
A Thread-tag Based Semantics for Sequence Diagrams

Haitao Dan, Robert M. Hierons and Steve Counsell
School of Information Systems, Computing & Mathematics,

Brunel University,
Uxbridge, Middlesex UB8 3PH, UK

{hai.dan, rob.hierons, steve.counsell}@brunel.ac.uk

Abstract

The sequence diagram is one of the most popular
behaviour modelling languages which offers an intu-
itive and visual way of describing expected behaviour
of Object-Oriented software. Much research work has
investigated ways of providing a formal semantics for
sequence diagrams. However, these proposed semantics
may not properly interpret sequence diagrams when
lifelines do not correspond to threads of controls. In this
paper, we address this problem and propose a thread-tag
based sequence diagram as a solution. A formal, partially
ordered multiset based semantics for the thread-tag based
sequence diagrams is proposed.

Keywords: Sequence Diagram, Semantics, Partially
ordered multiset, Concurrency, Object-Oriented, Thread
tag.

1 Introduction

The Sequence Diagram (SD) is a popular Unified Mod-
elling Language (UML) behaviour modelling tool. It is a
versatile technique that can be used in many parts of the
Object-Oriented (OO) software development process. For
example, it is usually used to capture system requirements
and model function logic at the analysis and design stages.
In addition, SD based specifications are also used as input
to model-checking and model-based testing (MBT). These
latter approaches are based on the assumption that SDs are
able to maintain enough system runtime information so that
their applications can be accurately interpreted.

In certain circumstances, however, SDs can not preserve
concurrency information to support the aforementioned for-
mal methods. One of the most important reasons is that life-
lines in SDs are generally orthogonal to threads of control

(threads) 1 . A lifeline in an SD represents an object or an
instance of a component. The events happening along a life-
line may also happen in different threads. This means that,
in a standard SD, it is impossible to infer which thread the
events belong to and so the correct ordering of events can
not be inferred from SDs.

To solve this problem, we propose a thread-tag based ap-
proach in which each OccurrenceSpecification in an SD is
tagged with a label indicating the thread containing the Oc-
currenceSpecification. Intuitively, by using thread tags, the
events in an SD belonging to the same thread are grouped
together; the grouping contains desired concurrency infor-
mation which is the key to correct interpretation of SDs.

The observed problem of SDs also induces partial inva-
lidity in all currently applied semantics such as trace based
semantics [21, 10] and partially ordered multiset (pomset)
based semantics [4]. These semantics are based on the
UML 2.0 standard and interpret the order of events in a life-
line by reading the diagram from top to bottom. For that
reason, we believe interpreting SDs using current semantics
is error prone when multiple threads are involved into sin-
gle SDs. We thus propose a thread-tag based semantics for
effective interpretation of SDs.

The informal thread-tag based semantics for SDs was
first introduced in previous work by the authors [6]. There
in, only serval core meta-classes of UML 2.0 were con-
sidered. The flow control related meta-classes, Com-
binedFragment, InteractionOperand and InteractionOper-
ater were not included (these three meta-classes are newly
introduced members of UML 2.0 that have largely enhanced
the expressive power of SD). In this paper, we extend that
previous work by defining the semantics for the above three
meta-classes. In addition, we upgrade the proposed thread-
tag based semantics to be a formal denotational semantics
for SDs based on a pomset framework [19].

1Here, thread of control represents an abstract notion of control unlike
thread or process in operation systems (OSs). More specifically, an inde-
pendent task that is executed sequentially should be regarded as owning its
own thread of control.

Fifth IEEE International Conference on Software Engineering and Formal Methods

0-7695-2884-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SEFM.2007.19

173

Fifth IEEE International Conference on Software Engineering and Formal Methods

0-7695-2884-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SEFM.2007.19

173

Fifth IEEE International Conference on Software Engineering and Formal Methods

0-7695-2884-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SEFM.2007.19

181

Fifth IEEE International Conference on Software Engineering and Formal Methods

0-7695-2884-8/07 $25.00 © 2007 IEEE
DOI 10.1109/SEFM.2007.19

173

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

The remainder of this paper is structured as follows. Re-
lated research on semantics of SDs are introduced in Section
2. The abstract syntax of SDs and the traditional semantics
for plain SDs are briefly introduced in Section 3. In Section
4, a thread based analysis of SDs is given to reveal problems
of the current UML 2.0 standard. A set of informal infer-
ence rules for interpreting SD based on thread tags are then
introduced to tackle the identified problems. In Section 5, a
formal semantics based on pomset framework for complex
thread-tag based SDs is proposed. Finally, the paper closes
with conclusions and potential future work in Section 6.

2 Related Work

When discussing the semantics of SDs, it is worth re-
viewing previous research into Message Sequence Charts
(MSCs). MSCs are the ancestor of SDs and in UML 2.0,
SDs were significantly revised to allow adequate modelling
of complex software systems based on the new version of
MSC [11].

