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In partition analysis we divide the input domain to form subdomains on which the system’s be-
haviour should be uniform. Boundary value analysis produces test inputs near each subdomain’s
boundaries to find failures caused by the boundaries being incorrectly implemented. However,
boundary value analysis can be adversely affected by coincidental correctness — the system pro-
duces the expected output for the wrong reason. This paper shows how boundary value analysis
can be adapted in order to reduce the opportunity for coincidental correctness. The main con-
tribution is to automated test data generation in which one cannot rely on the expertise of a
tester.
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1. INTRODUCTION

Testing is an expensive part of the software development process, often consisting of
in the order of fifty percent of the overall budget. Testing also fails to find many of
the existing problems in software. Testing is thus a difficult and expensive process
and the development of efficient effective test techniques is a major research topic.

Most testing techniques can be categorized as either black-box (they are based
on the specification) or white-box (they are based on the code). Black-box and
white-box techniques complement and typically are applied in different phases of
the testing process. Partition Analysis and Boundary Value Analysis are two of the
most popular black-box testing techniques.

In Partition Analysis (PA) [Clarke et al. 1982; Goodenough and Gerhart 1975;
Jeng and Forgacs 1999; Jeng and Weyuker 1994; Ostrand and Balcer 1988; Richard-
son and Clarke 1985; White and Cohen 1980] we divide (partition) the system’s
input domain D into a finite set of subdomains S1, . . . , Sn such that, according to
the specification, the system’s behaviour should be uniform on each Si. The idea
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is that if the system’s functionality on a subdomain Si is wrong then it is likely
to fail on most values from Si and so it is sufficient to take a few test inputs from
each subdomain. The partition could result from analysis carried out by the tester
[Grochtmann and Grimm 1993; Ostrand and Balcer 1988] or from an automated
approach based on a formal specification or model (see, for example, [Amla and
Ammann 1992; Dick and Faivre 1993; Hierons 1997; Horcher and Peleska 1995;
Offutt and Liu 1999; Stocks and Carrington 1996]). However, it has been observed
that such test inputs are unlikely to find failures caused by the boundaries of the
subdomains being incorrect. In Boundary Value Analysis (BVA) we thus produce
test inputs close to the boundaries of the subdomains with the aim of finding shifts
in boundaries (see, for example, [Clarke et al. 1982; Jeng and Forgacs 1999; Jeng
and Weyuker 1994; White and Cohen 1980]).

The essential idea behind BVA is that, if a boundary in the code is wrong, then
some input values will have the wrong functionality applied to them and this will
include values near to the expected boundary. By choosing test inputs near to the
boundaries in the specification, and on either side of each boundary, we are likely
to find any boundary shifts. However, coincidental correctness can affect this: the
wrong functionality could be applied without leading to the wrong output. Little
attention has been paid to the problem of finding test inputs, for BVA, that do
not suffer from coincidental correctness. Instead, most work on BVA has used
geometric arguments to drive the generation of a test suite with the property that
if there is a boundary shift then it is likely that at least one test input will be
in the wrong subdomain. Clarke et al. [Clarke et al. 1982], when considering the
use of BVA for path testing, do observe that the tester might note the problem of
coincidental correctness and generate additional tests. The work described in this
paper could be seen as a formalization and generalization of the suggestions found
in [Clarke et al. 1982]. The observations made are particularly relevant to the area
of automated test data generation since here we cannot rely on an experienced
tester avoiding the types of coincidental correctness identified in this paper.

This paper shows that if we only apply a geometric approach to the generation
of test input for BVA then it is possible for us to generate test input that cannot
detect boundary shifts. We call this predictable coincidental correctness and focus
on the problem of generating test inputs, for BVA, that do not suffer from this prob-
lem. We start with the case usually considered in the literature on BVA, where the
specification is deterministic. We demonstrate that predictable coincidental cor-
rectness can occur here and also that the natural approach to solving this problem
is not always sufficient. While many systems and specifications are deterministic,
non-determinism can occur in a specification as a result of abstraction and may
appear in both a specification and implementation when considering distributed
systems. We thus also consider the case where the specification, and possibly the
implementation, is non-deterministic. This analysis leads to the suggestion that
adaptive test input generation techniques could be used when applying BVA with
non-deterministic specifications.

