Testing From a Finite State Machine:
Extending Invertibility to Sequences

Robert M. Hierons, Goldsmiths College;
Uni : Lond

Abstract

When testing a system modelled as a finite state machine it is de-
sirable to minimize the effort required. Yang and Ural [1990] demon-
strate that it is possible to utilize test sequence overlap in order to
reduce the test effort and Hierons [1996] represents this overlap by us-
ing invertible transitions. In this paper invertibility will be extended
to sequences in order to further reduce the test effort and encapsulate
a more general type of test sequence overlap. It will also be shown that
certain properties of invertible sequences can be used in the generation
of state identification sequences.

1 Introduction

A finite state machine (FSM) can be used to model a software system. In
particular, an FSM can be used to model the control section of a communi-
cations protocol (Huang and Hsu [1994]). If some FSM model F' exists and
an implementation [, that is intended to implement F', has been produced
it is important to verify I relative to F'. In order to do this it is necessary
to test I. When testing [against F' it is normal to assume that [can be
modelled as an FSM and the testing problem then becomes an instance of
the FSM equivalence problem.

A number of specification languages, such as SDL and ESTELLE, are
extensions to the FSM formalism. Many specifications in such languages can
be converted into FSMs from which tests can be generated (Luo and Chen
[1989], Luo et al. [1994b], Petrenko et al. [1994a]).

lbsrjpm
Cross-Out

An alternative approach, to modelling a communications protocol, is to
use a process algebra such as LOTOS. There has been much work on generat-
ing conformance relations and canonical testers from process algebra descrip-
tions (Brinksma [1988], Wezeman [1989]). It has also been noted that equiv-
alent conformance relations can be defined for specification languages such
as SDL and ESTELLE and thus, potentially, for FSM (Phalippou [1993]).
When the specification is finite, it can be modelled as an FSM and FSM
based testing techniques can then be applied (Fujiwara and v. Bochmann
[1992]).

A number of techniques have been developed for testing from an FSM.
These are based on several different test criteria, including simply ezecuting
every transition (Sidhu and Leung [1988]), testing every transition (Sidhu
and Leung [1988], Aho et al. [1988], Yang and Ural [1990], Hierons [1996])
and producing a checking sequence: a test that will distinguish between the
FSM model and any non-equivalent FSM that has no more states (Rezaki
and Ural [1995], Ural et al. [1997]). Given a test criterion, it is desirable to
produce the shortest test that satisfies this criterion. Here the problem of
finding the shortest test sequence, that includes a test for every transition,
will be considered.

While, ideally, a checking sequence should be produced, in some cases this
may not be practical and weaker criteria are used. The relative effectiveness
of the related methods, at finding faults, is still an open question. The
experience of Motteler et al. [1994] and Sidhu and Leung [1988] suggests
that test sequences that test every transition are usually effective at locating
faults.

The test generation problem is further complicated if the system under
test 1s embedded in some environment and all communications go through
this environment. If there is a model of the environment, this model must
be considered when deriving tests (Petrenko et al. [1996]).

Hierons [1996] discusses the application of invertible transitions to test
sequence generation. In Section 2 invertibility will be extended to sequences
and a number of properties will be derived. The relationship between invert-
ibility and state identification techniques will also be investigate and it will
be demonstrated that this can be used in the generation of state identification
sequences. An algorithm for finding invertible sequences and UlOs is given
in Section 2.4. In Section 3 an algorithm is introduced that both extends the
applicability of the algorithm given in Hierons [1996] and applies invertible
sequences to reduce the length of the test sequence produced. This algorithm

is then applied to a small example, in order to illustrate the method, and
compared to alternative algorithms. Finally, conclusions are drawn.

2 Invertible Sequences

2.1 Some definitions

A Finite State Machine ' with input alphabet ¥ and output alphabet © can
be represented by a tuple (5,7,s1); S is the finite set of states, T is the
finite set of transitions between these states, and sy is the initial state. Fach
transition is in the form (s,s’, x/y) where s is the initial state, s’ is the final
state, x € X is the input involved in this transition, and y € © is the output
generated by this transition.

An FSM is said to be completely specified it for each input value x € X
and state s; € S there is a transition from s; with input . An FSM is
deterministic if for every state s; and input x there is at most one transition
from s; with input . It an FSM is deterministic it is possible to represent the
transitions by (possibly partial) functions é and A, the next state and output
functions respectively. Thus, if a transition with input x is executed from
state s; output A(s;,x) is produced and the FSM moves to state 6(s;,x).
These functions can be extended in a natural way to functions ¢* and A*
that give the final state and output respectively when executing a sequence
of input values from a state. As is usual, it will be assumed that any FSM
considered is deterministic and completely specified.

Two states s; and s; are said to be equivalent if for every input sequence
X, A (85, X) = XA*(s;, X). An FSM is minimal if no two states are equivalent
and two FSM are equivalent if their initial states are equivalent. It will be
assumed that any FSM being considered is minimal as any (deterministic)
FSM can be converted to an equivalent (deterministic) minimal FSM (Moore
[1956]). See e.g. Kohavi [1978] for more information on FSM.

When testing a transitions it is necessary to check its final state. In order
to do this one of the following approaches can be applied:

1. A distinguishing sequence (DS)
2. Unique input/output sequences (UIO)

3. A characterizing set

A distinguishing sequence is a sequence that produces a different output
for each state. A UIO u for a state s has the property that for each s' #
s, A*(s,u) # A*(s',u), and thus u is capable of verifying state s, but not
necessarily any other state. Kohavi and Kohavi [1968] note that, when a
preset test sequence is not required, an adaptive distinguishing sequence can
be used. Adaptive distinguishing sequences have the advantage that there
is a polynomial upper bound for their length, when they exist (Lee and
Yannakakis [1994]).

