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A mode-matching method is used to investigate the performance of a two-dimensional, modified
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walls of the expansion chamber parallel to the axis of the inlet/outlet ducts. The height of the
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tuned. It is shown that the stopband produced by the silencer can be broadened and/or shifted
depending upon the height to which the membrane is raised. Attention is focused on the efficiency
of the device at low-frequencies—the regime where dissipative silencers are usually least effective.
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air-conditioning �HVAC� ducting systems is discussed. © 2006 Acoustical Society of America.
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I. INTRODUCTION

Ducted fan noise is an issue that affects a diverse range
of industrial applications: the generation of “buzz-saw” noise
in aero-engines;1 noise emission from chimney stacks of
power stations;2 and heating ventilation and air-conditioning
�HVAC� systems.3 Dissipative devices such as acoustic lin-
ings or silencers are often used to reduce the noise levels.
These work well in the mid- and high-frequency range but
are less effective for low-frequency noise. In many applica-
tions, therefore, it is the low-frequency tonal fan noise that is
the most pervasive.

Tonal fan noise tends to be in the range 100–500 Hz
and restricted to a narrow band which, depending on the
application, can be as large as 50 Hz �Ref. 2� or as little as
6 Hz.4 In recent years much research has been carried out on
ways of reducing such noise. Passive devices that perform at
low frequencies include expansion chambers and Helmholtz
resonators. Both, however, are of limited value in practical
situations, such as HVAC installations, where constraints on
space rule out the use of bulky devices. Further, in the case
of the Helmholtz resonator, the transmission loss is modest,
typically in the region of 6 dB,5 and the frequency range
over which it is effective is narrow. The latter point has been
addressed and various designs for an adaptive Helmholtz
resonator have been proposed; see for example de Bedout et
al.6 While Helmholtz resonators, both adaptive and standard,
have found application in a range of industries,5,7 they are
not, to the authors’s knowledge, extensively used in HVAC
systems.

a�Portions of this work were presented in Mohamed-Guled and Lawrie, “A
parametric investigation of the acoustic power in a two-dimensional wave-
guide with membrane bounded cavity,” in Proceedings of IUTAM 2002/4,
edited by A. B. Movchan �Kluwer, Dordrecht, 2004�. Liverpool, U.K July
2002.
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An alternative to passive noise control is offered by ac-
tive devices which aim at cancellation of the noise. This is a
fast-growing area of research and it is clear that impressive
levels of noise reduction are possible for a wide range of
applications.3,2,4 Such devices are, however, not without po-
tential problems. They all require additional energy �and thus
additional expense� to achieve noise reduction and, further,
the loudspeakers may occupy space in the region exterior to
the duct. For example, the housing for the active silencer
cassette in the configuration considered by Krüger3 is space-
wise equivalent to a rather bulky expansion chamber. In situ-
ations where space is limited, this extra height would be
undesirable. Furthermore, in all such devices there is the pos-
sibility of creating more noise should the control algorithm
fail.

In this paper a generalization of the reactive silencer
recently investigated by Huang8–10 is considered with a view
to assessing its potential as a means of reducing tonal fan
noise in HVAC systems. The device comprises a two-
dimensional reactive silencer in which a membrane is at-
tached to the internal walls of the expansion chamber parallel
to the axis of the inlet/outlet ducts. The height of the mem-
brane above the level of the inlet/outlet ducts can be varied,
and the device is tuned by selecting the membrane height
that gives the widest stopband for a specified frequency. The
concept of utilizing flexible panels as a means of controlling
low-frequency noise is by no means new. As long ago as
1963 Dowell and Voss11 studied the vibrations of a cavity-
backed panel in the presence of flow. More recently, and in
the context of architectural acoustics, Kang and Fuchs12 have
investigated the effectiveness of cavity-backed microperfo-
rated membranes as an acoustic absorber.

The model problem is solved using a mode-matching
technique. The fluid velocity potentials in the inlet and outlet
ducts are expressed in the form of standard Fourier cosine

series. In contrast, due to the presence of high-order spacial
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derivatives in the membrane boundary condition, the eigen-
system of the silencer region is non-Sturm-Liouville. Further,
the eigenfunctions are piecewise continuous. Nevertheless,
the system satisfies a known orthogonality relation.13,14 This,
together with the usual orthogonality property for
�cos�n�y /a� �n=0,1 ,2 , . . . �, enables continuity of pressure/
normal velocity to be imposed at the mouths of the inlet/
outlet ducts, and appropriate edge conditions to be applied
where the membrane joins the structure. The two resulting
systems of algebraic equations, formulated in terms of the
amplitudes of the reflected and transmitted waves, are trun-
cated and solved numerically. In this article the roots of the
characteristic function for the modified expansion chamber
are determined numerically before the mode-matching equa-
tions are truncated and inverted. For a nondissipative system,
such as this, root finding usually presents few problems. It is
worthwhile mentioning, however, that the boundary value
problem for the model problem falls within the class
whereby the mode-matching equations can be recast into
root-free form,15 which bypasses the root-finding process.

