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Since the calculations are independent, each plane within an in-line digital hologram 

of a particle field can be reconstructed by a separate computer. We investigate 

strategies to reproduce a complete sample volume as quickly and efficiently as 

possible using Grid computing. We used part of the EGEE Grid to reconstruct 

multiple sets of planes in parallel across a wide-area network, and collated the 

replayed images on a single Storage Element such that a subsequent particle tracking 

and analysis code might then be run. Although most of the sample volume is 

generated up to 20 times faster on a Grid, there are some stragglers which cause the 

reconstruction rate to slow, and a significant proportion of jobs get lost completely, 

leaving blocks missing from the sample volume. In the light of these experimental 

findings we propose some strategies for making Grid computing useful in the field of 

digital hologram reconstruction and analysis. 

This is an expanded version of a paper presented at OSA Topical Meeting on Digital 

Holography 2007, Vancouver, Canada. 

OCIS Codes: (090.0090) Holography; (090.1995) Digital Holography; (100.6890) Three-dimensional 

image processing;  (180.6900) Three-dimensional microscopy;  (350.4990) Particles 

Introduction 

In some situations, such as the non-invasive study of marine organisms [1], it is 

necessary to look at or measure the specific details of the individual particles in a 

volume, such as their size, shape and relative position. Holography can be used to take 

a 3-d “snapshot” of the particle field, and the recent substitution of solid-state image 

sensors for photographic materials allows convenient data capture and storage without 

the need for chemical processing, as the objects can be reconstructed from a stored 

digital image (and analysed) by computer.  

As the numerical replay step is expensive in terms of both computing power, with 

multiple 2-d Fourier transforms needed for each depth slice, and intermediate data 

storage we are investigating the application of Grid computing to this computational 

challenge. Given the availability of single CCD arrays with nearly 100 million pixels 

the computational and storage demands of entire volume replay are beginning exceed 

what is practical even for a powerful desktop machine. Our general approach is to 

submit the hologram image to a distributed set of worker nodes, each of which 

computes one or more replayed images each representing a slice across the volume at 

some depth. These slices are then transferred back to a single storage facility, which 

thus holds a digital representation of the entire sample volume for further analysis. 

Recently a number of very large-scale scientific projects have provided some access 

for other users to their production Grids. Our aim was to investigate whether such a 



 8
th

 July 2009 Page 2 

facility could be of benefit to scientists reconstructing digital holograms. Other 

approaches to this computational challenge such as using dedicated parallel 

processing (see for example Ng et al. [2]), while relevant to the problem, are not 

considered further here. We have used a subset of the EGEE Grid, which currently 

has over 75 000 CPUs in total spread across around 250 sites around the globe. As 

minor users of this Grid infrastructure we had no control over its configuration, thus it 

was not possible to evaluate any explicit optimization scheme that involved the 

reconfiguring or reprioritizing of resources.  

Previously we have found that the overheads in processing and transferring individual 

depth slices across the Grid result in minimal gains over using a standalone PC for 

replay [3]. We report here on the efficacy of improved strategies for Grid submission 

and use, and demonstrate the reconstruction of a sample volume consisting of 

microscopic particles dispersed in a tank of water recorded with in-line digital 

holography. 

 

 

 

 

 

  

Figure 1 (left): An extract (10 mm wide) from a digital hologram of cenospheres in water. 

Figure 2 (right): The region of a numerically-reconstructed arbitrary plane through the sample 

volume corresponding to figure 1. 
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1 Digital Holography 

We have recorded in-line (Gabor) holograms of objects in water (figure 1) using an 

8 megapixel camera (Atmel Camelia 8M, 2300 by 3500 pixels with 12-bit depth) with 

a collimated beam from a c.w. HeNe laser (λ=633 nm, 1 mW). Our reconstruction 

software HoloPlay reconstructs a single depth plane through the object (figure 2) by 

de-convolution of the diffraction integral, a process in which the result for any one 

plane is computationally completely independent of all others (often termed 

“embarrassingly parallel”), so that the images of many depth planes may readily be 

calculated at the same time speeding up the replay of the entire volume. Previously we 

have found that if only a small number of slices (<40) are to be reconstructed then the 

extra overheads of Grid submission mean it is faster and more reliable to simply 

replay them sequentially on a single computer [3]. As the Grid is still being developed, 

it is not yet perfectly reliable and there are also difficulties caused by not all jobs 

completing and returning results.  

