
Greedy randomized adaptive search and variable
neighbourhood search for the minimum labelling

spanning tree problem
S. Consoli a,∗, K. Darby-Dowman a, N. Mladenović a, J. A. Moreno Pérez b

aCARISMA and NET-ACE, School of Information Systems, Computing and Mathematics, Brunel
University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

bDEIOC, IUDR, Universidad de La Laguna, Facultad de Matemáticas, 4a planta Astrofisico Francisco
Sánchez s/n, 38271, Santa Cruz de Tenerife, Spain

Abstract

This paper studies heuristics for the minimum labelling spanning tree (MLST) problem. The
purpose is to find a spanning tree using edges that are as similar as possible. Given an undi-
rected labelled connected graph, the minimum labelling spanning tree problem seeks a spanning
tree whose edges have the smallest number of distinct labels. This problem has been shown
to be NP-hard. A Greedy Randomized Adaptive Search Procedure (GRASP) and a Variable
Neighbourhood Search (VNS) are proposed in this paper. They are compared with other algo-
rithms recommended in the literature: the Modified Genetic Algorithm and the Pilot Method.
Nonparametric statistical tests show that the heuristics based on GRASP and VNS outperform
the other algorithms tested. Furthermore, a comparison with the results provided by an exact
approach shows that we may quickly obtain optimal or near-optimal solutions with the proposed
heuristics.

Key words: Metaheuristics, Combinatorial optimisation, Minimum labelling spanning tree, Variable
Neighbourhood Search, Greedy Randomized Adaptive Search Procedure.

1. Introduction

Many combinatorial optimisation problems can be formulated on a graph where the
possible solutions are spanning trees. These problems consist of finding spanning trees

∗ Corresponding author.
(+44 (0)1895 266820; fax: +44 (0)1895 269732
� sergio.consoli@brunel.ac.uk

Preprint submitted to EJOR April 11, 2008

that are optimal with respect to some measure and have been extensively studied in graph
theory (Avis et al., 2005). Typical measures include the total length or the diameter of the
tree. Many real-life combinatorial optimisation problems belong to this class of problems
and consequently there is a large and growing interest in both theoretical and practical
aspects. For some of these problems there are polynomial-time algorithms, while most
are NP-hard. Thus, it is not possible to guarantee that an exact solution to the problem
can be found within an acceptable timeframe and one has to settle for heuristics and
approximate solution approaches with performance guarantees.

The minimum labelling spanning tree (MLST) problem is an NP-hard problem in
which, given a graph with labelled edges, one seeks a spanning tree with the least number
of labels. Such a model can represent many real-world problems in telecommunications
networks, power networks, and multimodal transportation networks. For example, in
telecommunications networks, there are many different types of communications media,
such as optical fibre, coaxial cable, microwave, and telephone line (Tanenbaum, 2003). A
communications node may communicate with different nodes by choosing different types
of communications media. Given a set of communications network nodes, the problem is
to find a spanning tree (a connected communications network) that uses as few commu-
nications types as possible. This spanning tree will reduce the construction cost and the
complexity of the network.

The MLST problem can be formulated as a network or graph problem. We are given a
labelled connected undirected graph G = (V, E, L), where V is the set of n nodes, E is the
set of m edges, and L is the set of ` labels. In the telecommunications example (Tanen-
baum, 2003), the vertices represent communications nodes, the edges communications
links, and the labels communications types. Each edge in E has a label in a finite set
L that identifies the communications type. The objective is to find a spanning tree that
uses the smallest number of different types of edges. Define LT to be the set of different
labels of the edges in a spanning tree T . The labelling can be represented by a function
fL : E → L for all edges e ∈ E or by a partition PL of the edge set; the sets of the
partitions are those consisting of the edges with the same label.

Another example is given by multimodal transportation networks (Van-Nes, 2002). In
such problems, it is desirable to provide a complete service using the minimum number
of companies. The multimodal transportation network is represented by a graph where
each edge is assigned a label, denoting a different company managing that edge. The
aim is to find a spanning tree of the graph using the minimum number of labels. The
interpretation is that all terminal nodes are connected without cycles, using the minimum
number of companies.

The minimum labelling spanning tree problem is formally defined as follows:

MLST problem: Given a labelled graph G = (V, E, L), where V is the set of n
nodes, E is the set of m edges, and L is the set of ` labels, find a spanning tree T of
G such that |LT | is minimized, where LT is the set of labels used in T .

Although a solution to the MLST problem is a spanning tree, we first consider con-
nected subgraphs. A feasible solution is defined as a set of labels C ⊆ L, such that all the
edges with labels in C represent a connected subgraph of G and span all the nodes in G.
If C is a feasible solution, then any spanning tree of C has at most |C| labels. Moreover,
if C is an optimal solution, then any spanning tree of C is a minimum labelling spanning

2

tree. Thus, in order to solve the MLST problem we seek a feasible solution with the least
number of labels (Xiong et al., 2005a).

The upper left graph of Figure 1 is an example of an input graph with the optimal
solution shown on the upper right. The lower part of Figure 1 shows examples of feasible
solutions.

- INSERT FIGURE 1 -
The rest of the paper is organised as follows. In the next section, we review the literature
of the problem. In section three we present the details of the heuristics considered in this
paper: ones recommended in the literature (the Modified Genetic Algorithm of Xiong et al.
(2006), and the Pilot Method of Cerulli et al. (2005)), and some new approaches to the
MLST problem (a Greedy Randomized Adaptive Search Procedure, and a basic Variable
Neighbourhood Search). Section four includes the experimental analysis of the comparison
of these metaheuristics, and the paper ends with some conclusions. For a survey on the
basic concepts of metaheuristics and combinatorial optimisation, the reader is referred
to (Voß et al., 1999; Glover and Kochenberger, 2003).

2. Literature Review

In communications network design, it is often desirable to obtain a tree that is “most
uniform” in some specified sense. Motivated by this observation, Chang and Leu (1997)
introduced the minimum labelling spanning tree problem. They also proved that it is an
NP-hard problem and provided a polynomial time heuristic, the maximum vertex covering
algorithm (MVCA), to find (possibly sub-optimal) solutions. This heuristic begins with
an empty graph. It then adds the label whose edges cover as many unvisited nodes as
possible until all the nodes are covered. The heuristic solution is an arbitrary spanning
tree of the resulting graph. However, with this version of MVCA, it is possible that
although all the nodes of the graph are visited, it does not yield a connected graph and
thus fails.

Krumke and Wirth (1998) proposed a corrected version of MVCA, depicted in Algo-
rithm 1. This begins with an empty graph. Successively, it adds at random one label from
those labels that minimize the number of connected components. The procedure contin-

Algorithm 1: Revised MVCA (Krumke and Wirth, 1998)

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels;
Output: A spanning tree T ;
Initialisation:
- Let C ← 0 be the initially empty set of used labels;
- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where
E(C) = {e ∈ E : L(e) ∈ C};
- Let Comp(C) be the number of connected components of H = (V, E(C));
begin

while Comp(C) > 1 do
Select the unused label c ∈ (L− C) that minimizes Comp(C ∪ {c});
Add label c to the set of used labels: C ← C ∪ {c};
Update H = (V, E(C)) and Comp(C);

end
⇒ Take any arbitrary spanning tree T of H = (V, E(C)).

end

3

ues until only one connected component is left, i.e. when only a connected subgraph is
obtained.