Mauw and Reniers [15] used a process algebra to in-
terpret the semantics of basic MSCs. This approach has
been adopted as the standard semantics for MSC [11].
Grabowski et al. [7] proposed petri-net based semantics for
MSCs. Ladkin and Leue [14] used Büchi Automata to cap-
ture the meaning of MSC; Jonsson and Padilla [12] used
Abstract Execution Machines to describe MSC semantics
and at the same time, considered inline expressions and data
in MSCs. Alur et al. [2] were the first to use labelled par-
tially ordered structures to formalize basic MSCs; Katoen
and Lambert [13] extended the idea using a pomset frame-
work based on V. Pratt’s work [19].

The increased popularity of UML has led to the seman-
tics of SDs receiving more attention. Although UML 2.0
tried to provide semantics for every modelling language us-
ing a meta-model approach [20], SDs have only been as-
signed an informal semantics based on both trace and par-
tial order theories. In [21, 10], formal trace based seman-
tics for SDs were provided and [4] delivered a semantics
for SDs following the pomset framework approach [13].
In [8], safety and liveness properties were used for distin-
guishing valid behaviours. Harel and Maoz [9] proposed
Modal UML Sequence Diagrams (MUSD), an extension of
SDs based on the approach used in Live Sequence Charts
(LSCs), to extend MSCs [5]. These SD semantics were
based on different kinds of MSC semantics. These MSC
semantics were revised to fit with UML 2.0 including addi-
tional semantics for the new meta-classes of UML 2.0 (such
as the interaction operators assert, alt and neg).

Since the current semantics of SDs are largely based
on MSC semantics, the core principles of interpreting SDs
have also been inherited from them. For example, the
semantics always assume that the OccurrenceSpecifica-

tions of a lifeline should be ordered from top to bottom
[21, 10, 4]. This assumption is true for MSCs, because each
participant of an MSC has a thread of control. But it is
not the case when it is applied to an SD, because a lifeline
only represents an instance of OO programming language
element such as class or component, which can be orthog-
onal to concurrency information, i.e., there is no longer a
one–to–one correspondence between lifelines and threads
of control. This is the main motivation of the research de-
scribed in this paper.

3 SDs of UML 2.0

In this section, we briefly review the SDs’ abstract syntax
and the traditional semantics for SDs induced by UML 2.0.

3.1 Abstract syntax

The proposed approach of building a thread-tag based
semantics for SDs is based on the UML 2.0 abstract syn-
tax. This semantics is defined closely following the spirit of
UML 2.0.

SD is a complicated modelling language that uses meta-
methods to define itself as hierarchies of meta-classes. In
fact, the semantics of SD can be assigned to these meta-
classes and each construct contains a portion of the meaning
of the whole language. The language has a very large hierar-
chy of meta-classes which can not all be covered in this pa-
per. For this reason, we concentrate on the following meta-
classes relating to behaviourial semantics: InteractionFrag-
ment, Lifeline, Message, OccurrenceSpecification, Gener-
alOrdering, CombinedFragment, InteractionOperand and
InteractionOperators 2.

The part of meta-model related to the mentioned meta-
classes is shown in Figure 1. In this model, an Interac-
tion means a behaviour modelled by SD, although it can
also be an interaction overview, a communication or a
timing diagram.3 An Interaction contains Lifelines, Mes-
sages and InteractionFragments. A Lifeline represents a
ConnectableElement which refers to an instance of De-
vice, Component and Class. An InteractionFragment is a
piece of an Interaction. A CombinedFragment is a subclass
of InteractionFragment and the type of a CombinedFrag-
ment is defined by an InteractionOperator whose value can
be seq, alt, opt, etc. An InteractionOperand is contained
in a CombinedFragment. An InteractionOperand repre-
sents one operand of the expression given by the enclos-
ing CombinedFragment. Message represents the commu-
nication between ConnectableElement and MessageSort, a

2The meta-classes in UML 2.0 are always denoted in “CamelCaps”, in
the remainder of the paper, as they are in the UML 2.0.

3In this paper, only SDs are considered, therefore an Interaction refers
to SD.

174174182174

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

Figure 1. Meta-model of core meta-classes in-
cluded in SDs

property of Message indicating its type. A Message con-
tains a pair of MessageEnds. MessageEnd is an abstract
class and there are two concrete meta-classes derived from
it: gate and MessageOccurrenceSpecification. MessageOc-
currenceSpecification has another superclass – Occurrence-
Specification. OccurrenceSpecifications are ordered points
along Lifelines representing the moments when something
happens. Since MessageOccurrenceSpecification is derived
from both meta-classes, it is able to connect a Message and
a Lifeline. In graphical notation, it is the intersection point
of a vertical Lifeline and a horizontal Message. Execution-
Specification is a specification of the execution of a unit of
behavior or action within the Lifeline. It contains a pair of
OccurrenceSpecifications representing the start and end of
the execution. In addition, the start OccurrenceSpecifica-
tions commonly refers to receiving a message that triggered
the ExecutionSpecification. A GeneralOrdering represents
a binary relation between two OccurrenceSpecifications to
state that one OccurrenceSpecification must occur before
the other.

