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Abstract

A program schema defines a class of programs, all of which have identical statement
structures, but whose expressions may differ. We prove that given any two structured
schemas which are conservative, linear and free, it is decidable whether they are
equivalent.
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1 Introduction

A schema represents the statement structure of a program by replacing com-
putational expressions with terms involving function and predicate symbols.
For example, in Figure 1, P, and P, are programs with the same structure,
represented by schema S;. A schema, S, thus stands for a whole class [S] of
programs all of the same structure. Each program in [S] can be obtained from
S via a mapping called an interpretation which gives meanings to the function
and predicate symbols in S.

This paper is concerned with the problem of finding a class of schemas for
which equivalence is decidable. Two schemas are equivalent if and only if un-
der all interpretations the corresponding programs are semantically equiva-
lent. In general, the equivalence of schemas is undecidable[1]. However, in an
early result about program schemas, Tanov [2] introduced a restrictive class
of schemas, for which equivalence is decidable. Unfortunately, Tanov schemas,
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s = f10); s := 0; s = 1;
while by (7) while i > 0 while i > 0
do do do
begin begin begin
s = fos,1); s 1= s+1; S 1= S¥1i;
i = f3(i); 7 =14 —1; 7 =14 —1;
end end end
Schema S, Program P, Program P»

Fig. 1. A schema and two programs in its equivalence class

contain only a single program variable, so they form a very restricted class of
schemas.

Other positive results are those of Paterson [1] and Sabelfeld [3]. Paterson
proved that equivalence is decidable for a class of schemas called progres-
stwe schemas, in which every assignment references the variable assigned by
the previous assignment along every executable path. Sabelfeld proved that
equivalence is decidable for another class of schemas called through schemas.
A through schema satisfies two conditions: firstly, that on every path from an
accessible predicate p to a predicate ¢ which does not pass through another
predicate, and every variable x referenced by p, there is a variable referenced
by ¢ which defines a term containing the term defined by z, and secondly,
distinct variables referenced by a predicate define distinct terms under any
free interpretation.

In an attempt to escape the restrictions of Ianov schemas, while retaining the
decidability of equivalence, much work has been undertaken to define classes
of schemas which have an arbitrary number of program variables, but which
have other structural and semantic restrictions placed upon them.

Three schema classes which have been widely studied are:

Free schemas [4], where any path is executable under some interpretation.

Liberal schemas [1], where no value can be computed more than once in
any interpretation.

Conservative schemas [1] in which the right-hand side of every assignment
contains the variable assigned to.

In all these cases and in all possible combinations thereof, decidability (or
otherwise) of equivalence remains open.



A linear schema (or non-repeating schema) is one where each function and
predicate name occurs at most once. We use the term CFL schemas to denote
the class of schemas which are Conservative, Free and Linear.

Earlier work on program schemas considered unstructured languages in which
there were no block structured constructs. In these unstructured languages,
non-sequential control flow is determined solely by jump statements. In this
paper, only structured schemas are considered; those which can be formed from
assignment, sequencing, conditionals and while loops. The contribution of this
paper is to demonstrate that equivalence is decidable for such structured CFL
schemas.

2 Organisation of the Paper

This section provides both an overview of the paper’s structure and a sketch
of the proof which follows in the remainder of the paper.

Section 3: Preliminary Definitions

Section 3 presents the syntax and semantics of schemas. In common with other
approaches to program schemas|[5,6,1,3], the semantics of schemas is defined
using Herbrand Interpretations of a schema. Schemas are equivalent if and
only if they have the same semantics.

A schema S, and an interpretation i, together give rise to a path. A path
is a possibly infinite sequence of elements each of which corresponds to the
execution of an assignment or a predicate of the schema.

Section 4: Paths and Interpretations Passing Through Symbols

Given a schema S, we define what it means for a terminating interpretation,
1, to pass semantically through either a function or predicate symbol. Impor-
tantly, if an interpretation ¢ passes through a function or predicate symbol in
S, it does so in all schemas equivalent to S. The main result of this section
is that for a CFL schema S, an interpretation ¢ passes semantically through a
function symbol f if and only if f occurs on the path determined by S and :.



Section 5: Equivalence is Decidable for Predicate-Free Conservative Schemas

A predicate—free schema consists of just a sequence of assignments. In Section
5, it is shown that the equivalence of predicate—free CFL schemas is decidable.