Krumke and Wirth (1998) proved that MVCA can yield a solution no greater than
(1 + 2 log n) times optimal, where n is the total number of nodes. Later, Wan et al.
(2002) obtained a better bound for the greedy algorithm introduced by Krumke and
Wirth (1998). The algorithm was shown to be a (1 + log(n− 1))-approximation for any
graph with n nodes (n > 1).

Brüggemann et al. (2003) used a different approach; they applied local search tech-
niques based on the concept of j-switch neighbourhoods to a restricted version of the
MLST problem. In addition, they proved a number of complexity results and showed that
if each label appears at most twice in the input graph, the MLST problem is solvable in
polynomial time.

Xiong et al. (2005b) derived tighter bounds than those proposed by Wan et al. (2002).
For any graph with label frequency bounded by b, they showed that the worst-case bound
of MVCA is the bth-harmonic number Hb =

∑b
i=1

1
i = 1 + 1

2 + 1
3 + . . . + 1

b ;
Later, they constructed a worst-case family of graphs such that the MVCA solution is

exactly Hb times the optimal solution. Since Hb < (1+ log(n− 1)) and b ≤ (n− 1) (since
otherwise the subgraph induced by the labels of maximum frequency contains a cycle and
one can safely remove edges from the cycle), the tight bound Hb obtained is, therefore,
an improvement on the previously known performance bound of (1 + log(n − 1)) given
by Wan et al. (2002).

Other heuristic approaches to the MLST problem are proposed in the literature. For
example, Xiong et al. (2005a) presented a Genetic Algorithm (GA) to solve the MLST
problem, outperforming MVCA in most cases.

Subsequently, Cerulli et al. (2005) applied the Pilot Method, a greedy heuristic devel-
oped by Duin and Voß (1999) and subsequently extended in (Voß et al., 2005), to the
MLST problem. Considering different sets of instances of the MLST problem, Cerulli
et al. (2005) compared this method with other metaheuristics (Reactive Tabu Search,
Simulated Annealing, and an ad-hoc implementation of Variable Neighbourhood Search).
Their Pilot Method obtained the best results in most of the cases. It generates high-
quality solutions to the MLST problem, but running times are quite large (especially if
the number of labels is high).

Xiong et al. (2006) implemented simplified versions of the Pilot Method of Cerulli
et al. (2005), along with a Modified Genetic Algorithm (MGA) which obtained the best
performance for the MLST problem in terms of solution quality and running time.

3. Exploited metaheuristics

In this section, the details of the heuristics considered in this paper are specified. First,
those that are reported in the literature to be the best performing are considered, followed
by some new approaches.

Xiong et al. (2005a) presented two slightly different Genetic Algorithms to solve the
MLST problem. They both were shown to be simple, fast, and effective. In most cases,
they also outperformed MVCA, the most popular MLST heuristic in the literature at
that time. Later, a Modified Genetic Algorithm (MGA) was proposed in (Xiong et al.,
2006). It outperformed the first two Genetic Algorithms with respect to solution quality

4

and running time. MGA is the first metaheuristic that we consider.
Cerulli et al. (2005) applied the Pilot Method to the MLST problem. Comparing it

with some other metaheuristic implementations (Reactive Tabu Search, Simulated An-
nealing, and an ad-hoc implementation of Variable Neighbourhood Search), it was the
best performing in most of the test problems. The Pilot Method of Cerulli et al. (2005)
is the second metaheuristic considered in this paper.

We then present some new approaches to the problem. We propose a new heuristic for
the problem based on GRASP: Greedy Randomized Adaptive Search Procedure. Basically,
GRASP is a metaheuristic combining the power of greedy local search with randomisa-
tion. For a survey on GRASP, the reader is referred to (Feo and Resende, 1995; Resende
and Ribeiro, 2003).

The other algorithm that we propose is a basic Variable Neighbourhood Search (VNS).
Variable Neighbourhood Search is a recently exploited metaheuristic based on dynam-
ically changing neighbourhood structures during the search process. For more details
see (Mladenović and Hansen, 1997; Hansen and Mladenović, 2001, 2003).

3.1. Modified Genetic Algorithm (Xiong et al., 2006)

Genetic Algorithms are based on the principle of evolution, operations such as crossover
and mutation, and the concept of fitness (Goldberg et al., 1991).

In the MLST problem, fitness is defined as the number of distinct labels in the can-
didate solution. After a number of generations, the algorithm converges and the best
individual, hopefully, represents a near-optimal solution.

An individual (or a chromosome) in a population is a feasible solution. Each label
in a feasible solution can be viewed as a gene. The initial population is generated by
adding labels randomly to empty sets, until feasible solutions emerge. Crossover and
mutation operations are then applied in order to build one generation from the previous
one. Crossover and mutation probability values are set to 100%. The overall number of
generations is chosen to be half of the initial population value. Therefore, in the Genetic
Algorithm of Xiong et al. (2006) the only parameter to tune is the population size.

The crossover operation builds one offspring from two parents, which are feasible solu-
tions. Given the parents P1 ⊂ L and P2 ⊂ L, it begins by forming their union P = P1∪P2.
Then it adds labels from the subgraph P to the initially empty offspring until a feasible
solution is obtained, by applying the revised MVCA of Krumke and Wirth (1998) to the
subgraph with labels in P , node set V , and the edge set associated with P . On the other
hand, the mutation operation consists of adding a new label at random, and next trying
to remove the labels (i.e., the associated edges), from the least frequently occurring label
to the most frequently occurring one, whilst retaining feasibility.

3.2. Pilot Method (Cerulli et al., 2005)

The Pilot Method is a metaheuristic proposed by Duin and Voß (1999) and Voß et al.
(2005). It uses a basic heuristic as a building block or application process, and then
it tentatively performs iterations of the application process with respect to a so-called
master solution. The iterations of the basic heuristic are performed until all the possible
local choices (or moves) with respect to the master solution are evaluated. At the end of

5

all the iterations, the new master solution is obtained by extending the current master
solution with the move that corresponds to the best result produced.

Considering a master solution M , for each element i /∈ M , the Pilot Method is to
extend tentatively a copy of M to a (fully grown) solution including i, built through
the application of the basic heuristic. Let f(i) denote the objective function value of the
solution obtained by including each element i /∈ M , and let i∗ be a most promising of
such elements, i.e. f(i∗) ≤ f(i), ∀i /∈ M . The element i∗, representing the best local
move with respect to M , is included in the master solution by changing it in a minimal
fashion, leading to a new master solution M = M ∪ {i∗}. On the basis of this new
master solution M , new iterations of the Pilot Method are started ∀i /∈ M , providing a
new solution element i∗, and so on. This look-ahead mechanism is repeated for all the
successive stages of the Pilot Method, until no further moves need to be added to the
master solution. Alternatively, some user termination conditions, such as the maximum
allowed CPU time or the maximum number of iterations, may be imposed in order to stop
the algorithm when these conditions are satisfied. The last master solution corresponds
to the best solution to date and it is produced as the output of the procedure.