For the present work we have recorded a sample volume consisting of cenospheres 

mostly 100-300 µm dia. (Fillite Trelleborg Specialty Grade (High Alumina) 

SGHA 500 [4]) dispersed in a water tank. We then numerically reconstructed the 

water column as a series of slices with 0.1 mm spacing in depth (total 2200 slices = 40 

GB when compressed). This spacing was chosen to ensure that there always existed a 

plane where cenospheres as small as 30 µm dia. would be replayed with good signal-

to-noise ratio. Our reconstruction software HoloPlay reconstructs single image planes 

from in-line holograms. It uses the well-known FFTW library (v. 3.0.1) [5] for fast 

Fourier transform routines, and the same source code compiles and runs both with at 

least Visual C++ 6 on Windows 2000, and with GCC 3.2 on Linux 

(Red Hat Linux 7.3 and Scientific Linux 3). Upon its release on an open source basis 

it has since been re-named “HoloReco” [6], but for consistency we refer to it here by 

its older name. 

Upon execution HoloPlay reads in control parameters, such as the name of the 

hologram image file or the wavelength of light, from a simple text file. It is thus 

possible to direct HoloPlay’s operation from a shell script by modifying this control 

file. 
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2 Grid Computing 

The term “Grid Computing” is commonly found in contexts ranging from world-wide 

distributed computing systems to traditional parallel processing. We refer here to the 

paradigm of widely separated, heterogeneous resources proposed by Foster and 

Kesselman [7, 8] and make use of some of the resources of the EGEE Grid [9]. 

2.1 How does a Grid job happen? 

On a “User Interface” (UI) node, the grid user must specify the executable, data files 

and other requirements for a particular Grid job using JDL (Job Description 

Language) (see listing 2 for an example). Upon job submission the UI client passes 

the input sandbox, containing this JDL and associated files, to a Resource Broker 

(RB), which identifies the best resource on which to run the job. The Grid currently 

provides two main classes of resource: 

 a Computing Element (CE) provides CPUs 

 a Storage Element (SE) provides storage space (disk or tape) 

A CE consists of a Gatekeeper (GK), which receives the job, and a set of Worker 

Nodes (WN) that do the actual calculation – similar to a traditional batch farm. An SE 

only provides storage space and thus cannot run the job directly, but as WNs will 

require efficient network access to read or write data, specification of an SE within the 

JDL may affect the Resource Broker’s choice of CE. 

After finishing the job the WN returns the output sandbox – containing job output and 

log files – back to the Resource Broker, from where it can be collected by the user 

with the UI client. 

Rather than having to deal with huge numbers of individuals, Grid resources grant 

access to “virtual organizations” (VOs), which are dynamic, multi-institutional groups 

of users with a common problem or application in mind [7, 8]. Resources use X.509 

certificates to authenticate individuals as members of a supported VO, so Grid jobs 

must also include a valid certificate proxy, to confirm the submitter’s membership of 

an appropriate VO. 

2.2 How can we use the Grid for Digital Holography? 

Reconstruction of any slice is independent of all the others (“embarrassingly parallel”), 

so we use the Grid to reconstruct many depth planes at the same time. A simple 

approach is as follows: 

 Store digital hologram (and HoloPlay binary) on an SE. 

 Submit control file for each plane to the Grid. Each job will upload the slice it 

has reconstructed to a common SE. 

 On a WN local to the SE holding the reconstructed slices, run some tracking 

and identification code to locate objects of interest or perform other data 

analysis [10].  
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 Recover results of analysis to UI. 

We consider here only the first two steps, corresponding to the re-creation of the 

sample volume as a series of images stored on the Grid.  

