
Information Visualization for Mobile Devices: A Novel Approach
based on the MagicEyeView

Gheorghita Ghinea1,2, Jorn Heigum1,2, Anders Fongen2

Brunel University1, Norwegian School Information Technology2
E-mail:{george.ghinea, jorn.heigum}@brunel.ac.uk;andfon@nith.no

Abstract

Visualization on mobile devices not only means
accommodating to a small screen space, but also
widely different aspect ratios. Improving on the
MagicEyeView algorithm, this paper presents a
visualization technique that is better suited to screens
with skewed aspects ratios. The presented approach is
a focus+context visualization effort which employs
distortion of coordinate scales and a "fisheye"
technique. The visualization algorithm is evaluated in
the problem domain of business management and the
presentation of "Key Performance Indicators".

1. Introduction

Mobile phones and PDAs are spreading throughout
the business user community at a rapid pace. Theses
devices are becoming more and more adept packing
more processing power and storage space than ever
before. Even though this might be the case, few users
use these powerful devices for other tasks than contact
databases or as an extension to their short term
memory, e.g. via calendar applications.

One of the key reasons for this is the limited screen
space available because of the constrained “form
factor” that have been, and will continue to be a
limitation of these devices. According to [10] [11], this
places a special importance and a need for emphasis on
the structure of the information to be presented.
Information visualization (IV) might be a technology
to help with this problem.

One of the main goals of IV is to enable processing
of large amounts of data in an instant by delegating
work to the visual processing of humans and their
capability of visual pattern recognition. One of the
main problems of visualizing information on small
screen devices is to display enough information to give
the user appropriate and adequate contextual
information. Focus + context techniques have been
used to solve this problem on classic hardware. In this
paper we describe a novel approach which adapts the

MagicEyeView algorithm to better handle the varying
aspect ratios of small screen devices and thus utilises
screen space more efficiently.

2. Focus + context techniques

Focus + context are used in visualizations to
provide user details of a phenomenon as well as to
relate the phenomenon to its context. In [6] Furnas
proposes a Degree of interest (DOI) function which he
generalizes in a follow up article describing
generalized fisheye views [7]. His suggestions were
made based upon studies of how humans perceive
phenomena with local high detail that decreases
according to the degree of interest.

The DOI function has two components, a so called
A priori interest (API(x)) component, which is
determined in accordance to the current task and a
distance component D(x,y) which is a function of
distance from focus point x. Furnas states that fisheye
views can be realized for any structure supporting
functions for API(x) and D(x,y). He uses a hierarchy to
exemplify his ideas; by setting focus to a node in a
hierarchy he calculates to DOI function for the sub
nodes by using the distance from the focus (root),
different algorithms can used to calculate the distance.

Even though research has been conducted into the
application of focus + context techniques on portable
devices, such work either focuses on general
techniques or on relatively mundane applications. So
far there has been a paucity of research which has
targeted the use of focus + context techniques to
display numeric information or status information on
portable devices.

2.1 Focus+context techniques for mobile
devices

One of the main problems encountered when
attempting to use IV techniques on mobile devices is
that the latter’s screens usually have markedly different
aspect ratios to the ones of classical, standalone
devices and, as such, there is usually an inefficient use

566
978-1-4244-1653-0/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: Brunel University. Downloaded on June 21, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

of space. To solve the problem of wide aspect ratios
when working with information sets with spanning
properties Mackinlay et al. [13] proposed the
perspective wall. Utilizing the 3D hardware of the
time, they displayed information items on a band with
a central focus region with context regions to the left
and right, where the band was set at an angle.

As an improvement to the generalized fisheye view
and the perspective wall, Robertson et al. [16]
introduced the lens metaphor for visualizing large
documents. The lens they used had a constant
magnification for an area in focus, with a gradual
reduction of magnification towards the edges of the
screen. The area of focus could be moved around the
document and the lens could be varied in size by
moving the lens in the Z plane. The document lens can
be said to extend the perspective wall by extending the
context regions.

The next development to the fisheye view, allowing
for multiple foci points, uniform scaling in the focus
area, and arbitrary focus size specification, was a
rubber sheet metaphor introduced in [17]. This
technique allowed a user to select a region of interest
and stretch it into the desired size. This created a
uniform focus region with horizontal and vertical
bands having distorted aspect ratios. Building on the
ideas of the rubber sheet and the DOI function, Rao
and Card develop the table lens [14]. This is an
application of the DOI function using the rubber-sheet
metaphor, with discrete regions of focus delimited by
rows and columns. This allows users to view
information from huge tables in context.