For the MLST problem, the Pilot Method proposed by Cerulli et al. (2005) starts from
the null solution (an empty set of labels) as master solution, uses the revised MVCA
of Krumke and Wirth (1998) as the application process, and evaluates the quality of a
feasible solution by choosing the number of labels included in the solution as the objec-
tive function. It then computes all the possible local choices from the master solution,
performing a series of iterations of the application process to the master solution. This
means that, at each step, it alternatively tries to add to the master solution each la-
bel not yet included, and then applies MVCA in a greedy fashion from then on (i.e. by
adding at each successive step the label that minimizes the total number of connected
components), stopping when the resulting subgraph is connected (note that, when the
MVCA heuristic is applied to complete a partial solution, in case of ties in the minimum
number of connected components, a label is selected at random within the set of labels
producing the minimum number of components).

The Pilot Method successively chooses the best local move, that is the label that, if
included to the current master solution, produces the feasible solution with the minimum
objective function value (number of labels). In case of ties, it selects one label at random
within the set of labels with the minimum objective function value. This label is then
included in the master solution, leading to a new master solution. If the new master
solution is still infeasible, the Pilot Method proceeds with the same strategy in this new
step, by alternatively adding to the master solution each label not yet included, and then
applying the MVCA heuristic to produce feasible solutions for each of these candidate
labels. Again, the best move is selected to be added to the master solution, producing a
new master solution, and so on. The procedure continues with the same mechanism until
a feasible master solution is produced, that is one representing a connected subgraph, or
until the user termination conditions are satisfied. At the end of the computation it may
be beneficial to greedily drop labels from the master solution while retaining feasibility.
The last master solution represents the output of the method.

Since up to ` master solutions can be considered by this procedure, and up to ` local
choices can be evaluated for each master solution, the overall computational running time
of the Pilot Method is O(`2) times the computational time of the application process (i.e.
the MVCA heuristic), leading to an overall complexity O(`3).

6

3.3. Greedy Randomized Adaptive Search Procedure

The difficulty with the classical version of MVCA is when it finds more than one
label with the same number of connected components. A question arises on the label to
be chosen. To find the best MVCA solution, we should alternatively add each of these
labels, continuing the same strategy in successive steps. In this way, every possible local
choice is computed, because all the solutions that MVCA can produce are visited. But
the execution time increases dramatically, especially for low-density graphs with a high
number of nodes and labels.

In this paper we propose a Greedy Randomized Adaptive Search Procedure (GRASP)
to the MLST problem, trying to unify multiple repetitions of the MVCA heuristic with
the Pilot Method strategy in order to obtain an optimal balance between intensification
and diversification capabilities.

GRASP is a recently exploited method combining the power of greedy heuristics, ran-
domisation, and local search. It is a multi-start two-phase metaheuristic for combinatorial
optimisation proposed by Feo and Resende (1995), basically consisting of a construction
phase and a local search improvement phase.

The solution construction mechanism builds an initial solution using a greedy random-
ized procedure, whose randomness allows solutions in different areas of the solution space
to be obtained. Each solution is randomly produced step-by-step by uniformly adding
one new element from a candidate list (RCLα: restricted candidate list of length α) to
the current solution. Subsequently, a local search phase is applied (such as Simulated
Annealing, Tabu Search) to try to improve the current best solution. This two-phase
process is iterative, continuing until the user termination condition such as the maxi-
mum allowed CPU time, the maximum number of iterations, or the maximum number
of iterations between two successive improvements, is reached.

Several new components have extended the scheme of GRASP (reactive GRASP, pa-
rameter variations, bias functions, memory and learning, improved local search, path
relinking, hybrids,. . .). These components are presented and discussed in (Resende and
Ribeiro, 2003).

Our GRASP implementation for the MLST problem is specified in Algorithm 2. The
greedy criterion of the construction phase of GRASP (Construction-Phase() procedure) is
based on the number of connected components produced by the labels, and a value-based
restricted candidate list is used (Resende and Ribeiro, 2003). This involves placing in the
list only the candidate labels having a greedy value (number of connected components)
not greater than a user-defined threshold, α, whose values can vary dynamically during
the search process. The value of the threshold α and its tuning during the iterations of
the algorithm need to be chosen in an appropriate way. Indeed, a small value of α results
in few labels in the restricted candidate list, giving a large intensification capability and
a small diversification capability. This means that the resulting algorithm is very fast,
but it can easily become trapped at a local optimum. Conversely, a large value of α
produces an algorithm with a large diversification capability, but a short intensification
capability, because many candidate labels are included in the restricted candidate list. In
our implementation, we found an adequate trade-off between intensification and diver-
sification capabilities by considering the following scheme. In order to fill the restricted
candidate list we fix the threshold as the minimum number of connected components

7

Algorithm 2: Greedy Randomized Adaptive Search Procedure for the MLST problem

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels;
Output: A spanning tree T ;
Initialisation:
- Let C ← 0 be the set of used labels, and H = (V, E(C)) the subgraph of G restricted to V and
edges with labels in C, where E(C) = {e ∈ E : L(e) ∈ C};
- Let Comp(C) be the number of connected components of H = (V, E(C));
- Let C′ ← L be the global set of used labels, and H′ = (V, E(C′)) the subgraph of G restricted to
V and edges with labels in C′, where E(C′) = {e ∈ E : L(e) ∈ C′};
begin

repeat
Set C ← 0 and update H = (V, E(C));
Construction-Phase(C);
Local-Search(C);
if |C| < |C′| then

Move C′ ← C and update H′ = (V, E(C′));
end

until termination conditions ;
⇒ Take any arbitrary spanning tree T of H′ = (V, E(C′)).

end

Procedure Construction-Phase(C):
Let RCLα ← 0 be the restricted candidate list of length α;
if Number of iterations > 2 then

Set RCLα ← L and α = `;
Select at random a label c ∈ RCLα;
Add label c to the set of used labels: C ← C ∪ {c};
Update H = (V, E(C)) and Comp(C);

end
while Comp(C) > 1 do

Set RCLα ← {∀c ∈ L/ minimizes Comp(C ∪ {c})};
Select at random a label c ∈ RCLα;
Add label c to the set of used labels: C ← C ∪ {c};
Update H = (V, E(C)) and Comp(C);

end

Procedure Local-Search(C):
for i = 1 to |C| do

Delete label i from the set C, i.e. C ← C − {i};
Update H = (V, E(C)) and Comp(C);
if Comp(C) > 1 then Add label i to the set C, i.e. C ← C ∪ {i};
Update H = (V, E(C)) and Comp(C);

end

produced by the candidate labels. This means that only the labels producing the least
number of connected components constitute the restricted candidate list. Furthermore,
after the two first iterations, complete randomisation is used to choose the initial label to
add, taking inspiration from the Pilot Method. This corresponds to setting the threshold
to +∞, and all the labels of the graph are present within the restricted candidate list
(length α= total number of labels, `). To intensify the search for the remaining labels to
add, the list is filled considering only the labels leading to the minimum total number of
connected components, as in the previous iterations.

At the end of the construction phase, a local search phase is included (Local-Search(C)
procedure). It simply consists of trying to drop some labels, one by one, from the current

8

solution C while retaining feasibility. Local search gives a further improvement to the
intensification phase of the algorithm.

The entire algorithm proceeds until the user termination conditions are satisfied.

3.4. Variable Neighbourhood Search

Variable Neighbourhood Search (VNS) is a new and widely applicable metaheuristic
based on dynamically changing neighbourhood structures during the search process. VNS
does not follow a trajectory, but it searches for new solutions in increasingly distant
neighbourhoods of the current solution, jumping only if a better solution than the current
best solution is found (Mladenović and Hansen, 1997; Hansen and Mladenović, 2001,
2003).