In contrast, the method employed by Huang8,9 automati-
cally avoids the need for root finding. He employs a tech-
nique whereby the sound fields within the duct and cavity are
represented by an infinite sum of Fourier integrals, each one
forced by a velocity distribution sin�n��x+�� / �2��� on the
duct surface for −��x��. The Fourier coefficients of the
pressure field are then determined by substituting an evalu-
ated form of the Fourier integrals into the membrane condi-
tion. This works well for the case in which the membrane
lies at the mouth of the expansion chamber in line with the
upper boundary of the inlet/outlet ducts. The method cannot,
however, be extended to the more general situation in which
the membrane lies above or below this level.

The aims of this article are to investigate the effects of
varying the height of the membrane within the expansion
chamber; to discuss the the potential for using this device as
a component of a hybrid silencer for HVAC ducting systems;
to compare Huang’s solution method with the mode-
matching method, and to discuss the relative merits of the
two approaches. In Sec. II the traveling wave forms for the
expansion chamber region are discussed and the appropriate
orthogonality relation is stated. This is used in Sec. III,
where the boundary value problem corresponding to acoustic
transmission through the modified reactive silencer is stated
and solved using the mode-matching technique outlined
above. Section IV is concerned with the derivation of a low-
frequency approximation to the solution. This proves to be
surprisingly accurate and is a useful tool in terms of verify-
ing the results obtained via mode matching. In Sec. V nu-
merical results are presented. Of particular interest are those
showing transmission loss against frequency for silencers
with low aspect ratio �i.e., those in which the ratio of silencer
length to expansion chamber height is less than three�. It is
found that such silencers exhibit only modest stopbands
when the membrane is positioned at the mouth of the expan-
sion chamber; however, by altering the position of the mem-
brane they can be tuned and the width of the stopband can be
increased by up to 38%. Finally, Sec. VI presents a discus-

sion of the results and potential extensions to the theory.
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II. TRAVELING WAVE SOLUTIONS

In this section a detailed discussion of the traveling
wave forms of the silencer region �see Fig. 1� is presented. It
is appropriate, therefore, to consider the unforced boundary
value problem governing the fluid velocity potential within

an infinite rigid duct, of height b̄, in which a horizontal mem-

brane is situated along ȳ= h̄, −�� x̄��, with 0� h̄� b̄. Har-
monic time dependence, e−i�t̄, where � is the radian fre-
quency, is assumed. Thus, the time-dependent fluid velocity

potential, �̄, can be expressed as �̄�x̄ , ȳ , t̄�= �̄�x̄ , ȳ�e−i�t̄ and,
henceforth, the time-independent potential �̄ will be used. It
is convenient to nondimensionalize the boundary value prob-
lem using typical length and time scales k−1 and �−1, where
k=� /c. Thus, the nondimensional quantities x, y, etc. will
henceforth be used. These are related to their dimensional
counterparts by x=kx̄, y=kȳ, etc.

The velocity potential satisfies Helmholtz’s equation
with unit wave number, that is

��2 + 1�� = 0. �1�

At the rigid walls the normal component of velocity potential
is zero,

��

�y
= 0, y = 0,b, − � � x � � . �2�

The membrane at y=h, −��x��, is described by the con-
dition

� �2

�x2 + �2	 ��

�y
− 	���x,y��h−

h+
= 0, y = h , �3�

where � and 	 are the nondimensional in vacuo membrane
wave number and the nondimensional fluid loading param-
eter, respectively. These quantities are defined by �=c /cm

and 	=c2
 / �kT�, where cm= �T /
m�1/2 is the in vacuo speed
of waves on the membrane, T is the membrane tension, and

m is the mass per unit area of the membrane.

On using the usual process of separation of variables, it
is found that the eigenmodes for the silencer region are

�n = Yn�y�e±i�nx, 0 � y � b , �4�

where

Yn�y� = 
cosh��ny� , 0 � y � h

n cosh��n�b − y�� , h � y � b
� , �5�

FIG. 1. Silencer geometry.
and
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n =�−
sinh��nh�

sinh��n�b − h��
, n � 1 and �n �

ij�q

ph

1, n = 1

�− 1� j , n � 1 and �n =
ij�q

ph
 �6�

with �n
2−�n

2+1=0. This expression encompasses both fluid-
membrane coupled waves and uncoupled modes. For the
coupled modes, the eigenvalues, �n

c, n=0,1 ,2 , . . ., are the
roots of the characteristic equation

K��� = ��2 + 1 − �2�� sinh��h� − 	
sinh��b�

sinh���b − h��
= 0.

�7�

Note that K��� is an even function of �. It is convenient,
therefore, to denote the roots of �7� by ±�n

c, n=0,1 ,2 , . . . and
discuss only the positive roots �i.e., those lying in the upper
half of the complex gamma plane axes, which is deemed to
include the positive real axis�. It is found that there is always
one real root, �0

c �0, and an infinite number of imaginary
roots, �n

c, n=1,2 ,3 , . . ., which are labeled with increasing
distance up the imaginary axis. In addition to the fluid mem-
brane modes there are other possible waveforms for the si-
lencer region. First is the plane acoustic wave eix. This is a
trivial solution to �3� and it follows that this mode can al-
ways exist without interaction with the membrane. Other un-
coupled modes exist only if the silencer height b can be
expressed in the form b= ph /q, for integer values of p and q.
The modes of interest are a subset of the usual rigid duct
modes: those that have zero velocity normal to the mem-
brane at y=h. Thus, admissible wave numbers for the un-
coupled modes are defined by �1

u=0 �always present� and
� j

u= ij�q / �ph�, j= p ,2p ,3p , . . . �present only for b= ph /q�.
Note that these wave numbers are not roots to the character-
istic equation �7�.