Some FSM do not have either a DS or a UIO for every state. It is then
necessary to use a characterizing set W: a set of input sequences with the
property that for every pair of states s # s’ there is some w; € W such that
A (s,w;) # A(s',w;). Thus, the output sequences produced by executing
each w; € W from s verifies s.

A directed graph (digraph) GG is defined by an ordered pair (V, F), where
V' is a set of vertices and F is a set of edges between vertices. An edge can
have a label and thus each edge is represented by a tuple (v;,v;,1) where
v; is the initial vertex, v; is the final vertex, and [is the label. Given a
vertex v in a digraph (V, F) the number of edges entering v is denoted by
indegreeg(v) and the number of edges leaving v is denoted by outdegreen(v).
Clearly an FSM can be represented by a digraph and throughout this paper
the two formalisms will be considered to be equivalent and so the two sets of
terminology will be used interchangeably.

A network is a digraph in which every edge is given a non-negative integer
capacity and there are two special vertices; the source and the sink. A flow
for a network is the assignment of an integer flow to each edge such that
the flow at an edge does not exceed the capacity of the edge and the flow is
conserved at every vertex except for the source and the sink. The net flow
through the network is the net flow leaving the source, which is equal to the
net flow entering the sink. If each edge is given a cost, the cost of the flow
is the sum, over the edges, of the cost of the edge multiplied by the flow
through the edge. See e.g. Gibbons [1985] for more information on graphs,
digraphs and networks.

Hierons [1996] say that a transition (s,s’,a/y) is an invertible transition
(IT) if it is the only transition entering state s’ that involves input a and
output y. A consequence of a transition being invertible is that if a transition
involving input and output y has been executed and this results in the FSM
being in state s’ it is known that the FSM was previously in state s.

A sequence of transitions ¢ = ty...t,, with t; = (s;, s;41, 2;/y:), is said

4

to be an invertible sequence (IS) if it is the only sequence involving input
sequence i ...xT, and output sequence y; ...y, that ends at s,,11. Clearly
an invertible transition is an invertible sequence of length 1.

An IS will be called prime if it is not in the form of one non-empty IS
followed by another non-empty IS. Prime invertible sequences will be used to
reduce the test generation effort. It should be noted that if an IS is not prime,
it can be represented as a sequence of prime ISs and this decomposition is
unique (Hierons [1997]). An IS is said to be a minimal (s;,s;) IS if it is a
shortest length IS from state s; to state s;. Such an IS need not be prime.

An input @ is an invertible input (II) if every transition involving it is
invertible. A sequence of inputs is an invertible input sequence (I1S) if every
sequence of transitions with this input sequence is an invertible sequence.

Given F' = (5,7, s1) the set of ITs in T is denoted by Ty, Tp = T'\ 17,
and F7 is the machine (S,77,s1). Tyr is the set of transitions from T' that
involve invertible input and Fr; = (S, Tz, $1).

2.2 Some properties of invertible sequences

The following demonstrates that the notion of an invertible sequence is an
extension of the notion of an invertible transition.

Lemma 1 An IS can contain transitions that are not [Ts.

Proof

To demonstrate this, it is sufficient to look at the FSM, taken from Aho et al.

[1988], shown in Figure 1. In this FSM the sequence (v, vq, b/)(v2, v, a/2)

is an IS while the transition (vy,vs,a/x) is not invertible. O
The following results will be used in the generation of invertible sequences

and in the test sequence generation algorithm.

Lemma 2 [ft =rs is and IS (r and s are sequences) then so isr.

Proof

A proot by contradiction will be produced. Suppose t = rs is an IS and r is
not an IS. Then there must be some r’ with a different initial state than r
that has the same input, output, and final state as r. But then r’s has the
same input, output, and final state as rs but a different initial state, which
contradicts rs being an I5. Thus r must be an IS if rs is an IS. 4

Lemma 3 Ifr and s are ISs with the final state of r being the initial state
of s then rs is an IS

Proof

As s is an IS, from its final state, input and output its initial state can be
identified. Thus the final state of r is known if rs is executed and the final
state of rs is known. As r is an IS, from this and the input and output of r
the initial state of r is known, which is the initial state of rs. Thus rs is an
IS. O

The following will be used in the generation of prime invertible sequences.

Lemma 4 Any non-empty prime IS starts with an IT and any prime IS of
length greater than 1 ends with a transition from Tg.

Proof
Suppose that ¢ is a non-empty [S. Then ¢ = rs for some transition r, and
from Lemma 2 as rs is an IS r is also an IS. Thus, as r is an IS of length 1,
ris an I'T. Therefore any non-empty IS must start with an IT.

If ¢ has length greater than 1 then ¢t = ¢'s’ for some non-empty ' and
some transition s’. By Lemma 2, r' is an IS as ¢ is an IS. As ¢ is a prime IS

and r’ is an IS, ¢’ is not an IS. Thus s’ is not an IT and so s’ is a transition
from Tg. O

Lemma 5 The following prove that 1Ss do not have certain intuitively ap-
pealing properties.

1. There need not be an upper bound on the length of prime 1Ss
2. The number of transitions from Tg in prime ISs is not bounded above

3. The existence of a prime IS of length m+1 does not imply the exvistence
of a prime IS of length m.

4. A prime IS can be in the form rs where r s an IS that is not prime.

Proof

1

To show that there need not be an upper bound on the length of prime ISs
it is sufficient to prove that, in the FSM given in Figure 2, all sequences of
the form 1/x(2/al/b)™1/y are prime ISs. It is clear that these sequences are

ISs so it is sufficient to prove that they are prime. A proof by contradiction
will be produced.