In this paper we define properties that test cases used in BVA should have but this
leads naturally to approaches for generating such test cases: test case generation
can be seen as a problem of searching for test cases that satisfy these properties.
ACM Journal Name, Vol. V, No. N, Month 20YY.
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Test case generation may thus be driven by automated search techniques. As noted
earlier, it appears likely that the results and ideas outlined in this paper will be
most relevant to automated test generation.

This paper has the following structure. Section 2 describes PA and BVA. Section
3 shows how we can demonstrate that some test inputs are incapable of finding
boundary shifts and thus should be avoided in BVA. On this basis BVA is adapted
to avoid such values. Section 4 extends this, showing that sometimes additional
factors must be considered. Section 5 then considers the use of BVA when testing
from a non-deterministic specification. Finally, Section 6 draws conclusions.

2. PARTITION ANALYSIS AND BOUNDARY VALUE ANALYSIS

2.1 Overview

PA and BVA are two related black-box testing techniques in which we partition the
input domain D into a set of subdomains S1, . . . , Sn and generate test inputs on
the basis of this. The subdomains are chosen so that, according to the specification,
the behaviour should be uniform on each Si. Throughout this paper we assume
that such a partition is being used as the basis of test generation and fi denotes
the specified functionality on subdomain Si (1 ≤ i ≤ n). PA and BVA have been
justified in terms of the following two types of faults.

(1) Computation faults: the wrong function is applied to some subdomain Si in
the implementation.

(2) Domain faults: the boundary between two subdomains in the implementation
is wrong.

In PA we produce test inputs that aim to find computation faults. Since a compu-
tation fault leads to the wrong function being applied throughout some subdomain
Si, in PA it is normal to choose just a few test inputs from each subdomain (or
even just one).

BVA aims to find domain faults by using test inputs near to the boundaries. Let
us suppose that the boundary between adjacent subdomains Si and Sj is incorrectly
implemented leading to subdomains Ai and Aj . Then a test input x will have the
wrong functionality applied to it, and thus is capable of detecting this fault, if x is
in the wrong subdomain in the implementation: either x ∈ Si and x 6∈ Ai or x ∈ Sj

and x 6∈ Aj . Approaches to BVA thus aim to produce a set of test inputs such that,
if there is a domain fault, then it is likely that at least one of the test inputs will
be in the wrong subdomain in the implementation. The essential idea is illustrated
in Figure 1.

BVA can be seen as an approach that assumes that the input domain of the
implementation can be partitioned to form some {A1, . . . , An} such that for all
1 ≤ i ≤ n, Ai is ‘similar to’ Si, the behaviour of the implementation is uniform on
each Ai, and the function f̄i defined by the implementation on Ai conforms to fi (if
f̄i does not conform to fi then we expect PA to have found this computation fault).
Thus, for each (Si, fi) we have a corresponding (Ai, f̄i). The test inputs generated
in BVA target the types of faults allowed by these assumptions — domain faults.
Throughout this paper we assume that for each (Si, fi) there is such a (Ai, f̄i).
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Fig. 1. Test inputs for BVA
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Fig. 2. Using more than one pair of test inputs for BVA

There are several approaches to BVA (see, for example, [Jeng and Forgacs 1999;
Jeng and Weyuker 1994; Richardson and Clarke 1985; White and Cohen 1980]).
These are based on geometric arguments in which we choose a set T of test inputs for
a boundary B such that if there is a boundary shift in B within the implementation
then it is likely that at least one value from T will be in the wrong subdomain in
the implementation. In order to simplify the explanation in this paper we assume
that the approach used is to generate pairs of test inputs around the boundaries —
the essential idea extends to the other approaches to BVA. Consider a boundary B
between subdomains Si and Sj from the specification. Suppose that the values on
the boundary are in Si. In order to check the boundary B we produce pairs of test
inputs of the form (x, x′) such that x is on the boundary (and thus in Si) and x′ is
in Sj and is close to x. If x and x′ are in the correct subdomains Ai and Aj of the
implementation then the actual boundary must pass between x and x′. If neither
subdomain contains the boundary then we produce pairs of test inputs with one
on either side of the boundary. Often we produce more than one such pair for a
boundary, ideally spread out over the boundary. Figure 2 illustrates this idea.