At the starting point, it is required to define a suitable neighbourhood structure.
The simplest and most common choice is a structure in which the neighbourhoods have
increasing cardinality: |N1(C)| < |N2(C)| < ... < |Nkmax

(C)|. The process of changing
neighbourhoods when no improvement occurs diversifies the search. In particular the
choice of neighbourhoods of increasing cardinality yields a progressive diversification.
The VNS approach can be summarized as: “One Operator, One Landscape”, meaning
that promising zones of the search space given by a specific neighbourhood may not be
promising for other neighbourhoods (landscape). A local optimum with respect to a given
neighbourhood may not be locally optimal with respect to another neighbourhood.

VNS provides a general framework and many variants exist for specific requirements.
Our implementation for the MLST is described in Algorithm 3. Given a labelled graph
G = (V, E,L) with n vertices, m edges, and ` labels, each solution is encoded by a binary
string, i.e. C = (c1, c2, . . . , c`) where

ci =

1 if label i is in solution C

0 otherwise
(∀i = 1, . . . , `). (1)

The algorithm starts from an initial feasible solution C generated at random and
lets parameter k vary during the execution. The successive shaking phase (Shaking-
Phase(Nk(C)) procedure) represents the core idea of VNS: it changes the neighbourhood
structure when the local search is trapped at a local minimum. This is implemented by the
random selection of a point C ′ within the neighbourhood Nk(C) of the current solution
C. The random point C ′ is generated in order to avoid cycling, which might occur if a
deterministic rule is used.

In the shaking phase, in order to impose a neighbourhood structure on the solution
space S, comprising all possible solutions, we define the distance between any two such
solutions C1, C2 ∈ S, as the Hamming distance:

ρ(C1, C2) = |C1 − C2| =
∑̀

i=1

λi (2)

where λi = 1 if label i is included in one of the solutions but not in the other, and 0
otherwise, ∀i = 1, ..., `. Then, given a solution C, we consider its kth neighbourhood,
Nk(C), as all the different sets having a Hamming distance from C equal to k labels,
where k = 1, 2, . . . , kmax, and kmax represents the size of the shaking. In a more formal

9

Algorithm 3: Variable Neighbourhood Search for the MLST problem

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels;
Output: A spanning tree T ;
Initialisation:
- Let C ← 0 be the global set of used labels, and H = (V, E(C)) the subgraph of G restricted to V
and edges with labels in C, where E(C) = {e ∈ E : L(e) ∈ C};
- Let C′ be a set of labels, and H′ = (V, E(C′)) the subgraph of G restricted to V and edges with
labels in C′, where E(C′) = {e ∈ E : L(e) ∈ C′};
- Let Comp(C′) be the number of connected components of H′ = (V, E(C′));
begin

C = Generate-Initial-Solution-At-Random();
repeat

Set k = 1 and kmax = (|C|+ |C|/3);
while k < kmax do

C′ = Shaking-Phase(Nk(C));
Local-Search(C′);
if |C′| < |C| then Move C ← C′, and set k = 1 and kmax = (|C|+ |C|/3);
else Increase the size of the neighbourhood structure: k = k + 1;

end
until termination conditions ;
Update H = (V, E(C));
⇒ Take any arbitrary spanning tree T of H = (V, E(C)).

end

Procedure Shaking-Phase(Nk(C)):
Set C′ ← C;
for i = 1 to k do

Select at random a number between 0 and 1: rnd = random(0, 1);
if rnd ≤ 0.5 then Delete at random a label c′ ∈ C′ from C′, i.e. C′ ← C′ − {c′} ;
else Add at random a label c′ ∈ (L− C) to C′, i.e. C′ ← C′ ∪ {c′};
Update H′ = (V, E(C′)) and Comp(C′);

end

Procedure Local-Search(C):
while Comp(C′) > 1 do

Let S be the set of unused labels which minimize the number of connected components, i.e.
S = {e ∈ (L− C′) : min Comp(C′ ∪ {e})};
Select at random a label u ∈ S;
Add label u to the set of used labels: C′ ← C′ ∪ {u};
Update H′ = (V, E(C′)) and Comp(C′);

end
for i = 1 to |C′| do

Delete label i from the set C′, i.e. C′ ← C′ − {i};
Update H′ = (V, E(C′)) and Comp(C′);
if Comp(C′) > 1 then Add label i to the set C′, i.e. C′ ← C′ ∪ {i};
Update H′ = (V, E(C′)) and Comp(C′);

end

way, the kth neighbourhood of a solution C is defined as Nk(C) = {S ⊂ L : (ρ(C, S)) =
k}, where k = 1, ..., kmax.

The value of kmax is an important parameter to tune in order to obtain an optimal
balance between intensification and diversification capabilities. Choosing a small value
for kmax produces a high intensification capability and a small diversification capability,
resulting in a fast algorithm, but with a large probability of being trapped at a local
minimum. Conversely, a large value for kmax decreases the intensification capability and

10

increases the diversification capability, resulting in a slower algorithm, but able to escape
from local minima. According to our experience, the value kmax = (|C|+ |C|/3) gives a
good trade-off between these two factors.

In our implementation, in order to select a solution in the k-th neighbourhood of a
solution C, the algorithm randomly adds further labels to C, or remove labels from
C, until the resulting solution has a Hamming distance equal to k with respect to C.
Addition and deletion of labels at this stage have the same probability of being chosen.
For this purpose, a random number is selected between 0 and 1 (rnd = random(0, 1)). If
this number is smaller than 0.5, the algorithm proceeds with the deletion of a label from
C. Otherwise, an additional label is included at random in C from the set of unused labels
(L − C). The procedure is repeated until the number of addition/deletion operations is
exactly equal to k.

The successive local search (Local-Search(C’) procedure) consists of two steps. In the
first step, since deletion of labels often gives an infeasible incomplete solution, additional
labels may be added in order to restore feasibility. In this case, addition of labels follows
the MVCA criterion of adding the label with the minimum number of connected com-
ponents. Note that in case of ties in the minimum number of connected components, a
label not yet included in the partial solution is chosen at random within the set of labels
producing the minimum number of components (i.e. u ∈ S where S = {e ∈ (L − C ′) :
min Comp(C ′ ∪ {e})}). Then, the second step of the local search tries to delete labels
one by one from the specific solution, whilst maintaining feasibility.

After the local search phase, if no improvements are obtained (|C ′| ≥ |C|), the neigh-
bourhood structure is increased (k = k+1) giving a progressive diversification (|N1(C)| <
|N2(C)| < ... < |Nkmax(C)|). Otherwise, the algorithm moves to the improved solution
(C ← C ′) and sets the first neighbourhood structure (k = 1). Then the procedure restarts
with the shaking and the local search phases, continuing iteratively until the user ter-
mination conditions (maximum allowed CPU time, maximum number of iterations, or
maximum number of iterations between two successive improvements) are satisfied.

4. Computational results

In this section, the metaheuristics are compared in terms of solution quality and compu-
tational running time. We identify the metaheuristics with the abbreviations: PILOT (Pi-
lot Method), MGA (Modified Genetic Algorithm), GRASP (Greedy Randomized Adap-
tive Search Procedure), VNS (Variable Neighbourhood Search).