Our sample holograms are 2300 by 3500 pixels with 12-bit depth. We use PGM 

format image files, which can be up to 40 MB in size, so the hologram and images are 

compressed using gzip before being uploaded to the SE (this also allows integrity 

checking). Typically, a single slice image took up to 2 min. to replay and compress, 

and around 10 s to upload over a WAN to the SE. 

A copy of the reconstruction program, HoloPlay and of the hologram image file are 

placed on a Grid-accessible SE associated with the BITLab facility at Brunel 

University. A set of job requests is then sent to the Grid, each of which is to download 

the program and hologram, reconstruct one or more slices across the depth of the 

sample volume, and upload the resulting images back to the SE. The Grid 

infrastructure then passes these jobs out to CEs around the globe (see the UML 

sequence diagram, figure 3). 

 

Figure 3: UML sequence diagram representing the replay of digital holograms on the Grid. 
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In previous work we have found that if only a small number of slices (<40) are to be 

reconstructed then the extra overheads of Grid submission mean that it is faster and 

more reliable to simply replay them sequentially on a single computer [2] than to 

submit them individually to the Grid. As we were submitting relatively small numbers 

of Grid jobs, we needed little more than the standard EGEE UI tools (edg-job-submit 

for job submission, and the LCG GUI edg-wl-ui-jobmonitor, figure 4, for job 

monitoring). 

In the present work we demonstrate the reconstruction of an entire sample volume 

with 0.1 mm spacing, as a series of 2200 images (a total of 40 GB of compressed 

data). To reduce overheads we have split the overall task into a smaller number of 

Grid jobs, each of which replays a block of 10, 50 or 100 slices. It has therefore been 

necessary to create a set of shell scripts that wrap around HoloPlay and 

edg-job-submit in order to create, track, and recover output from the 100’s of Grid 

jobs associated with each volume. 

 

Figure 4: LCG GUI edg-wl-ui-jobmonitor: a list of Grid jobs is shown along with their 

present status and the CE to which they have been sent. 

 

2.3 Digital Holography on the Grid 

The HoloPlay code was compiled as a single, generic i386, statically-linked binary.  

When run, it reads in a control file HoloPlay.ini – which specifies the hologram image 

to replay, optical parameters to use, etc. – and reconstructs just the one, specified 

depth plane. As we would like to reconstruct a series of images in turn, we therefore 

prepared a template for the control file (listing 1) that has fixed parameters including 

replay wavelength (633 nm), pixel size (11 µm) and replayed image file name 
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(Output.PGM); and unique tokens (IFILE and DEPTH) for the desired hologram file 

name and axial position of that slice, respectively. 

The HoloPlay binary is then invoked from a wrapper script (listing 2) which takes 

three arguments: the name of the hologram file to use, which slice to start from, and 

the number of slices to be reconstructed. The first section of the script records some 

details about the computer for debugging purposes, and then uses globus-url-copy to 

download HoloPlay and the requested hologram from an SE (a UML activity diagram 

is given in figure 5a).   

The central section of the wrapper is a loop that on each pass uses Linux’ sed tool to 

substitute the desired hologram file name and axial position of the current slice into 

the HoloPlay.ini template; runs HoloPlay and then compresses and uploads (with 

srmcp) the resulting image file to an SE. For simplicity, we identify the slices using a 

four-digit number that represents their distance from the hologram in units of 1/10 000 

of a metre; thus slice 3456 will be an image of the plane 0.3456 m along the axis from 

the sensor, and will be stored in the file Output3456.PGM. 

Finally, the script tidies up by deleting any large files that would otherwise be left 

behind.  

Clearly, by commenting out the data transfers from the script it can be used to 

generate the entire test volume on the local machine, e.g. by invoking it directly as 

./holoplay_wrap.sh Fillite11.PGM 2500 4699 

to reconstruct 2200 slices from hologram Fillite11.PGM spanning the depth range 

containing the water tank at 0.1 mm spacing. When run remotely, these arguments 

will need to be supplied to the script by the Grid middleware. As well as creating the 

output image files themselves, the script also displays various messages regarding 

progress, including the time at which each result is completed (uploaded to SE), from 

which the progress of the overall task can be understood. 