2.2 BVA: the scope for coincidental correctness

Let us suppose that in the (deterministic) specification there are two adjacent
subdomains Si and Sj on which the system’s functionality should be fi and fj

respectively. Further suppose that the boundary between subdomains Si and Sj is
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incorrectly implemented leading to subdomains Ai and Aj in the implementation
and that we use a test input x with x ∈ Si and x ∈ Aj . Thus, x is in the wrong
subdomain in the implementation. However, x will only detect this domain fault if
a failure is observed and this will only happen if fi and fj produce different output
on x. Thus, if fi(x) = fj(x) then the test input x cannot detect a domain fault in
which x lies in Aj rather than Ai. If this is the case then x is a poor choice of test
input, for checking the boundary between Si and Sj , irrespective of whether it is
on the boundary or, if it is not on the boundary, how close it is to the boundary.
Thus, assuming that the specification and implementation are deterministic we get
the following notion of coincidental correctness.

Definition 1. For boundary value analysis, coincidental correctness occurs for
input x if x ∈ Si and x ∈ Aj for some i 6= j but fi(x) = f̄j(x).

Assuming that there are no computation faults, the final part of the condition
reduces to fi(x) = fj(x).

From the above it is clear that the choice of test input for BVA should not
be based solely on geometric arguments — it should also consider the functions
expected in the different subdomains. The following sections consider ways of
avoiding such problems and separately investigate two cases: where the specification
is deterministic and where it is non-deterministic.

3. USING DISTINGUISHING TEST INPUT FOR DETERMINISTIC SYSTEMS

This section shows how we can eliminate a potential source of coincidental cor-
rectness in BVA when testing from a deterministic specification. Throughout this
section we assume that the input domain D has been partitioned1 to form sub-
domains S1, . . . , Sn and, since this is a partition, the Si are pairwise disjoint and
cover D.

When applying BVA to check the boundary between adjacent subdomains Si and
Sj we produce pairs of test input (x, x′) such that:

(1) x ∈ Si;
(2) x′ ∈ Sj ; and
(3) x and x′ are close together.

If possible, we choose one of x and x′ to be on the boundary between Si and
Sj . Note that the third point requires us to have at least an ordering on the input
values and ideally a metric; without this we have no notion of a boundary and so
cannot apply BVA. It is relatively straightforward to define a notion of ‘close’ for
numbers or tuples of numbers. It is less clear for other datatypes such as strings,
although there are a number of metrics such as the Hamming distance. Even with
numbers, there are alternative notions of ‘close’; for some examples a distance of
1 would be close while for others we might require a much smaller distance such
as 10−5 and thus the definition could rely on the tester’s domain knowledge. In
test generation we can replace ‘close’ by ‘as close as possible’ and see this as an

1Overlapping subdomains may occur in some subdomain based test techniques, but typically
these are white-box techniques. By contrast, black-box subdomain techniques usually produce
true partitions of the input domain.
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optimization problem; we want an adequate pair of test inputs with minimum
distance between them.

Example 1. We are using BVA to test from the following specification of a
simple system that determines the amount charged to a customer for buying w units
of water and e units of electricity in a given month, where w and e are non-negative
real numbers. The basic charge for a unit of water is c1 and the basic charge for a
unit of electricity is c2 and thus if there are no discounts then the overall charge to
the customer is c1w + c2e. However, if the customer has purchased at least b units
of water in the month (w ≥ b) then there is a 20% discount on the electricity.

Thus, the specification contains two cases:

(1 ) Subdomain S1 = {(w, e) ∈ R × R|0 ≤ w < b ∧ e ≥ 0} and corresponding
function f1(w, e) = c1w + c2e.

(2 ) Subdomain S2 = {(w, e) ∈ R × R|w ≥ b ∧ e ≥ 0} and corresponding function
f2(w, e) = c1w + 0.8c2e.

We have one boundary at w = b. Suppose that in BVA we use a test case (b, 0)
and that in the implementation the subdomains are A1 = {(w, e) ∈ R×R|0 ≤ w <
b + ∆∧ e ≥ 0} and A2 = {(w, e) ∈ R×R|w ≥ b + ∆∧ e ≥ 0} respectively for some
∆ > 0. While our test case is in the wrong subdomain in the implementation this
does not lead to a failure since f1(b, 0) = c1b = f2(b, 0). Thus, due to coincidental
correctness, the value (b, 0) fails to find this boundary shift even though it is in the
wrong subdomain in the implementation. Note that any such boundary shift of size
∆ for ∆ > 0 will go undetected: we fail to detect arbitrarily large boundary shifts.