After this initial flurry of activity in the area,
research in the area resumed anew only with the advent
and proliferation of mobile devices, with most of the
research targeting technology adoption or specific
enhancements to the field. Thus, the Halo technique [1]
uses circles (halos) to introduce objects into the display
region even if they are outside of it. In related work,
three novel focus + context techniques targeted at
mobile devices were introduced in [11]: the Large
Focus display, Perspective Overview Display and the
Transient Focus Display.

Further developments into mobile adaptation were
performed with the DateLens application [2]. This is a
calendar application for PDAs that utilizes a fisheye
transformation to display a calendar application.
Highly influenced by DateLens, Karlson et al [9]
published an article comparing AppLens, a fisheye
application launcher, and a pure zoom application
launcher for one-thumbed operation on PDAs, with
initial studies revealing that untrained users prefer
AppLens. In related work, Engdahl et al. [5] applied
treemaps to display discussion groups on PDAs. A user
study confirmed that the benefits of using treemaps on

traditional displays were retained even when ported to
a display only 6% of the original size.

3. Problem Domain

Key performance indicators (KPI) are usually given
by numbers confined to a limited range that indicate
how well one or more aspects of a business are
performing in relation to a strategic business goal. KPI
are usually associated with a practice called Corporate
Performance Management (CPM). The core of CPM is
to define a set of KPI that align with the corporate
strategy in a good way. These KPI are calculated from
a set of measurements taken within the company, and
can be, e.g.: the number of defects per thousand items
produced, average customer satisfaction.

The task of measuring KPI can be quite hard.
Moreover, the effort of defining good KPI that reflect
the strategy of the business is considerable and
represents an ongoing continuous process. According
to Wade and Recardo [18] a corporation needs a set of
around 5 to 10 KPI on a departmental level and
possibly 20 or so refined ones at a corporate level.
They also claim that one should realistically expect to
spend approximately 2 years deriving adequate ones.

At present there exist a wide range of applications
for presenting KPIs to end users, but few for handheld
devices. Additionally, utilizing focus+context
techniques in business related applications is a
relatively unexplored area. Indeed, decision makers use
KPIs to identify parts of their organizations that need
extra attention, so making these conveniently available
to them can change usage patterns. This would be one
step further on the way to helping business leaders to
cope with the rapid change and information overload in
today’s business environment.

In our work, we have addressed this issue and
utilised a novel adaptation of the MagicEyeView to aid
in the visualization of KPI on mobile devices.

4. The MagicEyeView

The MagicEyeView visualization [12] is
specifically tailored for hierarchies. The
MagicEyeView works by laying out a hierarchy on a
hemisphere with the hierarchy root at the pole. The
hierarchy is then projected down into the plane below.
Initially the viewpoint is centered at the pole. Focus on
a particular region can be achieved by shifting the
viewpoint around on the plane. The space between
successive levels in the hierarchy is colored using
alternating colors to distinguish levels in the hierarchy.
The geometry can be described more formally: each
node in the hierarchy is mapped onto a two

567
Authorized licensed use limited to: Brunel University. Downloaded on June 21, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

dimensional Cartesian plane using Reingold and
Tilford’s [15] algorithm. These values are then
normalized to 2� and described using two angles:

� = 2� *x/maxx ,
� = 2�*y/maxy.

These two angles together with the radius of the
hemisphere are then used to calculate the Cartesian
coordinates:

x = r * sin(�)*sin(�),
y = r*cos(�)*sin(�), z = r * cos(�)

Secondly, a projection is applied from the Cartesian
coordinate P0(0,0,0), and the projection rays/vectors
from P0 and the intersections with the hemisphere are
calculated. The angles between these vectors are kept
constant. To change focus, P0 is moved and the new
intersection points between the vector set and the
hemisphere are calculated and then projected down
into the plane. In addition to moving P0, the
MagicEyeView can be translated, rotated and zoomed.
When moving P0 to change focus the new intersections
can be calculated by solving the equation:

|t*VP1 + VP0| - r = 0
where VP0 is the vector from the original P0 to the
new P0. This gives us the new intersection point from
the vector:

 t*VP1 + VP0.

4.1.Initial Prototypical Implementation

Our initial attempt was to prototype the
MagicEyeView for KPI visualization on a Nokia 6680
using a 200MHz ARM9 process capable of 2.1 MIPS.
The device had 5MB of memory and a screen size of
176 x 208 pixels, capable of displaying 262144
colours. The prototype implementation was a port of an
earlier MagicEyeView implementation created by
Petrik [14]. The port was made from J2SE to the J2ME
CLDC1.1 plus MIDP2.0 compatible device using the
games API with layered graphics support.