3.2 Traditional semantics

Although UML 2.0 does not provide a formal be-
havioural semantics, the descriptions of the core meta-
classes in Figure 1 show us an attempt to provide a par-
tial order semantics for plain SDs. Plain SDs refer to SDs
containing the following meta-classes: Lifeline, Message,

OccurrenceSpecification and GeneralOrdering.

An OccurrenceSpecification is the basic seman-
tic unit of Interactions. The sequences of occur-
rences specified by them are the meanings of In-
teractions.[18, p481]

OccurrenceSpecifications are ordered along a
Lifeline. [18, p481]

A GeneralOrdering is introduced to restrict the set
of possible sequences. A partial order of Occur-
renceSpecifications is defined by a set of Gener-
alOrderings. [18, p467]

Along with these three definitions, the ordering informa-
tion among OccurrenceSpecifications can also be inferred
from the fact that “the sending of a message must be or-
dered before the receiving of a message”.

An informal partial order semantics for plain SDs can be
define as the transitive closure of the union of the following
three orders:

1. OccurrenceSpecifications are ordered along a Lifeline;

2. sending OccurrenceSpecification always occurs before
the corresponding receiving OccurrenceSpecification;

3. the orders are defined by GeneralOrderings and their
directions; rules.

For the sake of convenience, we refer to this informal
semantics of plain SDs as traditional semantics, because it
reads the positions of OccurrenceSpecifications along the
Lifeline for the ordering information.4

4 Thread based analysis of sequence dia-
grams

In this section, the issues of traditional semantics of plain
SDs are first described. A Thread-tag based SD and its
corresponding informal semantics are then proposed to re-
solve these issues. These two parts are based on results
from [6]. In addition to presenting the two parts in detail,
[6] also provides an analysis of the primary differences be-
tween SDs and basic MSCs and argue that meta-classes of
UML 2.0 can not be used to resolve the issues within tradi-
tional semantics. Finally, in this section, informal semantics
for plain SDs are extended to more complex SDs in which
three new meta-classes: CombinedFragment, Interaction-
Operand and InteractionOperator are considered. We refer
to this kind of SD as a complex SD.

4We label it traditional semantics because it conforms to all semantics
mentioned [21, 10, 4]

175175183175

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

Figure 2. An SD with synchronous messages

4.1 Traditional semantics for SDs

As aforementioned, Lifelines in an SD are generally or-
thogonal to concurrency information. This results in a situa-
tion where the desired order of OccurrenceSpecifications of
an SD can not be correctly interpreted in some specific sce-
narios by traditional semantics. A number of SD examples
are presented to illustrate this problem.

Example 1 in Figure 2 shows that synchronous messages
convey the OccurrenceSpecification of one thread to multi-
ple Lifelines. As a consequence, a normal Lifeline no longer
represents a thread of control.

According to the UML 2.0, we can interpret Example 1
as a running method of a:A calling the method c1 in object
b:B and b:B sending an asynchronous message m1 to object
d:D. Method c1 returns after m1 has been sent. Finally, the
method in object a:A calls the c2 method in object c:C and
c2 returns.

This scenario means that methods c1 and c2 are succes-
sively executed in one thread, so the OccurrenceSpecifica-
tions !c1, ?c1, !m1, !rc1, ?rc2, !c2, ?c2, !rc2 and ?rc2 all
belong to one thread but are expanded to three Lifelines.
Here, the shriek symbol, !, represents sending and the ?
symbol represents receiving (of a call or message).

Applying the traditional semantics introduced in Section
3.2 to this example, the orders of the OccurrenceSpecifica-
tions are: !c1 <?c1 <!m1 <!rc1 <?rc1 <!c2 <?c2 <
!rc2 <?rc2 and !m1 <?m1 which is equivalent to our intu-
itive understanding.

Now we assume that the orders in Example 1 define the
traces that we want to model and give two other examples
(Examples 2 and 3) which try to model the same traces.

Example 2 is also a common SD, but the returns of the
synchronous calls are not included. Applying traditional
semantics, we get the following orders: !c1 <?c1 <!m1,
!c1 <!c2 <?c2 and !m1 <?m1. The relations ?c1 <!c2 and
!m1 <!c2 are missing. However, according to the mean-
ing of execution specification and synchronous call, the two
calls from the same execution specification (!c1 and !c2) are

Figure 3. SDs with synchCalls

still in the same thread, so the missing orders should exist.
The partial order should be !c1 <?c1 <!m1 <!c2 <?c2 and
!m1 <?m1 which conforms to the partial order in Exam-
ple 1 except with reply OccurrenceSpecifications removed.
This example shows that traditional semantics of SD are
not enough to interpret SDs if synchronous messages are
included and replies of synchronous calls omitted.