This example shows that if we make an inappropriate choice of test input then
coincidental correctness can lead to arbitrarily large boundary shifts going unde-
tected. Further, it shows that there are cases where standard approaches to BVA
leads to test input with the property that we can know in advance that such bound-
ary shifts will go undetected. The failure to find the boundary shift was due to
coincidental correctness. However, it is an example of predictable coincidental cor-
rectness. We wish to avoid such situations and the following definition captures the
property we require.

Definition 2. Let us suppose that we have adjacent subdomains Si and Sj.
Then test input x is a distinguishing test input for (Si, Sj) if and only if x ∈ Si

and fi(x) 6= fj(x).

The important point here is that if x ∈ Si is not a distinguishing test for (Si, Sj)
then it cannot detect a shift in the boundary between Si and Sj . In such a case we
should not use x, in BVA, to check the boundary between Si and Sj .

Definition 3. Let us suppose that we have adjacent subdomains Si and Sj, test
input x ∈ Si, and test input x′ ∈ Sj. Then (x, x′) is distinguishing for (Si, Sj) if
x is a distinguishing test input for (Si, Sj) and x′ is a distinguishing test input for
(Sj , Si).

In BVA, when producing test input to check the boundary between adjacent
subdomains Si and Sj we should produce pairs of test input of the form (x, x′)
such that:
ACM Journal Name, Vol. V, No. N, Month 20YY.
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(1) (x, x′) is distinguishing for (Si, Sj); and
(2) x and x′ are close together.

Naturally, the conditions we require for ‘close together’ to make sense are equiv-
alent to those required for us to be able to apply BVA and so the above is relevant
whenever we can use BVA. Note that conceptually the observation that we require
distinguishing tests is related to work on testing from boolean specifications (see,
for example, [Kuhn 1999; Tsuchiya and Kikuno 2002]). In this previous work, for
a hypothesized fault we can determine the condition placed on the input in order
to detect the fault.

We now show how test input generation, for BVA, can be driven by these obser-
vations.

Example 2. Consider Example 1. The specification contains two cases:

(1 ) Subdomain S1 = {(w, e) ∈ R × R|0 ≤ w < b ∧ e ≥ 0} and corresponding
function f1(w, e) = c1w + c2e.

(2 ) Subdomain S2 = {(w, e) ∈ R × R|w ≥ b ∧ e ≥ 0} and corresponding function
f2(w, e) = c1w + 0.8c2e.

We can generate a pair (x, x′) that is distinguishing in the following way. Let
x = (w, e) and x′ = (w′, e′). Since the boundary is w = b it is natural to fix
e = e′. We can also insist that the two points are ε apart for some small ε > 0
and without loss of generalization we assume that w′ > w. Thus, our two points
are x = (w, e) and x′ = (w + ε, e) for w < b and w + ε ≥ b. We now want to have
f1(x) 6= f2(x) and f1(x′) 6= f2(x′). This reduces to c1w + c2e 6= c1w + 0.8c2e and
c1(w+ε)+c2e 6= c1(w+ε)+0.8c2e with two variables w and e. Both of these simply
reduce to e 6= 0. We might thus produce pairs of test input such as x1 = (b− ε, L)
(in S1) and x′1 = (b, L) for some large L and x2 = (b− ε, 0.01) and x′2 = (b, 0.01).

In this example test data generation was simplified by assuming that e′ = e and
w′ = w + ε. However, automated test data generation is possible without this sim-
plification since the constraints are still linear without these assumptions (assuming
we use the metric that the distance between x and x′ is |w−w′|+ |e− e′|) and thus
the problem of automated test data generation is a linear programming problem
and so can be solved using standard algorithms. If the constraints/boundaries are
not linear, it may still be possible to automatically generate test data using more
general search and constraint solving algorithms.

We have seen that in choosing test input for BVA, in order to check the boundary
between Si and Sj , we should use test inputs that are distinguishing for (Si, Sj) or
distinguishing for (Sj , Si). We now show that this is not always sufficient.