Suppose that some IS ¢ = 1/x(2/al/b)™1/y is not prime, so t = rs for
some non-empty ISs r and s. Then s is either 1/y or of the form (2/al/b)™1/y
or of the form 1/b6(2/al/b)™1/y. But it is clear that the input, output,
and final state of 1/y allows two possible initial states, s; and s3. It is
also clear that any sequence involving the input, output, and final state of
(2/al/b)™1/y could have started at either s; or ss, and that any sequence
involving the input, output, and final state of 1/b6(2/al/b)™1/y could have
started at either sy or s4. Thus if £ = rs, r non-empty, then s is not a non-
empty IS, and so every sequence in the form 1/x(2/al/b)™1/y is a prime IS.
O
2)

In order to demonstrate that the number of transitions from T’g in prime ISs
is not bounded above, it is sufficient to alter the above example in order to
make the transition from s; to s, non-invertible. In order to do this it is
sufficient to change the transition from sg with input 2 to give output a and
go to state sy Thus given any m > 2 there is a prime IS 1/x(2/a,1/b)"1/y
with m elements from T'g. O
3)

The FSM given in Figure 2 is again considered. Any prime IS of length
greater than one must end in an element of T, the only such elements being
the transitions associates with 1/y. Sequences of the form (2/al/b)"1/y or of
the form 1/6(2/al/b)™1/y are not ISs. Thus the only prime ISs in the FSM
in Figure 2 of length greater than one are those of the form 1/2(2/al/b)™1/y
or of the form 2/z(2/al/b)™1/y. Thus the prime ISs are either of length one
or are of even length, and thus for each m > 1 there is a prime IS of length
2m but no prime IS of length 2m — 1. 4
Y

In the FSM shown in Figure 2 each sequence ¢ of the form 1/x(2/al/b)"1/y
or 2/z(2/al/b)"1/y is a prime IS. For any non-empty r,s with ¢ = rs and
|r| > 1, r is a non-prime IS as it has length at least 2 and all of its elements
are [Ts. g

These results show that it is not, in general, possible to find all prime ISs
and even if there is a finite number of prime ISs it is difficult to know when
to stop searching. Clearly there are bounds on the size of minimal (s;,s;)
ISs but these may be large.

2.3 Invertible sequences related to UlIOs

This section contains results that show how invertible sequences can be used
in the generation of UIOs and DSs, and in solving certain decision problems.

Lemma 6 FEvery UIO is an IS.

Proof

This is follows from the definition of UIOs, as from the input and output of

the sequence the initial state is identified. O
It should be noted that while every UIO is an IS, not every IS is a UIO.

Corollary 1 Fvery UIO starts with an IT.

Proof
This follows from Lemma 6 and Lemma 4 which state that every UIO is a
non-empty IS and every non-empty IS starts with an IT.

O

The following result shows that it is possible to use ISs to extend the set
of UlOs.

Lemma 7 Ifty ts an IS and ty is a UIO starting at the final state of t1 then
tity is a UIO for the initial state of 11.

Proof

Let s; and s; denote the initial states of #; and ¢, respectively. If ¢, is
executed from s, the state s, is identified, as 5 is a UIO. Thus, if #1¢; is
executed from s; the intermediate state sy is identified. But, as #; is an IS,
and its final state s, is known as well as its input and output, its initial state
s1 1s known. Thus, executing t15 identifies its initial state s; and so #1t5 is

a UIO. O

Lemma 8 Let r be a minimal length distinguishing sequence for some FSM
F, and let the first element of r be x. Then x is an Il and there are states
si and s; such that X(s;,x) # M(sj, x).

Proof
As a DS is a UIO for every state, x must be an IT from each state. Therefore
x 1s an [I.

For the second part there are two cases:

Case 1: There is a pair of states (s;,s;) such that 6(s;,x) = 6(s;,«). In this
case A(s;,x) # A(sj,x) as @ is an 1L
Case 2: The input = does not map any states together. In this case it
must permute the states. If & produces the same output from all states and
r = xr’ then " must distinguish these states and thus must itself be a DS.
This contradicts the minimality of r. Thus x cannot produce the same output
value for every state. O
The above results provide necessary, but not sufficient, conditions for an
FSM to have a DS and for a state to have a UIO. It is thus possible to
eliminate some FSM/states immediately. The results also reduce the options
for the first input and so reduce the size of the search space required when

looking for a DS or UlOs.

Lemma 9 [} being strongly connected does not imply that each state of F
has a UIO.

Proof

This can be seen by looking at the FSM in Figure 3 which is clearly minimal.
In this FSM the only ITs are those involving input x. While these strongly
connect the states they simply permute the states giving constant output.

As any UIO must start with an [T, UIOs must be in the form 2™ (m > 0)
followed by y or z and some sequence. But the application of y or z collapses
pairs of states, as y sends Sy and Sy to the same state with output 2 and
sends 57 and S3 to the same state with output 1, while z sends S; and 55
to the same state with output 1 and sends S3 and 54 to the same state with
output 2.

Thus, as the application of ™ simply permutes the states with constant
output, a sequence of the form =™ followed by either y or z cannot be an IS
and thus the only ISs are of the form x™. Therefore, as every UIO is an IS
and sequences of the form =™ cannot be UlOs, the FSM cannot have a UIO
for any state. O

Lemma 10 [f F} is strongly connected and some state of F' has a UIO then
every state of F' has a UIO.

Proof

Give a UlIO u for state s of F', in order to generate a UIO for state s' # s it is
sufficient to take a path p from s’ to s in F; and follow it by w. Such a path
p must exist, as F7 is strongly connected, and is an IS. Thus, by Lemma 7,
pu is a UIO as required. O

Corollary 2 If I} is strongly connected then either every state of F' has a
UIO or no state of ' has a UlO.

Proof
This follows directly from Lemma 10. g

Lemma 11 If Fy; is minimal then F' has a DS of length at most |S|*.

Proof
Take some pair of states s; and s3. As Fyy is minimal there is some sequence
r1, |r1] < |S], of inputs from Fj; that distinguishes between s; and s;. The
, on S that is defined by:
s; if and only if A*(s;,r1) = A*(s;,r1). Clearly, as the values in r; are
L 8; then 6*(s;,r1) # 6*(s;,7r1).

