
 8
th

 July 2009 Page 1

Replay of Digitally-Recorded
Holograms Using a
Computational Grid

J.J. Nebrensky and P.R. Hobson

School of Engineering and Design,

Brunel University, Uxbridge UB8 3PH, UK

Since the calculations are independent, each plane within an in-line digital hologram

of a particle field can be reconstructed by a separate computer. We investigate

strategies to reproduce a complete sample volume as quickly and efficiently as

possible using Grid computing. We used part of the EGEE Grid to reconstruct

multiple sets of planes in parallel across a wide-area network, and collated the

replayed images on a single Storage Element such that a subsequent particle tracking

and analysis code might then be run. Although most of the sample volume is

generated up to 20 times faster on a Grid, there are some stragglers which cause the

reconstruction rate to slow, and a significant proportion of jobs get lost completely,

leaving blocks missing from the sample volume. In the light of these experimental

findings we propose some strategies for making Grid computing useful in the field of

digital hologram reconstruction and analysis.

This is an expanded version of a paper presented at OSA Topical Meeting on Digital

Holography 2007, Vancouver, Canada.

OCIS Codes: (090.0090) Holography; (090.1995) Digital Holography; (100.6890) Three-dimensional

image processing; (180.6900) Three-dimensional microscopy; (350.4990) Particles

Introduction

In some situations, such as the non-invasive study of marine organisms [1], it is

necessary to look at or measure the specific details of the individual particles in a

volume, such as their size, shape and relative position. Holography can be used to take

a 3-d “snapshot” of the particle field, and the recent substitution of solid-state image

sensors for photographic materials allows convenient data capture and storage without

the need for chemical processing, as the objects can be reconstructed from a stored

digital image (and analysed) by computer.

As the numerical replay step is expensive in terms of both computing power, with

multiple 2-d Fourier transforms needed for each depth slice, and intermediate data

storage we are investigating the application of Grid computing to this computational

challenge. Given the availability of single CCD arrays with nearly 100 million pixels

the computational and storage demands of entire volume replay are beginning exceed

what is practical even for a powerful desktop machine. Our general approach is to

submit the hologram image to a distributed set of worker nodes, each of which

computes one or more replayed images each representing a slice across the volume at

some depth. These slices are then transferred back to a single storage facility, which

thus holds a digital representation of the entire sample volume for further analysis.

Recently a number of very large-scale scientific projects have provided some access

for other users to their production Grids. Our aim was to investigate whether such a

 8
th

 July 2009 Page 2

facility could be of benefit to scientists reconstructing digital holograms. Other

approaches to this computational challenge such as using dedicated parallel

processing (see for example Ng et al. [2]), while relevant to the problem, are not

considered further here. We have used a subset of the EGEE Grid, which currently

has over 75 000 CPUs in total spread across around 250 sites around the globe. As

minor users of this Grid infrastructure we had no control over its configuration, thus it

was not possible to evaluate any explicit optimization scheme that involved the

reconfiguring or reprioritizing of resources.

Previously we have found that the overheads in processing and transferring individual

depth slices across the Grid result in minimal gains over using a standalone PC for

replay [3]. We report here on the efficacy of improved strategies for Grid submission

and use, and demonstrate the reconstruction of a sample volume consisting of

microscopic particles dispersed in a tank of water recorded with in-line digital

holography.

Figure 1 (left): An extract (10 mm wide) from a digital hologram of cenospheres in water.

Figure 2 (right): The region of a numerically-reconstructed arbitrary plane through the sample

volume corresponding to figure 1.