4. USING ROBUST TEST INPUT FOR DETERMINISTIC SYSTEMS

The previous section showed how we can produce test inputs, for BVA, that avoid
a form of predictable coincidental correctness. However, the example considered
used real-value functions and in analyzing these we ignored a potentially important
issue: the functions will not be implemented using reals. This section shows that
the approximation to the reals, used in the implementation, can be factored into
our choice of test input for BVA.
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Throughout this section we assume that an implementation uses floating point

numbers such that:

(1) A real x is represented by a value, formed by truncating x, denoted truncate(x)
and this gives precision δ; and

(2) There is a value MAX > 0 such that the floating point values are all less than
MAX and greater than or equal to −MAX.

Based on this, we can map a real value x onto a floating point value t(x) that
approximates it. The following is one way of achieving this.

Definition 4. Given a real number x let reduce(x) denote the real number that
is less than MAX and greater than equal to −MAX and may be obtained from x
by repeated addition or subtraction of 2MAX. Then t(x) = reduce(truncate(x)).

We can also define an equivalence relation ≡ on the reals, such that x ≡ y if
and only if they are represented by the same floating point value. Thus x ≡ y if
and only if t(x) = t(y). If x ≡ y does not hold then we write x 6≡ y. We need to
consider what we mean by a floating point valued program correctly implementing
a real valued specification. The following is a simple notion of correctness of the
function fp defined by our program p relative to the function fs defined by our
specification2.

Definition 5. Let us suppose that x is an input, yp = fp(x), and ys = fs(x).
Then p is correct on input x if and only if yp = t(ys). Program p is correct if and
only if p is correct on all input.

Throughout this paper F denotes the set of floating point numbers used. We are
now ready to consider the problem of generating test input for BVA.

Definition 6. Let us suppose that we have adjacent subdomains Si and Sj and
a test input x that has been introduced to detect shifts in the boundary between Si

and Sj. Then x is a strongly distinguishing test input for (Si, Sj) if and only if
x ∈ Si and fi(x) 6≡ fj(x).

Definition 7. Let us suppose that we have adjacent subdomains Si and Sj, test
input x ∈ Si, and test input x′ ∈ Sj. Then (x, x′) is strongly distinguishing for
(Si, Sj) if x is a strongly distinguishing test input for (Si, Sj) and x′ is a strongly
distinguishing test input for (Sj , Si).

Thus in BVA, when producing pairs of test input to check the boundary between
adjacent subdomains Si and Sj for real-valued functions we should produce pairs
of the form (x, x′) such that:

(1) (x, x′) is strongly distinguishing for (Si, Sj); and

(2) x and x′ are close together.

2There are alternative ways of defining correctness, such as using some larger required precision
or relative precision. It should be straightforward to extend the approach described in this section
to these cases.
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Example 3. We are using BVA to test from the following specification of a
simple system, for a company that sells electricity, that determines the amount
charged to a customer for buying e units of electricity where e is a non-negative
real number. The basic charge for a unit of electricity is c1 and thus, if there are no
discounts then the overall charge to the customer is c1e. However, if the customer
has purchased more than b > 0 units of electricity in the month (e > b) then there
is a 30% discount on all purchases above b. Thus, the specification contains the
following two cases:

(1 ) Subdomain S1 = {e ∈ R|0 ≤ e ≤ b} and corresponding function f1(e) = c1e.
(2 ) Subdomain S2 = {x ∈ R|e > b} and corresponding function f2(e) = c1b +

0.7c1(e− b).

Consider the boundary e = b. Let δ denote the precision of F . In order to
simplify the explanation we assume that b ∈ F . We have already seen that since
f1 and f2 agree on the boundary e = b, we should not use x = b as a test input in
BVA. Thus in BVA we could choose points on either side of the boundary and as
close to the boundary as possible. Since F has precision δ, it is natural to produce
the following pair of test inputs: x = b − δ (in S1) and x′ = b + δ (in S2). Now
consider the two test inputs and how the functions f1 and f2 differ on these.

(1 ) Test input x = b − δ. Then f1(x) = c1(b − δ) = c1b − c1δ and f2(x) =
bc1 + 0.7c1(b− δ − b) = bc1 − 0.7c1δ.

(2 ) Test input x′ = b + δ. Then f1(x′) = c1(b + δ) = c1b + c1δ and f2(x′) =
bc1 + 0.7c1(b + δ − b) = bc1 + 0.7c1δ.

