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Generating test data by hand is a tedious, expensive and error-prone activity, yet
testing is a vital part of the development process. Several techniques have been
proposed to automate the generation of test data, but all of these are hindered
by the presence of unstructured control flow. This paper addresses the problem
using testability transformation. Testability transformation does not preserve the
traditional meaning of the program, rather it is concerned with preserving the test
adequacy of sets of input data. This requires new equivalence relations, which, in
turn, entails novel proof obligations. The paper illustrates this using the branch
coverage adequacy criterion and develops a branch adequacy equivalence relation
and a testability transformation for restructuring. It then presents a proof that

the transformation is branch adequacy preserving.
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1. INTRODUCTION

Testing is an important part of the software verification
process. However, it is also an expensive process, often
taking up in the order of fifty percent of the cost of
development [1].

When generating tests, it is normal to use a test
criterion that states what it means for a set of
test inputs to be sufficient (or ‘adequate’ in the
nomenclature of software testing). There are two main
classes of test criteria: white-box criteria, which are
based on the structure of the code, and black-box
criteria, which are based on the specification. Given
a test criterion, the problem then is to find test data
that satisfies this criterion.

Producing test data by hand is tedious, expensive and
error-prone. For these reasons, automated test-data
generation has remained a topic of interest for the past
three decades. Several techniques for automated test-
data generation have been proposed, including symbolic
execution [2, 3, 4], constraint solving [5, 6] and search-
based testing [7, 8, 9, 10, 11, 12, 13, 14].

Unstructured programs present a problem for all
of these automated test-data generation techniques.
In this paper, an unstructured program will be

defined as one which contains any form of explicit
jump statement, typically represented by goto, exit,
break or continue statements. This is to be
contrasted with a structured program, in which the
only control flow that is permitted is that which is
expressed by if-then-else-fi conditionals, single-exit
while-do-od loops, and statement sequencing.

Early approaches [2, 4] to test-data generation used
symbolic execution. The symbolic execution technique
seeks to symbolically execute the program to allow the
test data generator to express constraints on predicates
to be executed in terms of initial state variables.

In the 1990s, constraint-solving techniques were
developed [15, 5]. The constraint-solving technique is,
in essence, a mirror image of the symbolic execution
approach; it seeks to push the constraints on predicates
backwards to the initial statement of the program, at
which point they become transformed into constraints
upon the input of the program.

Both symbolic execution and constraint solving face
problems in the presence of loops, because it is difficult
to determine a precise transformation to apply to a
set of constraints in order to move it through a loop
boundary. These problems with loops are further
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compounded if the program to be tested is unstructured
as there is then the additional problem of determining
where the implicit loop boundaries are, although it is
possible to determine the overall control-flow structure
[16].

To overcome difficulties caused by loops for
constraint-based and symbolic-execution based test-
data generation, more recent work has focused upon
the use of search-based techniques such as hill climb-
ing [7], simulated annealing [14] and genetic algorithms
[8, 9, 10, 11, 12, 13]. These search-based techniques all
share the property that they view the space of inputs
to the program under test as a search space. The cri-
terion which expresses adequacy of sets of test inputs
guides the automated search for such sets.

In the chaining method [7], data flow information
is used to locate previous definitions of variables
mentioned in a ‘problem predicate’. A problem
predicate is one for which test data that forces the
predicate to select a particular branch has yet to be
found. Hill climbing is then applied to attempt to find
input values that force the problem predicate to achieve
the required value through a given set of definitions of
variables mentioned in this predicate. If this fails, a
different set of definitions is chosen or the attempt is
abandoned. Work on the chaining method has hitherto
focussed on achieving full statement coverage but it has
been argued that this approach could be extended to
other test criteria [7].

In the simulated annealing and genetic algorithms
methods, the test criterion is transformed to a fitness
function, which guides the search for test data. In
the case of branch coverage (and related structural
criteria), the fitness function must capture how close
a candidate input comes to executing the desired
branch. The success of these approaches in finding
test data for real systems, has led to them receiving
much attention. However, the definition of the fitness
function requires control dependence analysis, which
is notoriously problematic in the presence of poor
structure [17, 18, 19, 20]. The presence of many gotos
makes it hard to determine how close a test input comes
to hitting a desired branch, because the flow of control
is not obvious. Consider the program below.

while p do
...
if q then exit 1 fi;
...

od;
if p then S1 else S2 fi

In this program, one target node will be the statement
S2 which occurs after the end of the while loop. Notice
that there are (apparently) two ways execution can
reach S2. The loop may terminate ‘normally’, because
the predicate p becomes false, or it may terminate
‘abnormally’ through the exit statement in the body
of the loop. Now, in the case of this program, should

the loop terminate normally, then it will be impossible
for S2 to be executed, since all paths which involve
normal termination and execution of S2 are infeasible.
Therefore, the only way in which S2 could possibly be
executed, would be for the loop to terminate through
the exit statement.

Unfortunately, the problem of determining which
paths are feasible is not decidable. In a test-data
generation system, the program will be instrumented
to compute values which track the execution of the
program. The test-data generator will attempt to
force the loop to terminate, either through the exit
statement or through ‘normal’ termination. However,
the test-data generator will not (and cannot) know
which of the two ways of terminating is more likely to
lead to the execution of the desired target node, S2. In
extreme cases, such as this one, where one termination
route is infeasible, the test-data generator may spend
all its effort attempting to generate a test input which
drives the computation down an infeasible path.

Even in less extreme cases, it is possible for the test-
data generator to waste effort, because two distinct
paths must be optimised for, rather than one. If
the program is restructured, so that there is only a
single way of terminating the loop, then this possibility
disappears.

Current techniques and tools for automatically
generating test data, to satisfy white-box test criteria,
are only applicable to structured code. Thus the
applicability of all such tools and techniques will be
extended by the development of transformations that
take unstructured code and return structured code from
which we can generate test data.

Traditional work on transformation of unstructured
programs is concerned largely with making the
program easier to understand [21], or with compiler
optimisations and parallelisations [22]. Of course, the
resultant structured programs have other advantageous
properties, such as lending themselves to compositional
analysis and abstract interpretation, without recourse
to continuation based semantics. They also support
efficient program dependence graph generation.