Different sets of instances of the problem have been generated in order to evaluate
how the algorithms are influenced by the parameters, the structure of the network and
the distribution of the labels on the edges. The parameters considered are the number of
edges of the graph (m), the number of nodes of the graph (n), and the number of labels
assigned to the edges (`).

We thank the authors of (Cerulli et al., 2005), who kindly provided data for use in our
experiments. In our computations, run on a Pentium Centrino microprocessor at 2.0 GHz
with 512 MB RAM, we consider different datasets, each one containing 10 instances of
the problem with the same set of values for the parameters n, `, and m. For each dataset,
solution quality is evaluated as the average objective value for the 10 problem instances. A
maximum allowed CPU time (max-CPU-time), determined with respect to the dimension

11

of the problem instance, is chosen as the stopping condition for all the metaheuristics.
For MGA, we use a variable number of iterations for each instance, determined such that
the computations take approximately max-CPU-time for the specific dataset. Selection
of the maximum allowed CPU time as the stopping criterion is made in order to have a
direct comparison of all the metaheuristics with respect to the quality of their solutions.

All the heuristic methods run for max-CPU-time and, in each case, the best solution
is recorded. The computational times reported in the tables are the times at which the
best solutions are obtained. The reported times have precision of ±5 ms. Where possible,
the results of the metaheuristics are compared with the exact solution, identified with
the label EXACT.

The Exact Method is an A* or backtracking procedure to test the subsets of L. This
search method performs a branch and prune procedure in the partial solution space based
on a recursive procedure Test that attempts to find a better solution from the current
incomplete solution. The main program that solves the MLST problem calls the Test
procedure with an empty set of labels. The details are specified in Algorithm 4.

In order to reduce the number of test sets, it is more convenient to use a good approx-
imate solution for C∗ in the initial step, instead of considering all the labels. Another
improvement that avoids the examination of a large number of incomplete solutions con-
sists of rejecting every incomplete solution that cannot be completed to get only one
connected component. Note that if we are evaluating an incomplete solution C ′ with a
number of labels |C ′| = |C∗|−2, we should try to add the labels one by one to check if it is
possible to find a better solution for C∗ with a smaller dimension, that is |C ′| = |C∗|−1.
To complete this solution C ′, we need to add a label with a frequency at least equal to

Algorithm 4: Exact Method for the MLST problem

Input: A labelled, undirected, connected graph G = (V, E, L) with n vertices, m edges, ` labels;
Output: A spanning tree T ;
Initialisation:
- Let C ← 0 be the initially empty set of used labels;
- Let H = (V, E(C)) be the subgraph of G restricted to V and edges with labels in C, where
E(C) = {e ∈ E : L(e) ∈ C};
- Let C∗ ← L be the global set of used labels;
- Let H∗ = (V, E(C∗)) be the subgraph of G restricted to V and edges with labels in C∗, where
E(C∗) = {e ∈ E : L(e) ∈ C∗};
- Let Comp(C) be the number of connected components of H = (V, E(C));
begin

Call Test(C);
⇒ Take any arbitrary spanning tree T of H∗ = (V, E(C∗)).

end

Procedure Test(C):
if |C| < |C∗| then

Update Comp(C);
if Comp(C) = 1 then

Move C∗ ← C;
else if |C| < |C∗| − 1 then

foreach c ∈ (L− C) do
Try to add label c : Test(C ∪ {c});

end

end

end

12

the actual number of connected components minus 1. If this requirement is not satisfied,
the incomplete solution can be rejected, speeding up the search process.

The running time of this Exact Method grows exponentially, but if either the prob-
lem size is small or the optimal objective function value is small, the running time is
reasonable and the method obtains the exact solution. The complexity of the instances
increases with the dimension of the graph (number of nodes and labels), and the reduc-
tion in the density of the graph. In our tests, the optimal solution is reported unless a
single instance requires more than 3 hours of CPU time. In such a case, we report not
found (NF).

4.1. Experimental analysis

In our computations we have considered two different groups of datasets, including
instances with a number of vertices, n, and a number of labels, `, from 20 up to 500.
All these instances are available from the authors (Consoli, 2007). The number of edges,
m, is obtained indirectly from the density d of edges whose values are chosen to be
0.8, 0.5, and 0.2. Analysing the performance of the considered algorithms, for a single
dataset a metaheuristic should be considered worse than another one if either it obtains
a larger average objective value, or an equal average objective value but in a greater
computational time.

Group 1 examines small instances with the number of vertices equal to the number
of labels. These values are chosen to be between 20 and 50 in steps of 10. Thus, the
considered datasets are n = ` = 20, 30, 40, 50, and d = 0.8, 0.5, 0.2, for a total of 12
datasets (120 instances). Computational results are presented in Table 1, which reports
the average objective function values found by the heuristics for the datasets of Group 1,
and the corresponding average computational times, with a max-CPU-time of 1 second.

- INSERT TABLE 1 -
Looking at this table, all the heuristics performed well and faster than the Exact Method
for the Group 1 instances. However, MGA is considerably slower than the other meta-
heuristics, as a result of a poor intensification capability and an excessive diversification
capability for these instances. PILOT is faster than MGA but it produces slightly worse
solutions with respect to solution quality. It exhibits an opposite behaviour to that of
MGA, being characterised by a limited diversification capability which sometimes does
not allow the search process to escape from local optima. The performance of GRASP
and VNS are both comparable for these trivial instances of the problem. They are able
to obtain all the exact solutions in very short running times and are the best performing
heuristics for the Group 1 in terms of solution quality and computational running time.

Group 2 considers larger instances of the MLST problem with a fixed number of
vertices, and a number of labels ` = 0.25 · n, 0.5 · n, n, 1.25 · n. Thus, the datasets of
Group 2 are n = 100, 200, 500 vertices, ` = 0.25 · n, 0.5 · n, n, 1.25 · n, and d = 0.8,
0.5, 0.2, for a total of 36 datasets (360 instances). Furthermore, we have considered a
max-CPU-time of 20 seconds for Group 2 with n = 100; of 60 seconds for Group 2 with
n = 200; and of 300 seconds for Group 2 with n = 500. Average objective function
values and the corresponding average computational times are reported in Tables 2 - 3
- 4 respectively.

- INSERT TABLE 2, TABLE 3, TABLE 4-

13

For all the Group 2 instances with n = 100, looking at Table 2, the best performance
is obtained by VNS which produces the solutions with the best solution quality and the
shortest running times. GRASP also performs well, obtaining the same solutions as VNS,
with the exception of the instance [n = ` = 100, d = 0.2]. As in Group 1, PILOT and
MGA obtain the worse solutions and they confirm their defects: excessive diversification
and poor intensification capabilities for MGA and, conversely, excessive intensification
and poor diversification capabilities for PILOT.

Table 3 and Table 4 with larger instances of the problem (Group2 with n = 200,
and Group 2 with n = 500) show the same relative behaviour for all the considered
metaheuristics. VNS and GRASP are always the best performing methods, indicating an
optimal tuning between intensification and diversification of the search process, which
evidently is not obtained by PILOT and MGA that obtain the worse solution in terms
of solution quality and computational running time. VNS always obtains the solutions
with the best quality, but it loses a lot, sometimes, in terms of computational running
time (see for example the instances [n = ` = 200, d = 0.2], [n = ` = 500, d = 0.2],
and [n = 500, ` = 625, d = 0.2]). From this analysis, perhaps GRASP slightly defects in
terms of exploration of the search space with respect to the VNS approach.