The JDL template used for Grid submission is given in listing 3. It defines the job as 

being run under the auspices of the LTWO VO, and nominates the wrapper script 

(listing 2) to be run at the WN. It then specifies the names of the files to which the 

job’s standard input and output should be re-directed, and lists the files that should be 

sent to the WN in the input sandbox (the wrapper script and HoloPlay control file 

template) and which should be recovered to the UI afterwards (the re-directed 

standard input and output). Having defined the job itself, the JDL then tells the RB 

how it should be handled; the Grid should not attempt to repeat jobs it thinks have 

failed, and a list of the requirements that the CE must fulfill to run the job successfully 

is given: e.g. the CE must allow the job to run for at least 58 minutes and provide 

more than 512 MB of memory, and here we also exclude a particular resource where 

we have encountered problems. At the time this work was done the resources 

available on the Grid were unusually homogenous; one would normally also specify 

the target architecture and operating system needed by the compiled binary. It is also 

possible to define a ranking condition to select among multiple resources that meet the 

requirements; the default is that the RB will choose the CE that is expected to start 

running the job first. 
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Figure 5a (left): UML Activity diagram illustrating the process of running a single HoloPlay 

job on a WN. Figure 5b (right): UML Activity diagram illustrating submission of a series of 

HoloPlay jobs to the Grid. 

 

The command-line arguments to be passed ultimately to the wrapper are again tokens, 

which are substituted by the job submission script (listing 4). This specifies the 

hologram file and volume to be reconstructed, and the number of slices to be done by 

each Grid job. It then has a simple loop in which the appropriate values are put into 

the JDL template and successively submitted to the Grid using the standard 

edg-job-submit command, with housekeeping information being copied to the joblist 

file. 

From the user’s perspective, one simply has to create a valid Grid proxy, set the 

granularity (here, 10, 50 or 100 slices per Grid job) in the submission script (listing 4) 

and then run it. This script then repeatedly fills out the JDL template (listing 3), 

creating a series of jobs that it then submits to the Grid (a UML activity diagram is 

given in figure 5b).  

The Grid RB examines each job in turn and sends it to the resource that is currently 

the best match to the requirements, where it will wait its turn in the queue. As 

resources are shared among many VOs and users with different priorities, this can be 
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unpredictable and no assumption should be made that the jobs will be run in the order 

that they were submitted. 

When a Grid job does reach a WN, the input sandbox is unpacked and the wrapper 

script invoked with the parameters passed along from the submission script. This then 

fetches the HoloPlay binary and hologram, and cycles through reconstructing each of 

its allotted slices and uploading it to the SE. After the wrapper finishes, the output 

sandbox will be sent back to the to the RB.    

Further scripts, not included here, use the joblist file to track the Grid jobs and 

download the output sandboxes to the UI, and then extract from them the completion 

time (after the replayed image has been successfully uploaded to the SE) of every 

slice in the sample volume. Grid jobs that did not run as expected were monitored 

manually using the LCG GUI edg-wl-ui-jobmonitor tool, figure 4, which allows 

convenient browsing of job status and logging information. 

To understand the performance of the Grid for digital holography, on a number of 

occasions during 2007 we submitted batches of Grid jobs each reconstructing between 

10 and 100 single slices and measured how long it takes between starting the job 

submission and the replayed images arriving back at the SE. The Grid deployment 

was done within the LTWO VO giving access to resources within the London Tier 2 

of the UK GridPP project [11], which forms part of the EGEE Grid. LT2 is a 

collaboration which had a total of ~3000 CPUs across 7 institutes spread across 

London, UK, at the time this work was done. Although their primary role is the 

analysis of High-Energy Physics data, the resources are also available to internal users 

from the participating institutes, although the LTWO VO may have lower priority or a 

limited share, so the number of Grid jobs that we would expect to have running at any 

one time is significantly smaller. For convenience we uploaded the replayed images to 

the same SE that held the binary and hologram; we used the LCG DPM [12] 

installation at Brunel University consisting of a head node and at least 3 separate 

RAID-5 pool nodes to reduce disk access clashes between simultaneous data transfers. 

At the time all, but one, sites were interconnected with 1 Gbps or better WAN links. 

