

4. A Dependency graph

As part of our refactoring analysis and to inform our
understanding of the VD&M taxonomy, we

developed a dependency graph showing all seventy-
two refactorings and how they were inter-related. In
the graph, nodes represented the refactorings, and
arrows connecting the nodes represented the
relationship between those refactorings given by the
mechanics of each refactoring in [1]. The size of the
graph precludes its inclusion in this paper; however,
for each refactoring let’s say, X, the in-degree and
out-degree taken from the graph illustrated the
refactorings that used X, and that in turn were used
by X. The graph took three months to develop and
was extracted using Fowler’s text. A distinction was
made on the graph between ‘must use’ relationships
and ‘may use’ relationships to recognize the relative
influence of each; these relationship types we now
explain.

4.1 ‘Must Use’ relationships

One issue which arises as a result of the VD&M
taxonomy is the dependence of one refactoring on
one or more other refactorings, an open problem
acknowledged in [9]. For many of the seventy-two
refactorings described in [13] the refactoring
mechanics prescribe that a particular refactoring must
use refactoring x in order to be a successful
refactoring [17]. For example, from the dependency
graph, the ‘Introduce Parameter Object’ refactoring,
applicable when a group of parameters are lumped to
form an object, requires the use of the Add Parameter
refactoring in a ‘must use’ relationship for the new
data clump so formed.

Proceedings of the Testing: Academic & Industrial Conference – Practice And Research Techniques (TAIC PART'06)
0-7695-2672-1/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:35 from IEEE Xplore. Restrictions apply.

This ‘must use’ relationship has significant
implications for the taxonomy proposed by VD&M.
For example, while it would not be problematic for a
refactoring; let’s say, n of Type E to use any number
of refactorings of Type B, C or D ‘higher up’ the
taxonomy, any refactoring using a refactoring in the
opposite direction i.e., ‘lower down’ in the taxonomy
may cause a problem. (We would view Types C, D
and E as ‘lower down’ than Type B and similarly for
the relationships between C, D and E Type
refactorings.) If a type B refactoring ‘must use’ a
Type C, D or E refactoring then that immediately
invalidates the semantics of Type B refactorings
since the assumption for type B refactorings is that
they do not change the interface. For a Type B
refactoring, inclusion of a refactoring from either of
types C, D E has that effect. Moreover, the use of a
refactoring of Type C, D or E may also cause a chain
effect requiring still further refactorings to be needed
of Types ‘lower down’ in the taxonomy. For
example, the Extract Class refactoring (Type B) must
use the ‘Move Field’ refactoring of Type E and also
the ‘Move Method’ – a Type D refactoring as part of
its mechanics. In Fowler’s words for the Extract
Class refactoring: ‘Use Move Field on each field you
wish to move’ and ‘Use Move Method to move
methods over from old to new’.

The ‘Form Template Method’ refactoring (Type C)
also uses the Rename Method (RM) refactoring - a
Type D refactoring. At the other end of the scale, the
‘Introduce Null Object’ – a Type B refactoring uses
zero other refactorings as part of its mechanics and,
as such, can be used with impunity post-refactoring
using the original test set.

4.2 ‘May Use’ relationships

Just as ‘must use’ relationships specify refactorings
that must be undertaken to facilitate another
refactoring, other refactorings ‘may’ require the use
refactorings drawn from other Types. Despite this
relationship being conditional, the issue described in
Section 4.1 may still emerge if the conditions hold
during refactoring. For example, the ‘Replace Data
Value with Object’ refactoring (Type A) may use the
‘Change Value to Reference’ (CVtR) refactoring
(Type E). According to Fowler, the motivation for
using the CVtR refactoring is when ‘you have a data
item that needs additional data or behaviour’. The
data item is turned into an object as a result. The

example for this refactoring given is that of a
telephone number which needs extra behaviour for
formatting, extracting the area code etc. As part of
the mechanics of the refactoring, the developer ‘may
need to use CVtR on the new object’.