 8
th

 July 2009 Page 3

1 Digital Holography

We have recorded in-line (Gabor) holograms of objects in water (figure 1) using an

8 megapixel camera (Atmel Camelia 8M, 2300 by 3500 pixels with 12-bit depth) with

a collimated beam from a c.w. HeNe laser (λ=633 nm, 1 mW). Our reconstruction

software HoloPlay reconstructs a single depth plane through the object (figure 2) by

de-convolution of the diffraction integral, a process in which the result for any one

plane is computationally completely independent of all others (often termed

“embarrassingly parallel”), so that the images of many depth planes may readily be

calculated at the same time speeding up the replay of the entire volume. Previously we

have found that if only a small number of slices (<40) are to be reconstructed then the

extra overheads of Grid submission mean it is faster and more reliable to simply

replay them sequentially on a single computer [3]. As the Grid is still being developed,

it is not yet perfectly reliable and there are also difficulties caused by not all jobs

completing and returning results.

For the present work we have recorded a sample volume consisting of cenospheres

mostly 100-300 µm dia. (Fillite Trelleborg Specialty Grade (High Alumina)

SGHA 500 [4]) dispersed in a water tank. We then numerically reconstructed the

water column as a series of slices with 0.1 mm spacing in depth (total 2200 slices = 40

GB when compressed). This spacing was chosen to ensure that there always existed a

plane where cenospheres as small as 30 µm dia. would be replayed with good signal-

to-noise ratio. Our reconstruction software HoloPlay reconstructs single image planes

from in-line holograms. It uses the well-known FFTW library (v. 3.0.1) [5] for fast

Fourier transform routines, and the same source code compiles and runs both with at

least Visual C++ 6 on Windows 2000, and with GCC 3.2 on Linux

(Red Hat Linux 7.3 and Scientific Linux 3). Upon its release on an open source basis

it has since been re-named “HoloReco” [6], but for consistency we refer to it here by

its older name.

Upon execution HoloPlay reads in control parameters, such as the name of the

hologram image file or the wavelength of light, from a simple text file. It is thus

possible to direct HoloPlay’s operation from a shell script by modifying this control

file.

 8
th

 July 2009 Page 4

2 Grid Computing

The term “Grid Computing” is commonly found in contexts ranging from world-wide

distributed computing systems to traditional parallel processing. We refer here to the

paradigm of widely separated, heterogeneous resources proposed by Foster and

Kesselman [7, 8] and make use of some of the resources of the EGEE Grid [9].

2.1 How does a Grid job happen?

On a “User Interface” (UI) node, the grid user must specify the executable, data files

and other requirements for a particular Grid job using JDL (Job Description

Language) (see listing 2 for an example). Upon job submission the UI client passes

the input sandbox, containing this JDL and associated files, to a Resource Broker

(RB), which identifies the best resource on which to run the job. The Grid currently

provides two main classes of resource:

 a Computing Element (CE) provides CPUs

 a Storage Element (SE) provides storage space (disk or tape)

A CE consists of a Gatekeeper (GK), which receives the job, and a set of Worker

Nodes (WN) that do the actual calculation – similar to a traditional batch farm. An SE

only provides storage space and thus cannot run the job directly, but as WNs will

require efficient network access to read or write data, specification of an SE within the

JDL may affect the Resource Broker’s choice of CE.

After finishing the job the WN returns the output sandbox – containing job output and

log files – back to the Resource Broker, from where it can be collected by the user

with the UI client.

Rather than having to deal with huge numbers of individuals, Grid resources grant

access to “virtual organizations” (VOs), which are dynamic, multi-institutional groups

of users with a common problem or application in mind [7, 8]. Resources use X.509

certificates to authenticate individuals as members of a supported VO, so Grid jobs

must also include a valid certificate proxy, to confirm the submitter’s membership of

an appropriate VO.

2.2 How can we use the Grid for Digital Holography?

Reconstruction of any slice is independent of all the others (“embarrassingly parallel”),

so we use the Grid to reconstruct many depth planes at the same time. A simple

approach is as follows:

 Store digital hologram (and HoloPlay binary) on an SE.

 Submit control file for each plane to the Grid. Each job will upload the slice it

has reconstructed to a common SE.