Note that at the time this work was done EGEE production services were still based 

on the EDG middleware rather than gLite. 

Misconfigured sites and middleware problems meant that Grid job efficiency was 

about 90% – i.e. 10% of jobs failed completely (never returned data). The Grid 

infrastructure can resubmit them internally, but this can take over 12 hours and, as 

there are a number of failure modes not detected by the Resource Broker, this feature 

has been turned off here. 
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3 Results 

 It can be seen from figure 6 that after submission starts there is usually an initial 

delay before the first results are returned (while the jobs pass through the Resource 

Broker and CE batch queues) followed by a rush of results covering over half the total 

volume. However, once about 2/3 of the results have been done, the rate starts to tail 

off, as the remaining jobs are those stuck in long queues, on unusually slow machines 

or suffering some other problem.  

Table 1 summarises the results of a number of submissions of HoloPlay to the LT2 

Grid resources. In the table the elapsed time, normalized to a single dedicated local 

processor (desktop PC), to process 50%, 70% and 90% of the 2200 hologram depth 

slices is given. The 100% column gives the normalized time for the complete data set 

to be produced. 

From table 1 a number of conclusions can be drawn. Firstly for the 50
th

 and 70
th

 

percentile there is a very significant performance gain compared to a single PC.  

Waiting for 90% of the data set to be produced shows the influence of the small 

fraction of jobs that get into batch queues that are already occupied. Finally it should 

be noted that only 2 out of 9 attempts resulted in the complete data set being returned. 

This is the effect of the ~90% reliability of the Grid – if one Grid job in ten fails, then 

successful replay of a volume requiring more than twenty such jobs seems unlikely 

(indeed, run “10slices 1”, which eventually recreated 2190 slices from 220 Grid jobs, 

is actually a notable success!). While the reliability of the Grid middleware itself has 

been improving over the years, it is still far from perfect and there are also external 

factors, such as job queueing times being so long that the X.509 proxy certificates had 

expired before the job could run and problems with WNs being rebooted or failing 

during job execution (no job checkpointing was used). The exact cause cannot always 

be identified remotely. In the work reported here we have not encountered any failed 

data transfers to or from the SE; the failures can all be ascribed to problems either 

with the RB or the batch queuing system at the CE (see table 2). 
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Figure 6: Overall rate of job completion (times are shown in hh:mm:ss format). The Roman 

and Arabic numerals denote different submissions to the Grid. 

Proportion of slices 

replayed: 

50%  

(1100) 

70%  

(1540) 

90%  

(1980) 

100%  

(2200) 

10 slices 1 15.0 
 

16.7 
 

18.6 
 

n/a 

10 slices 2 7.4 
  

5.7 
  

4.0 
  

n/a 

10 slices 3 22.0 
  

19.1 
  

9.3 
  

n/a 

50 slices 16.0 
  

9.3 
  

n/a n/a 

100 slices I 12.0 
  

6.2 
  

n/a n/a 

100 slices II 21.8 
  

22.3 
  

n/a n/a 

100 slices III 11.7 
  

9.5 
  

6.5 
  

4.0 
   

100 slices IV 13.6 
  

12.3 
  

9.1 
  

n/a 

100 slices V 9.0 
  

7.6 
  

5.1 
  

4.3 
   

Table 1: Relative rate with which the given percentage of reconstructed images were 

uploaded to the SE, compared with serial replay on a single processor (AMD Athlon XP 

model 10 2600+ (1920 MHz), 1.5 GB memory). 
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Run ID: Date: 
Grid jobs 

submitted: 

Grid jobs 

failed: 

10 slices 1 11 June 2007 220 
 

1% at CEs 
 

10 slices 2 30 August 2007 220 
  

10% at CEs, 

0.5% at RB 
  

10 slices 3 4 September 2007 220 
  

3% at CEs 
  

50 slices 19 June 2007 44 
  

25% at CEs 

100 slices I 12 June 2007 22 
  

27% at CEs 

100 slices II 11 June 2007 22 
  

23%, unknown 

100 slices III 20 June 2007 22 
  

No Failures 
  

100 slices IV 3 September 2007 22 
  

5% at CEs 
  

100 slices V 3 September 2007 22 
  

No Failures 
  

Table 2: Rate of failure of Grid jobs 
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Conclusions 