4.3 Relationship chains

For both the ‘must use’ and ‘may use’ relationships, a
far more sinister relationship exists bonding the two.
Often, a ‘chain’ of refactorings will occur from a
single refactoring implying that, for example, a Type
B refactoring may use a Type E refactoring which
itself must use a further Type E refactoring. A chain
of refactorings then needs to be followed. The
implications for testing thus go beyond the
requirements of the first ‘link’ in the chain. For
example, continuing the example from Section 4.2,
the CVtR refactoring must use the ‘Replace
Constructor with Factory Method’ refactoring which
may then use the RM refactoring (Type D). The RM
may itself use the ‘Add Parameter’ refactoring (Type
D) and may also use the ‘Remove Parameter’
refactoring (Type D).

For each of the sixty-eight refactorings in Tables 1
and 2, we can, using the dependency graph, easily
identify the Type B and Type C refactorings that
break the test semantics through the use of Type D or
E refactorings. We first investigate the research
questions: Which Type B refactorings use no other
refactorings as part of their mechanics or only use
other Type B refactorings as part of their mechanics?
Which Type C refactorings use no other refactorings,
other than Type B or Type C refactorings?

Any refactoring in the first category can be
undertaken safely in the knowledge that the original
test set does not need to be modified. Table 3 shows
the refactorings from Table 1 for Type B refactorings
that do not use any ‘lower down’ Types of
refactoring (i.e., of Types C, D or E) whether of
‘may’ or ‘must’ use relationship types. Equally, for
Type C refactorings, we give refactorings which do
not use any other lower Type of refactoring (i.e.,
Types D or E); they may possibly use ‘higher’ Types
(i.e., those of Type B). We have also eliminated any
refactoring which indirectly uses a non-Type B
refactoring in the former case, or any refactoring that
indirectly uses a non-Type C refactoring in the latter
case.

Proceedings of the Testing: Academic & Industrial Conference – Practice And Research Techniques (TAIC PART'06)
0-7695-2672-1/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:35 from IEEE Xplore. Restrictions apply.

Table 3. Type B refactorings (preserving tests) and Type C refactorings (extending tests)

Type B Consolidate Duplicate Conditional Fragments, Replace Inheritance with Delegation, Remove
Assignments to Parameters, Introduce Explaining Variable, Replace Exception with Test,
Introduce Null Object, Substitute Algorithm, Inline Temp.

Type C Replace Inheritance with Delegation, Self Encapsulate Field, Extract Interface, Push Down
Method, Push Down Field, Extract Method, Pull Up Method, Pull Up Field.

From an initial set of twenty-two refactorings in Type
B in Table 1, only eight can be safely used on the
original test set; for Type C, only eight of an initial
seventeen remain. Interestingly, in the new Type B
list, there is a high number of refactorings relating to
changes in the way the code is explicitly written
rather than in the manipulation of objects. For
example, the ‘Substitute Algorithm’ refactoring is
applicable when ‘you want to replace an algorithm
with one that is clearer’. Equally, the ‘Consolidate
Duplicate Conditional Fragments’ refactoring is
applicable when ‘The same fragment of code is in all
branches of a conditional expression’. Six of the
eight remaining refactorings fall into this category
(the two other refactorings are ‘Replace Inheritance
with Delegation’ and ‘Introduce Null Object’). As
interesting to note from Table 3 is the high number of
inheritance-based refactorings remaining of Type C

(five of the eight relate directly to operations on the
inheritance hierarchy).

To complete the picture, Table 4 shows the number
of D type refactorings which only use their own type
of refactoring or lower down (i.e., those of type B or
C). Remarkably, inspection of the dependency graph
revealed that only one type D refactoring used any
Type E refactoring (i.e., Replace Parameter with
Method). A simple explanation accounts for this
result. According to the dependency diagram, Type D
refactorings are predominantly refactoring ‘sinks’. In
other words, they are used by a large number of other
refactorings (i.e., they have a high in-degree) but do
not tend to use other refactorings themselves (i.e.,
they have an out-degree of mostly zero and
occasionally one).

Table 4. Type D refactorings that use only Type D, C or B refactorings

Type D Change Unidirectional Association to Bi-directional, Replace Parameter with Explicit
Methods, Separate Query from Modifier, Introduce Parameter Object, Parameterise Method,
Remove Middle Man, Remove Parameter, Rename Method, Add Parameter, Move Method.