If there is some pair of states (s;,s;) such that s; ~,, s; then there is
some sequence 1y, |ro| < |S|, from Fy; that distinguishes between 6*(s;,r1)
and 6*(s;,71). Then ryry induces an equivalence relation on S and this has

sequence rq induces an equivalence relation ~,
Si N’/’l
from Fyj, if s; ~,

at least one more equivalence class than ~,,.

This process can be repeated until there is some sequence r = riry... 7%
with |S| equivalence classes. Then clearly k& < |S] and |r;| < |S], for 1 <i <
k, and thus |r| < |S|*. As ~, has |S| equivalence classes it is a DS. Thus F
has a DS of length at most |S]?. O

It should be noted that the above proof suggests an algorithm for gener-
ating DSs of length at most |S|* when F; is minimal. This upper bound is
useful, as there is no polynomial upper bound on the length of DSs or UIOs
(Lee and Yannakakis [1994]), although it has been suggested that DSs and
UIOs are typically short (Hennie [1964], Shen et al. [1990]).

2.4 Finding invertible sequences and UIOs

Given an FSM F = (S5, T, s1) there are two approaches to finding ISs, either
searching forward starting with invertible transitions or searching backwards
from non-invertible transitions, as a prime IS of length greater than one
starts with a transition from 77 and ends in a transition from 7. If the set
of non-invertible transitions, Tr, is much smaller than the set of invertible
transitions, 77, it can be advantageous to search backwards in order to find
the shorter ISs, as there will be far fewer starting transitions for the search. In
general, however, it is better to search forward starting with elements of T}, as

10

when searching forward any non-invertible sequence can be eliminated from
the search. This is because, by Lemma 2, a sequence ¢ being non-invertible
implies that for any sequence r, tr is also non-invertible. In contrast, when
searching backwards non-invertible sequences cannot be eliminated from the
search as it is possible that they can be extended backwards to produce
invertible sequences.

The forward search for ISs can be performed using, at the (m + 1)th
step, a set of ISs of length m and for each of these ISs the set of other final
states that can be reached with the same input and output sequence. The
set of ISs of length m will be denoted [,, and for each t = #;...¢,, in [,
i = (S4(i)> So(i+1)» i/ Yi), for some function o : {1,...,m}—>{1,...,n},

Se={6"(s"yxr...xp) |8 €S = s,y AN(s"s 21 2m) = Y1 Ym)}

This is the set of other final states that can be reached with this input and
output.
Then Iy = Ty and for each t = (s;,s;,2/y) in T;:

Si={s#s;|3s'e(s',s,2/y) e T}
Both [,,41 and the S; can be defined inductively by:

]m—l—l = {tl .. .tm+1,ti = (Sg(i), Sg(H_l), xz/yz) | tl .. tm -]m/\
((57 So(m+2), xn+1/yn+1) el =s ¢ Stl...tm)}

Strotmsr =151 35" € St ot 0 (85, Trmg1 [Ymar) € T}

It should be noted that if S; = {} then ¢ is a UIO and so this method
can be used to find UIOs. The searching of the set of ISs when looking for
UIOs has the advantage over the direct approach, as described in Sabnani
and Dahbura [1988], that it limits the size of the search. Thus, as a sequence
that is not an IS cannot be extended to form an IS, any extensions of a
sequence that is not an IS can be eliminated from the search.

As is noted in Sabnani and Dahbura [1988], for testing it is only necessary
to look for UIOs of length at most 2|5|?. This is because every FSM has a
characterizing set and it is possible to test with effort at most 2|S]* using
a characterizing set. As ISs will be used to avoid using UIOs, only ISs of
length at most 2|5|? need be generated.

11

3 Testing from an FSM

3.1 Introduction

In order to test against an FSM model it is necessary to check the transi-
tions. Testing a transition involves moving to its initial state, executing the
transition, and then checking the final state. In this paper it will be assumed
that any FSM used has a UIO for each state and that the problem is to
find the shortest sequence that contains a test for every transition. See e.g.
Chow [1978], Fujiwara et al. [1991], Petrenko et al. [1994b] for information
on testing from an FSM model that does not have a UIO for each state.

It has been noted that the conditions placed on the FSM can be weakened.
The problem of testing from a nondeterministic FSM has been considered
(Fujiwara et al. [1991], Fujiwara and v. Bochmann [1992], Evtushenko et
al. [1991]). Petrenko et al. [1994b] further weaken the conditions assumed
by introducing a test technique that uses a characterizing set and does not
require the FSM model to be either deterministic or completely specified.
Tripathy and Naik [1992] extended the idea of a UIO to a non-deterministic
FSM by using an adaptive identification process.

When producing a test sequence that tests the individual transitions by
using UIOs, each transition ¢ is tested by a sequence of the form tu, where u is
a UIO for the final state of ¢. Such sequences will be called test subsequences.
If a sequence v contains a test subsequence for each transition, v is said to
be a test sequence. The problem is to find the shortest test sequence.

Aho et al. [1988] express the problem of finding a test sequence as that
of minimally connecting the test subsequences. They represent the FSM by
a digraph and for each test subsequence tu they add an edge from the initial
state of ¢ to the final state of u. They look for the shortest sequence, in the
digraph, that contains every test subsequence. This problem corresponds to
the Rural Chinese Postman Problem (RCPP). While the RCPP is known to
be NP-complete (Lenstra and Rinnooy Kan [1976]), Aho et al. [1988] apply
a low order polynomial algorithm that solves the problem if either the FSM
has reset capacity (there is an input that takes every state to the initial state)
or has loops (transitions with equal initial and final states) for each state.

Shen et al. [1990] note that a state may have more than one UIO and
that shorter test sequences can be produced by an appropriate choice of UIO.