Section 6: FEquivalent Schemas have Identical Predicate Sets

In Section 6, it is shown that two equivalent CFL schemas have the same set
of predicates and that corresponding predicates are of the same type (if or
while) in each schema.

Section 7: Equivalent Schemas have Identical Symbol Sets in Loop Bodies

Having shown that equivalent CFL schemas, S and T have the same set of
while and if predicates, in this section we go on to show that for each while
predicate p the set of symbols (functions and predicates) in the body of p in
S is the same as the set of symbols in the body of p in 7T'.

Section 8: Standardised CFL schemas: A Canonical Form

The results of the previous section almost carry over to if statements. Indeed
in Theorem 43, it is shown that in equivalent CFL schemas, that both the then
and else parts of corresponding ifs contain the same set of while predicates
and function symbols.

All that is further required is that corresponding if statements contain the
same set of if predicates. Unfortunately, this is not the case. Consider, for
example, the equivalent CFL schemas (where A represents the empty sequence
of statements):

if p(x) if q(y)

then if q(y) then if p(x)
then S and then S
else A else A

else A else A




We call such statements ambiguous. Fortunately, Section 8 shows that these
ambiguous statements have a computable canonical form, which we call ‘stan-
dardised CFL schemas’. Theorem 49 states that equivalent standardised CFL
schemas contain the same sets of symbols in each part of each if predicate.

Section 9: Interchanging Commuting Subschemas

In Section 9, the main result is proved. First we show that if two CFL schemas
are equivalent then any function or predicate symbol references the same vec-
tor of variables (Proposition 50). Lemma 56 then strengthens this by proving
that, if S and T are equivalent standardised schemas, and the order of two
subschemas of S differs from the order of the corresponding subschemas in 7T,
then these subschemas may be interchanged while preserving equivalence.

This interchange of subschemas may be performed finitely many times to
obtain a schema which is identical to 7. There are finitely many schemas
equivalent to a given schema, and it is this that makes equivalence decidable.

It is shown that it will take polynomial time before S is transformed into T,
or there are no such pairs left in .S, in which case S and T are not equivalent.

Section 10: Relevance of Linear Schemas to Program Slicing

In Section 10, we discuss the relevance of Linear Schemas to issues, of partic-
ular interest to us, concerning program slicing.

3 Preliminary Definitions

This section presents the syntax and semantics of schemas and the schema
classes of interest.

The first task is to define the class Sch(F,P,V) of schemas that are to be
considered. Here F, P and V denote fixed sets of function symbols, of predi-
cate symbols and of variable symbols respectively. Each function or predicate
symbol g € F U P has an arity, that is, a non-negative integer which is the
number of arguments referenced by ¢g. Note that in the case when the arity
is zero then g may be thought of as a constant. A function expression f(x)
is formed by a function symbol f of arity n together with its arguments x
which is an n-tuple of variable symbols. A predicate expression p(y) is simi-



larly formed by a predicate symbol p with its arguments y which again denotes
a tuple of variable symbols of the correct arity.

Definition 1 (Structured Schemas)

An atomic schema is an assignment of the form y:=f(x) where y € V, and
f(x) is a function expression. From these all schemas in the set Sch(F,P,V)
of all schemas on the symbols F, P and V may be ‘built up’ from the following
constructs on schemas.

Sequences S’ = U;U,...U, may be formed provided that Uj,...,U, are
schemas. This includes the empty sequence consisting of the empty sequence
of schemas. We use the symbol A to refer to the empty sequence.

if Schemas S" = if p(x)then Tjelse T, may be formed whenever p(x) is a
predicate expression and when the schemas 77 and T, are not both A.

while Schemas S" = while q(y)do T may be formed whenever ¢(y) is a pred-
icate expression and 7" is a schema.

In the above definition S” will be referred to as an if schema and S" as a while
schema. The predicate symbols p and ¢ are called the guards of the schemas
S" and S", respectively. The subschemas of a schema are defined as follows;
the empty sequence A is a subschema of every schema; the only subschemas of
an atomic schema S are S itself and A; the subschemas of U; ... U, are those
of each U; for 1 < j <r and also the schemas U;U;;1...U; for 1 < < j <r;
the subschemas of S” = if p(x)then Tielse T, are S” itself and those of T} and
Ty; the subschemas of S = while q(y)do T are S" itself and those of T'. The
subschemas T} and T, of S” are called the true and false parts of p (or of S”).
In the while schema the subschema 7' is called the body of g (or of S”"). The
set of function symbols in a schema S is defined as Funcs(S) C F.