We could thus view Type D refactorings as
preferable to any Type B or Type C refactoring
which use a Type E refactoring on the single basis
that Type D refactorings can be made backwards
compatible and Type E refactorings are incompatible.
Moreover, as well as a tendency for Type D
refactorings to be sinks, the same set of refactorings
also contain a high number of ‘isolated’ refactorings
(i.e., those that use no other refactorings whatsoever).
The same is not true of type B, C or E Type
refactorings. We omit a similar analysis of the Type
E refactorings on the basis that whatever other
refactorings they use will not assist the tester in any
sense (since incompatibility of the refactoring will
always be maintained).

4.4 Implications of the results

A number of implications arise from these results.
Firstly, a Type B refactoring should only be chosen if
it is taken from the top half of Table 3 thereby
preserving the original interface. Equally, a Type C
refactoring should only be chosen if it is taken from
the bottom half of Table 3 for the same reason. Any
Type D refactoring or combination thereof can be
chosen at will with the knowledge that it will not
generally require any other refactorings to be applied
as a result (the one exception being the IPO
refactoring). Finally, no Type E refactorings should
be undertaken, for the good reason that VD&M
suggest (i.e., that they destroy the original interface).

Proceedings of the Testing: Academic & Industrial Conference – Practice And Research Techniques (TAIC PART'06)
0-7695-2672-1/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:35 from IEEE Xplore. Restrictions apply.

5. Two follow-up investigations

As a result of the analysis in Section 4, we now
provide details of two subsequent investigations; the
first looks at empirical data of extracted refactorings
from seven Java OSS. A research question that arises
from our analysis is whether, if what we suggest is
true, empirical data on refactoring shows that
developers will avoid Type E refactorings in favour
of Type D refactorings. Secondly, we look at the
impact that our analysis has had on the elimination of
bad code smells.

5.1 Empirical data

Figure 1 shows in ascending order, the average
frequency over all versions for fifteen refactorings
extracted from seven Java OSS applications [11,19].
The refactorings were extracted using a set of
heuristics embedded in the tool for each refactoring.
The tool itself and an in-depth analysis of the fifteen
refactorings extracted are described in more detail in
[1] and for space considerations herein we direct the
interested reader to this reference. The fifteen
refactorings in the order from left to right are 1)
Encapsulate Downcast, 2) Push Down Method, 3)
Extract Subclass, 4) Encapsulate Field, 5) Hide
Method, 6) Pull Up Field, 7) Extract Superclass 8)
Remove Parameter, 9) Push Down Field, 10) Pull Up
Method, 11) Move Method, 12) Add Parameter, 13)
Move Field, 14) Rename Method and 15) Rename
Field. Refactoring 1 (with zero occurrences was
‘Encapsulate Downcast’) and the most frequent
refactoring extracted by the tool - ‘Rename Field’.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Refactoring

A
ve

ra
ge

 (s
ev

en
 sy

st
em

s)

Figure 1. Frequency of fifteen refactorings extracted from seven Java OSS

Table 5 identifies each of the fifteen refactorings
together with the Type they fall into according to the
VD&M taxonomy, the position of the refactoring
according to its frequency and the number of
occurrences extracted for that refactoring. For
example, the Pull Up Method refactoring belongs to
Type C and was refactoring number 10 from Figure 1
with 65 occurrences. Interestingly, the most popular
refactorings are those from Type D, where the most
popular, second, fourth and fifth most popular
refactorings are found. The least common
refactorings appear to be those from Type E, which
contained the least popular refactoring and the third,
fourth and fifth least popular refactorings. Type C
refactorings fell somewhere in the middle and had the
second least, sixth, seventh, ninth and tenth least
popular refactorings.