 On a WN local to the SE holding the reconstructed slices, run some tracking

and identification code to locate objects of interest or perform other data

analysis [10].

 8
th

 July 2009 Page 5

 Recover results of analysis to UI.

We consider here only the first two steps, corresponding to the re-creation of the

sample volume as a series of images stored on the Grid.

Our sample holograms are 2300 by 3500 pixels with 12-bit depth. We use PGM

format image files, which can be up to 40 MB in size, so the hologram and images are

compressed using gzip before being uploaded to the SE (this also allows integrity

checking). Typically, a single slice image took up to 2 min. to replay and compress,

and around 10 s to upload over a WAN to the SE.

A copy of the reconstruction program, HoloPlay and of the hologram image file are

placed on a Grid-accessible SE associated with the BITLab facility at Brunel

University. A set of job requests is then sent to the Grid, each of which is to download

the program and hologram, reconstruct one or more slices across the depth of the

sample volume, and upload the resulting images back to the SE. The Grid

infrastructure then passes these jobs out to CEs around the globe (see the UML

sequence diagram, figure 3).

Figure 3: UML sequence diagram representing the replay of digital holograms on the Grid.

 8
th

 July 2009 Page 6

In previous work we have found that if only a small number of slices (<40) are to be

reconstructed then the extra overheads of Grid submission mean that it is faster and

more reliable to simply replay them sequentially on a single computer [2] than to

submit them individually to the Grid. As we were submitting relatively small numbers

of Grid jobs, we needed little more than the standard EGEE UI tools (edg-job-submit

for job submission, and the LCG GUI edg-wl-ui-jobmonitor, figure 4, for job

monitoring).

In the present work we demonstrate the reconstruction of an entire sample volume

with 0.1 mm spacing, as a series of 2200 images (a total of 40 GB of compressed

data). To reduce overheads we have split the overall task into a smaller number of

Grid jobs, each of which replays a block of 10, 50 or 100 slices. It has therefore been

necessary to create a set of shell scripts that wrap around HoloPlay and

edg-job-submit in order to create, track, and recover output from the 100’s of Grid

jobs associated with each volume.

Figure 4: LCG GUI edg-wl-ui-jobmonitor: a list of Grid jobs is shown along with their

present status and the CE to which they have been sent.

2.3 Digital Holography on the Grid

The HoloPlay code was compiled as a single, generic i386, statically-linked binary.

When run, it reads in a control file HoloPlay.ini – which specifies the hologram image

to replay, optical parameters to use, etc. – and reconstructs just the one, specified

depth plane. As we would like to reconstruct a series of images in turn, we therefore

prepared a template for the control file (listing 1) that has fixed parameters including

replay wavelength (633 nm), pixel size (11 µm) and replayed image file name

 8
th

 July 2009 Page 7

(Output.PGM); and unique tokens (IFILE and DEPTH) for the desired hologram file

name and axial position of that slice, respectively.

The HoloPlay binary is then invoked from a wrapper script (listing 2) which takes

three arguments: the name of the hologram file to use, which slice to start from, and

the number of slices to be reconstructed. The first section of the script records some

details about the computer for debugging purposes, and then uses globus-url-copy to

download HoloPlay and the requested hologram from an SE (a UML activity diagram

is given in figure 5a).

The central section of the wrapper is a loop that on each pass uses Linux’ sed tool to

substitute the desired hologram file name and axial position of the current slice into

the HoloPlay.ini template; runs HoloPlay and then compresses and uploads (with

srmcp) the resulting image file to an SE. For simplicity, we identify the slices using a

four-digit number that represents their distance from the hologram in units of 1/10 000

of a metre; thus slice 3456 will be an image of the plane 0.3456 m along the axis from

the sensor, and will be stored in the file Output3456.PGM.

Finally, the script tidies up by deleting any large files that would otherwise be left

behind.