The sets of if and while predicate symbols in S are denoted by ifPreds(S) and
whilePreds(S); their union is Preds(S). A schema without predicates is called
predicate—free.

Definition 2 (Linear Schemas)
If every element of FUP does not appear more than once in S, then S is said
to be linear.

If S is linear, we define Symbols(S,p) to be the set of function and pred-
icate symbols in the body of p in S (if p is a while predicate) or in the
two parts of p (if p is an if predicate) in S. In the latter case we define
Symbols(S, p, True), Symbols(S, p, False) to be the set of function and pred-
icate symbols in its true and false parts, respectively. If S contains an as-
signment y:=f(x) then we define y = assigng(f), refvecs(f) = x and the set
of components of x is Refsetg(f) C V. If p € Preds(S) then refvecg(p) and
Refset4(p) are defined similarly.



Finally |S| is defined as follows: |S] is the total number of function, predicate
symbols in S.

The symbols upon which schemas are built are given meaning by defining the
notions of a state and of an interpretation. It will be assumed that ‘values’
are given in a single set D, which will be called the domain.

Definition 3 (State and Interpretation)

Given a domain D, a state is either L (in the case of non-terminating pro-
grams) or a function ¥V — D. The set of all such states will be denoted by
State(V, D). An interpretation i defines for each function symbol f € F of
arity n a function f*: D™ — D and for each predicate symbol p € P of arity
m a function p* : D™ — {True, False}. The set of all interpretations with
domain D will be denoted Int(F, P, D).

An important special case, that suffices to determine the equivalence of schemas,
is the domain Term(F,V) of all terms from F and V.

Definition 4 (Terms)
The set Term(F,V) of terms is defined as follows:

(1) each variable is a term,
(2) if f € Fisofarity nand ty,... ,t, are terms then f(¢1,...,%,) is a term.

We refer to a tuple t = (¢, ... ,t,), where each ¢; is a term, as a vector term.
We call p(t) a predicate term if p € P and the arity of the vector term t is
that of p. If ¢ is a term, we define TermSymbols(t) C F UV to be the set
of function and variable symbols that it contains. We refer to a term f(t) as
an f-term. Let F' € F*; then we define an F-term recursively as follows; if
F = F'g, for g € F and F' € F*, then t is an F-term if and only if ¢ is a
g-term, t = g(t) say, and a component of the vector term t is an F’'-term.

The notion of a Herbrand interpretation is now given. It is well known |7,
Section 4-14] that these interpretations are the only ones that need to be
considered when considering equivalence of schemas. This fact is stated more
precisely in Theorem 18.

Definition 5 (Herbrand Interpretation)

An interpretation i is said to be Herbrand whenever the domain is Term(F,V)
and if f € F is a function symbol of arity n then

fi(tla"' 7tn) = f(tla 7tn)
for all n-tuples of terms (¢y,... ,t,).

Definition 6 (Changing a Herbrand Interpretation)



Given a Herbrand interpretation ¢ and X € {True, False} and p € P, the
Herbrand interpretation i(p = X) is given by

qi(P:X)(t) _ qz(t) q 7£ p
X  q=p
for every vector of terms t of the appropriate length and every ¢ € P.

Definition 7 (The Natural State e)
In the case when the domain is Term(F,V), the natural state

e:V — Term(F,V)
is defined by e(v) = v for all v € V.

The execution of a program defines a finite or infinite sequence of assignments
and predicates. Each such sequence will correspond to a path through the
associated schema. The set I1(S) of paths through S is now given.

Definition 8 (The set [1“(S) of paths through S5)

If L is a finite set, then we write L* for the set of finite words over L and L%
for the set containing both finite and infinite words over L. If o is a word, or
a set of words over an alphabet, then pre(o) is the set of all finite prefixes of
(elements of) o.

For each schema S the alphabet of S, written a(S) is defined by
a(S)=AuBUC
where
A={<y:=f(x)> | y:=f(x) is an assignment in S}
B = {<p(x) = True> | p(x) is a predicate expression in S'}

C = {<p(x) = False> | p(x) is a predicate expression in S}.

The set, I1(S) C (a(S))*, of all finite paths of schema S is defined inductively
as follows:

For assignments,

M(y:=f(x)) = {<y:=f(x)>}.