The set of all admissible wave numbers is the union of
those for the coupled and uncoupled modes, that is,
��n �n=0,1 ,2 . . . �= ��m

c �m=0,1 ,2 , . . . �� �� j
u � j=1, p ,2p , . . . �.

They are ordered �0=�0
c, �1=�1

u and then by increasing
imaginary part. The functions Yn�y� defined by �5� and �6�
satisfy the following orthogonality relation:14

Yn��h�Ym� �h� + 	�
0

b

Yn�y�Ym�y�dy = En�mn, �8�

where the prime indicates differentiation with respect to y
and �mn is the usual Kronecker delta. For fluid-coupled
modes the quantity En is given by

En = �Yn��h�
2�n

d

d�
K����

�=�n

, �9�

whereas for the uncoupled modes

En =
	b

2
�n−1, �10�

where �n=2 for n=0 and 1 otherwise. Equations �9� and �10�

can be rearranged for the general case as
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En =
	

2
�en�h� + n

2en�b − h�� , �11�

where

en�x� = x +
�3�n

2 + 1 − �2�
2�n��n

2 + 1 − �2�
sinh�2�nx� . �12�

III. THE BOUNDARY VALUE PROBLEM

The mode-matching solution for acoustic transmission
through the modified silencer is presented in this section. The
model comprises rigid inlet and outlet ducts occupying the
regions 0�y�a, �x��� of a Cartesian frame of reference,
together with a finite duct of height b�a in the gap �x���.
The structure is closed by two vertical rigid surfaces at x
= ±�, a�y�b, forming a rectangular expansion chamber.
The interior region of the duct contains a compressible fluid
of sound speed c and density 
. The fluid in the expansion
chamber is separated into two regions by a horizontal mem-
brane which lies along y=h, h�a, �x���; see Fig. 1.

A multimodal incident field, with harmonic time depen-
dence, is incident in the positive x direction towards x=−�
where it is scattered. It is convenient to split the velocity
potential into three parts corresponding to the inlet duct, the
expansion chamber, and the outlet duct, respectively. The
time-independent fluid velocity potentials for each duct re-
gion are thus �1�x ,y�, x�0; �2�x ,y�, 0�x�2�, and
�3�x ,y�, x�2�. The velocity potentials, � j, j=1,3, satisfy
the nondimensionalized Helmholtz’s equation �1� with
boundary conditions

��1

�y
= 0, y = 0,a, − � � x � − � , �13�

��3

�y
= 0, y = 0,a, � � x � � , �14�

whereas the potential �2 satisfies Eqs. �1�–�3� together with

��2

�x
= 0, x = ± �, a � y � b , �15�

and the edge condition

�2y�±�,h� = 0, �16�

where the subscript y indicates differentiation with respect to
that variable. The eigenfunction expansions for � j, j
=1,2 ,3 are

�1 = �
n=0

�

Fn cos�n�y

a
	ei�n�x+�� + �

n=0

�

An cos�n�y

a
	e−i�n�x+��,

�17�

�2 = �
�

�Bnei�nx + Cne−i�nx�Yn�y� , �18�

n=0
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�3 = �
n=0

�

Dn cos�n�y

a
	ei�n�x−��, �19�

where Yn�y� is given by �5�. Here, Fn are the amplitudes of
the incident modes while An, Dn are the complex amplitudes
of the nth reflected, transmitted modes, respectively and
Bn, Cn are the amplitudes of the modes in the silencer
region. Note that �n= �1−n2�2 /a2�1/2 and �n= ��n

2+1�1/2, n
=0,1 ,2 , . . . . The focus of this article is on transmission
loss at low frequencies and, as such, plane-wave forcing is
of primary interest. To broaden the applicability of the
article, however, the model problem has been formulated
for a multimodal incident field. For plane-wave forcing
Fn=�n0, n=0,1 ,2 , . . ., whereas the appropriate form of the
modal amplitudes in the case of, for example, equal modal
energy density, are given by Mechel.16

The coefficients An, Bn, Cn, and Dn are determined by
matching the fluid pressure and the normal velocity at the
interfaces x= ±�, 0�y�a. Continuity of pressure is ex-
pressed as

�1�− �,y� = �2�− �,y�, 0 � y � a , �20�

and

�2��,y� = �3��,y�, 0 � y � a . �21�

Similarly, continuity of normal velocity gives

��2

�x
�− �,y� = � ��1

�x
�− �,y� , 0 � y � a

0, a � y � b
 , �22�
and

and
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��2

�x
��,y� = � ��3

�x
��,y� , 0 � y � a

0, a � y � b
 . �23�

On substituting �17�–�19� into �20� and �21� and making
use of the orthogonality relation for �cos�n�y /a��, it is found
that