Yang and Ural [1990] utilize overlap between test subsequences. They
look for pairs of test subsequences t; and ¢, with the property that ¢; can

12

be extended to be of the form of a single transition followed by t,. More
formally, there exists a transition #o, and a (possibly empty) sequence
such that #1t), = fot;. Thus when t1t), is executed the first two transitions
are tested using only one UIO. They build sequences from overlapping test
subsequences and connect these sequences. While this can reduce the length
of the test sequence, it need not be optimal as it does not include a method
for finding the choice of sequences that leads to the shortest test.

Hierons [1996] proves that this form of overlap is fully represented by
the invertibility of transitions, as this overlap exists if and only if the first
transition of ¢, 1s an I'T. Invertible transitions can also be used to extend the
set of UIOs as, by Lemma 7, if ¢ is an invertible transition and w is a UIO
for the final state of ¢ then tu is a UIO.

A more general form of overlap is where there are two test subsequences
t; and t, such that ¢; ends with some initial section of #,. More formally,
there exist sequences ¢} and t} (¢} is non-empty) such that #1#] = t4ty and
|th] < |t1]. If the sequence t;t] is executed the first transition of ¢; and the
first transition of ¢, are both tested. The following results demonstrate that
this form of overlap exists if and only if 3¢5 is in the form of a transition
followed by an IS followed by a UIO, and thus that if a transition is followed
by an IS and then a UIO both the initial transition and the last transition of
the IS are tested. This shows that ISs fully represent this more general form
of overlap.

Theorem 1 If there exist test subsequences ty and ty such that there are
(possibly empty) sequences t) and t)y, and transitions t and t' with t,1] = ttht,,
t1 = tuy, ty = t'ug, and |t1] > |tty| then 151" is an IS.

Proof

As ttht' is contained in the beginning of the test subsequence #, t4t’ is con-
tained in the beginning of the UIO wy. By Lemma 6 wu; is an IS. Also, by
Lemma 2, if rs is an IS then r is an IS and thus, as t4t’ is contained in the
beginning of the IS wuy, t,# must be an IS. O

Theorem 2 [f there exists a test subsequence t1, sequence t5, and transitions
t and ' such that the final state of 1 is the initial state of ty, 1y = t'u, and
tot’ is an IS then ttyty is a test subsequence for t that overlaps with the test
subsequence 1.

13

Proof

As ty is a test subsequence, u is a UIO. The sequence {5t'u = t,1, is therefore

in the form of an IS followed by a UIO and so, by Lemma 7, is a UIO. Thus

ttoty is a test subsequence. O
This link between ISs and test subsequence overlap will be utilized in

order to reduce the test sequence length. The use of this, and the use of ISs

to give more UlOs, will now be described in detail.

3.2 Invertible sequences and Testing

It has been shown that ISs can be used both to represent test subsequence
overlap and to extend the set of UlOs. An IS can therefore play two sepa-
rate roles in testing: either allowing the final state of its last transition to
be verified (and thus testing it without using an extra UIO) or connecting
tests. An algorithm, based on graph and network theory, that utilizes these
properties will now be given. This will extend the algorithm given in Hierons
[1996] by using ISs. It will also allow transitions from 77 to be tested as if
they were from T; this extends the applicability of the algorithm as in some
cases 1t is not possible to utilize the invertibility of all of the elements of T7.
The algorithm will be divided into 3 steps.

3.2.1 Step 1
Given an FSM F = (5,T,s1) (|S| = n), represented by a digraph G, the

transition sets 17 and Tg are produced. From this a network N, with vertex
set V! =WUXUY UZU({s,t} in which the source is s and the sink is ¢, is
produced. This network is shown in Figure 4. In Step 3 edges from Z to W,
representing the transitions being tested, will be added and a tour generated.

The vertex set W represents the final states of transitions being tested,
the set X represents the initial states of transitions to be tested as non-
invertible transition, and the set Y represents the initial states of transitions
to be tested as invertible transitions. The sets X and Y are connected to
the set Z which represents the initial states of transitions being tested. This
stage of the algorithm involves producing a min cost max flow for N, whose
edges will now be described.

The capacity of the edge from s to w; (1 < ¢ < n)isindegreer(s;) and the
capacity of the edge from z; € 7 to t is outdegreer(s;). The flow from each y;
to the corresponding z; is limited to outdegreer,(s;), as this is the maximum

14

number of transitions leaving s; that can be tested as invertible transitions.
For each 7, 1 < ¢ < n, there is an edge from w; toy; with infinite capacity.
The flow from each x; to the corresponding z; is not limited as it may be
necessary to test some transitions from 77 as if they were not invertible. None
of these edges has a cost, as each corresponds to the execution of a transition
being tested; in testing every transition is executed in this manner.

Given a prime IS of the form fpx (non-empty sequence ¢y and final transi-
tion x) in which the initial state of ¢y is s; and the final state of ¢y (and thus
the initial state of ') is s; an edge from w; to z;,with cost |to| and capacity 1,
is included. This edge represents testing = by executing the IS {2 and later
verifying its final state, which is why it has capacity 1 and provides flow of
1 to z;. Prime ISs are used as any non-prime IS can be produced from this
and it is vital that the elements tested in this manner are from T (Lemma
4 tells us that prime ISs of length greater than 1 end in elements from Tg)
as otherwise the capacity from y; would need reducing.

The edges from W to X represent the UlOs and thus for each UIO with
initial state s;, final state s;, and length m there is an edge from w; to x;
with cost m. Edges between the vertices of X represent executing transitions
in order to get to the initial state of a transition from Tz and thus a copy of
each transition from 7' is included and give infinite capacity and cost 1.

The edges between the vertices of W represent transitions joining testing
sequences and thus must be invertible. A copy of the elements from T}
and the set of known prime ISs is therefore included; each is given capacity
infinity and the cost is the length of the sequence (clearly 1 for individual
transitions).