In Example 3, a simplified SD is given. Since execu-
tion specification is optional in SD, software engineers may
draw SDs as shown in Example 3 to reflect the traces in Ex-
ample 1. Here, it is not easy to induce the desired partial
order from Example 3. Calls c1 and c2 may belong to two
different threads, so the OccurrenceSpecifications of c1 and
c2 may interleave. As a result, the intended orders may be
!c1 <?c1 <!m1 <?m1 and !c1 <!c2 <?c2, the order pro-
duced by applying traditional semantics. Compared with
the partial order of Example 1, it does not include relations
like ?c1 <!c2 and !m1 <!c2.

The final example shows that users may draw a diagram
based on the assumption that all the calls are in one thread
and are synchronised; the assumed orders can not subse-
quently be retrieved from the diagram when it is formally
analysed.

All three examples explain how synchronous messages
bring the OccurrenceSpecifications of one thread to multi-
ple Lifelines, and the problems that may result from this. In
fact, in many cases it can also happen that multiple threads
enter one Lifeline in an SD.

An intuitive interpretation of Example 4 shown in Fig-
ure 4 is that methods b1 and b2 in object b:B are called by
a:A and c:C sequentially from different threads. This exam-

176176184176

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

Figure 4. SDs of multiple threads entering
one Lifeline

ple illustrates that sometimes it is impossible to determine
whether the OccurrenceSpecifications on the same Lifeline
belong to the same thread. Another version of Example 4 is
shown in Example 5 (same figure). It is a similar scenario
to Example 4 except that synchronous calls b1 and b2 are
replaced by asynchronous messages m1 and m2. If Exam-
ple 5 is a basic MSC, it induces a canonical race condition
[2, 16]. According to traditional semantics, m1, and m2 can
be sent in either order. There is no way to enforce m1 arriv-
ing before m2 without additional information. If ?m1 and
?m2 belong to one thread and the system is implemented
following Example 5, then a race condition may be intro-
duced into the system. However, when checking this dia-
gram in the context of OO software development, we can
not decide whether a race condition applies since ?m1 and
?m2 might not belong to the same thread.

These examples show that if there are synchronous mes-
sages and multiple threads in an SDs and thread information
is not available, the correct ordering of OccurrenceSpecifi-
cations may not be correctly interpreted by traditional se-
mantics.

4.2 SDs with thread tags

Since there appears to be no accurate mapping from
OccurrenceSpecifications to threads with UML 2.0 meta-
classes [6], we propose a new approach that extends the
notation of UML 2.0. The extension should have two func-
tions: firstly, to group all OccurrenceSpecifications in one

Figure 5. An SD with thread tags

SD to different threads; secondly, to maintain the tempo-
ral order of the OccurrenceSpecifications belonging to one
thread. A straightforward solution is provided by using
thread tags to retain the concurrency information of the sys-
tems being modelled [6]. Example 6 in Figure 5 shows
an SD with extended thread tags. In this approach, an id
is given to every thread in an SD. Each message is tagged
with two thread ids, one for the source thread and one for
the target thread. However, when sending and receiving of
a message belong to the same thread, only one thread id is
tagged in the middle of the message instead of two. The
ids are used to classify OccurrenceSpecifications into dif-
ferent threads while the temporal order of the grouped Oc-
currenceSpecifications is maintained by the positions where
the OccurrenceSpecifications occur.

In a tagged SD, the OccurrenceSpecifications with the
same thread tag are naturally grouped together. Based on
the definition of thread, the OccurrenceSpecifications in the
same thread should be sequentially ordered. In a tagged
SD, this temporal ordering information is retained in the po-
sitions of the OccurrenceSpecifications. One Occurrence-
Specification should occur before another OccurrenceSpec-
ification that resides below it in the same diagram (with the
same thread tag). This means that the thread tags and the
positions of the OccurrenceSpecifications preserve all or-
dering information for the OccurrenceSpecifications from
the same thread.

According to our previous analysis, if the Occurrence-
Specifications are accurately tagged with thread tags, then
the concurrency information retained in the thread tags is
more reliable than the orders appearing in Lifelines. In ad-
dition, using thread tags also resolves issues caused by syn-
chronous messages, since the sending and receiving of a
synchronous message are always in the same thread. There-
fore, when interpreting SDs with thread tags, we use the rule
in the last paragraph to replace the first rule in traditional
semantics that orders OccurrenceSpecifications alone Life-
lines.

An informal partial order semantics for thread tagged

177177185177

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

Figure 6. Combination of interactions

SDs can then be derived from the traditional semantics. It
is the transitive closure of the union of the following three
orders:

1. The OccurrenceSpecifications tagged with the same
thread tag should be ordered linearly along the SD;

2. sending OccurrenceSpecification always occurs before
the corresponding receiving OccurrenceSpecification;

3. the orders are defined by GeneralOrderings and their
directions;

Using the proposed rules, it is easy to infer the exact or-
ders from the tagged SD even without execution specifica-
tions. For instance, for Example 6 (in Figure 5), because
!c1, ?c1, !m1, !c3, ?c3, !m2 all belong to thread T1, the or-
ders are !c1 <?c1 <!m1 <!c3 <?c3 <!m2, ?m1 <?m2,
!m1 <?m1 and !m2 <?m2, as desired.