We have created a numerical replay code for digital holography that has been run on a 

major production Grid, and we have demonstrated the reconstruction and storage of a 

large sample volume using this Grid. We have achieved replay rates from jobs 

distributed around a wide-area network of around ten times that of a single desktop 

computer, without needing any additional local investment in computer hardware or 

services (electricity and cooling). Our results will apply to any task with similar 

computing requirements and data access patterns and are not specific to the 

algorithms used here – e.g. instead of megapixel holograms, one could envisage each 

Grid job reconstructing the whole sample volume from one CCIR frame, with the aim 

of building up a complete time series (4-d analysis). 

Digital hologram reconstruction, although “embarrassingly parallel” has some 

important differences in practice from the production of Monte Carlo samples for 

HEP (to date, the largest user of the EGEE Grid). The reason for this is that the final 

result consists of highly correlated images that are depth slices of a whole recorded 

volume, rather than a collection of independent data sets. We suggest that the 

following strategies should be used when using the Grid computing paradigm for 

volume reconstruction: 

1. Visualisation of an entire volume to locate regions of interest: Here losing 

a few slices is probably not important compared to being able to rapidly view 

the volume in its entirety, so one could submit jobs that sample the whole 

volume, with the slices from one job interleaved with those from the next. A 

lost Grid job would then give poorer depth resolution, rather than leaving a 

whole chunk missing. In this mode the significant gain that the Grid provides 

over a single processor, at least to reconstruct 50% of all the volume slices is a 

significant advantage. An important complication here is ensuring that the 

interleaved jobs are indeed submitted to different nodes or sites, rather than 

sent by the RB to the same (faulty) resource. 

2. Reconstruction coupled with image processing (to select particular types of 

objects in replayed images for example): Here it is essential to have images 

closely sampled in depth available on the same processor. As it is not known 

a priori which slice will contain the in-focus image some overlap between 

volume samples is essential. For efficiency this suggests a relatively small 

sample of jobs each reconstruction, of order 100 sequential slices. The strategy 

here should be to understand after what time (70
th

 or 90
th

 percentile) we enter 

the regime where the final slices will take an inordinately long time to return 

to the SE (or will in fact never be completed). These could then be re-

submitted pre-emptively. 

The Grid middleware itself is in a state of continuous development. Two features that 

we hope to explore in further work are the submission of parameterised jobs via the 

new “gLite WMS” RB, and the use of the LFC file catalogue [12] and utilities to 

simplify output file storage at the remote sites. 
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Listing 1: Control file template for HoloPlay. Before it runs, the actual values are substituted 

for the tokens IFILE and DEPTH by the wrapper script, listing 2. 
[Parameters] 1 
InputFile= IFILE 2 
OutputFile= Output.PGM 3 
Wavelength= 633e-9 4 
Pixel_size_X= 11.4e-6 5 
Pixel_size_Y= 11.4e-6 6 
 7 
[Reconstruction Parameters] 8 
Distance_from_hologram= DEPTH 9 
Apply_Zero_Padding = Yes 10 
Planner_Vigour= FFTW_MEASURE     11 
 12 
[Debug] 13 
Write_Zero_padded_image_to_file= No14 
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Listing 2: Wrapper script for a typical HoloPlay job. 