An + Fn =
2

a�n
�
m=0

�

�Bme−i�m� + Cmei�m��Rnm �24�

and

Dn =
2

a�n
�
m=0

�

�Bmei�m� + Cme−i�m��Rnm, �25�

where

Rnm = �
0

a

cos�n�y

a
	Ym�y�dy . �26�

This is easily evaluated to obtain

Rnm = �
�− 1�n�m sinh��ma�

�m
2 +

n2�2

a2

, h � a

Pmn + nQmn, h � a ,
 �27�

where

Pmn =

m�

a
sin�m�h

a
	cosh��nh� + �n sinh��nh�cos�m�h

a
	

m2�2

a2 + �n
2

�28�
and
Qmn =

cos�m�h

a
	�n sinh��nd� −

m�

a
sin�m�h

a
	cosh��nd� − �− 1�m�n sinh��nd�

m2�2

a2 + �n
2

, �29�
with d=b−h.
On substituting �17�–�19� into �22� and �23� and using

the orthogonality relation �8� it is found, after a little rear-
rangement, that

Bn + Cn =
1

2En�n sin��n��

��JYn��h� + i	�
m=0

�

�Fm − Am − Dm��mRmn� �30�
Bn − Cn =
1

2En�n cos��n��

��− iHYn��h� + 	�
m=0

�

�Fm − Am + Dm��mRmn� .

�31�

It is straightforward to use �30� and �31� to eliminate Bm and

Cm from �24� and �25�. It is found that
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�n = − Fn −
2H

	�n
�n −

2i	

�n	
�
m=0

�

�Fm − �m��m�nm �32�

and

�n = − Fn +
2J

a�n
�n +

2i	

�na
�
m=0

�

�Fm − �m��m�nm, �33�

where �n= �An−Dn�, �n= �An+Dn�, and

�nm = �
j=0

�
tan�� j��

� jEj
RnjRmj; �34�

�n = �
j=0

�
tan�� j��

� jEj
RnjY j��h� . �35�

Note that �nm and �n are given by �34� and �35�, respec-
tively, with tan�� j�� replaced by cot�� j��.

The constants H and J are determined via the edge con-
ditions �16�. It is found that

H = i	
�n=0

� ��n − Fn��n�n

�H
�36�

and

J = i	
�n=0

� ��n − Fn��n�n

�J
, �37�

where

�H = �
m=0

�
tan��m���Ym� �h��2

�mEm
, �38�

and �J is given by �38� with tan��m�� replaced by cot��m��.
Equations �32� and �33� can be solved by truncation and
numerical inversion of the matrix.

IV. A LOW-FREQUENCY APPROXIMATION

In the previous section the boundary value problem was
stated and reduced, using a mode-matching procedure, to a
system of equations that must be truncated and solved nu-
merically. It is useful to be able to verify the results obtained
via this approach and, for this purpose, an approximate so-
lution is now derived under the assumption kā�1. The usual
low-frequency approximation, see �51�, for an unmodified
expansion chamber �i.e., without a membrane� is derived by
approximating the velocity potentials � j, j=0,1 ,2. . . by just
one duct mode—the fundamental plane-wave mode. For the
current problem such an approximation is valid only for the
inlet and outlet ducts, that is, for �1 and �3. To adequately
describe the presence of the membrane in the expansion
chamber three duct modes are required. In Sec. II it was
shown that, for all frequencies, both the first coupled mode
and the plane-wave mode will always propagate. An addi-
tional mode is needed, however, in order to enforce the
membrane edge condition.

It is convenient to make use of the symmetry of the duct
geometry and consider the symmetric and antisymmetric

subproblems separately. In both cases only the left-hand side
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of the system need be considered, and the conditions
�2x

s �0,y�=0 or �2
a�0,y�=0 are applied along the line of sym-

metry for the symmetric and antisymmetric cases, respec-
tively. For the symmetric subproblem the potential in the
inlet duct is approximated as

�1
s�x� � eix + A0

se−ix, �39�

while

�2
s�x,y� � B0

s cos��0x�Y0�y� + B1
s cos�x�

+ B2
s cos��2x�Y2�y� , �40�

where the duct modes Y0�y� and Y2�y� are given by �5�.
There are four unknown coefficients, that is, A0

s , B0
s , B1

s , and
B2

s and, thus, four conditions are required. An obvious choice
is the membrane edge condition,

� ��2
s

�y
�

x=−�,y=h
= 0, �41�

which relates B2
s to B0

s . In addition, the velocity flux across
x=−�, h�y�b must also be zero,

�
h

b � ��2
s

�x
�

x=−�

dy = 0. �42�

It should be noted that this does not enforce zero normal
velocity at the surface; instead, it implies that the average
normal velocity is zero. Continuity of average pressure is
applied at x=−�, 0�y�a,

1

a
�

0

a

��2
s �x=−�dy = �1

s�− �� , �43�

and, finally, it is assumed that the velocity flux at the mouth
of the inlet duct is equal to that across the surface x=−�, 0
�y�h within the expansion chamber,