We note that the tool did not extract any refactorings
from Type B for one simple reason. The complexity
of the heuristics for a Type B refactoring make it
impossible for such a refactoring to be identified
through syntax alone. To guarantee automatic
identification of a refactoring such as ‘Substitute
Algorithm’, the syntax of the code would have to be
parsed for any differences and then the semantics of
the code examined to ensure that program meaning
had not changed. On the other hand, renaming and
hiding of fields and/or methods are relatively simple
refactorings, do not require major program changes
and can be identified syntactically by a tool relatively
easily. Other refactorings, such as extracting sub-
and/or super classes are more complex, require
structural changes involving the class hierarchy and
while more involved in terms of how they were
implemented by the tool, can be encoded relatively

Proceedings of the Testing: Academic & Industrial Conference – Practice And Research Techniques (TAIC PART'06)
0-7695-2672-1/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:35 from IEEE Xplore. Restrictions apply.

easily. The poor showing of inheritance related
refactorings (numbers 2, 3, 6, 7, 9 and 10 on Figure
1) was interesting; one explanation for this may be
that modifying the inheritance structure is too
‘revolutionary’ in impact and is left alone in favour
of more simple refactorings that do not perturb the
high-level design [4, 6, 14].

We can draw a number of conclusions from the
evidence in Table 5. Firstly, Type D refactorings
appear to be the most popular and Type E the least
popular refactoring. Interestingly, the only Type C
refactoring that figures in the top five refactorings is
the Pull Up Method refactoring. The obvious
question that arises from Table 5 is whether the most

popular refactorings taken from Type D had that
property because they were ‘used’ a large number of
times by other Type E refactorings. For example, the
‘Extract Subclass’ refactoring may Rename multiple
Methods so forming a ‘1:many’ relationship.
However, no evidence whatsoever could be found on
inspection of the dependency diagram to link any
Type E refactorings to the Type D refactorings of
Table 5 even through an indirect relationship.
Interestingly, the main use of Type D refactorings
came from those of Type C. From our analysis, we
could conclude that empirically, Type E refactorings
are avoided perhaps for the reasons that VD&M state
in their paper.

Table 5. The fifteen refactorings and the category Types they fall into

Type Applicable Refactorings
B None
C Pull Up Method (10-65), Push Down Field (9-26), Extract Superclass (7-23),

Pull Up Field (6-14), Push Down Method (2-6),
D Move Method (11-88), Add Parameter (12-99), Rename Method (14-167),

Rename Field (15-200), Remove Parameter (8-24),
E Move Field (13-135), Hide Method (5-13), Encapsulate Field (4-12), Extract

Subclass (3-6), Encapsulate Downcast (1-0)

A further research question that arises is whether
elimination of code ‘smells’ is hampered or assisted
by the use of certain Types of refactoring (in terms of
subsequent required testing). We address this
question in the next section.

5. 2 The role of code smells

According to Fowler, bad smells in code are
structures in the code that ‘sometimes scream for’ the
possibility of refactoring. A bad smell in code should
thus be the key impetus for undertaking refactoring
effort. Ideally, we want to eliminate code smells that
involve the least re-testing effort. Consequently, if we
can identify smells that require at least one Type E
refactoring, then we could begin by ignoring that

smell in favour of an alternative which requires
combinations of only Type B and C refactorings.

Our analysis revealed nine bad smells in code from
the twenty-two in total specified by Fowler to not
contain a refactoring of Type E – and thirteen
contained at least one Type E refactoring. Table 6
lists the two smells of those nine whose remedies are
taken exclusively from Table 3 or 4. For example, the
first bad smell, ‘Alternative classes with different
interfaces’ refers to a smell where many methods are
doing the same thing but with different signatures –
such methods can be optimized. This code smell is
eliminated through the use of the Rename Method
and Move Method refactorings, both of which are
taken from the Type D refactorings (Table 4).

Table 6. Bad Smells in code and the refactorings that remedy those refactorings

Bad Smell (BS) Refactorings Remedies Type Profile
Alternative Classes with
Different Interfaces

Rename Method, Move Method D, D

Refused Bequest Replace Inheritance with
Delegation

B/C (remedy appears in both
categories)

Proceedings of the Testing: Academic & Industrial Conference – Practice And Research Techniques (TAIC PART'06)
0-7695-2672-1/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:35 from IEEE Xplore. Restrictions apply.