In general, the goal of such transformations is to
remove goto statements, and create, where possible,
a single-entry, single-exit control flow structure. In
order to transform unstructured programs to improve
test-data generation, it is also important to produce
single-entry, single-exit control flow. However, as will
be seen, the goal of improving testability, rather than
comprehension or compiler optimistations, leads to
very different transformation algorithms, equivalence
relations and (consequently) proof obligations.

Although there are several kinds of statements that
give rise to unstructured programs, this paper will
focus upon the exit (or break) statements, which
are a common source of unstructuredness. The paper
considers the problem of transforming a program p to
form a structured program p′ such that any set of test
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inputs that provides 100% branch coverage for p′ also
provides 100% branch coverage for p.

In Section 4 we show that programs exists with
exit statements that are not path equivalent to any
structured program. Thus, we cannot expect any
algorithm that removes exit statements to preserve
path equivalence. Similarly, it is clear that we need
something other than functional equivalence: we need
to preserve elements of the structure in order to ensure
that the meaning of the adequacy criterion remains
unchanged after transformation.

Our approach uses testability transformation [23]. A
testability transformation does not need to preserve the
traditional meaning of the program to be transformed.
Rather it preserves the sets of test inputs which are
adequate according to the test criterion. In our
case, we are concerned with branch-coverage preserving
transformations. Motivated by this, we define a new
form of equivalence called branch-coverage equivalence
(defined in Section 5). This new form of equivalence
gives rise to new transformations and thus new ‘proof
of correctness’ obligations.

We then give a transformation algorithm that takes
a program p with multiple-level exit statements4 and
returns a branch-coverage equivalent program p′ such
that any set T of test inputs that provides 100% branch
coverage for p′ is guaranteed to give 100% branch
coverage for p. A proof of correctness is given in terms
of preservation of branch-coverage adequate test data.

The paper is structured as follows. Section 2
describes control-flow graphs and two notions of
program equivalence, and restates the notion of
a structured program. Section 3 describes exit
statements and branch coverage. Section 4 describes
related work. Section 5 defines what it means for two
programs to be branch-coverage equivalent. Section 6
introduces a transformation algorithm and proves that
it is correct. Finally, Section 7 draws conclusions and
discusses future work.

2. PRELIMINARY DEFINITIONS

2.1. The syntax

This section will briefly outline the syntax considered
in this paper. We will assume that the problem is to
take a single procedure or function that contains one
or more exit statements, and transform this into code
that contains no exit statements.

This paper will focus on one common construct
that leads to unstructured programs: the use of exit
statements in loops. An exit statement leads to the
flow of control leaving a loop. The presence of an exit
thus leads to more than one way in which the flow of
control may leave a loop. Some programming languages
allow multiple-level exit statements.

4We assume that each loop has at most one exit statement.
We say more about this restriction in Section 6.

The only control structures considered in this
paper are while-do-od loops and if-then-else-fi
statements. This simplifies the exposition. However, it
will become clear that the approach may be extended
to other control constructs.

For the purposes of the transformations in this paper,
we ‘abstract out’ all information regarding assignments,
input statements, and output statements: these are
considered to be atomic statements. Only the control
structure is of relevance, as are the exit statements.
The syntax is defined in Figure 1.

〈Program〉 ::= 〈Statements〉
〈Statements〉 ::= 〈Statement〉

| 〈Statement〉; 〈Statements〉
| skip

〈Statement〉 ::= 〈Linear-block〉
| if 〈Predicate〉
then 〈Statements〉
[else 〈Statements〉]
fi

| while 〈Predicate〉
do 〈Statements〉 od

〈Linear-block〉 ::= 〈Non-control〉
| 〈Non-control〉; 〈Linear-block〉

〈Non-control〉 ::= 〈Atomic-statement〉
| exit n

〈Predicate〉 ::= 〈Atomic-predicate〉
| ( 〈Predicate〉 ∧ 〈Predicate〉 )
| ¬〈Predicate〉

FIGURE 1. Syntax of the Pseudo-Code. For our
purposes, it is sufficient to abstract 〈Atomic-statement〉 and
〈Atomic-predicate〉 to sets of identifiers. n denotes the
natural numbers. Statements of the form exit n must
appear at an appropriate depth within nested while loops.

A multiple-level exit statement is parameterised
by a non-negative integer whose value is known at
compile time. The semantics are defined such that
exit n jumps to the statement immediately after
the end of the nth enclosing loop. This paper will
use the Wide Spectrum Language (WSL) convention
[24] that when n is zero, the meaning of exit n is
identical to skip; this convention reduces the number
of transformation rules required to cover all cases. Such
multiple-level exit statements are sufficiently powerful
to capture the full complexity of the unstructuredness
issue, since an arbitrary goto program can be converted
into a program with multiple-level exits, without the
introduction of any new variables [21].

Observe that the process outlined in this paper will
be applicable to code that contains many functions and
procedures. This is because it is sufficient to consider
the individual functions and procedures. However,
white-box test criteria, such as 100% branch coverage,
are typically applied in unit testing where individual
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modules or classes are tested.

2.2. The Control Flow Graph

Given a program p, the control flow graph (CFG) for
p is a directed graph G that has a set of vertices that
represent the statements and predicates of p and edges
between these vertices. The edges are defined by rules
that aim to represent the possible flow of control. For
example, in the part of the CFG that represents

if x>0 then
x=x+1

else
x=x-1

fi

if the predicate x>0 is represented by vertex n1, x=x+1
is represented by vertex n2 and x=x-1 is represented by
vertex n3 then there is an edge from n1 to n2 and an
edge from n1 to n3. In this case, there will also be exit
edges from vertices n2 and n3 that merge, indicating a
common flow of control following this statement. This
is illustrated in Figure 2.

x>0

x=x+1 x=x-1

T

F

Enter

Exit

n1

n2 n3

FIGURE 2. Control Flow Graph for the program fragment
if x>0 then x=x+1 else x=x-1 fi

The CFG has two special vertices: the start vertex
that represents the start of execution (or “entrance”
into the block of code represented by the CFG) and the
end vertex that represents termination (or “exit” from
the code block represented by the CFG).

Note that the edges are defined using rules that
abstract away certain details. Thus, there may be edges
in the CFG that cannot be traversed. For example, the
CFG for the code

x=0;
if x>0 then
x=x+1

fi

has an edge to the vertex representing x=x+1 even
though this statement is not reachable.

At times we will have to talk about paths through a
program.

Definition 2.1 (Paths). Given the CFG G for a
program p, a path π is a sequence of consecutive edges
of G from the start node to the end node.