A max flow/ min cost F’ for N is now found. The flow can be seen as
a set of transitions/sequences that can be executed by following edges from
the flow plus edges from Z to W representing the transitions (these replace
the flow from s and to t). The max flows will represent the set of sequences
that contain a test for each transition, and for a max flow the corresponding
test has length |T'| plus the cost of the flow. From F’ a symmetric digraph
(" will be produced and an Euler Tour of (" will give the test sequence (this
process will be described in Step 3).

3.2.2 Step 2

If the full flow from Y is used in F’, the algorithm now goes to Step 3. If,
however, some of the transitions from 77 are tested as if they were transitions

15

from Tg (i.e. the capacity of the edges from Y is not fully used) it is necessary
to determine which transitions from 77} are to be treated in this manner: the
extra flow leaving some x; must be associated with the extra flow from W
to X. Some set A C T of transitions, whose testing as elements of Tx is
consistent with the flow F’, is found.

The set A is found by producing a max flow for a network N’ with vertex
set V" = {s,t} U B UC, where s is the source, t is the sink, each vertex
in B corresponds to the initial state of a transition, and each vertex in C
corresponds to the final state of a transition. For each transition in 77 that
goes from s; to s; an edge from b; to ¢; with capacity 1 is included. For
each w; with flow outdegreer,(s;) + €; to X in F’ an edge from ¢; to t with
capacity e; is included. For each x; with flow outdegreer,(s;) + f; to z in
F’ there is an edge from s to b; with capacity f;. The network is shown in
Figure 5. A max flow for this network gives a set of edges from T; whose
treatment as non-invertible will allow a tour associated with the flow F”.

3.2.3 Step 3

Having found the set A and the set A’ of transitions tested as part of an IS,
it is possible to produce the graph G’ = (V" E"), V" = P U @, shown in
Figure 6. Effectively the vertices in P represent the situation after executing
a UIO and before executing a transition from Tx while the vertices from @
represent the situation before executing a UIO and thus the edges between
the ¢; must be invertible (ISs or 1Ts).

The edges will represent transitions or sequences of transitions involved
in testing and an Fuler Tour will represent the test sequence. For each
transition that is to be tested as non-invertible and that is not tested as part
of an IS, from state s; to state s;, there is a corresponding edge from p; to
q;. This transition set is Tp U A — A", For each UIO from state s; to s; with
flow m in F’ there are m edges from ¢; to p;; each represents the execution
of this UIO. For each transition in 77 — A from state s; to s; an edge from
gi to ¢; is included and for each transition @ € A’, tested as part of a IS tpx
with initial state s; and final state s;, there is an edge from ¢; to ¢;.

For each unit of flow from w; to w; in F’ there is an edge from ¢; to
q; representing this I'T or IS. For each unit of flow from x; to x; in F’ a
corresponding edge from p; to p; is added.

Suppose W is a walk that covers every edge of G'. In W a non-invertible
transition, that is not tested as part of an invertible sequence, is represented

16

by an edge to () and thus is followed by a number of ISs and ITs and then
finally a UIO. Similarly any transition that is either being tested as an I'T or
as part of an IS will be followed by a number of ISs and ITs and then a UIO.
Thus W will contain a test for every transition.

It is easy to verify that, as flow is conserved in a network, this graph is
symmetric. An Euler Tour of G' can therefore be found as long as G, with
the isolated vertices removed, is connected. Possible approaches to dealing
with GG being disconnected will be discussed in Section 3.3.

The Euler Tour of G’, with each edge replaced by the corresponding
transition or sequences of transitions, gives the test sequence, of length
cost(F') 4+ |T|, unless it does not include a UIO; in this case a UIO can
be added to the end. The algorithm will be applied to an example in Section
3.4.

3.3 The connectivity of G’

It is possible for the digraph G’ to be symmetric but, even with the isolated
vertices removed, disconnected. If this is the case G’ does not have an Euler
Tour, though an Euler Tour can be produced for each component. As a tour
of the whole digraph is required it is necessary to add edges to connect G’
while maintaining its symmetry. This can be done by adding circuits to G'.
It is important to connect these tours at the correct points, which are the
sections that lie after the execution of a UIO and before the next execution
of a transition to be tested. These correspond to vertices in P.

Clearly it is desirable to find the smallest set of circuits, in terms of total
number of transitions, that connects GG'. One approach is to initially find
the pair of components that requires the shortest circuit to connect it and
add this circuit forming a new graph (. This process is repeated until some
connected G is found. An Euler Tour of GG/ provides the test sequence.

The advantage of this rather naive algorithm is that its computational
complexity is low. Unfortunately, however, the solution need not be opti-
mal, but this is to be expected as the problem of minimally connecting the
components is NP-complete. An alternative approach is given in Ural et al.

[1997].

17

3.4 Example

The algorithm outlined in Section 3.2 will now be applied to the FSM F' with
state set S = {s1, 89, 83, 84, 85} input alphabet ¥ = {a, b, ¢}, output alphabet
O = {z,y}, and whose transitions are given in Table 1. The entries in Table
1 give the output and next state for the initial state and input given by the
row and column respectively. The sets T7 and Tx are given in Tables 2 and
3 respectively. The set of UIOs to be used is given in Table 4 - these are the
shortest UIOs for each state.

a b c a b c
S1 X, S2 Xr,83 | T, S5 S1 Xr,82 | £,83 | T, S5
Sg | LySq | XyS5 | Xy 83 S9 X, 83
S3 | %,54 | X,55 | Y, 55 53 Y, 35
Sq4 | X,51 | ,55 | Y, 52 S4 Y, 52
S5 | Xy S1 r,85 | T, 84 Sx X, 84
Table 1: the FSM F Table 2: the set 17

a b c UIO Final State
S1 s1 | b/x,cly S5
Sy | w54 | T, 85 Sy | ¢/x,alx,cly S9
s3 | x,54 | T, 85 s3 | ¢/y,alz,c/x S5
s4 | w51 | T, 85 sq | ¢/y,alz,cly S9
ss5 | @51 | x, 85 ss | ¢/x,cfy,alz,cly | s
Table 3: the set Tr Table 4: the UIOs