�
0

h � ��2
s

�x
�

x=−�

dy = a� ��1
s

�x
�

x=−�

. �44�

Although this does not accommodate the condition of zero
normal velocity at the surface x=−�, a�y�h when h�a,
nor model the singularity in the fluid velocity at the corner,
x=−�, y=a, this type of approximation is well accepted for
low frequencies.17

The coefficient of interest is A0
s and, after some algebraic

manipulation, it is found that

A0
se2i� = −

�s

��s�* , �45�

where the asterisk indicates the complex conjugate,

�s = ��2
2�0 tan��0�� − �0

2�2 tan��2����b − ia cot����

− i�b − h�� , �46�

and

� =
�2

2 sinh��0a�
sinh��0h�

−
�0

2 sinh��2a�
sinh��2h�

. �47�
For the antisymmetric problem it is found that
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¯

A0
ae2i� = −

�a

��a�* , �48�

where

�a = ��2
2�0 cot��0�� − �0

2�2 cot��2����b + ia tan����

+ i�b − h�� . �49�

The approximate solution to the full problem is obtained
from the symmetric and antisymmetric subproblems simply
by noting that the reflection and transmission coefficients for
the fundamental modes are given by A0= �A0

s +A0
a� /2 and

D0= �A0
s −A0

a� /2, respectively.
Although this is essentially a low-frequency approxima-

tion, it is found that transmission loss predictions have very
good accuracy for situations in which h=a, kā�1, and no
more than three modes propagate in the expansion chamber.
Although still good for low frequencies, the accuracy re-
duces as h−a increases. A minor disadvantage is that the
approximate solution does require numerical evaluation of
the first two roots of �7�.

V. NUMERICAL RESULTS

The usual measure of performance for an HVAC si-
lencer is transmission loss, that is, L=−10 log10�Ptrans / Pinc�,
where

FIG. 2. Transmission loss against frequency for ā= h̄=0.05 m, b̄=0.15 m,

�=0.25 m, 
m=0.1715 kg m−2, and T=7500 N m−2.

FIG. 3. Transmission loss against frequency for ā= h̄=0.085 m, b̄
¯ −2 −2
=0.255 m, �=0.425 m, 
m=0.208 25 kg m , and T=11 435 N m .
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Ptrans = R
 1

2�
n=0

�

�Dn�2�n
*�n� , �50�

and the incident power is Pinc=1. In this section numerical
results are presented in terms of transmission loss and,
where appropriate, in terms of Ptrans. In Figs. 2–15 the
solid line �MM� is calculated by truncating and inverting
the mode-matching solution �using 20 terms�. The short-
dashed �Aprx� curve is obtained using the low-frequency
approximation of Sec. IV. Comparison is made with the
approximate transmission loss for the expansion chamber
in the absence of the membrane. This solution, referred to
as basic �Bsc�, is plotted using the low-frequency approxi-
mate formula,17

L = 10 log10
1 +
1

4
�A1

A2
−

A2

A1
	2

sin2�2k�̄�� , �51�

where A1 and A2 are the cross-sectional areas of the inlet/
outlet duct and the expansion chamber, respectively. Note
that, for the two-dimensional silencer considered here, A1

= ā and A2= b̄. For the silencer geometries considered here
the basic model achieves, at best, a transmission loss in the
region of 5 dB. The horizontal line shown on the transmis-
sion loss graphs indicates 10 dB. For the purposes of this
investigation, a stopband is classified as a range of fre-
quency for which the transmission loss exceeds 10 dB.

It is convenient to revert to dimensional variables in
order to describe the silencer parameters. The first three
graphs, Figs. 2–4, deal with two silencers studied by Huang9

FIG. 4. Transmission loss against frequency for ā=0.085 m, h̄=0.17 m, b̄

=0.255 m, �̄=0.425 m, 
m=0.208 25 kg m−2, and T=11 435 N m−2.

FIG. 5. Transmitted power flux against silencer half-length for ā= h̄
¯ −2 −2
=0.15 m, b=0.45 m, 
m=0.2 kg m , T=3250 N m , and f =200 Hz.
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and Haung and Choy.18 The two configurations both involve
small inlet ducts and comparatively long membranes with
high tensions. These graphs are obtained using sound speed
340 ms−1 and fluid density 1.225 kg m−3, whereas for all re-
maining graphs these quantities are taken as 343.5 ms−1 and
1.2043 kg m−3, respectively.

In Fig. 2 the inlet and outlet ducts are 0.05 m high and
the expansion chamber is of height 0.15 m; the silencer half-
length is 0.25 m, while the membrane mass and tension are

m=0.1715 kg m−2 and T=7500 N m−2, respectively. Clearly
there is excellent agreement between the the mode-matching
and low-frequency approximate solutions. The parameters
used here are thought to be the same as that used by Huang
and Choy,18 and the transmission loss curves presented in
Fig. 2 agree well with the equivalent curves presented in that
article.