Clearly, by commenting out the data transfers from the script it can be used to

generate the entire test volume on the local machine, e.g. by invoking it directly as

./holoplay_wrap.sh Fillite11.PGM 2500 4699

to reconstruct 2200 slices from hologram Fillite11.PGM spanning the depth range

containing the water tank at 0.1 mm spacing. When run remotely, these arguments

will need to be supplied to the script by the Grid middleware. As well as creating the

output image files themselves, the script also displays various messages regarding

progress, including the time at which each result is completed (uploaded to SE), from

which the progress of the overall task can be understood.

The JDL template used for Grid submission is given in listing 3. It defines the job as

being run under the auspices of the LTWO VO, and nominates the wrapper script

(listing 2) to be run at the WN. It then specifies the names of the files to which the

job’s standard input and output should be re-directed, and lists the files that should be

sent to the WN in the input sandbox (the wrapper script and HoloPlay control file

template) and which should be recovered to the UI afterwards (the re-directed

standard input and output). Having defined the job itself, the JDL then tells the RB

how it should be handled; the Grid should not attempt to repeat jobs it thinks have

failed, and a list of the requirements that the CE must fulfill to run the job successfully

is given: e.g. the CE must allow the job to run for at least 58 minutes and provide

more than 512 MB of memory, and here we also exclude a particular resource where

we have encountered problems. At the time this work was done the resources

available on the Grid were unusually homogenous; one would normally also specify

the target architecture and operating system needed by the compiled binary. It is also

possible to define a ranking condition to select among multiple resources that meet the

requirements; the default is that the RB will choose the CE that is expected to start

running the job first.

 8
th

 July 2009 Page 8

Figure 5a (left): UML Activity diagram illustrating the process of running a single HoloPlay

job on a WN. Figure 5b (right): UML Activity diagram illustrating submission of a series of

HoloPlay jobs to the Grid.

The command-line arguments to be passed ultimately to the wrapper are again tokens,

which are substituted by the job submission script (listing 4). This specifies the

hologram file and volume to be reconstructed, and the number of slices to be done by

each Grid job. It then has a simple loop in which the appropriate values are put into

the JDL template and successively submitted to the Grid using the standard

edg-job-submit command, with housekeeping information being copied to the joblist

file.

From the user’s perspective, one simply has to create a valid Grid proxy, set the

granularity (here, 10, 50 or 100 slices per Grid job) in the submission script (listing 4)

and then run it. This script then repeatedly fills out the JDL template (listing 3),

creating a series of jobs that it then submits to the Grid (a UML activity diagram is

given in figure 5b).

The Grid RB examines each job in turn and sends it to the resource that is currently

the best match to the requirements, where it will wait its turn in the queue. As

resources are shared among many VOs and users with different priorities, this can be

 8
th

 July 2009 Page 9

unpredictable and no assumption should be made that the jobs will be run in the order

that they were submitted.

When a Grid job does reach a WN, the input sandbox is unpacked and the wrapper

script invoked with the parameters passed along from the submission script. This then

fetches the HoloPlay binary and hologram, and cycles through reconstructing each of

its allotted slices and uploading it to the SE. After the wrapper finishes, the output

sandbox will be sent back to the to the RB.

Further scripts, not included here, use the joblist file to track the Grid jobs and

download the output sandboxes to the UI, and then extract from them the completion

time (after the replayed image has been successfully uploaded to the SE) of every

slice in the sample volume. Grid jobs that did not run as expected were monitored

manually using the LCG GUI edg-wl-ui-jobmonitor tool, figure 4, which allows

convenient browsing of job status and logging information.