For sequences,



For if schemas,
[(if p(x) then T else Ty)

is the set of all concatenations of <p(x) = True> with a word in II(7}) and
all concatenations of <p(x) = False> with a word in II(73).

For while schemas,
[I(while q(y) do T)
is the set of all words of the form
[<a(y) = True> T(T)]" <q(y) = False>

where [<q(y) = True> II(T)]* denotes a finite sequence of words which are
the concatenation of <q(y) = True> with a word from II(T).

[1¥(S) is the set of finite and infinite paths of S. It is defined to be the set of all
paths all of whose finite prefixes are prefixes of elements of II(.S)). Formally,

[1%(5) = {o € (a(S))*|pre(o) < pre(Il(S))}.

Elements of I1¥(S) are called paths through S.

Definition 9 (Paths passing through a Function or Predicate Symbol)

We say that a path passes through a function symbol f (or a predicate p)
if it contains an assignment with function symbol f (or <p(x) = True> or
<p(x) = False>).

Definition 10 (The Schema corresponding to a Path)

Given a path o the predicate—free schema Atrace(o) consists of all the as-
signments along o in the same order as in o; and Atrace(o) = A if o has no
assignments.

Lemma 11 Let S be a schema; then if o € pre(IL(S)), the set {l € a(S)|ol €
pre(IL(S))} is one of the following:

The empty set
A singleton containing an assignment

A pair {<p(x) = True>,<p(x) = False>} where p(x) is a predicate
expression in S.



Proof. This follows by induction on |S]|.

Lemma 11 reflects the fact that at any point in the execution of a program,
there is never more than one ‘next step’ which may be taken.

Given a schema S € Sch(F,P,V) and a domain D, an initial state d €
State(V, D) with d # L and an interpretation i € Int(F, P, D) we now define
the final state M[S]} € State(V,D) and the associated path m(S,i,d) €
1 (S).

Definition 12 (The Semantics of Predicate—free Schemas)
Let 7 be an interpretation and d an initial state, then the final state M[S]}
of a schema S is defined as follows:

For assignments,

d(v) if v #y,

Mly=fx)]y(v) = {fi(d(x)) if v=y

(where d(x) is the tuple of terms d(z) formed by applying d to each of
the variable symbols zj, in x)
for sequences,

M[[SISZ]IZd - M[[SQ]I?/\A[[Sl]];

In order to give the semantics of a general schema S, first the path, 7(S,i,d),
of S with respect to interpretation, 7, and initial state d is defined.

Definition 13 (The Path 7(S,i,d) of a Predicate—free Schema)
Let i be an interpretation and d an initial state, then the path 7(S,4,d) €
[1¥(S) of a schema S is defined as follows:

For assignments,

m(y:=f(x),i,d) = <y=f(x)>.
For sequences,
w(Ai,d) = A
and
T(818y,0,d) = w(Sy,d,d)m(Se, i, M[Si]g).

10



This uniquely defines 7(S,1,d) if S is predicate—free.

Definition 14 (7(S,i,d) where S is not predicate—free)

For a general schema S, we require that 7 (S, i, d) to be in TI¥(S) and that for
every prefix o of 7(S,1,d) ending in <p(x) = X>, where X denotes True or
False and p(x) a predicate expression in S, we have p'(M[Atrace(o)]}(x)) =
X. By Lemma 11, this defines the path (S, i, d) € I1“(S) uniquely.

We are now ready to define the semantics of a general schema S with respect
to an initial state d # L and an interpretation 1.

Definition 15 (The Semantics of Schemas with Predicates)
If 7(S,1,d) is finite, we define

MST; = M[Atrace(n(S,4,d))];

(which is already defined, since Atrace(w(S,1i,d)) is predicate—free) otherwise
7(S,1,d) is infinite and we define M[S], = L.

Observe that M[S;Ss]} = M[[SZ]B\A[&M and

7T(51827 i? d) = W(Sla 7:7 d)ﬂ-(s% ia M[[Sl]]fi)
hold for all schemas (not just predicate-free ones).

Definition 16 (Terminating Interpretations)
If M[S]% # L, then we say that i is a terminating interpretation for S.

Definition 17 (Equivalence of Schemas)

We say that schemas S,T € Sch(F,P,V) are equivalent, written S = T, if
for every domain D and state d : V — D and every i € Int(F, P, D) we have
M[S]y; = M[TT; (including the case that M[S], or M[T]; = 1).