Figure 3 shows transmission loss against frequency for a
silencer with inlet/outlet ducts of height 0.085 m and expan-
sion chamber of height 0.1225 m. The membrane mass and
tension are 0.208 25 kg m−2 and 11 435 N m−2. The param-
eters chosen for this silencer configuration are identical to
those used by Huang9 and, again, the curves presented here
are in agreement with those of that article. Although the
transmission loss is comparatively low for the frequency
range 550–850 Hz, the general shape of the curve is remi-
niscent of a stopband and, indeed, it proves relatively easy to
adjust the membrane height in order to “extract” one. This is
shown in Fig. 4, where the silencer has exactly the same
physical dimensions and membrane properties as for Fig. 3
other than the membrane being located within the expansion

FIG. 6. Transmission loss against frequency for ā= h̄=0.15 m, b̄=0.45 m,

�=0.25 m, 
m=0.2 kg m−2, and T=3250 N m−2.

FIG. 7. Transmission loss against frequency for ā=0.15 m, h̄=0.24 m, b̄
¯ −2 −2
=0.45 m, �=0.25 m, 
m=0.2 kg m , and T=3250 N m .
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chamber so that h̄=0.17 m. The stopband which is evident in
Fig. 3 for the frequency range 109–280 Hz has now dimin-
ished while a new stopband has emerged for 642–760 Hz.
For both Figs. 3 and 4 there is clearly a passband in the
frequency range 400–500 Hz and the membrane height
could not be adjusted to significantly improve transmission
loss for this range. The mode-matching curves in Figs. 3 and
4 are validated by their close agreement with the low-
frequency approximate solution.

Both the silencer configurations considered so far have
in common an aspect ratio of R=5, where R=2� / �b−a�.
Huang10 has shown that high aspect ratios tend to produce
wide stopbands, but that if R is too large the troughs be-
tween resonant peaks in the stopband tend to drop below
10 dB. In contrast, low aspect ratios tend to produce high but
narrow stop bands. The value R=5 is close to optimum but
is impractical for the application considered here. Further-
more, it is felt that tensions as high those used for Figs. 2–4
might be difficult to sustain in practice. To be of practical use
in an HVAC system the expansion chamber must ideally be
low and only moderately long or, if tall, short in comparison
to its height. For these reasons attention is now directed to-
wards bigger ducts with lower aspect ratios and membranes
with lower tensions. We restrict our attention to a stainless-
steel membrane of thickness 0.025 mm �thus 
m=8050
�0.025�10−3�0.2 kg m−2� and tension 3250 N m−2.

The issue of how to design an appropriate expansion
chamber must be considered. With so many parameters in-
volved this is not a trivial procedure. The approach taken
here is to decide first on the frequency range that is to be

FIG. 8. Transmission loss against frequency for ā=0.15 m, h̄=0.385 m, b̄

=0.45 m, �̄=0.25 m, 
m=0.2 kg m−2, and T=3250 N m−2.

FIG. 9. Transmitted power flux against silencer half-length for ā= h̄
¯ −2 −2
=0.15 m, b=0.3 m, 
m=0.2 kg m , T=3250 N m , and f =200 Hz.
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stopped, say 180–220 Hz. Then, choose the heights for the
inlet/outlet ducts and expansions chamber. In Figs. 5–8 the
heights for the inlet/outlet ducts and expansion chamber are
0.15 and 0.45 m, respectively. The height of a typical HVAC
duct is in the range 0.3–0.45 m and thus the device is an
appropriate size to form a component of a hybrid silencer. It
is envisaged that such a component would lie within the
HVAC duct, sandwiched between panels of porous material.
Length is thus an important issue—to be of practical use the
device must not be long. The membrane mass and tension
have already been selected so, in order to select the appro-
priate silencer length, the proportion of transmitted power,

given by �50�, is plotted with h̄= ā against silencer half-
length for a frequency of 200 Hz. It is clear from Fig. 5 that

the transmitted power is low when �̄�0.25 m and near zero

when �̄=0.6 m. The shorter length, which gives an aspect
ratio R=1.67, is selected for Figs. 6–8.

Figure 6 shows transmission loss against frequency for

h= ā. Although the transmission loss is reasonably good in
the range 160–210 Hz, the curve does not have the same
characteristic shape of the stopbands formed between two or
three resonant frequencies �see Figs. 2–4�. This is due to the
fact that at the selected length the transmitted power flux,
although small, was not close to zero �see Fig. 5�. Figure 7
shows the effect altering the position of the membrane. In

this case h̄=0.24 m and the stopband is more clearly defined
and is wider, now covering the frequency range
153–220 Hz, which is an increase of 34%. The stopband can

be broadened further by increasing h̄ to 0.25 m; however,

FIG. 10. Transmission loss against frequency for ā= h̄=0.15 m, b̄=0.3 m,

�=0.21 m, 
m=0.2 kg m−2, and T=3250 N m−2.

FIG. 11. Transmission loss against frequency for ā=0.15 m, h̄=0.25 m, b̄
¯ −2 −2
=0.3 m, �=0.21 m, 
m=0.2 kg m , and T=3250 N m .
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this is at the cost of a small reduction in transmission loss at
the center of the stopband. In both Figs. 6 and 7 the possi-
bility of a stopband in the region 300–450 Hz is suggested
by the shape of the curve. This stopband is extracted by
moving the membrane higher into the expansion chamber so

that h̄=0.385 m. The new stopband, shown in Fig. 8, em-
braces the frequencies 370–434 Hz but, of course, the emer-
gence of this stopband is at the expense of the first. It is clear,
however, that the overall performance of the silencer with
the membrane raised to this higher level is significantly bet-
ter than that achieved by the basic model �i.e., the expansion
chamber without membrane� for frequencies in the range
260–460 Hz.