Each path π defines a corresponding path condition
c(π) of π: an input leads to the traversal of path π if
and only if it satisfies c(π). The path π is feasible if and
only if there is an input that satisfies c(π).

2.3. Forms of program equivalence

2.3.1. Functional Equivalence
A program p is functionally equivalent to program
p′ if the external functional behaviour of the two
programs is indistinguishable, so that for all inputs
i, applying p to i gives the same result as applying
p′ to i. Functional equivalence requires identical non-
termination behaviour: if p fails to terminate on input
u, then so does p′. It does not require equivalence
of non-functional behaviour. For example, p and
p′ may take a different number of steps to produce
the output. Crucially, functional equivalence is an
extensional notion; it imposes no requirements on the
internal implementation details of p and p′.

We can also define a restricted notion of functional
equivalence, where we consider the equivalence of the
behaviours for a subset of the possible inputs.

With program transformations, we may wish to
preserve some aspects of the internal structure of the
program. To this end, we require an intensional notion
of equivalence.

2.3.2. Path Equivalence
One intensional aspect of a program that we may wish
to preserve is the nature of the paths, or execution
traces, of a program. There are various ways of defining
path equivalence. We will state the strictest notion,
which is defined in terms of a program’s control flow
graph.

Two programs p, p′ are CFG-path equivalent if for
every execution trace in the programs’ control flow
graphs, the same sequence of statements is executed
under the same conditions. With CFG-path equivalence
there is no attempt to consider which paths represent
computations that can be realised: it includes paths
that can never be executed because the path condition
can never be met.

2.4. Structured programs

In the context of this paper, a structured program is
one that does not exploit exit statements.

Definition 2.2 (Structured Program).

A structured program is one in which the only
control flow that is permitted is that which is ex-
pressed by if-then-else-fi conditionals, single-exit
while-do-od loops, and statement sequencing.

All other programs are considered to be unstructured.
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Definition 2.3 (Unstructured Program). An
unstructured program is one that contains one or more
exit statements.

Implicitly, this can be taken to include all programs
containing other forms of arbitrary jump statements,
such as goto. Such programs can be transformed into
path equivalent programs containing exit statements
and no goto statements, and with no additional
variables [21].

Following from these definitions, a program is either
structured or unstructured; for the purposes of this
paper, there is no notion of one program being “more
structured” than another.

3. BRANCH COVERAGE

This paper concentrates on one commonly used notion
of coverage: branch coverage. A branch is an edge in
the control flow graph, from a node n where n has more
than one edge leaving it. Branches are thus associated
with constructs such as if statements and loops. There
is an additional branch from the start node: every path
passes through this branch. Branch coverage may be
defined in the following manner.

Definition 3.1 (Branch Coverage). A test input
t covers a branch b of program p if when p is tested with
t, the flow of control passes through b. A set T of test
inputs covers a branch b of program p if some t ∈ T
covers b.

Definition 3.2 (Proportion of Branches

Covered). Given a set T of test inputs and program p,
the branch coverage of p achieved by T , as a percentage,
is:

Number of branches of p covered by T

Number of feasible branches in p
× 100

There has been a significant amount of work on
the problem of automatically generating a set of test
inputs that provides 100% branch coverage. While this
problem is generally uncomputable, several approaches
have proved to be effective in practice (see, for example,
[25, 8, 9, 11, 26, 14, 27]).

Structural test criteria, such as branch coverage, base
the requirements for testing on the structure of the
code. Thus, there is a potential danger in transforming
code to make it structured: if we transform an
unstructured program p to form a structured program
p′, a set of test inputs generated to cover the branches
of p′ does not need to cover the branches of p. Thus,
we require a set of transformations such that:

1. The transformations will take unstructured code
and return structured code.

2. If program p is transformed into p′ then any set of
test inputs that gives 100% branch coverage for p′

will also achieve 100% branch coverage for p.

It is requirement 2 above which makes this problem
different from the traditional problem of restructuring
unstructured programs.

We require a transformation system that converts
unstructured code into structured code but that
preserves something other than functional equivalence.
Note that in principle it is not necessary to preserve
functional equivalence. In order to illustrate this,
consider the following simple program in which S1 and
S2 contain no conditionals and thus no branches.

if P then
S1

else
S2

fi

Since we are only concerned with preserving branch-
coverage adequate sets of test inputs, it is legitimate to
transform this into the following program since a set of
test inputs covers all branches of one if and only if it
covers all branches of the other.

if P then
S2

else
S1

fi

While the transformations that preserve branch
coverage do not need to preserve the functionality
of a program, in practice it is useful if they do.
This is because transformations that do not preserve
the functionality of the transformed section S of a
program p must consider the context in which S lies
in p. For example, the transformation given above
does not need to be valid when applied to a section
of a program since it may alter the branches covered
after the section is executed. For this reason, the
transformation rules introduced in this paper preserve
functional equivalence.

While it is helpful for our transformations to preserve
functional equivalence, we do not wish to impose
this restriction since this eliminates potentially useful
transformations. Consider, for example, a statement
s of a program p with the property that for every
branch b of p, s does not affect the condition under
which b is executed. We can define a transformation
that deletes s from p. Then since this statement
does not affect the conditions under which branches
are executed, this transformation preserves the sets of
branch-coverage adequate test inputs. Where we can
eliminate a significant number of statements in this
way, such transformations could allow us to produce
a program with a shorter execution time. This
would help when applying techniques such as Genetic
Algorithms that can require us to execute our program
many thousands of times. Thus there are potentially
useful transformations that do not preserve functional
equivalence.
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As seen in Subsection 2.3.1, the extensional notion
of functional equivalence is inadequate for our purpose
since it allows the branch structure (and even
the statement structure) of the original program
to be altered dramatically; functional equivalence
makes no structural (syntactic) requirements on the
transformation process. Unfortunately, as shown in
Section 4, previous results from existing work on
restructuring transformations show that multiple-level
(and even single-level) exit statements cannot be
removed under path equivalence. This is the motivation
for the introduction of branch-coverage equivalence in
Section 5.

4. RELATED WORK

Work related to this paper falls into two categories:
previous work on transformation to address the problem
of poor structure and previous work on program
transformation to improve software testability. There
is a large amount of prior work on the former,
but comparatively little on the latter. This section
first summarizes previous work on testability and
transformation to improve testability before moving on
to present an overview of related work on restructuring
transformations.