If we adopt the rule that we should look to eliminate
code smells on a Type scale, then an undesirable
smell to remedy will be one whose profile uses at
least one Type E refactoring. Next, we should avoid
any smell whose profile includes a Type B or C
refactoring not found in Table 3. The two bad smells
shown in Table 6 therefore represent the only two
smells for which we can guarantee there are no
chains (because they are all of Type D refactorings),
or alternatively whose refactorings are taken

exclusively from Table 3, namely the Refused
Bequest (RB) smell. The RB bad smell refers to a
situation where a subclass or subclasses do not need
the class features of the super class and as such, a
new sibling class needs to be created to accommodate
the ‘refused’ behaviour. Table 7 illustrates some of
the least remediable smells of the thirteen containing
at least one Type E refactoring.

Table 7. A sample of the least desirable smells

Bad Smell (BS) Refactorings Remedies Type Profile
Primitive Obsession Replace Data Value with Object, Extract Class,

Introduce Parameter Object, Replace Array with Object,
Replace Type Code with Class, Replace Type Code
with Subclasses, Replace Type Code with State/Strategy

B, B, D, E, E,
E, E

Data Class Move Method, Encapsulate Field, Encapsulate
Collection

D, E, E

The Primitive Obsession smell arises with an
obsessive over-use of primitive data types in classes;
the Data Class smell arises when a class has just
getting and setting methods and nothing else. Such
behaviour should try to be accommodated elsewhere.
Sadly, inspection of all twenty-two bad smells
revealed Type E refactorings to occur the most
frequently and to appear in the most number of
smells. We conclude that while eradication of code
smells is a useful technique to adopt as part of an XP
strategy, care should be taken to avoid those smells
that will cause significant amounts of effort and re-
testing.

6. Conclusions and future work

In this paper, we have analysed a testing taxonomy
originally proposed by van Deursen and Moonen, in
which they describe a distinct set of categories for
post-refactoring assessment. The taxonomy provided
a valuable framework from which further analysis
could be made and in turn allowed us to investigate
the properties of a dependency diagram showing the
relationships between the seventy-two refactorings
originally proposed by Fowler. We supported our
analysis with some empirical data from a previous
study of Java OSS and demonstrated that while
semantic preserving refactorings may be ideal for
preserving test sets, they are not necessarily always
the right refactorings to choose. We postulated that
the choice of refactorings should be based

predominantly on the extent of inter-relatedness of
refactorings and that this choice also extends to the
elimination of code smells. Developers should not
undertake refactorings based on their superficial
characteristics but look more carefully into the
mechanics of the refactorings they intend to
undertake.

In terms of the implications of our analysis, we see
our results as being of use to developers when
deciding amongst competing and often composite
refactorings [23] in the context of limited available
maintenance and testing time and also amongst the
different smells emerging from code as it evolves. In
terms of future work, we will look into the possibility
of a developer opinion based study of refactorings
and code smells; in other words, which refactorings
do developers prefer doing (if any) and also what
code smells do they prefer to eradicate. We would
also like to investigate the link between testing,
refactoring and the incidence of faults found in OSS.

7. References

[1] D. Advani, Y. Hassoun and S. Counsell. Extracting
Refactoring Trends from Open-source Software and a
Possible Solution to the ‘Related Refactoring’ Conundrum.
To appear in the Proceedings of ACM Symposium on
Applied Computing, Dijon, France, April 2006.
[2] D. Arsenovski. Refactoring– elixir of youth for legacy
VB code. Available at:
www.codeproject.com/vb/net/Refactoring_elixir.asp.

Proceedings of the Testing: Academic & Industrial Conference – Practice And Research Techniques (TAIC PART'06)
0-7695-2672-1/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:35 from IEEE Xplore. Restrictions apply.