While these test inputs are distinguishing, for sufficiently small c1 we have that
f1(x) ≡ f2(x) and f1(x′) ≡ f2(x′) in which case they are not strongly distinguishing.
Thus we should choose strongly distinguishing test input values x = b − ε and
x′ = b+ ε such that 0.3c1ε is sufficiently large in order to ensure that f1(x) 6≡ f2(x)
and f1(x′) 6≡ f2(x′).

Again, we can represent the process of generating test data as searching for pairs
of test inputs that are (strongly) distinguishing. In the above example, this is a
search for small ε > 0 such that f1(x + ε) 6≡ f2(x + ε) and f1(x− ε) 6≡ f2(x− ε).

5. ROBUST BOUNDARY VALUE ANALYSIS FOR NON-DETERMINISTIC SPECI-
FICATIONS

5.1 Overview

Many specifications are non-deterministic. Non-determinism could be due to ab-
straction and/or the desire to leave certain decisions until the design and coding
stages. It can allow a greater range of components to be used within development
and thus facilitate reuse. Non-determinism can also be the result of possible in-
terleavings of operations in distributed systems. However, it is possible to have a
deterministic implementation that conforms to a non-deterministic specification: it
is usually sufficient that all behaviours in our implementation are allowed by the
specification and that for any input x if the specification is defined on x then the
implementation can be applied to x.
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Non-deterministic behaviour can be expressed using functions from input values

to sets of output values3. Thus our definitions of a test input being distinguishing
can still be used.

Example 4. Consider the following specification of a system that takes a floating
point value z and returns a floating point value. If z is greater than or equal to zero
then the output value is a floating point value y with 0 ≤ y < 100. If z is less than
zero then the output value is a floating point value y with −100 < y ≤ 0.

There are two subdomains, S1 = {z ∈ F|z ≥ 0} and S2 = {z ∈ F|z < 0}. Let
f1 and f2 denote the specified functions for S1 and S2 respectively. Test input 0 is
distinguishing for (S1, S2) since it is contained in S1 and f1(0) = {y ∈ F|0 ≤ y <
100} 6= {y ∈ F| − 100 < y ≤ 0} = f2(0).

Consider a positive floating point value ε ∈ F and the following deterministic
implementation that takes a floating point z and returns a floating point value.

(1 ) If z > ε then return f̄1(z) where f̄1(z) = 50.
(2 ) If z ≤ ε then return f̄2(z) where f̄2(z) = −50 if z 6= 0 and f̄2(0) = 0.

There are no computation faults since f̄1 conforms to f1 on all floating point
values and f̄2 conforms to f2 on all floating point values. There is a boundary
shift and this leads to the (distinguishing) input 0 being in the wrong subdomain.
However, because of the way that f̄2 has been implemented this does not lead to a
failure and thus the domain fault is not detected.

The problem here is that while f1 and f2 produce different sets of allowed outputs
on input 0, there is an output value contained in f1(0)∩f2(0). Thus, if we apply an
implementation of f2 to a test input x then it could return a value that f1 cannot
produce but it also could return a value (0) that f1 can produce.

5.2 Choosing test inputs

Let us suppose that we use test input x to check the boundary between Si and
Sj and x ∈ Si. If we test the program p with x there are the following possible
outcomes.

(1) Fail: the output is not one allowed by the specification. If there are no compu-
tation faults then there must have been a domain fault (i.e. x 6∈ Ai).

(2) Pass: the output is one allowed by the specification (it is in fi(x)) and is not
in fj(x). If there are no computation faults then we know that x 6∈ Aj .

(3) Inconclusive: the output is from fi(x)∩ fj(x). A failure has not been observed
but the output provides no information about the location of the boundary and
thus this test has not helped us check the boundary.

From this we can see that for an input x and input domains Si and Sj with
corresponding functions fi and fj (in the specification) there are three cases of
interest.

(1) fi(x)∩fj(x) = ∅: the outcome of testing with x must either be the verdict Pass
or the verdict Fail.

3An alternative and equivalent approach is to use relations between inputs and outputs.
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(2) fi(x) 6= fj(x) and fi(x) ∩ fj(x) 6= ∅: the outcome of testing can be any of the
three verdicts.

(3) fi(x) = fj(x): the outcome of testing is either the verdict Fail (due to a com-
putation fault) or the verdict Inconclusive. If we have no computation faults
then the verdict must be Inconclusive and so x has no value in checking the
boundary between Si and Sj .