Considering only solution quality, the average values of the objective function of the
metaheuristics among all the considered datasets are: PILOT = 5.66, MGA = 5.68,
GRASP = 5.61, VNS = 5.59. Thus, the best ranking with respect to the solution quality
(from the best to the worst) is: VNS, GRASP, PILOT, MGA.

4.2. Statistical analysis of the results

Computing only the average objective values of the metaheuristics over multiple data
does not provide a full comparison between them. Averages are susceptible to outliers:
they can allow excellent performance on some datasets to compensate for an overall bad
performance. There may be situations in which such behaviour is desired. However, in
general we prefer algorithms that behave well on as many problems as possible.

We have carried out tests to determine the statistical significance of differences be-
tween the performances of the metaheuristics (Hollander and Wolfe, 1999). The issue
of statistical tests for comparison of algorithms on multiple datasets was theoretically
and empirically reviewed by Demšar (2006). The null-hypothesis being tested is that the
metaheuristics have equal mean performance and the observed differences are merely ran-
dom. The alternative hypothesis is that the algorithms have different mean performances
of statistical significance.

The most common statistical method for testing differences between more than two
algorithms is Analysis of Variance (ANOVA) (see (Hollander and Wolfe, 1999; Demšar,
2006) for more details). Since ANOVA is based on assumptions that are violated in this
context, we make use of the Friedman Test (Friedman, 1940), that is the non-parametric
equivalent of ANOVA, and its corresponding Nemenyi Post-hoc Test (Nemenyi, 1963).

According to the Friedman test, the statistical significance of differences between the
metaheuristics is examined by testing whether the measured average ranks are signif-
icantly different from the overall mean rank. In particular, we use the version of the
Friedman test developed by Iman and Davenport (1980), which considers a powerful test
statistic FF (Appendix A). If the equivalence of the algorithms is rejected, the Nemenyi

14

post-hoc test is applied in order to perform pairwise comparisons.
To perform the Friedman and Nemenyi tests, the ranks of the algorithms for each

dataset are evaluated, with a rank of 1 assigned to the best performing algorithm, rank
2 to the second best one, and so on. The average ranks for each metaheuristic among the
48 datasets are: PILOT = 3.30, MGA = 3.48, GRASP = 1.76, VNS = 1.46. According
to the ranking, VNS is the best performing algorithm, immediately followed by GRASP,
then PILOT and MGA achieving the worst results.

Now, we analyse the statistical significance of differences between these ranks. Consider
the Iman and Davenport (1980) version of the Friedman test for k = 4 algorithms and
N = 48 datasets. The value of the FF test statistic, which is distributed according to the
F -distribution with (k − 1, (k − 1)(N − 1)) = (3, 141) degrees of freedom, is computed.
This value is 124.2, which is greater than the critical value (3.92 for α = 1%, where α is
the significance level of the test expressed as percentage). Thus, a significant difference
between the performance of the metaheuristics exists, according to the Friedman test.

As the equivalence of the algorithms is rejected, we proceed with the Nemenyi post-
hoc test. Considering a significance level α = 1%, the critical value is q0.01

∼= 3.11. The
critical difference (CD) for the Nemenyi test is

CD = 3.11 ·
√

4 · 5
6 · 48

∼= 0.82; (3)

The differences between the average ranks of the metaheuristics are reported in Table 5.
- INSERT TABLE 5 -

From this table, we can identify two groups of metaheuristics. The first group includes
VNS and GRASP, while the second group includes PILOT and MGA. Considering a
significance level α = 1%, the algorithms within each group have comparable performance
according to the Nemenyi test since, in each case, the value of the test statistic is less
than the critical difference. Conversely, two algorithms belonging to different groups have
significantly different performance according to the Nemenyi test.

Summarizing, from the Friedman and Nemenyi statistical tests, VNS and GRASP
have comparable performance, and they are the best performing algorithms. On the
other hand, PILOT and MGA have comparable performance, but worse than VNS and
GRASP.

Another way to compare the performance of the algorithms is to count the number
of times they generate the optimal solution. In particular, counting the overall number
of exact solutions obtained is a good approach to estimate the diversification capability
of each metaheuristic. The Exact Method obtains the exact solution for all problem
instances of 32 datasets, among the overall 48 datasets; for the remaining sets NF is
reported. Therefore, the total number of instances having the exact solution is: 32×10 =
320.

The percentages of the number of optimal solutions obtained by the metaheuristics
among the 320 instances are (ranking from the best to the worst algorithm): VNS = 100,
GRASP = 99.7, MGA = 99.7, PILOT = 97.5.

VNS obtains all the optimal solutions, underlying a high exploration capability even for
complex instances. In the same way, GRASP and MGA offer very good results, missing
only 1 solution out of 320, although MGA is extremely time consuming. With 8 cases
(out of 320), PILOT fails to find the global optimum and becomes trapped at a local
optimum.

15

Furthermore, some optima reached by the metaheuristics require a greater computa-
tional time than required by the Exact Method, thus nullifying the purpose of the meta-
heuristics. In this sense the best performances are obtained by VNS and GRASP, all of
which require less computational time than the Exact Method among the 32 datasets. In
contrast, PILOT and MGA obtain the optimal solution but in a time that exceeds that
of the Exact Method in 11 and 18 datasets, respectively. Although MGA reaches more
exact solutions than PILOT, it is computationally more burdensome.

From this further analysis, the results reinforce the conclusion that VNS and GRASP
are effective metaheuristics for the MLST problem. They are particularly recommended
for the proposed problem thanks to the following features: ease of implementations, user-
friendly codes, high quality of the solutions, and shorter computational running times.

5. Conclusions and further research

In this paper, we have studied metaheuristics for the minimum labelling spanning tree
(MLST) problem. In particular, we have examined and implemented the metaheuristics
recommended in the literature: the Modified Genetic Algorithm (MGA) of Xiong et al.
(2006) and the Pilot Method (PILOT) of Cerulli et al. (2005). Furthermore, some new
implementations for the MLST problem have been proposed: a Greedy Randomized
Adaptive Search Procedure (GRASP) and a basic Variable Neighbourhood Search (VNS).

Computational experiments were performed using different instances of the MLST
problem to evaluate how the algorithms are influenced by the parameters, the structure of
the network, and the distribution of the labels on the edges. Applying the nonparametric
statistical tests of Friedman (1940) and Nemenyi (1963), we concluded that VNS and
GRASP have significantly better performance than the other methods recommended in
the literature with respect to solution quality and running time. Furthermore, this result
has been reinforced by comparing the metaheuristics with an exact approach. VNS and
GRASP obtain a large number of optimal or near-optimal solutions, showing an enhanced
diversification capability.

All the results allow us to state that VNS and GRASP are fast and extremely ef-
fective metaheuristics for the MLST problem. They are particularly recommended for
the proposed problem because of their simplicity and their ability to obtain high-quality
solutions in short computational running times.

Future research will consist of trying to further improve the performance of these pro-
cedures (for example through hybridization with other metaheuristics) particularly for
large instances of the problem. For this purpose, an algorithm based on Ant Colony
Optimisation (ACO) is currently under study in order to try to obtain a larger diversifi-
cation capability by extending the current greedy MVCA local search. Indeed, a proper
ACO implementation may allow moves to worse solutions by providing an alternative
probabilistic solution construction mechanism.