#!/bin/sh 1 
#usage: holoplay_wrap.sh <hologram> <startslice> <numslices> 2 
# Logging info 3 
echo "Running on `hostname -f`" 4 
echo "Processor - `cat /proc/cpuinfo |grep 'model name'`" 5 
echo "Physical memory - `cat /proc/meminfo | grep 'MemTotal'`" 6 
 7 
HOLO=$1 8 
# Fetch hologram and code 9 
echo "Fetching data at `date`" 10 
globus-url-copy gsiftp://dgc-grid-34.brunel.ac.uk/storage/for/LCG/brnbl/holoplay/${HOLO}.gz file://`pwd`/${HOLO}.gz 11 
globus-url-copy gsiftp://dgc-grid-34.brunel.ac.uk/storage/for/LCG/brnbl/holoplay/holoplay386.gz file://`pwd`/holoplay.gz 12 
echo "Data received at `date`" 13 
gunzip ${HOLO}.gz 14 
gunzip holoplay.gz; chmod +x holoplay 15 
 16 
 17 
CURR_ID=$2 18 
SLICES=`expr $3 - 1` 19 
LAST_ID=`expr ${CURR_ID} + ${SLICES}` 20 
# Increase by one less than no. of slices. Increase by 0 for just one slice  21 
 22 
echo "Reconstructing slices ${CURR_ID} to ${LAST_ID}"  23 
 24 
until [ ${CURR_ID} -gt ${LAST_ID} ]; do 25 
 26 
   sed s/DEPTH/0`echo "scale = 4; ${CURR_ID} / 10000;" | bc`/ HoloPlay.ini.in | sed s/IFILE/${HOLO}/ > HoloPlay.ini 27 
   ./holoplay 28 
   ls -l 29 
 30 
   mv Output.PGM Output${CURR_ID}.PGM 31 
   gzip -9 Output${CURR_ID}.PGM 32 
   echo "Storing result as Output${CURR_ID}.PGM at `date`" 33 
   srmcp \ 34 
      file:///`pwd`/Output${CURR_ID}.PGM.gz \ 35 
      srm://dgc-grid-34.brunel.ac.uk:8443/srm/managerv1?SFN=/dpm/brunel.ac.uk/home/ltwo/digiholo/test01/Output${CURR_ID}.PGM.gz 36 
   echo "Result stored at `date`" 37 
 38 
   rm Output${CURR_ID}.PGM.gz 39 
 40 
   CURR_ID=`expr ${CURR_ID} + 1` 41 
done 42 
 43 
 44 
# Tidy up 45 
rm ${HOLO} 46 
rm holoplay 47 
if [ -e Temp_zero_padded.pgm ] ; then  48 
   rm Temp_zero_padded.pgm 49 
fi 50 
ls 51 
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Listing 3: JDL template file for a typical HoloPlay job 
 
 [ 1 
 VirtualOrganisation = "ltwo"; 2 
 Executable = "holoplay_wrap.sh"; 3 
 Arguments = "arg1 arg2 arg3"; 4 
 StdOutput = "holoplay.out.txt"; 5 
 StdError = "holoplay.err.txt"; 6 
 InputSandbox = { 7 
     "holoplay_wrap.sh", 8 
     "HoloPlay.ini.in" 9 
 }; 10 
 OutputSandbox = { 11 
     "holoplay.out.txt", 12 
     "holoplay.err.txt" 13 
 }; 14 
 RetryCount = 0; 15 
 requirements = IsMember("GRIDPP-LT2", other.GlueHostApplicationSoftwareRunTimeEnvironment)  16 
     && (other.GlueCEPolicyMaxWallClockTime>58)  17 
     && (other.GlueCEInfoHostName!="mars-ce2.mars.lesc.doc.ic.ac.uk")  18 
     && (other.GlueHostMainMemoryRAMSize>512 );  19 
 JobType = "normal"; 20 
 Type = "Job" 21 
]22 
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Listing 4: Job submission script to deploy HoloPlay on to Grid. 
 
#!/bin/sh 1 
HOLOFILE=Fillite11.pgm 2 
CURR_ID=2500 3 
SLICES=100 4 
LAST_ID=4700 5 
 6 
date >> joblist 7 
 8 
until [ ${CURR_ID} -gt ${LAST_ID} ]  9 
do 10 
        sed s/arg1/${HOLOFILE}/ holoplay.jdl.in | sed s/arg3/${SLICES}/ | sed s/arg2/${CURR_ID}/ > holoplay.jdl 11 
        echo -n "${CURR_ID} " >> joblist 12 
        edg-job-submit --vo ltwo --nomsg holoplay.jdl | grep http >> joblist 13 
        sleep 10s 14 
 15 
        CURR_ID=`expr ${CURR_ID} + ${SLICES}` 16 
done 17 
 18 
date >> joblist19 
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