To understand the performance of the Grid for digital holography, on a number of

occasions during 2007 we submitted batches of Grid jobs each reconstructing between

10 and 100 single slices and measured how long it takes between starting the job

submission and the replayed images arriving back at the SE. The Grid deployment

was done within the LTWO VO giving access to resources within the London Tier 2

of the UK GridPP project [11], which forms part of the EGEE Grid. LT2 is a

collaboration which had a total of ~3000 CPUs across 7 institutes spread across

London, UK, at the time this work was done. Although their primary role is the

analysis of High-Energy Physics data, the resources are also available to internal users

from the participating institutes, although the LTWO VO may have lower priority or a

limited share, so the number of Grid jobs that we would expect to have running at any

one time is significantly smaller. For convenience we uploaded the replayed images to

the same SE that held the binary and hologram; we used the LCG DPM [12]

installation at Brunel University consisting of a head node and at least 3 separate

RAID-5 pool nodes to reduce disk access clashes between simultaneous data transfers.

At the time all, but one, sites were interconnected with 1 Gbps or better WAN links.

Note that at the time this work was done EGEE production services were still based

on the EDG middleware rather than gLite.

Misconfigured sites and middleware problems meant that Grid job efficiency was

about 90% – i.e. 10% of jobs failed completely (never returned data). The Grid

infrastructure can resubmit them internally, but this can take over 12 hours and, as

there are a number of failure modes not detected by the Resource Broker, this feature

has been turned off here.

 8
th

 July 2009 Page 10

3 Results

 It can be seen from figure 6 that after submission starts there is usually an initial

delay before the first results are returned (while the jobs pass through the Resource

Broker and CE batch queues) followed by a rush of results covering over half the total

volume. However, once about 2/3 of the results have been done, the rate starts to tail

off, as the remaining jobs are those stuck in long queues, on unusually slow machines

or suffering some other problem.

Table 1 summarises the results of a number of submissions of HoloPlay to the LT2

Grid resources. In the table the elapsed time, normalized to a single dedicated local

processor (desktop PC), to process 50%, 70% and 90% of the 2200 hologram depth

slices is given. The 100% column gives the normalized time for the complete data set

to be produced.

From table 1 a number of conclusions can be drawn. Firstly for the 50
th

 and 70
th

percentile there is a very significant performance gain compared to a single PC.

Waiting for 90% of the data set to be produced shows the influence of the small

fraction of jobs that get into batch queues that are already occupied. Finally it should

be noted that only 2 out of 9 attempts resulted in the complete data set being returned.

This is the effect of the ~90% reliability of the Grid – if one Grid job in ten fails, then

successful replay of a volume requiring more than twenty such jobs seems unlikely

(indeed, run “10slices 1”, which eventually recreated 2190 slices from 220 Grid jobs,

is actually a notable success!). While the reliability of the Grid middleware itself has

been improving over the years, it is still far from perfect and there are also external

factors, such as job queueing times being so long that the X.509 proxy certificates had

expired before the job could run and problems with WNs being rebooted or failing

during job execution (no job checkpointing was used). The exact cause cannot always

be identified remotely. In the work reported here we have not encountered any failed

data transfers to or from the SE; the failures can all be ascribed to problems either

with the RB or the batch queuing system at the CE (see table 2).

 8
th

 July 2009 Page 11

Figure 6: Overall rate of job completion (times are shown in hh:mm:ss format). The Roman

and Arabic numerals denote different submissions to the Grid.

Proportion of slices

replayed:

50%

(1100)

70%

(1540)

90%

(1980)

100%

(2200)

10 slices 1 15.0

16.7

18.6

n/a

10 slices 2 7.4

5.7

4.0

n/a

10 slices 3 22.0

19.1

9.3

n/a

50 slices 16.0

9.3

n/a n/a

100 slices I 12.0

6.2

n/a n/a

100 slices II 21.8

22.3

n/a n/a

100 slices III 11.7

9.5

6.5

4.0

100 slices IV 13.6

12.3

9.1

n/a

100 slices V 9.0

7.6

5.1

4.3

Table 1: Relative rate with which the given percentage of reconstructed images were

uploaded to the SE, compared with serial replay on a single processor (AMD Athlon XP

model 10 2600+ (1920 MHz), 1.5 GB memory).