In the next three figures the height of the inlet duct, the
membrane mass, and membrane tension are as for Figs. 5–8.
The height of the expansion chamber, however, is reduced to
0.3 m. Figure 9 shows the proportion of transmitted power
against silencer half-length for a frequency of 200 Hz. The

transmitted power is near zero when �̄�0.21 m, and this
value is used for Figs. 10 and 11. The resulting silencer has
an aspect ratio of R=2.8 and transmission loss against fre-

quency is shown, for the case h̄= ā, in Fig. 10. Although
there is a clear spike in transmission loss at 200 Hz �as pre-
dicted by Fig. 9�, the stopband falls below 10 dB in the re-
gion 210–230 Hz. The membrane height cannot be adjusted
to improve this since raising the membrane causes the trans-
mission loss in this region to drop further. It is interesting to
note that the length chosen for this silencer was such that the
frequency 200 Hz is close to a resonant value, whereas for

FIG. 12. Transmitted power flux against silencer half-length for ā= h̄

=0.15 m, b̄=0.3 m, 
m=0.2 kg m−2, T=3250 N m−2, and f =300 Hz.

FIG. 13. Transmission loss against frequency for ā= h̄=0.15 m, b̄=0.3 m,
¯ −2 −2
�=0.17 m, 
m=0.2 kg m , and T=3250 N m .
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Figs. 6–8 this was not the case. Figure 11 shows that, on
raising the membrane further, to a height of 0.25 m, a new
stopband is formed in the frequency range 500–624 Hz.

Figure 12 shows the proportion of transmitted power
against silencer half-length for a frequency of 300 Hz; the
values of all other parameters are the same as for Fig. 9. In
this case the curve shows two nonresonant minima. The
value of � is chosen to be 0.17 m, corresponding with the
lower of the two minima, and the resulting silencer has an
aspect ratio of R=2.27. Figure 13 shows the transmission

loss for h̄= ā. The shape of the stopband around 300 Hz is
very high and narrow with a range of 260–312 Hz. Moving
the membrane up a short distance into the expansion cham-

ber, so that h̄=0.17 m, the shopband is broadened by ap-
proximately 38%. This is shown in Fig. 14. Moving the
membrane further into the expansion chamber, see Fig. 15,
the stopband is shifted and broadened, now encompassing all
frequencies in the range 560–686 Hz.

The final two figures are presented as a means of vali-

dating the mode-matching method for the cases h̄= ā and h̄
� ā, respectively. The accuracy of a mode-matching solution
is assessed by how well the matching conditions, i.e., Eqs.
�20�–�23�, are satisfied. Figures 16 and 17 show the absolute
value of the nondimensional pressure and normal velocity at
x=� for exactly the same silencer parameters as in Figs. 13
and 15, respectively. The velocity �2x�−� ,y� is plotted for

0� ȳ� b̄, while the other quantities are plotted for 0� ȳ
� ā. The frequency at which this comparison is made is
620 Hz. This value was chosen because it lies in the middle

FIG. 14. Transmission loss against frequency for ā=0.15 m, h̄=0.17 m, b̄

=0.3 m, �̄=0.17 m, 
m=0.2 kg m−2, and T=3250 N m−2.

FIG. 15. Transmission loss against frequency for ā=0.15 m, h̄=0.275 m,
¯ −2 −2
b=0.3 m, �=0.17 m, 
m=0.2 kg m , and T=3250 N m .
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of a range where, for Fig. 15, the low-frequency approxima-
tion and the mode-matching solution show poor agreement.
In Fig. 16, where h=a, the pressure and normal velocity
show excellent agreement �both pairs of curves overlie for
0�y�a and �2x�−� ,y�=0 for a�y�b�. Thus, conditions
�20�–�23� are fully satisfied. This is true at all relevant fre-
quencies and, further, the matching conditions at x=� are
met to the same accuracy. In Fig. 17 the nondimensional
pressures, that is �1�−� ,y� and �2�−� ,y�, overlie, indicating
excellent agreement. Furthermore, the normal velocity
�2x�−� ,y� is zero for h�y�b and tends rapidly to zero in
the region a�y�h. For 0�y�a the normal velocities,
�1x�−� ,y� and �2x�−� ,y�, are not in close agreement. Al-
though the two curves oscillate around their mean value and
the amplitude of oscillation reduces significantly as y→0,
close to the corner �y=a� the solutions diverge. As expected
from the singular nature of the corner flow, this situation is
not improved by increasing the number of terms used when
truncating and inverting the mode-matching equations �20
terms were used here�. Nevertheless, the normal velocities
show a satisfactory level of agreement. Altering the fre-
quency at which these comparisons are made does not sig-
nificantly alter the accuracy. Furthermore, the same level of
accuracy is observed at the outlet interface, that is at x=�.