In BVA, when generating test input x from Si to check the boundary between
Si and Sj we want x to have the property that if x ∈ Ai then the result of testing
with x is Pass; if x lies in Aj then the result of the test is Fail. This is captured by
the following definition.

Definition 8. Let us suppose that Si and Sj are adjacent subdomains and x ∈
Si. Suppose further that the (non-deterministic) specification gives functions fi and
fj on Si and Sj respectively. Then x is a distinguishing test input for (Si, Sj) if
fi(x) ∩ fj(x) = ∅.

In Example 4 we saw that there need not exist distinguishing test inputs and
naturally even when these do exist they might not lie near to the boundary of
interest. Thus there need not exist test inputs that we know in advance to be
sufficient. We now briefly discuss the potential use of adaptive testing in such
cases.

5.3 Adaptive test generation of deterministic implementations

This section considers the situation in which, for adjacent subdomains Si and Sj ,
we do not have a test input x from Si that is close to the boundary and has
fi(x)∩fj(x) = ∅. Then there does not exist a test input that meets our requirements
for checking boundary shifts where elements of Si are in Aj .

While many specifications are non-deterministic, the corresponding implementa-
tions are often deterministic. If p is deterministic then it is possible that there exists
test input that satisfies our requirements when we consider the actual behaviour of
p. However, if we only consider the specification then we cannot determine which
input values have this property: it is necessary to explore the behaviour of the
implementation p.

One possible heuristic for choosing test input data is to choose a value x near the
boundary that maximizes the potential for the result to produce either the verdict
Pass or the verdict Fail. Let us suppose that we are looking for a value in Si to check
the boundary with Sj . The result of testing with x ∈ Si produces verdict Pass if it
is in fi(x) \ fj(x) and produces verdict Fail if it is in fj(x) \ fi(x). Thus, assuming
that all output from fi(x) ∪ fj(x) are equally likely we could aim to maximize the
value |fi(x)\fj(x)|+|fj(x)\fi(x)|

|fi(x)∪fj(x)| . If the verdict Inconclusive is returned we could then
generate another test input.

If we use test inputs and, on the basis of the result, either stop testing or produce
new test inputs to use then we are applying adaptive testing. One approach to BVA
is to apply a process in which we take a test input x with fi(x) 6= fj(x), test with
this, determine whether it checks the boundary and if not take another such test
input.
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The development of heuristics to drive adaptive testing for BVA is a topic for

future work. In some cases it may be appropriate to apply optimization algorithms.
In order to do so, if a test input x leads to an output y in fi(x) ∩ fj(x) then we
need some way of estimating how close x is to being sufficient. If we can represent
the sets fi(x) and fj(x) by regions then we could consider the distance of y from
the edges of these regions: the closer y is to the edge of one of these regions the
closer it is to producing either verdict Pass or verdict Fail.

Example 5. We wish to check that the execution time of a component lies within
the specified region. The component takes one floating point value z and if z is
greater than or equal to zero then the execution time should be between min+ and
max+ and otherwise it should be between min− and max−. We also have that
min+ < min− < max+ < max−.

There is one boundary, the point z = 0. It is thus natural to test with small
positive and negative input (and possibly 0). Let us suppose that we are considering
a test input z = ε for some small positive ε and the resultant execution time tε
leads to verdict Inconclusive: min− < tε < max+. The value F (ε) = min{tε −
min−,max+ − tε} can be used to denote how close this test case came to giving a
verdict other than Inconclusive: if this value becomes negative then the test result
is either Pass or Fail. We can thus represent the test generation problem as that of
finding a small value ε > 0 that minimizes F (ε).

5.4 Adaptive testing of non-deterministic systems

If our implementation is non-deterministic and if we repeat the use of a test input
x then we could see a different output. This introduces additional issues.

Example 6. Our specification describes the required behaviour of a component
that will form part of a computer game. The game involves the shooting of targets
(clay pigeons). The component receives one value: a floating point value z with
−100 ≤ z ≤ 100. This value represents the horizontal position of the shot, relative
to the target, when it reached the height of the target. The component returns either
1 (representing the shot destroying the target) or 0 (representing the shot failing to
destroy the target).

If z = 0 then the shot reached the centre of the target and so the response should
be 1. The target has width 2 and thus if z > 1 or z < −1 then the shot missed
and so the result should be 0. If −1 ≤ z ≤ 1 then there is a chance that the shot
destroyed the target and this probability is (1 − |z|)4: the closer a shot is to the
centre of the target the more likely it is to destroy the target. We can choose the
following subdomains.