Appendix A. Statistical tests

Friedman Test (Friedman, 1940): The Friedman test is a non-parametric statistical
test that examines the existence of significant differences between the performances of
multiple algorithms over different datasets. Given k algorithms and N datasets, it ranks

16

the algorithms for each dataset separately, and tests whether the measured average ranks
are significantly different from the mean rank. The statistic used by Friedman (1940) is

χ2
F =

12 ·N
k · (k + 1)

·

∑

j

R2
j −

k · (k + 1)
4

 , (4)

which follows a Chi-Square distribution with (k − 1) degrees of freedom.
Iman and Davenport (1980) developed a more powerful version of the Friedman test

by considering the following statistic:

F 2
F =

(N − 1) · χ2
F

N · (k − 1)− χ2
F

, (5)

which is distributed according to the F -distribution with (k − 1) and (k − 1) · (N − 1)
degrees of freedom. For more details, see (Demšar, 2006).

Nemenyi Test (Nemenyi, 1963): The Nemenyi test is used to perform pairwise compar-
isons of multiple algorithms over different datasets (Nemenyi, 1963). The performance
of two algorithms is considered significantly different if the corresponding average ranks
differ by at least the critical difference (CD):

CD = qα ·
√

k · (k + 1)
6 ·N , (6)

where k is the number of the metaheuristics, N the number of datasets, qα the critical
value, and α the significance level of the statistical test. For more details, see (Demšar,
2006).

Acknowledgments

Sergio Consoli was supported by an E.U. Marie Curie Fellowship for Early Stage Re-
searcher Training (EST-FP6) under grant number MEST-CT-2004-006724 at Brunel
University (project NET-ACE).

José Andrés Moreno Pérez was supported by the projects TIN2005-08404-C04-03 of
the Spanish Government (with financial support from the European Union under the
FEDER project) and PI042005/044 of the Canary Government.

We gratefully acknowledge this support.

References

Avis, D., Hertz, A., Marcotte, O., 2005. Graph theory and combinatorial optimization.
Springer-Verlag, New York.

Brüggemann, T., Monnot, J., Woeginger, G. J., 2003. Local search for the minimum label
spanning tree problem with bounded colour classes. Operations Research Letters 31,
195–201.

Cerulli, R., Fink, A., Gentili, M., Voß, S., 2005. Metaheuristics comparison for the mini-
mum labelling spanning tree problem. In: Golden, B., Raghavan, S., Wasil, E. (Eds.),
The next wave in computing, optimization, and decision technologies. Springer-Verlag,
Berlin, pp. 93–106.

17

Chang, R. S., Leu, S. J., 1997. The minimum labeling spanning trees. Information Pro-
cessing Letters 63 (5), 277–282.

Consoli, S., March 2007. Test datasets for the minimum labelling spanning tree problem.
[online], http://people.brunel.ac.uk/˜mapgssc/MLSTP.htm.

Demšar, J., 2006. Statistical comparison of classifiers over multiple data sets. Journal of
Machine Learning Research 7, 1–30.

Duin, C., Voß, S., 1999. The pilot method: A strategy for heuristic repetition with ap-
plications to the Steiner problem in graphs. Networks 34 (3), 181–191.

Feo, T. A., Resende, M. G. C., 1995. Greedy randomized adaptive search procedures.
Journal of Global Optimization 6 (2), 109–133.

Friedman, M., 1940. A comparison of alternative tests of significance for the problem of
m rankings. The Annals of Mathematical Statistics 11 (1), 86–92.

Glover, F., Kochenberger, G. A., 2003. Handbook of metaheuristics (International se-
ries in Operations Research & Management Science). Kluwer Academic Publishers,
Norwell, MA.

Goldberg, D. E., Deb, K., Korb, B., 1991. Don’t worry, be messy. In: Proceedings of
the 4th International Conference on Genetic Algorithms. Morgan-Kaufmann, La Jolla,
CA, pp. 24–30.

Hansen, P., Mladenović, N., 2001. Variable neighbourhood search: Principles and appli-
cations. European Journal of Operational Research 130, 449–467.

Hansen, P., Mladenović, N., 2003. Variable neighbourhood search. In: Glover, F., Kochen-
berger, G. A. (Eds.), Handbook of metaheuristics. Kluwer Academic Publishers, Nor-
well, MA, Ch. 6, pp. 145–184.

Hollander, M., Wolfe, D. A., 1999. Nonparametric statistical methods, 2nd Edition. John
Wiley & Sons, New York.

Iman, R. L., Davenport, J. M., 1980. Approximations of the critical region of the Fried-
man statistic. Communications in Statistics - Theory and Methods 9, 571–595.

Krumke, S. O., Wirth, H. C., 1998. On the minimum label spanning tree problem. Infor-
mation Processing Letters 66 (2), 81–85.

Mladenović, N., Hansen, P., 1997. Variable neighbourhood search. Computers & Opera-
tions Research 24, 1097–1100.

Nemenyi, P. B., 1963. Distribution-free multiple comparisons. Ph.D. thesis, Princeton
University, New Jersey.

Resende, M. G. C., Ribeiro, C. C., 2003. Greedy randomized adaptive search proce-
dure. In: Glover, F., Kochenberger, G. A. (Eds.), Handbook of metaheuristics. Kluwer
Academic Publishers, Norwell, MA, pp. 219–249.

Tanenbaum, A. S., 2003. Computer networks, 4th Edition. Prentice Hall, Englewood
Cliffs, New Jersey.

Van-Nes, R., 2002. Design of multimodal transport networks: A hierarchical approach.
Delft University Press, Delft.

Voß, S., Fink, A., Duin, C., 2005. Looking ahead with the pilot method. Annals of
Operations Research 136, 285–302.

Voß, S., Martello, S., Osman, I. H., Roucairol, C., 1999. Meta-heuristics: Advances and
trends in local search paradigms for optimization. Kluwer Academic Publishers, Nor-
well, MA.

Wan, Y., Chen, G., Xu, Y., 2002. A note on the minimum label spanning tree. Information
Processing Letters 84, 99–101.

18

Xiong, Y., Golden, B., Wasil, E., 2005a. A one-parameter genetic algorithm for the
minimum labeling spanning tree problem. IEEE Transactions on Evolutionary Com-
putation 9 (1), 55–60.

Xiong, Y., Golden, B., Wasil, E., 2005b. Worst-case behavior of the MVCA heuristic
for the minimum labeling spanning tree problem. Operations Research Letters 33 (1),
77–80.

Xiong, Y., Golden, B., Wasil, E., 2006. Improved heuristics for the minimum label span-
ning tree problem. IEEE Transactions on Evolutionary Computation 10 (6), 700–703.

19

Figure 1. The top two graphs show a sample graph and its optimal solution. The bottom three graphs
show some feasible solutions.