Testability has been defined by Voas [28] in terms
of the Propagation, Infection and Execution (PIE)
framework. The PIE method, a mutation testing-based
approach, measures testability in terms of the likelihood
that an infection (a fault) is executed and subsequently
propagated in an observable way. Voas was concerned
with testability measurement.

Harman et al. [23] introduce testability transforma-
tion; the transformation of programs with the goal of
improving the ability to test the programs. Testabil-
ity transformation focuses upon ameliorating problems
for automated test-data generation techniques. The
novel aspects of testability-transformation theory are
discussed in [23], where it is noted that new forms of
equivalence are required by testability transformation.
In this paper, we introduce an example of a testability
transformation that requires such a new form of equiv-
alence and a new proof obligation.

There is a large body of existing literature on the
goto removal problem (for example see [29, 30, 31,
32, 33, 34, 21, 35]). Much of this work considers
the problem to be one of removing goto statements,
replacing them with programs which retain the exit
(or break) statements though they have no goto
statements.

Some authors consider such exit statements to be
‘structured’ forms of goto [17, 36]. For the purpose
of test-data generation, the aim is to replace all
unstructuredness (including exit statements) to create
single-entry, single-exit constructs. Previous work
which retains exit statements is not, therefore, directly
useful. However, previous work on multiple-level exits

is useful because it establishes the expressiveness of
these constructs, in particular it shows that:

• Multiple-level exit statements capture the full
expressive power of arbitrary unstructuredness
(and that single-level exit statements do not);

• goto statements cannot always be removed while
preserving path equivalence.

The first of these motivates our choice of multiple-
level exit statements as the paradigm of unstructured-
ness to be considered, while the second motivates the
need for additional transformations which, while not
path-equivalence preserving, nonetheless, preserve as-
pects of the structure of a program.

4.1. Restructuring transformations

Ramshaw [21] presents an important result concerning
multiple-level exit statements:

Theorem 4.1 (Ramshaw, 1985). Under path equiv-
alence an arbitrary goto program can be transformed
into one with no goto statements, but which may con-
tain multiple-level exit statements.

This result shows that multiple-level exit statements
are powerful enough to capture the expressiveness of
goto statements; no new variables need be introduced
and the program’s structure (the set of paths it
traverses) is preserved. Clearly, path preservation
implies branch preservation. It is upon this result that
we rest our claim to consider the full generality of the
unstructuredness problem for branch-coverage in the
present paper.

Previous work has also shown that multiple-level
exit statements are more powerful than single-level
exit statements. This result is due5 to Peterson [34].

Theorem 4.2 (Peterson, 1973). Under path
equivalence, it is not always possible to transform an
arbitrary goto program to one with no goto statements,
but which may contain single-level exit statements.

Knuth, Floyd and Hopcroft show6 that it is not possi-
ble to remove goto statements from arbitrary unstruc-
tured programs while preserving path equivalence.

Theorem 4.3 (Knuth, Floyd and Hopcroft,

1971). There are programs, the gotos of which cannot
be eliminated under path equivalence.

Knuth and Floyd use ‘regular expression semantics’
for flowcharts. The regular expression captures the
possible paths through the flowchart, thereby capturing
path equivalence. They then define a regular expression
class, R which describes paths through programs in a

5Ramshaw [21] claims that this result is due to Kosaraju [33]
in 1974. However, it appears that the same result was shown by
Peterson in 1973.

6In [36], the proof of this result is attributed to J. Hopcroft,
although Hopcroft is not an author of the paper.
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τ1

τ2

σ3

σ2

σ1

σ4

T

T

F

F

Start

Stop

FIGURE 3. Knuth, Floyd and Hopcroft’s Example

language which is essentially that used in the present
paper, but with repeat loops. The addition of repeat
loops is not significant. Knuth and Floyd show that the
following regular expression cannot be converted into
an equivalent one in R:

σ1(τ1Fτ2Fσ2)∗ (τ1Tσ3 | τ1Fτ2T)σ4

The flow chart corresponding to this regular
expression is depicted in Figure 3. As can readily be
seen, this flowchart is not in some way ‘pathological’.
The problem goto is simply a jump out of a while loop
that targets a point a little further down (lexically) from
the end of the while loop.

Since we know that any goto program may be
converted into a path equivalent program in which the
only unstructuredness is due to exit statements, we
have the following result.

Theorem 4.4. Programs exist whose only unstruc-
turedness is due to exit statements, that are not path
equivalent to any structured program.

This result provides the motivation for the definition
of a new notion of equivalence and branch-coverage
preserving transformations. The transformations
introduced do not preserve path equivalence, while
they do preserve branch-coverage adequate sets of test
inputs.

5. BRANCH-PRESERVING TRANSFORM-
ATIONS

This section defines what it means for a transformation
to preserve branch coverage. It will thus state a
requirement for the transformation system, based on
a new notion of equivalence, that will be developed in
Section 6. First, we will introduce some notation.

Definition 5.1 (Program Branches). Given a
program p, B(p) will denote the branches of p.

Definition 5.2 (Branch Coverage Condition).

For each branch b ∈ B(p) there is an associated
condition c(b, p) on the input to p such that: test input
t leads to b being covered if and only if c(b, p)(t) is true.
The expression c(b, p)(t) will also be written c(b, p, t).

We wish to transform a program p into a program
p′ that has the property that if we generate a set T
of test inputs that provides 100% branch coverage for
p′ then T satisfies 100% branch coverage for p. This
relation between p′ and p is captured by the following
definition.

Definition 5.3 (Branch Coverage Subsump-

tion). Program p′ branch-coverage subsumes p if and
only if for every set T of test inputs, if T provides 100%
branch coverage for p′ then T provides 100% branch cov-
erage for p.

Naturally, we only need to consider feasible branches.

Definition 5.4 (Feasible Branches). Branch b
of program p is feasible if and only if ∃t.c(b, p, t). The
set of feasible branches of p will be denoted B(p).

Proposition 5.1. Program p′ branch-coverage sub-
sumes program p if and only if the following holds:

∀b ∈ B(p).∃b′ ∈ B(p′).c(b′, p′, t) ⇒ c(b, p, t)

Proof. Case 1: ⇒
Suppose p′ branch-coverage subsumes program p and

b ∈ B(p). Proof by contradiction: suppose that for all
b′ ∈ B(p′) we have that c(b′, p′, t) �⇒ c(b, p, t).