0

500

1000

1500

2000

2500

00:00:00 02:24:00 04:48:00 07:12:00 09:36:00 12:00:00

Time since start of job submission

P
la

n
e

s
 r

e
tr

ie
v

e
d

10 slices 1 10 slices 2 10 slices 3 50 slices 100 slices I

100 slices II 100 slices III 100 slices IV 100 slices V Reference y

1

2

3

50 III

III

IV

V

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

Formatted

 8
th

 July 2009 Page 12

Run ID: Date:
Grid jobs

submitted:

Grid jobs

failed:

10 slices 1 11 June 2007 220

1% at CEs

10 slices 2 30 August 2007 220

10% at CEs,

0.5% at RB

10 slices 3 4 September 2007 220

3% at CEs

50 slices 19 June 2007 44

25% at CEs

100 slices I 12 June 2007 22

27% at CEs

100 slices II 11 June 2007 22

23%, unknown

100 slices III 20 June 2007 22

No Failures

100 slices IV 3 September 2007 22

5% at CEs

100 slices V 3 September 2007 22

No Failures

Table 2: Rate of failure of Grid jobs

 8
th

 July 2009 Page 13

Conclusions

We have created a numerical replay code for digital holography that has been run on a

major production Grid, and we have demonstrated the reconstruction and storage of a

large sample volume using this Grid. We have achieved replay rates from jobs

distributed around a wide-area network of around ten times that of a single desktop

computer, without needing any additional local investment in computer hardware or

services (electricity and cooling). Our results will apply to any task with similar

computing requirements and data access patterns and are not specific to the

algorithms used here – e.g. instead of megapixel holograms, one could envisage each

Grid job reconstructing the whole sample volume from one CCIR frame, with the aim

of building up a complete time series (4-d analysis).

Digital hologram reconstruction, although “embarrassingly parallel” has some

important differences in practice from the production of Monte Carlo samples for

HEP (to date, the largest user of the EGEE Grid). The reason for this is that the final

result consists of highly correlated images that are depth slices of a whole recorded

volume, rather than a collection of independent data sets. We suggest that the

following strategies should be used when using the Grid computing paradigm for

volume reconstruction:

1. Visualisation of an entire volume to locate regions of interest: Here losing

a few slices is probably not important compared to being able to rapidly view

the volume in its entirety, so one could submit jobs that sample the whole

volume, with the slices from one job interleaved with those from the next. A

lost Grid job would then give poorer depth resolution, rather than leaving a

whole chunk missing. In this mode the significant gain that the Grid provides

over a single processor, at least to reconstruct 50% of all the volume slices is a

significant advantage. An important complication here is ensuring that the

interleaved jobs are indeed submitted to different nodes or sites, rather than

sent by the RB to the same (faulty) resource.

2. Reconstruction coupled with image processing (to select particular types of

objects in replayed images for example): Here it is essential to have images

closely sampled in depth available on the same processor. As it is not known

a priori which slice will contain the in-focus image some overlap between

volume samples is essential. For efficiency this suggests a relatively small

sample of jobs each reconstruction, of order 100 sequential slices. The strategy

here should be to understand after what time (70
th

 or 90
th

 percentile) we enter

the regime where the final slices will take an inordinately long time to return

to the SE (or will in fact never be completed). These could then be re-

submitted pre-emptively.

The Grid middleware itself is in a state of continuous development. Two features that

we hope to explore in further work are the submission of parameterised jobs via the

new “gLite WMS” RB, and the use of the LFC file catalogue [12] and utilities to

simplify output file storage at the remote sites.

 8
th

 July 2009 Page 14

Acknowledgements

The authors wish to thank Marc Fournier-Carrié and Paul Fryer for their work in developing

the replay software, and Trelleborg Fillite Ltd. for providing the cenosphere sample.

Presentation of this work at the OSA Topical Meeting on Digital Holography 2007,

Vancouver, Canada was made possible by grant ITG E7-489 from The Royal Academy of

Engineering, UK.