20

Table 1
Computational results for Group 1 (max-CPU-time for heuristics = 1000 ms)

Parameters Average objective function values

n ` d EXACT PILOT MGA GRASP VNS

0.8 2.4 2.4 2.4 2.4 2.4

20 20 0.5 3.1 3.2 3.1 3.1 3.1

0.2 6.7 6.7 6.7 6.7 6.7

0.8 2.8 2.8 2.8 2.8 2.8

30 30 0.5 3.7 3.7 3.7 3.7 3.7

0.2 7.4 7.4 7.4 7.4 7.4

0.8 2.9 2.9 2.9 2.9 2.9

40 40 0.5 3.7 3.7 3.7 3.7 3.7

0.2 7.4 7.6 7.4 7.4 7.4

0.8 3 3 3 3 3

50 50 0.5 4 4 4.1 4 4

0.2 8.6 8.6 8.6 8.6 8.6

TOTAL: 55.7 56 55.8 55.7 55.7

Parameters Computational times (milliseconds)

n ` d EXACT PILOT MGA GRASP VNS

0.8 0 0 15.6 1.6 0

20 20 0.5 0 1.6 22 0 0

0.2 11 3.1 23.4 0 1.6

0.8 0 3 9.4 1.6 0

30 30 0.5 0 3.1 26.5 0 0

0.2 138 4.7 45.4 1.5 5.2

0.8 2 6.3 12.5 1.5 0

40 40 0.5 3.2 7.9 28.2 1.5 3.1

0.2 100.2·103 10.8 120.3 15.6 9.6

0.8 3.1 17.1 21.8 3 0

50 50 0.5 21.9 20.2 531.3 9.4 4.1

0.2 66.3·103 17.2 93.6 3.2 11.9

TOTAL: 166.7·103 95 950 38.9 35.5

21

Table 2
Computational results for Group 2 with n = 100 (max-CPU-time for heuristics = 20·103 ms)

Parameters Average objective function values

n ` d EXACT PILOT MGA GRASP VNS

0.8 1.8 1.8 1.8 1.8 1.8

25 0.5 2 2 2 2 2

0.2 4.5 4.5 4.5 4.5 4.5

0.8 2 2 2 2 2

50 0.5 3 3.1 3 3 3

100 0.2 6.7 6.9 6.7 6.7 6.7

0.8 3 3 3 3 3

100 0.5 4.7 4.7 4.7 4.7 4.7

0.2 NF 10.1 9.9 9.8 9.7

0.8 4 4 4 4 4

125 0.5 5.2 5.4 5.2 5.2 5.2

0.2 NF 11.2 11.1 11 11

TOTAL: - 58.7 57.9 57.7 57.6

Parameters Computational times (milliseconds)

n ` d EXACT PILOT MGA GRASP VNS

0.8 9.4 4.7 26.5 0 0

25 0.5 14 12.6 29.7 4.6 0

0.2 34.3 23.2 45.3 9.3 3.1

0.8 17.8 67.3 23.5 6.4 7.7

50 0.5 23.5 90.7 106.2 51.6 42.4

100 0.2 10.2·103 103.2 148.3 57.8 49.7

0.8 142.8 378.1 254.7 61 215

100 0.5 2.4·103 376.2 300 28.2 114.7

0.2 NF 399.9 9.4·103 1.2·103 414.8

0.8 496.9 565.7 68.7 9.4 10.1

125 0.5 179.6·103 576.3 759.4 595.4 551.1

0.2 NF 634.5 2·103 562.9 420.4

TOTAL: - 3.2·103 13.2·103 2.6·103 1.8·103

22

Table 3
Computational results for Group 2 with n = 200 (max-CPU-time for heuristics = 60·103 ms)

Parameters Average objective function values

n ` d EXACT PILOT MGA GRASP VNS

0.8 2 2 2 2 2

50 0.5 2.2 2.2 2.2 2.2 2.2

0.2 5.2 5.2 5.2 5.2 5.2

0.8 2.6 2.6 2.6 2.6 2.6

100 0.5 3.4 3.4 3.4 3.4 3.4

200 0.2 NF 8.3 8.3 8.1 7.9

0.8 4 4 4 4 4

200 0.5 NF 5.5 5.4 5.4 5.4

0.2 NF 12.4 12.4 12.2 12

0.8 4 4 4 4.1 4

250 0.5 NF 6.3 6.3 6.3 6.3

0.2 NF 13.9 14 13.9 13.9

TOTAL: - 69.8 69.8 69.4 68.9

Parameters Computational times (milliseconds)

n ` d EXACT PILOT MGA GRASP VNS

0.8 29.7 90.7 26.5 20.5 0

50 0.5 32.7 164.1 68.8 14.2 17.2

0.2 5.4·103 320.4 326.6 37.5 241.3

0.8 138.6 876.5 139.3 45.3 123.2

100 0.5 807.8 1.2·103 1.6·103 176.6 151.1

200 0.2 NF 1.3·103 2.2·103 667.2 1.7·103

0.8 22.5·103 5.9·103 204.6 43.6 32

200 0.5 NF 5.6·103 16.1·103 885.6 971.9

0.2 NF 5·103 12.7·103 9.4·103 12.8·103

0.8 20.6·103 9.1·103 2.2·103 4.9·103 1.1·103

250 0.5 NF 8.4·103 17.6·103 506 3.4·103

0.2 NF 8·103 26.4·103 1.4·103 3.2·103

TOTAL: - 45.9·103 79.6·103 18.1·103 23.7·103

23

Table 4
Computational results for Group 2 with n = 500 (max-CPU-time for heuristics = 300·103 ms)

Parameters Average objective function values

n ` d EXACT PILOT MGA GRASP VNS

0.8 2 2 2 2 2

125 0.5 2.6 2.6 2.6 2.6 2.6

0.2 NF 6.3 6.2 6.2 6.2

0.8 3 3 3 3 3

250 0.5 NF 4.2 4.3 4.2 4.1

500 0.2 NF 9.9 10.1 9.9 9.9

0.8 NF 4.8 4.7 4.7 4.7

500 0.5 NF 6.7 7.1 6.5 6.5

0.2 NF 15.9 16.6 15.9 15.8

0.8 NF 5.1 5.4 5.1 5.1

625 0.5 NF 8.1 8.3 7.9 7.9

0.2 NF 18.5 19.1 18.4 18.3

TOTAL: - 87.1 89.4 86.4 86.1

Parameters Computational times (milliseconds)

n ` d EXACT PILOT MGA GRASP VNS

0.8 370 3.4·103 18 152 17.1

125 0.5 597 6.6·103 2.6·103 455 1.1·103

0.2 NF 11.9·103 57.1·103 4·103 3.9·103

0.8 5.3·103 35.49·103 516 248 142.3

250 0.5 NF 65.3·103 28·103 583 84·103

500 0.2 NF 156.4·103 181.2·103 3.3·103 5.1·103

0.8 NF 200.5·103 117.5·103 28.1·103 22.3·103

500 0.5 NF 190.1·103 170.9·103 90.9·103 32.3·103

0.2 NF 300.6·103 241.8·103 20.2·103 139.7·103

0.8 NF 184.3·103 51.9·103 4.9·103 16.1·103

625 0.5 NF 200.9·103 222.2·103 35.7·103 44.7·103

0.2 NF 289.9·103 297.8·103 53.1·103 155.5·103

TOTAL: - 1645.3·103 1371.5·103 213.8·103 504.9·103

24

Table 5
Pairwise differences of the average ranks of the algorithms (Critical difference = 0.82 for a significance
level of 1% for the Nemenyi test)

ALGORITHM (average rank) VNS (1.46) GRASP (1.76) PILOT (3.30) MGA (3.48)

VNS (1.46) - 0.3 1.84 2.02

GRASP (1.76) - - 1.54 1.72

PILOT (3.30) - - - 0.18

MGA (3.48) - - - -

25