4.3 Combination of interactions

In UML 2.0, SDs have been given expressive power
to model the combination of interactions using Combined-
Fragment, InteractionOperand and InteractionOperator, as
shown in Figure 6.

Using these three meta-classes, different kinds of se-
quential and parallel compositions, alternation and excep-
tion handling can be included in an SD.

A complex SD consists of plain SDs. The example in
Figure 6 shows that a CombinedFragment splits an SD into
three parts at the first level. The first part includes message
m1; the second part is the whole CombinedFragment; the
third part includes m4. The first and third parts in the SD
are both plain SDs.

In addition, a CombinedFragment may have multiple In-
teractionOperands. Each InteractionOperand contains its
InteractionFragment, which can be a plain SD or another
complex SD. This implies that the CombinedFragment can

nest in an InteractionOperand of its parent CombinedFrag-
ment recursively. In the example shown in Figure 6, a Com-
binedFragment with loop (InteractionOperator) is embed-
ded in an alt CombinedFragment. It shows that complex
SDs may consist of hierarchies of plain SDs for modelling
multi-level behaviour in software.

According to the informal semantics for plain SDs, the
semantic meaning of a complex SD can also be defined as
partial orders among OccurrenceSpecifications. The infor-
mal semantics of plain SDs with thread tags can be eas-
ily achieved by the send-receive relation between the Oc-
currenceSpecifications, the GeneralOrderings and the se-
quential ordering of OccurrenceSpecifications belonging to
the same thread. However, when inferring the meaning of
a complex SD, one of the difficulties is how to define the
combination types of the partial orders of the plain SDs in
it. This problem can be resolved by defining semantics for
each InteractionOperator in UML 2.0 as proposed in previ-
ous work [21, 10, 4].

Because the semantics change from plain SDs to thread
tagged plain SDs, the semantics of InteractionOperators
also needs to be changed when applying them to tagged
SDs. In UML 2.0, the informal semantics for Interaction-
Operators are based on the possible traces of Occurrence-
Specifications in an SD. Here, we intend to identify the In-
teractionOperators whose semantics cannot be satisfied us-
ing this approach.

The most fundamental InteractionOperator in UML 2.0
is seq. It appears frequently in SDs, but possibly implicitly.
For example, in Figure 6, it appears between two operands:
the plain SD above an alt CombinedFragment and the Com-
binedFragment itself.

In UML 2.0, the semantics for seq, representing weak
sequencing, is described as follows [20, p 454-455]:

1. The ordering of OccurrenceSpecifications within each
of the operands are maintained in the result.

2. OccurrenceSpecifications on different Lifelines from
different operands may come in any order.

3. OccurrenceSpecifications on the same Lifeline from
different operands are ordered such that an Occur-
renceSpecifications of the first operand comes before
that of the second operand.

The second and the third ordering rules still use the po-
sitions of OccurrenceSpecifications on a Lifeline as the or-
dering information. This is not acceptable when there are
multiple threads involved in an SD.

For example, Figure 7 shows a weak sequencing of three
plain SDs (operand 1,2 and 3 respectively). When apply-
ing semantics for thread tagged SDs, the orders for each
plain SD are !m1 <?m1 (operand 1), !m2 <?m2 (operand
2) and !m3 <?m3 (operand 3). There is no difference

178178186178

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

Figure 7. Weak sequencing in an tagged SD

between applying traditional or thread-tag based seman-
tics to interpret these plain SDs. If the seq semantics in
UML 2.0 is applied to combine these three orders, the or-
ders should be !m1 <?m1, ?m2 <!m2, !m3 <?m3 and
!m1 <!m2 <!m3, ?m1 <?m3. Now consider the thread
tags in the SD, if the SD is tagged as shown in the exam-
ple; the desired orders should be: ?m2 <!m2, !m3 <?m3
and !m1 <?m1 <!m3. The difference between the orders
shows that the semantics for weak sequencing is affected by
the fact that Lifelines are orthogonal to concurrency infor-
mation. To tackle this problem, the semantics for seq should
be replaced by rules as follows:

1. The ordering of OccurrenceSpecifications within each
of the operands are maintained in the result.

2. OccurrenceSpecifications with different thread tags
from different operands may come in any order.

3. OccurrenceSpecifications with the same thread tag
from different operands are ordered such that an Oc-
currenceSpecifications of the first operand comes be-
fore that of the second operand.

In the above rules, thread tags are used instead of Life-
lines to retain the concurrency information in SDs.

Another affected InteractionOperator is loop. In UML
2.0, the semantics of loop is defined as follows:

• The loop construct represents a recursive application
of the seq operator where the loop operand is se-
quenced after the result of earlier iterations.

Since these semantics are based on weak sequencing
whose meaning has changed according to our previous anal-
ysis, the semantics for loop Interactionoperator are also
changed.