The developed prototype (Figure 1) supports focus
change by pressing the navigation button on the mobile
station. Because of the lack of a pointing device on
some devices the focus movement accelerates when the
navigation button is pressed continuously.
Additionally, the focus point also follows the perimeter
of the outer circle in the view if the user indicates
navigation beyond this perimeter. These adaptations
are implemented to assist the user and to avoid
excessive button pressing. Focus is achieved by
moving the focus point, as described in the previous
section.

Figure 1. Initial Prototypical Implementation

One of the main concerns before implementing the
prototype had to do with CPU usage. In practice,
however, this turned out to not be an issue as it was
possible to render around 30 frames per second (fps)
even with a 10ms sleep inserted into the drawing loop
to accommodate other threads in the program. As one
can clearly see from Figure 1, the MagicEyeView
visualization suffered two major problems when
adapted to a portable small screen device.

• Because of the different aspect ratio, there is a
lot of unused screen real estate.

• The node labels occlude parts of the
presentation.

6. The MagicEyeView: An Improvement

To alleviate the problems of skewed aspect ratios
identified above, we propose to introduce a half
ellipsoid (specifically, half a spheroid) and apply the
principles from the MagicEyeView to this geometry
setup. A spheroid is expressed by the formula:

Calculating coordinates and vectors in the spheroid

is a bit more involved but parameterization might be
expressed by:

x = a* sin(�)*sin(�),
y = b*cos(�)*sin(�),
z = b*cos(�).

When moving the focus in this geometry the vector
formula |t*VP1 + VP0| - r = 0 can no longer be used to
find the intersection with the spheroid, because there is
no longer a fixed radius. However, we know that the
spheroid equation must still hold, so we can

x2

a2 + y2

b2 +
z

2

b
2 = 1

568
Authorized licensed use limited to: Brunel University. Downloaded on June 21, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

decompose the vector formula and insert it into the
equation. This then gives us the following:

1)()()(
2

2

2

2

2

2

=
∇+⋅

+
∇+⋅

+
∇+⋅

b
zzt

b
yyt

a
xxt iii

Figure 2. Improved MagicEyeView Algorithm (Nokia 6680)

However, here everything with the exception of t is a
known constant. This means that solving the above
equation entails the computationally simple task of
solving a quadratic equation.

Another thing that must be adjusted to fit the new
geometry is the focus-assisting functionality that steers
focus to allowed points within the plain. For keypad
navigation, the adjustment functions must solve the
ellipse formula:

12

2

2

2

=+
b
y

a
x

with respect to y and x respectively :

b
xaby

22 −⋅= ,
a

yba
x

22 −⋅
=

When using a pointing device it will feel more
natural to calculate the angle if the user attempts to
focus outside the projected ellipse and adjust the x and
y coordinates accordingly.

7. Discussion

We have implemented the modified MagicEyeView
algorithm using the Java2 MIDP2.0 API with the
CLDC 1.1 configuration on the original Nokia 6680
platform and simulated it on two prototypes with
considerably different aspect ratios (Figures 3 and 4):
Figure 3 shows an emulator for Nokia Series 60 device
having a resolution of 208x176 pixels running the
prototype implementation, while Figure 4 depicts the
results of our approach on an emulator for the Nokia

Figure 3. Improved MagicEyeView Algorithm (Nokia
Series 60)

Figure 4. Improved MagicEyeView Algorithm (Nokia
7710)

7710 having a resolution of 320x640 pixels. The
respective aspect ratio of these two devices is 1.15:1
and 1:2.

As can be observed, our approach handles the
varying aspect ratios of the different devices efficiently
and uses the screen real estate fully. Moreover, the
issue of node occlusions is considerably alleviated.
Lastly, we mention that the frame rate of 30 fps of the
original prototype is also kept in our modified
implementations.

Although one could achieve similar results using
affine transformations (coordinate conversions), such
transformations are not covered by the Java2 game
API. Because there is no API support, this therefore
excludes the use of hardware support when
programming within the confines of that API.
Moreover, implementing affine transformations will

569
Authorized licensed use limited to: Brunel University. Downloaded on June 21, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

incur a performance penalty, not to mention some
programming complexity, since every pixel that is
drawn on the screen must be remapped, a feat not
easily done since it entails, for one, timely interruption
of the painting calls. For instance, on a 200x300 pixel
screen a minimum of an additional 60.000 floating
point multiplications per frame is needed, albeit
naively, without hardware acceleration or
optimizations. Utilizing this approach will thus
probably result in accuracy loss in the visualization.
Another disadvantage of affine transforms is that they
will also distort the symbols/icons that will be used for
pre-attentive recognition. This can be solved be either
drawing the symbols in an unconverted layer, or by
pre- converting the symbols to counter balance the
effect of the coordinate conversion. The disadvantage
is that it again complicates matters unnecessarily.
Thus, although there is support for this in the jsr-184
specification [8], there is, however, no support for
layering. Moreover, the specification is a 3D API,
which again complicates matters, since simultaneously
mixing content on the device screen from both APIs is
a challenge not easily solved.