There are a number of prime [Ss. The ones to be use, and their interme-
diate states, are given in Table 5.

lo

X

83— c/y— > ss5

sy —ajr— > s

S5 —c/r— > 84

Sy —ajr— > s

89 —c/x— > 83

S3—ajr— > 84

84— cy— > s9

Sg —ajr— > 84

Table 5: the ISs
The algorithm produces the network and min cost/ max flow F’ shown
in Figure 7, in which only the edges with non-zero flow are shown. The flow
F" has cost 23 and thus the test sequence produced has length 23 + 15 = 38.
It ISs are not used, but ITs are, a test sequence of length 54 is produced.
The symmetric graph G’ is defined by:

Vertex set V' = {p17p27p37p47p57 q1,492, 43, 44, q5}
The edges are:

18

1. Corresponding to A" ¢35 — ¢/y, a/x— > q1, q¢5 — ¢/x,a/xr— > q1, g2 —
c/r,afr— > qi, g1 — cfy.afr— > ¢

2. Corresponding to Tp— A”": py—b/x— > g5, p3—b/x— > q5, p1—b/x— >
s, ps — b/r— > g5

3. Corresponding to the UlOs: ¢1— > ps, 1— > ps, qa— > p2, g5— > P2

4. Corresponding to Tr: ¢ —a/x— > qa, ¢ — b/x— > q3, 1 — ¢/x— > g5,
G2 —c/v= > qs, 43 — ¢/y— > G5, 1 — ¢/y— > G2, @5 — ¢/T— > @4

5. Corresponding to connecting ISs: gs— > ¢1, ¢s— > ¢1, ¢s— > ¢1

6. Corresponding to connecting transitions between the z;: py — ¢/z— >
P, Ps — ¢/T— > pq

It is easy to check that this digraph, G’, is symmetric. As G'; with the
isolated vertex p; removed, is connected an Euler Tour can be produced, as
required. This tour, in which UI0; ; denotes the UIO from state s; to state
s; and IS denotes an IS used to connect testing, is:

pp—blz — ¢ —c/rafr — q —alr— q—c/r— g —cly— g

gs —c/r = q—cly— @—clr.a/v—q—cly,afr —qs—UlOsz — py
pp—c/r — p3—blr—qg—I15—q—c/lt—q—15—q

@ —bjx — qs—cly,alr — q —UlOy5— ps —blz — g5

gs— 15 — ¢ —UlO15 — ps—c/x —py—bjx — g5 — UlOs55 — po

3.5 A comparison with other techniques

There are a number of techniques that aim to generate a test sequence that
includes a test for every transition (Aho et al. [1988], Yang and Ural [1990],
Hierons [1996]). The algorithm outlined in Section 3.2 subsumes the algo-
rithm given in Hierons [1996] and, as it allows invertible transitions to be
tested as transitions from Tg, is generally more applicable. The example
given in Section 3.4 demonstrates that the algorithm outlined in this paper
can lead to a shorter test sequence than that given in Hierons [1996] and
clearly it can never produce a longer test sequence. The algorithm given in

Hierons [1996] subsumes those of Yang and Ural [1990] and Aho et al. [1990]

19

and thus again cannot produce a longer test sequence than these. It is also
important to note that all of these algorithms have the same computational
complexity as they are based on network optimization for networks of the
same order.

It is more difficult to compare the algorithm given in this paper with
different classes of algorithm, such as the W and Wp algorithms (Chow
[1978], Fujiwara et al. [1991]). The worst case behaviour of the W and Wp
methods is certainly better than those based on the use of UIOs or a DS, as
there is no polynomial upper bound on the length of UIOs and DSs (Lee and
Yannakakis [1994]). It has, however, been noted that UIOs are usually quite
short and thus that the tests produced using UIOs are typically much shorter
than those used producing the W method (Sidhu and Leung [1988]) and,
presumably, the Wp method. This is because, when using a characterizing
set, it is necessary to execute each transition a number of times.

It is important to note that the problem of producing a checking sequence
has not been addressed in this paper. In order to produce a checking sequence
it is necessary to verify the UIOs used, and thus the use of multiple UIOs for
each state may not reduce the total length of a checking sequence.

4 Conclusions

Invertible sequences are strongly linked to state identification sequences and
can be utilized in generating a set of UIOs or a DS. If the FSM Fi;, formed
by taking the transitions given by invertible inputs, is minimal it is known
that F has a DS of length at most |S|? and an algorithm for generating this
DS has been outlined.

Certain properties of I'Ts help us decide whether an FSM has a DS or
UIOs for each state. In particular, if F7 is strongly connected then either ¥
has a UIO for every state or no state of F' has a UIO. If some state of an
FSM has no ITs leaving it then the state does not have a UIO.

Invertible sequences can be used to connect transitions that are being
tested without losing information about the state; if the final state of an IS
is known then so is its initial state. If the final state of the IS has been
verified, the last transition of the IS and the transition that preceded the IS
have both been tested. This can help reduce the number of UIOs needed in
testing, and thus reduce the length of the test sequence produced without
increasing the computational complexity of the algorithm.

20

The algorithm outlined in this paper generates shorter test sequences
when it is simply necessary for there to be a test for every transition. It does
not, however, produce a checking sequence. In order to produce a checking
sequence a further sequence must be added. This extra sequence may be
longer for methods, such as this, that use multiple UIOs.

5 References

1. A.V. Aho, A.T. Dahbura, D. Lee, and M.U. Uyar, 1988, An Optimiza-
tion Technique for Protocol Conformance Test Generation Based on
UIO Sequences and Rural Chinese Postman Tours Proceedings of Pro-
tocol Specification, Testing, and Verification VIII, pp75-86, Atlantic
City, North-Holland.