5 Formal semantics

The pomset framework is chosen as the basis of our pro-
posed semantics since it is a well-established model of con-
currency in the class of linear-time, non-interleaving mod-
els [19]. A pomset framework consists of three main parts:
the definition, the operations and temporal logic. The sec-
ond part is the algebraic portion of the whole framework
and can be used for formalising the semantics of the new
meta-classes of UML 2.0: CombinedFragement, Interac-
tionOperand and InteractionOperator. These meta-classes
are mainly used to model the control flows of the OO pro-
grams. From the point of view of the pomset, however,
the CombinedFragment can be simplified as a calculus on
a set of pomsets, each of which represents an Interaction-
Operand in the CombinedFragment.

The formalisations of both MSCs and SDs using par-
tially ordered structures have been advocated by many re-
searchers [1, 17, 3]. Following their approaches, we pro-
pose a formal semantics based on our previous informal
thread-tag based semantics. However, concurrency issues
in traditional semantics are modified in the new semantics.

In the following section, the definition of a pomset re-
lated to our formalisation are given. The semantic domain
of the proposed semantics where the thread tag information
are included is then described. Finally, the semantics of the
well understood operators, i.e. strict, seq, par, alt, opt and
loop, are defined. For the time being, neg, ignore, critical,
consider, assert and break are not considered.

5.1 Pomset

In this subsection, the formal definition of pomset and its
calculus is given according to [13].

Definition 1 Let L be a set of labels. A labelled partially
ordered set (lposet) is a triple (E,6, l) with E, a set of
events, 6 ∈ E ×E, a reflexive, anti-symmetric, and transi-
tive order on E, and l : E → L a labelling function.

6 is called a partial order that represents causality. The
empty lposet (∅, ∅, ∅) is denoted by ε. Commonly, for mod-
elling concurrency, L = A×I , where A is the set of actions
and I the set of instances.

Definition 2 (E,6, l) and (E′,6′, l′) are isomorphic iff
there exists a bijection φ : E → E′ such that e 6 ê iff
φ(e) 6′ φ(ê) and l = l′ ◦ φ, for all e, ê ∈ E.

Definition 3 A pomset is an isomorphism class of lposets.

The isomorphism class of (E,6, l) is denoted by [(E,6
, l)].

Let Let p = [(Ep,6p, lp)] and q = [(Eq,6q, lq)] be two
pomsets.

179179187179

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

Definition 4 (Concatenation)

p · q , [(Ep ∪ Eq,6p ∪ 6q ∪ (Ep × Eq), lp ∪ lq)].

In p · q, every event of p is forced to precede every event of
q. It is straightforward to check that 6p ∪ 6q ∪ (Ep×Eq)
is a partial order, so p · q is indeed a pomset.

Definition 5 (Concurrence)

p ‖ q , [(Ep ∪ Eq,6p ∪ 6q, lp ∪ lq)].

In p ‖ q, events in p can randomly interleave with events
in q. Also p ‖ q is a pomset.

Definition 6 (Local concatenation)

p ◦ q , [(Ep ∪ Eq,
(
6p ∪ 6q

⋃
i(E

i
p × Ei

q)
)+

, lp ∪ lq)].

For pomset p the set Ei
p denote the set of events in p that

occur at instance i, i ∈ I . In p◦q, events in p should precede
those events in q that appear at the same of instance. Notice
that for p ◦ q, a transitive closure is taken to guarantee that
the resulting relation is indeed a partial order.

Definition 7 (Union)

p ∪ q is simply the pomset of p or pomset q .

In p∪q, p or q means that the choices between two pom-
sets. The p ∪ q is not a pomset but a set of pomsets.

5.2 Semantic domain

Recall the semantic domain for plain SDs in [4], which
contains two subdomains for Lifelines I and Messages M, I
and M then represent the subsets of I and M respectively.
The semantic domain of a plain SD is an event-labelled
poset [(E,6E , λE)].

• E is the set of OccurrenceSpecifications in the SD;

• 6E is a partial order, 6E ∈ E × E, retained by the
SD;

• λE is a labelling function which maps E to L, where
L = A× I×M . A is the set of event types, which can
be send and receive.

Considering the semantic domain of a plain thread-tag
based SD, the most notable change is the use of thread tags
to retain concurrency information instead of using Lifelines
in an SD. The set of thread tags should be involved into the
semantic domain of thread-tag based SDs.

To further our analysis, we define another subdomain in
plain tagged SDs. Let’s define the domain of thread tags,
written T, and then T is the subset of T to represent the
threads involved in this SD. We keep the definition for A,
which is a set of types, send, receive belonging to A; the set
E for OccurrenceSpecifications occurring in that SD and M
for the set of Messages. The Lifelines are orthogonal with
the ordering information in a thread-tag based SD, but the
set of Lifelines remains in the semantic domain for preserv-
ing information about where the message is sent and where
it is received, written I . A label function can then be defined
as l : E → A× T × I ×M .

Based on the pomset definition, a plain tagged SD is also
a pomset, [(E,6T , l)]. Comparing with [4], there are two
differences: one is the labelling function changed from λE :
E → A× I ×M to l : E → A× T × I ×M , where a new
subdomain, T, is considered; the other is the partial order,
6E , is replaced by 6T obtained by applying the deductive
rules in Section 4.2.