Now choose a set of test inputs in the following way.
For every b′ ∈ B(p′) choose a test input tb′ such that
c(b′, p′, tb′) ∧ ¬c(b, p, tb′). Since c(b′, p′, t) �⇒ c(b, p, t),
there must be some such tb′ . Then the resultant set
T of test inputs provides 100% branch coverage for p′

but does not cover the feasible branch b of p. This
contradicts the assumption that p′ branch-coverage
subsumes program p as required.

Case 2: ⇐
Suppose that for all b ∈ B(p) there exists b′ ∈ B(p′)

such that c(b′, p′, t) ⇒ c(b, p, t). Proof by contradiction:
suppose that p′ does not branch-coverage subsume
program p. Then there exists a set T of test inputs
that provides 100% branch coverage for p′ but does not
provide 100% branch coverage for p. Suppose that T
does not cover the feasible branch b of p. It is now
sufficient to note that ∃b′ ∈ B(p′).c(b′, p′, t) ⇒ c(b, p, t)
and, since T covers all branches of p′, there is some
tb′ ∈ T such that c(b′, p′, tb′). Thus c(b, p, tb′) and so T
must cover b, providing a contradiction as required.

If p′ branch-coverage subsumes p then, if we want a
set of test inputs to cover all the feasible branches of p
it is sufficient to produce a set of test inputs that covers
all feasible branches of p′. However, in producing a set
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of test inputs for p′ we may be achieving more than
is required. This observation motivates the following
desirable property.

Definition 5.5 (Branch Coverage Equiva-

lence). Program p′ is branch-coverage equivalent to p
if and only if for every set T of test inputs, T provides
100% branch coverage for p′ if and only if T provides
100% branch coverage for p.

6. A TRANSFORMATION ALGORITHM

This section will define a transformation algorithm that
takes a program p that contains one or more exit
statements and transforms this to a branch-coverage
equivalent program p′ that does not contain any exit
statements. The exit statements may be multiple-
level, but each loop may only have a single exit
statement which exits the loop. Future work will
consider more general transformation algorithms and
transformation rules that take a program containing
loops with more than one exit statement and return a
branch-coverage equivalent program in which each loop
contains at most one exit statement. Consider, for
example, the following program.

while P do
S
if P ′ then

S1;
exit n;
S2;

else
S3;
exit n;
S4;

fi
S5;

od

This is branch-coverage equivalent to the following
program that contains only one exit statement in its
loop.

while P do
S
if P ′ then

S1;
else

S3;
fi
exit n;
S5;

od

It will be assumed that all expressions in each
predicate of p (of either an if statement or a
while loop) contained in a loop that has an exit
statement are side-effect free — they cannot alter
the value of any program variable. Where a

program p contains predicates with side-effects, it
may be transformed to form a program p′ that
does not contain such side-effects [37, 38]. The
problem of producing a complete set of branch-coverage
equivalence preserving transformations that remove
side-effects from predicates will form a significant
element of future work.

This section is structured as follows. Subsection 6.1
gives a set of transformation rules which are used in
Subsection 6.2 to define a transformation algorithm.
Subsection 6.3 provides a proof of correctness and
Subsection 6.4 proves that the algorithm has low-order
polynomial time complexity.

6.1. Transformation rules

In order to simplify the exposition, the only control
structures considered in this paper are while-do-od
loops and if-then-else-fi statements. Naturally,
if-then-fi structures can be dealt with by applying
the following branch-coverage equivalence preserving
transformation.

Rule 1. The following may be applied to an
if-then-fi statement.

if P then
S

fi
→

if P then
S

else
skip

fi

We argue that other standard control constructs may
be dealt with using rules similar to those described here.

At times we will want to talk about a subprogram of
a program p. This will be defined in the following way.

Definition 6.1 (Subprogram). The concept of one
program being a subprogram of another is defined by the
following rules.

1. S is a subprogram of S.
2. Given any program p, skip is a subprogram of p.
3. S is a subprogram of S;S′.
4. S is a subprogram of S′;S.
5. S1 is a subprogram of if P then S1 else S2

fi.
6. S2 is a subprogram of if P then S1 else S2

fi.
7. S is a subprogram of while P do S od.
8. If p′ is a subprogram of p and p′′ is a subprogram
of p′ then p′′ is a subprogram of p.

We say that S1 is contained in S2 if S1 is a
subprogram of S2. Each exit statement is contained
within the body of a loop. At points, when considering
a statement s we will want to talk about the body of
the innermost loop that contains s.

Definition 6.2 (Innermost Loop Body). Given
exit statement s in program p, subprog(s, p) is the
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maximum subprogram, S, of p such that s is contained
in S and s is not contained within a loop in S.

Where a statement s lies within the body of the loop
while P do S od, and is not contained in a loop within
S, it is possible to define the depth, depth(s, S) of s in
this loop. The term depth(s, S) will denote how far s is
nested, inside if statements, within S.

Definition 6.3 (Depth). The function depth is
defined by the following rules.

depth(s, s) = 0

depth(s, S;S′) =




depth(s, S)
if s is in S

depth(s, S′)
otherwise

depth


s,

if P
then S
else S′

fi


 =




1 + depth(s, S)
if s is in S

1 + depth(s, S′)
otherwise

The precondition for depth(s, S) is that s is an exit

statement contained within a loop-free section of S.

The above definition assumes that exit statements
are uniquely identified: where there are two syntacti-
cally equivalent exit statements, we label these in or-
der to distinguish between them.

Definition 6.4 (Depth of an exit). Given exit
statement s in program p, the depth of s in p is
depth(s, S), where S = subprog(s, p).

We now introduce transformations rules that will
be used in order to eliminate (possibly multiple-level)
exit statements while preserving branch-coverage
equivalence. In order to do this we consider the
following cases:

1. an exit statement of depth 0;
2. an exit statement of depth 1;
3. an exit statement of depth greater than 1.

We give transformation steps for each of these cases
and assume that an exit statement s is represented
as exit n, where n denotes the number of levels over
which the exit operates. Essentially, the algorithm
takes exit statements and repeatedly transforms the
program in order to reduce their level. Once the level
of an exit statement has been reduced to 0 it is replaced
by skip.

A single-level exit will be represented by exit 1. It
will transpire that the transformation rules may reduce
a single-level exit to the statement exit 0. We thus
introduce the following transformation that cleans up
any such terms generated in the transformation process.