The following theorem, which is a restatement of [7, Theorem 4-1], ensures
that we only need to consider Herbrand interpretations and the natural state
e.

Theorem 18 Let S € Sch(F,P,V), and let D be a domain. Then for all
states d : V — D with d # L and interpretations i € Int(F, P, D) the follow-
ing holds.

(1) We have (S, j,e) = w(S,i,d) for some Herbrand interpretation j €
Int(F, P, Term(F,V)).
)

(2) If T € Sch(F,P,V) and for all Herbrand interpretations j we have
MI[S]. = M[T)?, then S = T.

Throughout the remainder of the paper, all interpretations will be assumed

11



to be Herbrand. For convenience, if ¢ is a Herbrand interpretation we define
7(S,1) = w(S,i,e). Also, if S is predicatefree and d : V — Term(F,V) is a
state then we define unambiguously M[S], = M[S];,.

Definition 19 (Free Schemas)

Let S € Sch(F,P,V). If for every path o € TI¥(S) there exists a domain D,
an interpretation ¢ € Int(F,P,D) and a state d € State(V, D), such that
o =mn(S,1,d), then S is said to be free.

Definition 20 (Conservative Schemas)

Let S € Sch(F,P,V). If in every assignment y:=f(x) of S, the variable y is
one of the components of x, then S is said to be conservative. We refer to a
schema which is conservative, free and linear as a CFL schema.

Proposition 21 If S z:=h(c) is any conservative predicate—free schema, x €
V and M[S],.(x) is an F-term for some F € F*, then M[S z:=h(c)],.(z) =
M[S), (%) if z # z; if z = x then M[S z:=h(c)],.(z) is an Fh-term.

Proof. This follows from Definition 12 and the fact that z is a component of
c, since S z:=h(c) is conservative.

Proposition 22 Let S be a free linear schema containing a subschema
while p(x)do T.

Then every finite path o € II(T) passes through a function symbol f € F with
assign,(f) € Refsetg(p).

Proof. Suppose o € TI(T) does not satisfy this condition. Since S is free, there
is a path p <p(x) = True> o <p(x) = False> p' € 7(S,14) for some inter-
pretation 7. Thus p*(M[Atrace(p)],(x)) = True and p*(M[Atrace(po)],(x)) =
False. But if the path o does not contain an assignment to any component of
x, then M[Atrace(p)],(x) = M[Atrace(po)],.(x), giving a contradiction.

Proposition 23 If S is a free schema, then each of its subschemas is either
A or contains a function symbol.

Proof. This follows by induction on |S|, using the fact that the body of a free
while schema in S contains at least one assignment, by Proposition 22.

4 Paths and Interpretations Passing Through Symbols

This section defines what it means for a schema to pass semantically through
a predicate.

12



Definition 24 (PathSymbols)

Let S € Sch(F,P,V) be a schema and let p € T1¥(S) be a path through S.
We define PathSymbols(n) € F U P to be the set of all elements of F U P
through which p passes.

Definition 25 (Passpred)

An interpretation ¢ passes through a predicate symbol p in a schema S if i
terminates for S and there exists an interpretation j, differing from ¢ only at
p such that M[S]% # M[S].. We write Passpred(S,p) for the set of interpre-
tations passing through p in S.

Definition 26 (Passfunc)
A terminating interpretation i passes through a function symbol f € F in a
schema S if f € TermSymbols(M[S]’(z)) for some variable z € V. We write

Passfunc(S, f) for the set of interpretations passing through f in S.

Observe that the preceding two definitions are given in terms of M[S]:, and
hence depend only on the equivalence class of S.

Lemma 27 Let S be a linear schema and let p € Preds(S). Let the interpre-
tation i be terminating for S.

(1) If i € Passpred(S,p), then p € PathSymbols(m(S,1)).
(2) If p € whilePreds(S) N PathSymbols(w(S,i)) then i € Passpred(S,p) and
Mﬂs]li(p:True) — |

e

Proof.

(1) If p ¢ PathSymbols(m(S,i)) then changing the interpretation i only at p
will not change the path 7(S, i), and hence will not change M[S]¢; thus
i ¢ Passpred(S,p), giving a contradiction.