When extending the formalisation to complex tagged
SDs, a special InteractionOperator needs to be introduced.
Alternative, written as alt represents a choice of behaviour,
thus different traces can appear. It means that if there is
a CombinedFragment with alt in a tagged SD, then the SD
can not be mapped to a single pomset. The semantic domain
of a complex SD thus comprises all pomsets of each plain
SD in the complex SD. Let’s assume that there are n plain
SDs in a complex SD and Ei, 6iT and li respectively rep-
resent the ith set of OccurrenceSpecifications, partial order
and label function , i ∈ [0, n], then P, the semantic domain
is the combination of [(Ei,6iT , li)] , i ∈ [0, n], according
to the different Interactionoperators attached with the plain
SDs.

5.3 Formalising the Interactionoperators

On the basis of this semantic domain definition, the se-
mantics for each well understood operator are separately de-
fined. In the remainder, A and B denote plain tagged SDs;
[(A)] and [(B)] thus refer to the pomsets of the SDs.

Strict sequencing In the UML 2.0, strict was defined
as:“the semantics of strict sequencing defines a strict order-
ing of the operands”. According to the Definition 4, strict
is then the concatenation of two pomsets as follows:

Definition 8 (strict)

[(strict(A,B))] = {a · b| a ∈ [(A)], b ∈ [(B)]}.

Weak sequencing In Section 4.3, we have listed the rules
for weak sequencing two plain tagged SDs. Again, let A

180180188180

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

and B be the two plain SDs. The OccurrenceSpecifications
in A and B sharing the same thread tags should be strict
sequenced but for the others, those from A can interleave
with those from B. Considering Definition 9, events within
the same instance should be ordered strictly. Because the
instance should refer to a thread in tagged SDs according to
our analysis in Section 4.3, we define a new operation, weak
sequencing by thread, in the tagged SD semantic domain,
written }.

Definition 9 (thread concatenation)

p } q ,

[(Ep ∪ Eq, (6p ∪ 6q

⋃
t(Ep(t)× Eq(t)))

+
, lp ∪ lq)].

For pomset p the set Ep(t) denotes the set of Occur-
renceSpecifications in p that occur at thread t (with thread
tag t), t ∈ T . In p}q, OccurrenceSpecifications in p should
precede those OccurrenceSpecifications in q that appear at
the same thread (with the same thread tag). Again, p } q
needs a transitive closure to assure it is a pomset.

seq can then be defined as follows:

Definition 10 (seq)

[(seq(A,B))] = {a } b| a ∈ [(A)], b ∈ [(B)]}.

Parallel In the UML 2.0, strict was defined as: “the Oc-
currenceSpecifications of the different operands can be in-
terleaved in any way”. Then according to Definition 5, par
is the concurrence of two pomsets as follows:

Definition 11 (par)

[(par(A,B))] = {a ‖ b| a ∈ [(A)], b ∈ [(B)]}.

Alternatives In the UML 2.0, alt was defined as: “the set
of traces that defines a choice is the union of the traces of
the operands”. Then according to Definition 7, alt is the
union of two pomsets as follows:

Definition 12 (alt)

[(alt(A,B))] = [(A)] ∪ [(B)].

Option In the UML2.0, opt was defined as: “an option
is semantically equivalent to an alternative CombinedFrag-
ment where there is one operand with non-empty content
and the second operand is empty”. Then according to Defi-
nition 7 and 12, opt is the union of one pomset and a empty
pomset as follows:

Definition 13 (opt)

[(opt(A))] = [(A)] ∪ [(ε)].

Loop According to the analysis in Section 4.3, loop
should be defined by seq operator. The UML 2.0 states
“The loop operand will be repeated a number of times.”
It is convenient to define loop recursively which means go-
ing through loop operand sequenced with the meaning of
the loop itself or doing nothing. Its formal definition is as
follows:

Definition 14 (loop)

[(loop(A))] = [(ε)] ∪ [(seq(A, loop(A)))].

This means, that A can be executed any number of times
and then exit.

6 Conclusion and Future Work

In this paper, a formal thread-tag based semantics of SDs
was proposed. The drawbacks of traditional semantics for
interpreting SDs and the informal semantics for plain thread
tagged SD were reviewed [6]. It was shown that traditional
semantics was not suitable for capturing concurrency in-
formation when there were multiple threads involved in a
single SD and the Lifelines were replaced by thread tags
to retain the concurrency information in SDs. Secondly,
the semantics for three new meta-classes in UML 2.0, i.e.
CombinedFragment, InteractionOperator and Interaction-
Operand, were considered. The change from traditional
semantics of plain SD and its effect on the semantics of
were thread-tag based SDs was extended to a formal seman-
tics for complex thread-tag based SDs based on the pomset
framework.