2. E. Brinksma, 1988, A Theory For The Derivation of Tests, Proceed-
ings of Protocol Specification, Testing, and Verification VIII, pp63-T4,
Atlantic City, North-Holland.

3. T.S. Chow, 1978, Testing Software Design Modelled by Finite State
Machines, [FEFE Transactions on Software FEngineering, 4 3, March
1978, ppl178-187.

4. N.V. Evtushenko, A.V. Lebedev, and A.F. Petrenko, 1991, On Check-
ing Experiments With Nondeterministic Automata, Automatic Control
and Computer Sciences, 6, pp81-85.

5. S. Fujiwara, G.v. Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi,
1991, Test Selection Based on Finite State Models, IEFE Transactions
on Software Engineering, 17 6, June 1991, pp591-603.

6. S. Fujiwara and G. v. Bochmann, 1992, Testing Non-deterministic
State Machines with Fault Coverage, Proceedings of Protocol Test Sys-
tems, 1V, pp267-280.

7. A. Gibbons, 1985, Algorithmic Graph Theory, Cambridge University

Press.

8. F.C. Hennie, 1964, Fault-detecting experiments for sequential circuits,
Proceedings of Fifth Annual Symposium on Switching Circuit Theory
and Logical Design, November 1964, pp95-110.

21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

R.M. Hierons, 1996, Extending Test Sequence Overlap by Invertibility,
The Computer Journal, 39 4, pp325-330.

R.M. Hierons, 1997, Invertible Sequences and State Identification, Gold-
smiths Mathematics and Computing Technical Report #970701.

C-M Huang and J-M Hsu, 1994, An Incremental Protocol Verification
Method, The Computer Journal, 37 8, pp698-710.

7. Kohavi, 1978, Switching and Finite State Automata Theory, McGraw-
Hill.

[. Kohavi and Z. Kohavi, 1968, Variable-Length Distinguishing Se-
quences and Their Application to the Design of Fault-Detection Exper-
iments, IEEFE Transactions on Computers, August 1968, pp792-795.

D. Lee and M. Yannakakis, 1994, Testing Finite-State Machines: State
Identification and Verification, IEEE Transactions on Computers, 43
3, pp306-320.

J.L. Lenstra and A.H.G. Rinnooy Kan, 1976, On General Routing
Problems, Networks, 6, pp273-280.

G. Luo and J. Chen, 1989, Generating Test Sequences For Communi-
cation Protocol Modelled by CNFSM, Proceedings of 3rd Pan Pacific
Computing Conference, pp688-694.

G. Luo, G. v. Bochmann, and A. Petrenko, 1994a, Test Selection Based
on Communicating Nondeterministic Finite-State Machines Using a
Generalized Wp-Method, IEEFE Transactions on Software Engineering,
20 2, ppl49-161.

G. Luo, A. Das, and G. v. Bochmann, 1994b, Generating Tests For
Control Portion of SDL Specifications, Proceedings of Protocol Test
Systems, VI (C-19), pp51-66.

E.P. Moore, 1956, Gedanken-Experiments, in Automata Studies, Edi-
tors C. Shannon and J. McCarthy, Princeton University Press, pp129-
153.

22

20

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

. H. Motteler, A. Chung, and D. Sidhu, 1994, Fault Coverage of UIO-
based Methods for Protocol Testing, Proceedings of Protocol Test Sys-
tems, VI (C-19), pp21-33.

A. Petrenko, G. v. Bochmann, and R. Dssouli, 1994a, Conformance
Relations and Test Derivation, Proceedings of Protocol Test Systems,

VI (C-19), pplbT-178.
A. Petrenko, N. Yevtushenko, A. Lebedev, and A. Das, 1994b, Nonde-

terministic State Machines in Protocol Conformance Testing, Proceed-

ings of Protocol Test Systems, VI (C-19), pp363-378.
A. Petrenko, N. Yevtushenko, G. v. Bochmann, and R. Dssouli, 1996,

Testing in Context: Framework and Test Derivation, Computer Com-
munications, 19, ppl1236-1249.

M. Phalippou, 1993, The Limited Power Of Testing, Proceedings of
Protocol Test Systems, V (C-11), pp43-54.

A. Rezaki and H. Ural, 1995, Construction of checking sequences based
on characterization sets, Computer Communications, 18 12, pp911-920.

K. Sabnani and A. Dahbura, 1988, A Protocol Test Generation Proce-
dure, Computer Networks, 15 4, pp285-297.

Y.N. Shen, F. Lombardi, and A.T. Dahbura, 1990, Protocol Confor-
mance Testing Using Multiple UIO Sequences, Proceedings of Protocol
Specification, Testing, and Verification IX, pp131-143, Twente, Nether-
lands, North-Holland.

D. Sidhu and T. K. Leung, 1988, Experience with Test Generation for
Real Protocols, ACM SIGCOMM 88, pp257-261.

P. Tripathy and K. Naik, 1992, Generation of Adaptive Test Cases
From Non-deterministic Finite State Models, Proceedings of the 5th
International Workshop on Protocol Test Systems, Sept 1992, Montreal,
pp309-320.

B. Yang and H. Ural, 1990, Protocol Conformance Test Generation
Using Multiple UIO Sequences with Overlapping, ACM SIGCOMM
90: Communications, Architectures, and Protocols, Sept 24-27 pl118-
125, Twente, Netherlands, North-Holland.

23

31. H. Ural, X. Wu, and F. Zhang, 1997, On Minimizing the Lengths of
Checking Sequences, IEEFE Transactions on Computers, 46 1, pp93-99.

32. C.D. Wezeman, 1989, The CO-OP Method For Compositional Deriva-
tion of Conformance Testers, Proceedings of Protocol Specification, Test-
ing, and Vertfication IX, pp145-158, Atlantic City, North-Holland.

24