References

1. P.R. Hobson and J. Watson: “The Principles and Practice of Holographic Recording

of Plankton” Journal of Optics A: Pure and Applied Optics 4, pp. S34-S49 (2002)

2. T.W. Ng, K.T. Ang and G. Argentini: “Temporal Fringe Pattern Analysis with

Parallel Computing” Applied Optics 44 (33) pp. 7125-7129 (2005)

3. J.J. Nebrensky and P.R. Hobson: “The Reconstruction of Digital Holograms on a

Computational Grid” in Holography 2005: International Conference on Holography,

Optical Recording, and Processing of Information - Proceedings of SPIE, 6252

Art. CID: 62521I (2006)

4. Trelleborg Fillite Ltd., Goddard Road, Astmoor Industrial Estate, Runcorn, Cheshire,

WA7 1QF, UK

5. The FFTW Project home page, http://www.fftw.org/

6. The HoloReco home page, http://sourceforge.net/projects/holoreco/

7. I. Foster, C. Kesselman and S. Tuecke: “The Anatomy of the Grid: Enabling Scalable

Virtual Organizations” International Journal of High Performance Computing

Applications 15, pp. 200-222 (2001)

8. I. Foster and C. Kesselman: “The Grid: Blueprint for a New Computing

Infrastructure” 2
nd

 revised Ed. Morgan Kaufman (2003)

9. The EGEE project home page, http://www.eu-egee.org/

10. J.J. Nebrensky, P.R. Hobson and P.C. Fryer: “Grid computing for the numerical

reconstruction of digital holograms” in Photonics Applications in Astronomy,

Communications, Industry, and High-Energy Physics Experiments III; Ryszard S.

Romaniuk, ed. Proc. SPIE 5775, pp. 285-296 (2005)

11. The GridPP collaboration: “GridPP: Development of the UK Computing Grid for

Particle Physics” Journal of Physics G: Nuclear and Particle Physics 32, pp. N1-N20

(2006) or see http://www.gridpp.ac.uk/

12. “Official Documentation for LFC and DPM”
https://twiki.cern.ch/twiki/bin/view/LCG/DataManagementDocumentation

http://www.fftw.org/
http://sourceforge.net/projects/holoreco
http://www.eu-egee.org/
http://www.gridpp.ac.uk/

 8
th

 July 2009 Page 15

Listing 1: Control file template for HoloPlay. Before it runs, the actual values are substituted

for the tokens IFILE and DEPTH by the wrapper script, listing 2.
[Parameters] 1
InputFile= IFILE 2
OutputFile= Output.PGM 3
Wavelength= 633e-9 4
Pixel_size_X= 11.4e-6 5
Pixel_size_Y= 11.4e-6 6
 7
[Reconstruction Parameters] 8
Distance_from_hologram= DEPTH 9
Apply_Zero_Padding = Yes 10
Planner_Vigour= FFTW_MEASURE 11
 12
[Debug] 13
Write_Zero_padded_image_to_file= No14

 8
th

 July 2009 Page 16

Listing 2: Wrapper script for a typical HoloPlay job.