[3] K. Beck, Extreme Programming Explained: Embrace
Change, Addison Wesley, 1999.
[4] L. Briand, C. Bunse and J. Daly. A controlled
experiment for evaluating quality guidelines on the
maintainability of object-oriented designs. IEEE Trans. on
Soft Eng, 27(6), 2001, pages 513—530.
[5] M. Bruntink and A. van Deursen. An empirical study
into class testability. Journal of Systems and Software,
2006 (to appear).
[6] S. Counsell, P. Newson and E. Mendes, Architectural
Level Hypothesis Testing through Reverse Engineering of
Object-Oriented Software, Proc. of IEEE Int. Workshop on
Program Comprehension, Limerick, Ireland, 2000.
[7] S. Counsell, Y. Hassoun, R. Johnson, K. Mannock and
E. Mendes. Trends in Java code changes: the key
identification of refactorings, ACM 2nd International
Conference on the Principles and Practice of Programming
in Java, Kilkenny, Ireland, June 2003.
[8] S. Demeyer, S. Ducasse and O. Nierstrasz, Finding
refactorings via change metrics, ACM Conference on
Object Oriented Programming Systems Languages and
Applications (OOPSLA), Minneapolis, USA. pages 166-
177, 2000.
 [9] A. Van Deursen and L. Moonen. The Video Store
Revisited - Thoughts on Refactoring and Testing. Proc of
the third International Conference on eXtreme
Programming and Flexible Processes in Software
Engineering XP 2002, Sardinia, Italy.
[10] A. van Deursen, L. Moonen, A. van den Bergh and G.
Kok. Refactoring Test Code. In G. Succi et al., (eds.),
Extreme Programming Perspectives. Addison Wesley,
2002, pages 141-152.
[11] T. Dinh-Trong and J. Bieman. Open Source Software
Development: A Case Study of FreeBSD. Proceedings of
10th IEEE Int. Symp on Software Metrics, Chicago, USA,
2004, pages 96-105.
[12] B. Foote and W. Opdyke, Life Cycle and Refactoring
Patterns that Support Evolution and Reuse. Pattern
Languages of Programs (James O. Coplien and Douglas C.
Schmidt, editors), Addison Wesley, May, 1995.
[13] M. Fowler. Refactoring (Improving the Design of
Existing Code). Addison Wesley, 1999.
[14] R. Harrison, S. Counsell and R. Nithi. Experimental
assessment of the effect of inheritance on the
maintainability of OO systems, Journal of Systems and
Software, 52, 2000, pages 173—179.
[15] R. Johnson and B. Foote. Designing Reusable Classes,
Journal of Object-Oriented Programming 1(2), pages 22-
35. June/July 1988.
[16] J. Kerievsky, Refactoring to Patterns, Addison
Wesley, 2004.
[17] T. Mens and A. van Deursen. Refactoring: Emerging
Trends and Open Problems. Proceedings First International
Workshop on REFactoring: Achievements, Challenges,
Effects (REFACE). University of Waterloo, 2003.
[18] T. Mens and T. Tourwe, A Survey of Software
Refactoring, IEEE Transactions
on Software Engineering 30(2): 126--139 (2004).
[19] A. Mockus, T. Fielding and D. Herbsleb. Two case
studies of open source software development: Apache and

Mozilla. ACM Trans. on Soft. Eng. and Methodology, Vol.
11, No. 3, pages 309-346. 2002.
[20] S. Mouchawrab, L. C. Briand and Y. Labiche, A
Measurement Framework for Object-Oriented Software
Testability, Journal of Information and Soft Technology,
vol. 47, no. 15, pages 979-997, 2005.
[21] R. Najjar, S. Counsell, G. Loizou and K. Mannock.
The role of constructors in the context of refactoring
object-oriented software. Seventh European Conference on
Software Maintenance and Reengineering (CSMR '03).
Benevento, Italy, March 26-28, 2003. pages 111 – 120.
[22] R. Najjar, S. Counsell and G. Loizou. Encapsulation
and the vagaries of a simple refactoring: an empirical study.
Proceedings Int. Conference on Software Systems
Engineering and its Applications, Paris, France, Dec. 2005.
[23] M. O’Cinneide and P. Nixon. Composite Refactorings
for Java Programs. Proceedings of the Workshop on
Formal Techniques for Java Programs. ECOOP Workshops
1998.
[24] W. Opdyke. Refactoring object-oriented frameworks,
Ph.D. Thesis, Univ. of Illinois. 1992.
[25] M. Roper, Soft. Testing, McGraw-Hill, 1994.
[26] D. Saff, S. Artzi, J. Perkins and D. Ernst. Automatic
test factoring for Java. Proceedings 21st Annual Int. Conf.
on Automated Soft Engineering, Long Beach, USA,
Nov. 9-11, 2005, pp. 114-123.

Proceedings of the Testing: Academic & Industrial Conference – Practice And Research Techniques (TAIC PART'06)
0-7695-2672-1/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 06:35 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