To summarize, for h�a, the mode-matching solution
satisfies �20� and �21� and, also,

FIG. 16. Absolute value of nondimensional pressure and normal velocity

against ȳ, 0� ȳ� ā. Silencer parameters are ā= h̄=0.15 m, b̄=0.3 m, �̄
=0.17 m, 
m=0.2 kg m−2, and T=3250 N m−2 and f =620 Hz.

FIG. 17. Absolute value of nondimensional pressure and normal velocity

against ȳ, 0� ȳ� ā. Silencer parameters are ā=0.15 m, h̄=0.275 m, b̄
¯ −2 −2
=0.3 m, �=0.17 m, 
m=0.2 kg m , and T=3250 N m and f =620 Hz.
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�2x�±�,y� = 0, h � y � b . �52�

The normal velocities, however, are not in exact agreement
for 0�y�a because a Fourier cosine series cannot accu-
rately represent an integrable singularity of the type present
in the fluid velocity at x= ±�, y=a. In view of the fact that
the systems of equations derived by mode-matching auto-
matically conserve power,15,14 it is worthwhile asking what
global condition the normal velocities satisfy at x= ±� when
h�a. For the parameters and frequency ranges considered
herein, it has been verified numerically that the mode-
matching solution satisfies �52� and

�
0

h � ��2

�x
�

x=±�

dy = �
0

a � ��1

�x
�

x=±�

dy . �53�

�For the parameters of Fig. 15, this condition is satisfied to
five decimal places for frequencies up to 800 Hz, reducing
to three decimal places at 1800 Hz.� This, of course, is
simply continuity of velocity flux and is a weaker condi-
tion than �22� and �23�. That is, if �22� and �23� are sat-
isfied then �53� must be, but the converse is not true.
Nevertheless �53� is a necessary physical condition for the
problem, and it is gratifying that the mode-matching solu-
tion satisfies this for h�a—even though such a condition
is not explicitly built into the model.

VI. DISCUSSION

It is well established8,9,18 that a membrane attached
across the mouth of an expansion chamber can dramatically
reduce the transmission of low-frequency noise along a duct-
ing system. This article has investigated the effects of alter-
ing the height of the membrane so that it lies within the
expansion chamber. Attention has been restricted to silencers
with low aspect ratio and subject to low-frequency incident
sound. Silencers with low aspect ratio tend to produce nar-
row, high stopbands when the membrane lies across the
mouth of the expansion chamber,10 and it has been shown
that such silencers can be “tuned” by altering the membrane
position. Raising the membrane a short distance into the
chamber tends to broaden the stopband; increases in stop-
band width of up to 38% have been observed. If the mem-
brane is raised higher into the cavity, the frequency range of
the stopband is shifted, by approximately one octave, and
broadened. It has, however, also been noted that passbands
exist and that these cannot be eliminated by altering the
membrane position.

One of the aims of this paper was to investigate this
device with a view to its use as a component in a hybrid
silencer7 for HVAC ducting systems. Although there is much
work to be done on this subject, the initial findings are inter-
esting. The heights of the silencers considered in this article
were consistent with dimensions of a typical HVAC duct and
the half-lengths were, at most, 0.25 m. Yet stopbands of up
to 72 Hz were achieved at low frequencies. There are, of
course, potential drawbacks to the device. As the membrane
is moved up into the expansion chamber a corner is formed
at the junction of the inlet duct and chamber. For low-

frequency situations, such as those considered here, this does
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not significantly effect the results but it is potentially more
problematic for high frequencies. Also, it remains to be seen
whether transmission loss remains high with the inclusion of
flow—particularly as the exposed corner is a potential source
of turbulence once flow is introduced. Such a device, how-
ever, has been considered with a view to incorporation inside
an HVAC duct between panels of absorbent material. Judi-
cious positioning of the absorbent panels could well elimi-
nate problems due the the corner of the expansion chamber.

The results presented herein are closely related to the
work of Huang.8–10,18 The method by which the model prob-
lem is solved, however, is quite different and lends itself to a
wide range of extensions to the theory. First, although the
zero displacement edge condition is used here, see �16�, it is
equally straightforward �if less practical� to apply the condi-
tion of zero gradient. Further, the membrane can be replaced
by an elastic plate, in which case any appropriate set of edge
conditions �for example, clamped, pin-jointed, or free� can
be enforced. In contrast, the membrane edge condition is
built into Haung’s method and cannot be altered. Although
the latter point is not significant for a membrane, it becomes
relevant should the membrane be replaced by an elastic
plate, in which case the analysis is straightforward only for
the case in which the plate edges are pin-jointed.19 Finally,
Kang and Fuchs12 have suggested, in the context of architec-
tural acoustics, that two membranes, one positioned at the
mouth of the cavity and one within, yield a broader spectrum
of noise reduction. While the application of their work is
quite different from that considered here, the concept of us-
ing two membranes is intriguing. Although it is impossible to
comment on any potential advantages in terms of tuning the
device, problems due to the corner singularity would cer-
tainly be eliminated. The mode-matching method pro-
pounded herein is a highly appropriate method by which to
study such a device, whereas the method used by Huang
cannot easily deal with the internal membrane.
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