#!/bin/sh 1
#usage: holoplay_wrap.sh <hologram> <startslice> <numslices> 2
Logging info 3
echo "Running on `hostname -f`" 4
echo "Processor - `cat /proc/cpuinfo |grep 'model name'`" 5
echo "Physical memory - `cat /proc/meminfo | grep 'MemTotal'`" 6
 7
HOLO=$1 8
Fetch hologram and code 9
echo "Fetching data at `date`" 10
globus-url-copy gsiftp://dgc-grid-34.brunel.ac.uk/storage/for/LCG/brnbl/holoplay/${HOLO}.gz file://`pwd`/${HOLO}.gz 11
globus-url-copy gsiftp://dgc-grid-34.brunel.ac.uk/storage/for/LCG/brnbl/holoplay/holoplay386.gz file://`pwd`/holoplay.gz 12
echo "Data received at `date`" 13
gunzip ${HOLO}.gz 14
gunzip holoplay.gz; chmod +x holoplay 15
 16
 17
CURR_ID=$2 18
SLICES=`expr $3 - 1` 19
LAST_ID=`expr ${CURR_ID} + ${SLICES}` 20
Increase by one less than no. of slices. Increase by 0 for just one slice 21
 22
echo "Reconstructing slices ${CURR_ID} to ${LAST_ID}" 23
 24
until [${CURR_ID} -gt ${LAST_ID}]; do 25
 26
 sed s/DEPTH/0`echo "scale = 4; ${CURR_ID} / 10000;" | bc`/ HoloPlay.ini.in | sed s/IFILE/${HOLO}/ > HoloPlay.ini 27
 ./holoplay 28
 ls -l 29
 30
 mv Output.PGM Output${CURR_ID}.PGM 31
 gzip -9 Output${CURR_ID}.PGM 32
 echo "Storing result as Output${CURR_ID}.PGM at `date`" 33
 srmcp \ 34
 file:///`pwd`/Output${CURR_ID}.PGM.gz \ 35
 srm://dgc-grid-34.brunel.ac.uk:8443/srm/managerv1?SFN=/dpm/brunel.ac.uk/home/ltwo/digiholo/test01/Output${CURR_ID}.PGM.gz 36
 echo "Result stored at `date`" 37
 38
 rm Output${CURR_ID}.PGM.gz 39
 40
 CURR_ID=`expr ${CURR_ID} + 1` 41
done 42
 43
 44
Tidy up 45
rm ${HOLO} 46
rm holoplay 47
if [-e Temp_zero_padded.pgm] ; then 48
 rm Temp_zero_padded.pgm 49
fi 50
ls 51

 8
th

 July 2009 Page 17

Listing 3: JDL template file for a typical HoloPlay job

 [1
 VirtualOrganisation = "ltwo"; 2
 Executable = "holoplay_wrap.sh"; 3
 Arguments = "arg1 arg2 arg3"; 4
 StdOutput = "holoplay.out.txt"; 5
 StdError = "holoplay.err.txt"; 6
 InputSandbox = { 7
 "holoplay_wrap.sh", 8
 "HoloPlay.ini.in" 9
 }; 10
 OutputSandbox = { 11
 "holoplay.out.txt", 12
 "holoplay.err.txt" 13
 }; 14
 RetryCount = 0; 15
 requirements = IsMember("GRIDPP-LT2", other.GlueHostApplicationSoftwareRunTimeEnvironment) 16
 && (other.GlueCEPolicyMaxWallClockTime>58) 17
 && (other.GlueCEInfoHostName!="mars-ce2.mars.lesc.doc.ic.ac.uk") 18
 && (other.GlueHostMainMemoryRAMSize>512); 19
 JobType = "normal"; 20
 Type = "Job" 21
]22

 8
th

 July 2009 Page 18

Listing 4: Job submission script to deploy HoloPlay on to Grid.

#!/bin/sh 1
HOLOFILE=Fillite11.pgm 2
CURR_ID=2500 3
SLICES=100 4
LAST_ID=4700 5
 6
date >> joblist 7
 8
until [${CURR_ID} -gt ${LAST_ID}] 9
do 10
 sed s/arg1/${HOLOFILE}/ holoplay.jdl.in | sed s/arg3/${SLICES}/ | sed s/arg2/${CURR_ID}/ > holoplay.jdl 11
 echo -n "${CURR_ID} " >> joblist 12
 edg-job-submit --vo ltwo --nomsg holoplay.jdl | grep http >> joblist 13
 sleep 10s 14
 15
 CURR_ID=`expr ${CURR_ID} + ${SLICES}` 16
done 17
 18
date >> joblist19

 8
th

 July 2009 Page 19