Rule 2.

exit 0 → skip

The following are immediate.

Proposition 6.1. If p may be transformed into p′

using an application of Rule 2 then p′ is branch-coverage
equivalent to p.

Proposition 6.2. If p may be transformed into p′

using an application of Rule 2 then p′ and p are
functionally equivalent.

While functional equivalence is not required for
branch-coverage equivalence, it is useful to have
functional-equivalence preserving transformations since
these cannot affect the behaviour of the program on
any code executed after the transformed fragment,
making the application of the transformations context
independent.

Rule 3. The following rule may be applied to an
exit statement of depth 0.

while P do
S;
exit n;
S′

od

→

if P then
S;
exit n − 1

else
skip

fi

This has the precondition that n > 0.

Proposition 6.3. If p may be transformed into p′

using an application of Rule 3 then p′ is branch-coverage
equivalent to p.

Proof. Suppose that the rule is applied to a subprogram
X1 of p of the form

while P do
S;
exit n;
S′

od

to create a subprogram X2 of p′ of the form

if P then
S;
exit n − 1

else
skip

fi

Clearly paths in p that do not pass through X1 are
not affected by this transformation. Consider a feasible
path π through p that passes through X1. Here it is
important to observe that the loop may iterate at most
once.

Each time X1 is met on π, there are two cases to
consider:

1. P is true in the state before X1 is executed.
In this case the path passes through S and then
executes exit n.
2. P is false in the state before X1 is executed. The
path π then exits this section of the code.
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Now consider X2. Each time X2 is met in a path, there
are two cases to consider:

1. P is true in the state before X2 is executed.
In this case the path passes through S and then
executes exit n − 1.
2. P is false in the state before X2 is executed. The
path then exits this section of the code.

The statement exit n, in X1, is equivalent to the
statement exit n − 1 in X2. Thus, X1 and X2 are
functionally equivalent. In addition, the branches in
X1 and X2 are followed under the same conditions. The
result thus follows.

The following may be proved in a similar manner.

Proposition 6.4. If p may be transformed into p′

using an application of Rule 3 then p′ and p are
functionally equivalent.

Rule 4. The following may be applied to an exit
statement of depth 1 within the then part of an if
statement.

while P do
S;
if P ′ then

S1;
exit n;
S2

else
S3

fi
S4

od

→

while (P ∧ ¬P ′′) do
S;
S3;
S4

od;
if P then

S;
S1;
exit n − 1

fi

Here P ′′ denotes the result of evaluating P ′ after
executing S. P ′′ is described in more detail below. This
rule has the precondition that n > 0.

Rule 4 is illustrated by Figure 4.
The transformation which produces P ′′ from S and

P ′ consists of making P ′′ a call to a new function φ.
The local variables of φ are the variables of S which are
defined before they are used [39]. The formal (value)
parameters of φ are the variables of S which are not
defined before use (that is those either used before they
are defined or those simply used and not defined at all).

The function φ is a predicate; it returns a Boolean
result. The body of φ consists of the statement block S,
followed by a return statement. The return statement
simply returns the result of evaluating the expression
P ′.

Observe that P ′ is guaranteed to have the same
meaning in the context of the return statement from
φ as it does from the original point in the program at
which it occurs. Any variable (mentioned in P ′) which
is defined before it is used can be replaced by a local
variable, since its value is defined before use this will
not lose any previous value. Any variable (mentioned in

P ′) which is used before it is defined, will be passed (by
value) to φ, thereby creating a local copy. Any variable
simply used and not defined will be passed as a formal
parameter. Clearly a variable must be either defined
before it is used or not and so all variables mentioned
in P ′ will be available (with their correct value) at the
point of the return statement.

Also, observe that the call to the function φ has no
side-effects, since all variables which are defined by the
copy of S in the body of φ are either local or are formal
value parameters. These transformations assume that
the statement S performs no input/output, or any other
implicit [40] state-update and that the expression P ′ is
side-effect free.

Proposition 6.5. If p may be transformed into p′

using an application of Rule 4 then p′ is branch-coverage
equivalent to p.

Proof. Suppose that the rule is applied to a subprogram
X1 of p, of the form

while P do
S;
if P ′ then

S1;
exit n;
S2

else
S3

fi
S4

od

to create a subprogram X2 of p′ of the form

while (P ∧ ¬P ′′) do
S;
S3;
S4

od;
if P then

S;
S1;
exit n − 1

fi

Clearly paths in p that do not pass through X1 are not
affected by this transformation. Consider a path π of p
that passes through X1. Consider a point at which the
path π passes through X1.

Observe that the conditions for leaving the loops in
X1 and X2 are equivalent.

There are now two cases to consider for X1:

1. The loop terminates due to P being false, or
becoming false. Thus, the program passes through
S;S3;S4 zero or more times until P is false.
2. The loop terminates due to P ′ becoming true.
Thus, the program repeatedly passes through
S;S3;S4, then S followed by P ′ being true. The
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FIGURE 4. Illustration of Rule 4, showing the reduction in depth of the exit statement

program then passes through S1 before meeting
exit n.

Now consider X2. Again there are two cases.

1. The loop is left due to P being false, or becoming
false. Thus, the program passes through S;S3;S4

zero or more times until P is false.
2. The loop is left due to ¬P ′′ becoming false. In
this case, upon leaving the loop P must be true and
thus this is followed by S;S1;exit n − 1. Thus,
the program repeatedly passes through S;S3;S4,
then S followed by P ′ being true. The program
then passes through S1 and meets exit n − 1.

The branches contained in P ′′ are equivalent to those
in S and are executed under the same condition as S
in X2. Thus we may ignore the branches in P ′′ when
determining whether 100% branch coverage has been
achieved for p′.

The result now follows by observing that the
statement exit n in X1 is equivalent to the statement

exit n − 1 in X2 and the equivalence of the cases for
X1 and X2; these correspond to branches.

A similar argument may be used to prove the
following.

Proposition 6.6. If p may be transformed into p′

using an application of Rule 4 then p′ is functionally
equivalent to p.

The following is equivalent to Rule 4, except with the
exit statement in the else part of the if statement.