(1 ) S0 = {0}.
(2 ) S1 = {z ∈ F| − 1 ≤ z < 0}.
(3 ) S2 = {z ∈ F|0 < z ≤ 1}.
(4 ) S3 = {z ∈ F| − 100 ≤ z < −1}.
(5 ) S4 = {z ∈ F|1 < z ≤ 100}.

Consider the choice of a test input in S1 to check the boundary between S1 and S3.
As we have already seen, we should not use the value −1 since here both functions
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allow only one response: 0. The input value −1 is not capable of distinguishing
between the expected behaviours on S1 and S3. No test input in S1 is guaranteed
to distinguish between implementations of the two functions. In principle we could
use any test input x > −1 that is close to −1: all such values are capable of leading
to output 1 and this is not an allowed behaviour in S3.

This example has an additional feature: it is important that the implementation
can produce either 0 or 1 if −1 < z < 0 or 0 < z < 1 and it should do so with
the probabilities stated in the specification. Thus, we can choose to use a test input
x > −1 close to −1 and repeatedly test with this. The closer x is to −1 the more
repetitions we expect to apply before seeing output 1 and so there is a trade off
between proximity to the boundary and expected cost of testing.

When testing a non-deterministic system it is common to make a fairness as-
sumption: we assume that for some predetermined value k, if we apply our imple-
mentation to an input value x a total of k times then we will observe all possible
responses of the implementation to x. If we can make such a fairness assumption
then by applying each test input x a total of k times we know that we have ob-
served all possible behaviours of p when given input x: the entire set p(x). In such
cases it should be possible to apply optimization based approaches similar to those
described in Section 5.3.

6. CONCLUSIONS

This paper has investigated the problem of generating test input from the specifi-
cation, for boundary value analysis (BVA), in order to detect domain faults. We
have shown that a purely geometric basis for test generation can lead to the use of
a test input that is incapable of detecting the corresponding domain fault. We can
avoid this by considering the functions applied in the separate subdomains of the
specification.

We started with the case usually considered in the literature where the specifica-
tion and code are deterministic. Here when introducing a test input x to check the
boundary between subdomains Si and Sj of the specification with corresponding
specified functions fi and fj it is important that fi(x) 6= fj(x); otherwise x cannot
detect a shift in the boundary between Si and Sj . However, we found that this
situation is complicated if the specification uses real numbers and the code uses
floating point numbers. In this case, it is not sufficient that fi(x) 6= fj(x); we have
to strengthen this to insist that the floating point values corresponding to fi(x)
and fj(x) are different.

Non-determinism in the specification complicated the analysis since our functions
return sets of allowed outputs rather than a single output. We can thus have an
input value x for which fi(x) 6= fj(x) but fi(x) ∩ fj(x) 6= ∅. When testing with
such an input x ∈ Si near to the boundary between Si and Sj there are three
possible outcomes: verdict Pass (the output is in fi(x) but not fj(x)); verdict Fail
(the output is in fj(x) but not fi(x)); or verdict Inconclusive (the output is in both
fi(x) and fj(x)). Ideally we want to use test input that cannot lead to the test
verdict Inconclusive; if such test input does not exist then we could search for test
input that leads to either verdict Pass or verdict Fail. This suggests the use of
adaptive test generation techniques in which the process of choosing a test input
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utilizes the behaviour that has been observed in testing and test generation is seen
as an optimization problem. Future work will consider such adaptive approaches
to the generation of test inputs for BVA from non-deterministic specifications.

This paper showed that, when using BVA, we should use test inputs that have
particular properties in order to reduce the scope for coincidental correctness. We
also showed that the test generation problem is strongly related to this: we search
for test inputs that satisfy these conditions. If the conditions can be represented
using a set of linear constraints then we can apply linear programming techniques.
However, there are many more general search and constraint solving techniques
that have been used in automated test data generation and these might be used
when the constraints are not linear (for more on automated test data generation
see, for example, [DeMillo and Offutt 1991; Dick and Faivre 1993; Fernandez et al.
1996; Jeng and Forgacs 1999; Jones et al. 1998; McMinn 2004; Michael et al. 2001;
Pargas et al. 1999]).
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