Planned future work includes the following. Different
type of semantics for common SDs exist, such as trace
based semantics. However, they all follow the traditional
way of using Lifeline to maintain concurrency information.
It would be interesting to apply our semantics on other
forms of semantics and compare them. Since SDs are only
one technique in the set of UML 2.0 interaction diagrams
(IDs), it would be worth extending this semantics to IDs. In
addition, it would also be useful to conduct a formal analy-
sis of IDs based on the developed semantics, such as identi-
fying the pathologies of IDs and ID model checking.

181181189181

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Inference of mes-
sage sequence charts. IEEE Transactions on Software Engi-
neering, 29(7):623–633, 2003.

[2] R. Alur, G. Holzmann, and D. Peled. An analyzer for
message sequence charts. Software Concepts and Tools,
17(2):70–77, 1996.

[3] P. Baker, P. Bristow, C. Jervis, D. King, R. Thomson,
B. Mitchell, and S. Burton. Detecting and resolving seman-
tic pathologies in UML sequence diagrams. In Proceedings
of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering, pages 50–59, Lis-
bon, Portugal, 2005. ACM Press.

[4] M. V. Cengarle and A. Knapp. UML 2.0 interactions: Se-
mantics and refinement. In Proceedings of the 3rd Intl.
Workshop on Critical Systems Development with UML,
pages 85–99, Lisbon, Portugal, 2004. Technische Univer-
sität München.

[5] W. Damm and D. Harel. LSCs: breathing life into mes-
sage sequence charts. Formal Methods in System Design,
19(1):45–80, 7 2001.

[6] H. Dan, R. M. Hierons, and S. Counsell. Thread-based anal-
ysis of Sequence Diagrams. Accepted in the 27th Interna-
tional Conference on Formal Methods for Networked and
Distributed Systems, 2007.

[7] J. Grabowski, P. Graubmann, and E. Rudolph. Towards a
petri net based semantics definition for message sequence
charts. In Proceedings of SDL’93 - Using Objects, pages
179–190, Darmstadt, Germany, 1993. North-Holland.

[8] R. Grosu and S. A. Smolka. Safety-liveness semantics for
UML 2.0 sequence diagrams. In Proceedings of the Fifth
International Conference on Application of Concurrency to
System Design, pages 6–14, Los Alamitos, CA, USA, 2005.
IEEE Computer Society Press.

[9] D. Harel and S. Maoz. Assert and negate revisited: modal
semantics for UML sequence diagrams. In Proceedings of
the 2006 International Workshop on Scenarios and State
Machines: Models, Algorithms, and Tools, pages 13–20,
Shanghai, China, 2006.

[10] Ø. Haugen, K. E. Husa, R. K. Runde, and K. Stølen.
STAIRS towards formal design with sequence diagrams.
Software and Systems Modeling, 4(4):355–357, 2005.

[11] ITU-T. ITU-T Recommendation Z.120 Annex B: Formal
semantics of message sequence charts, 4 1998.

[12] B. Jonsson and G. Padilla. An execution semantics for MSC-
2000. In Proceedings of SDL 2001: Meeting UML, volume
2078 of Lecture Notes in Computer Science, pages 365–378,
2001.

[13] J. P. Katoen and L. Lambert. Pomsets for message sequence
charts. In Proceeding of First Workshop SDL and MSC
(SAM’98), pages 197–208, Berlin, Germany, 1998.

[14] P. B. Ladkin and S. Leue. What do message sequence charts
mean? In Proceedings of the IFIP TC6/WG6.1 Sixth In-
ternational Conference on Formal Description Techniques,
pages 301–316, Boston, MA, USA, 1993. North-Holland.

[15] S. Mauw and M. A. Reniers. An algebraic semantics of
basic message sequence charts. The Computer Journal,
37(4):269–277, 1994.

[16] B. Mitchell. Resolving race conditions in asynchronous par-
tial order scenarios. IEEE Transactions on Software Engi-
neering, 31(9):767–784, 2005.

[17] A. Muscholl, D. Peled, and Z. Su. Deciding properties for
message sequence charts. In Proceedings of the 1st Con-
ference on Foundations of Software Science and Computa-
tion Structures, volume 1378 of Lecture Notes in Computer
Science, pages 226–42, Lisbon, Portugal, 1998. Springer-
Verlag.

[18] OMG. Unified Modeling Language: Superstructure, 8 2005.
[19] V. Pratt. Modeling concurrency with partial orders. Interna-

tional Journal of Parallel Programming, 15(1):33–71, 1986.
[20] B. V. Selic. On the semantic foundations of standard UML

2.0. In Proceedings of the 4th International School on For-
mal Methods for the Design of Computer, Communication
and Software Systems: Real Time, volume 3185 of Lecture
Notes in Computer Science, pages 181–199, Bologna, Italy,
2004.

[21] H. Storrle. Semantics of interactions in UML 2.0. In Pro-
ceedings of the 2003 IEEE Symposium on Human Centric
Computing Languages and Environments, pages 129–136,
Los Alamitos, CA, USA, 2003.

182182190182

Authorized licensed use limited to: Brunel University. Downloaded on June 10, 2009 at 07:13 from IEEE Xplore. Restrictions apply.