Rule 5. The following may be applied to an exit
statement of depth 1 within the else part of an if
statement.
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while P do
S;
if P ′ then

S1;
else

S2;
exit n;
S3

fi
S4

od

→

while (P ∧ P ′′) do
S;
S1;
S4

od;
if P then

S;
S2;
exit n − 1

fi

Here P ′′ denotes the result of evaluating P ′ after
executing S. This rule has the precondition that n > 0.

The proofs of the following are similar to those of
Propositions 6.5 and 6.6.

Proposition 6.7. If p may be transformed into p′

using an application of Rule 5 then p′ is branch-coverage
equivalent to p.

Proposition 6.8. If p may be transformed into p′

using an application of Rule 5 then p′ is functionally
equivalent to p.

Where an exit statement s has depth greater than 1
we may use Rule 6, below, in order to reduce its depth.
Thus, repeated application of Rule 6 may be used to
reduce the depth of s to 1 whereupon Rule 4 or Rule 5
may be applied.

Rule 6. The following may be applied to an exit
statement of depth greater than 1

if P then
S1;
if P ′ then

T1;
exit n;
T2

else
T3;

fi
S2

else
S3

fi

→

if (P ∧ P ′′) then
S1;
T1;
exit n

else
if P then

S1;
T3;
S2

else
S3

fi
fi

P ′′ is the result of evaluating P ′ after executing S1.
This rule has the precondition that n > 0.

Rule 6 is illustrated by Figure 5.

Proposition 6.9. If p may be transformed into p′

using an application of Rule 6 then p′ is branch-coverage
equivalent to p.

Proof. Suppose that the rule is applied to a subprogram
X1 of p, of the form

if P then
S1;
if P ′ then

T1;
exit n;
T2

else
T3

fi
S2

else
S3

fi

to create a subprogram X2 of p′ of the form

if (P ∧ P ′′) then
S1;
T1;
exit n

else
if P then

S1;
T3;
S2

else
S3

fi
fi

Paths in p that do not pass through X1 are not
affected by this transformation. Consider a path π of p
that passes through X1. Consider a point at which π
passes through X1. There are three cases.

1. P is false and S3 is executed.
2. P is initially true and P ′ is true when evaluated
after S1. Here the program passes through S1;T1;
and then exit n.
3. P is initially true and P ′ is false when evaluated
after S1. Here the program passes through
S1;T3;S2.

Now consider X2. Again there are three cases.

1. P ∧ P ′′ is initially false and P is initially false.
Here S3 is executed.
2. P ∧P ′′ is initially true. Here the program passes
through S1;T1; and then exit n.
3. P ∧ P ′′ is initially false and P is initially true.
Here the program passes through S1;T3;S2.

The branches in P ′′ are equivalent to those in S1

in X2 and are executed under the same conditions (P
being true).

The result follows by observing that the three cases
for X2 are equivalent to the three cases for X1, and
that in each case the conditions defined by the cases
correspond to the branches.
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FIGURE 5. Illustration of Rule 6

Proposition 6.10. If p may be transformed into p′

using an application of Rule 6 then p′ is functionally
equivalent to p.

The transformation rule only deals with exit
statements in the then case of an if statement. We thus
get three additional rules. These will now be stated.

Rule 7. The following may be applied to an exit
statement of depth greater than 1.

if P then
S1;
if P ′ then

T1;
else

T2;
exit n;
T3

fi
S2

else
S3

fi

→

if (P ∧ ¬P ′′) then
S1;
T2;
exit n

else
if P then

S1;
T1;
S2

else
S3

fi
fi

P ′′ is the result of evaluating P ′ after executing S1.
This rule has the precondition that n > 0.

Rule 8. The following may be applied to an exit
statement of depth greater than 1.
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if P then
S1

else
S2;
if P ′ then

T1;
exit n;
T2

else
T3

fi
S3

fi

→

if (¬P ∧ P ′′) then
S2;
T1;
exit n

else
if ¬P then

S2;
T3;
S3

else
S1

fi
fi

P ′′ is the result of evaluating P ′ after executing S2.
This rule has the precondition that n > 0.

Rule 9. The following may be applied to an exit
statement of depth greater than 1.

if P then
S1

else
S2;
if P ′ then

T1

else
T2;
exit n;
T3

fi
S3

fi

→

if (¬P ∧ ¬P ′′) then
S2;
T2;
exit n

else
if ¬P then

S2;
T1;
S3

else
S1

fi
fi

P ′′ is the result of evaluating P ′ after executing S2.
This rule has the precondition that n > 0.

The proofs of the following are similar to those of
Propositions 6.9 and 6.10.

Proposition 6.11. If p may be transformed into p′

using an application of Rule 7, Rule 8, or Rule 9 then
p′ is branch-coverage equivalent to p.

Proposition 6.12. If p may be transformed into p′

using an application of Rule 7, Rule 8, or Rule 9 then
p′ is functionally equivalent to p.

6.2. Transformation Algorithm

This section will describe a transformation algorithm
based on the rules defined in Subsection 6.1. The
algorithm is structured in order to guarantee that
each rule’s precondition holds when it is applied.
Subsection 6.3 proves that this algorithm is correct and
Subsection 6.4 explores its algorithmic complexity.

The function tdepth, which gives the nesting level of
a statement in a program, will be used in the algorithm
in order to ensure that the most deeply nested exit
statements are transformed out first.

Definition 6.5 (Tdepth). The function tdepth is

defined by the following rules.

tdepth(s, s) = 0

tdepth(s, S;S′) =




tdepth(s, S)
if s is in S

tdepth(s, S′)
otherwise

tdepth


s,

if P
then S
else S′

fi


 =




1 + tdepth(s, S)
if s is in S

1 + tdepth(s, S′)
otherwise

tdepth


s,

while P do

S
od


 = 1 + tdepth(s, S)

The precondition for tdepth(s, S) is that s is a statement
contained within S.

The following is the transformation algorithm.

1. Input program p.
2. While p contains one or more exit statements do:
3. Choose an exit statement s of p with greatest

tdepth.
4. Let n denote the depth of s in p.
5. If n = 0 then apply Rule 3 to s.
6. If n = 1 then apply Rule 4 or Rule 5 to s.
7. If n > 1 then apply one of Rule 6, Rule 7, Rule 8,

or Rule 9 to s.
8. Repeatedly apply Rule 2 until there are no

instances of exit 0 in p.
9. od
10. Output p.

6.3. Proof of correctness

We first prove a property of the algorithm that will be
used to prove that it must terminate.