8. Conclusion

This paper has presented a novel adaptation of the
MagicEyeView approach to such devices, by treating
the problem as visualization on a spheroid. Our
approach has general applicability, as it has been
proven to be a resource friendly and complexity
reducing alternative to affine transformations,
irrespective of the specifications of the target device.
Additionally, it has been shown to represent a
performance enhancement for screen-limited devices
of the MagicEyeView algorithm. Whilst we are
encouraged by our results thus far, our future
endeavors centre around the encoding of information
into node icons and the utilization of preattentive
effects for KPI status evaluation.

9. References

[1] Baudisch, P. and Rosenholtz, R. Halo: a technique for

visualizing off-screen objects. In Proc. CHI 2003, ACM
Press (2003), 481-488.

[2] Bederson, B.B., Clamage, A., Czerwinski, M.P. and
Robertson, G.G. DateLens: A fisheye calendar interface
for PDAs, ACM Trans. Computer-Human Interaction,
11, 1, (2004), 90-119.

[3] Björk, S., Holmquist, L.E., Redström, J., Bretan, I.,
Danielson, R., Karlgren,J., and Franzén, K. West: A Web
browser for small terminals. In Proc. ACM UIST 1999,
ACM Press (1999), 187-196.

[4] Carpendale, S., Ligh, J. and Pattison, E. Achieving higher
magnification in context. In Proc. ACM UIST 2004,
ACM Press (2004), 71-80.

[5] Engdahl, B. Koksal, M. and Marsden, G. Using treemaps
to visualize threaded discussion forums on PDAs. Ext.
Abstracts CHI '05, ACM Press (2005), 1355-1358.

[6] Furnas, G.W. The fisheye view: A new look at structured
files. Technical report, Bell Laboratories, 1981.

[7] Furnas, G.W. Generalized fisheye views. In Proc. CHI
1986, ACM Press (1986), 16-23.

[8] JSR 184: Mobile 3D Graphics API for J2ME.
http://www.jcp.org/en/jsr/detail?id=184

[9] Karlson, A.K., Bederson, B.B. and SanGiovanni, J.
AppLens and launchTile: two designs for one-handed
thumb use on small devices. In Proc. CHI 2005, ACM
Press (2005), 201-210.

[10] Karstens, B, Kreuseler, M. and Schumann, H.
Visualization of complex structures on mobile handhelds.
In Proc. IMC2003, 2003.

[11] Karstens, B., Rosenbaum, R., and Schumann, H.
Visual interfaces for mobile handhelds. In Proc. HCI
2003, Crete, 2003.

[12] Kreuseler, M., Lopez, N. and Schumann, H. A
Scalable Framework for Information Visualization. In
Proc. IEEE INFOVIS 2000, IEEE Computer Society
Press (2000), 27.

[13] Mackinlay, J.D., Robertson, G.G. and Card, S.K.
The perspective wall: detail and context smoothly
integrated. In Proc. CHI 1991, ACM Press (1991), 173-
176.

[14] Petrik, S. Magic Eye Viewer - A tool for visualizing
large hierarchies. Technical report, Graz University of
Technology, 2002.

[15] Reingold, E. and Tilford, J. Tidier Drawing of
Trees. IEEE Transaction on Software Engineering, 7, 2
(1981), 223–228.

[16] Robertson, G.G. and Mackinlay, J.D. The
document lens. In Proc. ACM UIST 1993, ACM Press
(1993), 101-108.

[17] Sarkar, M., Snibbe, S.S., Tversky, O.J., and Reiss,
S.P. Stretching the rubber sheet: a metaphor for viewing
large layouts on small screens. In Proc. ACM UIST 1993,
ACM Press (1993), 81-91.

[18] Wade, D. and Recardo, R. Corporate Performance
Management, Butterworth Heinemann, 2001

570
Authorized licensed use limited to: Brunel University. Downloaded on June 21, 2009 at 05:21 from IEEE Xplore. Restrictions apply.