Lemma 6.1. Suppose that s is an exit statement in
program S and that an application of one of Rule 6,
Rule 7, Rule 8, or Rule 9 in the transformation
Algorithm, to an exit statement s′ �= s, transforms
S into S′. Then tdepth(s, S) ≥ tdepth(s, S′).

Proof. Assume that the rule being applied is Rule 6
— the other cases follow by a similar argument.
Proof by contradiction: suppose that tdepth(s, S) <
tdepth(s, S′). Recall that Rule 6 applied to exit
statement s′ is:
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if P then
S1;
if P ′ then

T1;
s′;
T2

else
T3

fi
S2

else
S3

fi

→

if (P ∧ P ′′) then
S1;
T1;
s′′

else
if P then

S1;
T3;
S2

else
S3

fi
fi

If s′ is exit n then s′′ is the exit statement exit n−1.
Clearly, this transformation can only increase the

value of tdepth for s if s is contained in S1. But if s is
contained in S1 then, since each while loop has at most
one exit statement associated with it, tdepth(s, S) >
tdepth(s′, S). This contradicts the algorithm having
been applied to s′ in S.

Proposition 6.13. The transformation algorithm is
guaranteed to terminate.

Proof. We need only consider the steps in the loop. It
is sufficient to observe that:

1. Each iteration converts a level n exit into a level
n − 1 exit or reduces the value of tdepth for an
exit.
2. Any instance of exit 0 generated by this process
is removed.
3. Since the algorithm applies a rule to an exit
statement of maximum tdepth, no step may
introduce a new exit.
4. No step may convert a level n exit into a level
m exit for some m > n.
5. By Lemma 6.1, no step can increase the value of
tdepth of an exit.

Thus each iteration of the loop reduces the sum of the
levels of the exit statements plus the sum of tdepth for
each exit. The result follows from observing that this
value is an integer and is bounded below by 0.

Proposition 6.14. When applied to a program p,
the transformation algorithm always terminates with a
structured program p′.

Proof. This follows immediately from the observation
that the only constructs that lead to unstructured
programs are exit statements and the program cannot
terminate if one or more exit statements remain.

Theorem 6.1. The transformation algorithm is
correct.

Proof. By Proposition 6.13, the algorithm must termi-
nate. From Propositions 6.3, 6.5, 6.7, 6.9, and 6.11,

we know that the transformation rules preserve branch-
coverage equivalence. By Proposition 6.14 we know that
the algorithm terminates with a structured program.

Thus, the algorithm must terminate and the result
must be a structured program that is branch-coverage
equivalent to the original. Thus the algorithm is
correct.

By taking a program p and returning a structured
branch-coverage equivalent program p′ we simplify the
problem of generating a set of test inputs that satisfies
100% branch coverage since we can now apply a range
of test generation algorithms to p′. Naturally, having
generated a set T of test inputs from p′ we test p with
the elements of T .

6.4. Algorithmic complexity

This section will prove that the transformation
algorithm has low-order polynomial complexity.

Theorem 6.2. Suppose p has exit statements
s1, . . . , sn, exit statement si is an ni level exit
statement and let di = tdepth(si, p). Let d =

∑n
i=1 di

and m =
∑n

i=1 ni. The transformation algorithm has
time complexity of O(m + d).

Proof. Given exit statement si, by Lemma 6.1,
Rules 6, 7, 8, and 9 are applied at most di times to
si. Thus Rules 6, 7, 8, and 9 are applied at most d
times in total.

Rules 3, 4, and 5 reduce the level of one exit and do
not increase the level of any exit. Since a rule is applied
to an exit statement of maximum tdepth and each loop
has at most one exit statement, no step can create a
new exit statement. Thus, the number of applications
of these three rules is bounded above by m.

To conclude, the number of applications of Rules 3,
4, and 5 is bounded above by m and the number of
applications of Rules 6, 7, 8, and 9 is bounded above by
d. Clearly, the number of applications of Rule 2, which
cleans up terms of the form exit 0, is also bounded
above by m. The result thus follows.

Note that where we have several procedures or
functions, the algorithm may be separately applied to
these. Thus, the complexity is linear in the number
procedures and functions.

7. CONCLUSIONS

Many test-data generation techniques are based
upon white-box test criteria. Tools and algorithms
that automatically generate test data in order to
satisfy a white-box test-criterion are hindered by
unstructured control flow. The need for a restructuring
transformation to preserve the test-adequacy criterion
makes this problem different to the traditional,
and well-known, problem of program restructuring
transformation.

The Computer Journal, Vol. 00, No. 0, 2004



16 R. M. Hierons, M. Harman, C. J. Fox

This paper uses a novel transformation approach
in which the program is restructured in such a way
that branch-coverage adequate sets of test inputs are
preserved. This form of transformation does not
necessarily need to preserve traditional (functional)
equivalence, as the transformed program is only
required to generate test data. It does, however, need
to preserve the sets of branch-coverage adequate test
inputs. This new preservation constraint has important
theoretical and practical implications and entails proof
obligations in terms of branch-coverage adequate sets
of test inputs, rather than (for example) functional
equivalence.

The approach is illustrated with a set of transfor-
mation rules for multiple-level exit statement removal
and a simple transformation algorithm for restructuring
which uses these rules. The algorithm is proved correct
with respect to the requirement that it preserves the
branch-coverage adequate sets of test inputs.

Future work will consider the problem of determining,
where possible, branch-coverage equivalence. While it
is clear that, in general, branch-coverage equivalence
is undecidable, there may exist useful conservative
decision procedures. The existence of such procedures
would simplify the process of verifying transformation
rules and might potentially be used to assist in the
automated generation of such rules. We also intend
to investigate alternative white-box test-criteria such as
100% statement coverage and 100% MC/DC coverage
[41]. We conjecture that notions similar to branch-
coverage equivalence will prove useful for many such
test criteria.

The transformation algorithm given in this paper
was designed to be applied to programs whose
predicates (contained in loops that have an exit
statement) are side-effect free and in which each loop
contains at most one exit statement. There thus
remains the problem of finding either a more general
transformation algorithm, or transformation rules that
preserve branch-coverage equivalence, and transform a
program into a program that satisfies these conditions.
The novel semantics preserved by branch-coverage
preserving transformations suggests the possibility of
using slicing to remove parts of the program irrelevant
to the satisfaction of a test goal. The incorporation of
slicing into our transformation approach is also a topic
for future work.
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