(2) Now assume that p € whilePreds(S) N PathSymbols(mw(S,1)); thus the
path 7(S,7) contains a letter <p(x) = X > and so we may write 0’ <
p(x) = X> € pre(n(S,i)) for some word ¢’ € (a(S))* not containing a
letter <p(x) = Y'>. Thus o’ <p(x) = True> € pre(n(S,i(p = True))).
Thus 7(S,i(p = True)) contains the letter <p(x) = True> but not the
letter <p(x) = False >, hence 7(S,i(p = True)) is not finite and so
M[S]ip="True) = | £ M[S] and thus i € Passpred(S,p).

Part (2) of Lemma 29 gives the corresponding statement for function symbols.

Remark 28 If S is a linear schema and 7 is an interpretation, then p €
ifPreds(S) N PathSymbols(m(S,1)) does not imply i € Passpred(S,p). To see

13



this, let S be the schema

if p(z)

then if q(z)
then x:=f(x)
else A

else if r(x)

then y:=g(y)

else A

and let ¢ be an interpretation such that ¢’, 7" always map to False. Then for
all interpretations j that differ from 4 only at p, the final state M[S]! =
M([S]: = e. Consequently, by definition, i does not pass through p in S.

Lemma 29 Let S be a conservative schema.

(1) If S is predicate—free, S = S'x:=f(a)S" y:=¢(b) S" and x is a com-

ponent of b then there are words F,G € F* such that M[S],(y) is an
fFgG-term.

(2) Let i be a terminating interpretation and let f € F. Then

i € Passfunc(S, f) <= f € PathSymbols(w(S,1)).

Proof.

(1)

By induction on |S”|, and using Proposition 21, it follows that there is
a word F' € F* such that M[S"z:=f(a) S"].(x) is an fF-term. Thus
M[S" z:=f(a) S" y:=g(b)].(y) is an fFg-term. Hence there exists G €
F* such that M[S],(y) is an fFgG-term, by Proposition 21 and using
induction on |S™|.

Observe that we have to prove that F N TermSymbols(M[S].(z)) =
F N PathSymbols(n(S,1)). If S is predicate—ree then this follows from
Part (1) of this Lemma. For the general case, let = 7(S, i) and observe

that
F N PathSymbols(u) = F N PathSymbols(m(Atrace(p), 1))

and TermSymbols(M[S].(v)) = TermSymbols(M[Atrace(p)]:(v)) and

e e
hence the result follows from the restricted case applied to Atrace(p).
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5 Equivalence is Decidable for Predicate-Free Conservative Schemas

In this section we consider conservative predicate—free schemas. This is im-
portant because deciding equivalence for the more general classes of schemas
depends on establishing conditions which characterize equivalence of schemas
from this restricted class of schemas.

Definition 30 (Commuting Assignments)
We say that two assignments z:=f(a) and y:=g(b) commute if and only if x
is not a component of b, y is not a component of a, and = # y.

Observe that if z:=f(a) and y:=¢(b) are both conservative then the last con-
dition x # y is redundant in the preceding definition.

Lemma 31 If x:=f(a) and y:=¢g(b) commute then

r:=f(a)y:=g(b) = y:=¢(b)x:=f(a).

Proposition 32 Let S be a linear predicate—free schema. If S = 515, and
M[S1].(z) = M[S].(y), then x =y and there are no assignments to y in Ss.

Proof. Suppose M[S1].(z) is an f-term; then z = assigng (f) and so S;
contains an f-assignment. Since S is linear, there is no f-assignment in Ss.
Since M[S],.(y) is also an f-term, y = assigng(f) = assigng, (f) = = and
there is no assignment to y in S after the f-assignments, hence Sy has no
assignments to .

The following result is in fact true without the linearity hypothesis, but we do
not need this stronger form of the Theorem.

Theorem 33 Let S and T be conservative, linear and predicate—free schemas
and assume that S = T. Then S can be obtained from T by finitely many
interchanges of two adjacent commuting assignments.

Proof. The result follows by induction on |S|. If S = A then also 7" = A, and
the result is immediate. Thus we may assume that

S = S z:=f(a).

Hence there is a vector term t such that M[T],(z) = M[S],(z) = f(t) and
SO We may write

T =T z:=f(b)T"

where 7" does not contain an assignment to x. We will show that the assign-
ment z:=f(b) commutes with every assignment in T7"; thus z:=f(b)T" =
T"z:=f(b) from Lemma 31 and hence T" = T"T" x:=f(b). We will also show

15



that a = b and S’ = T'T" and then the result follows from the inductive
hypothesis applied to S’.

No assignment in 7" references z. To see this, assume that there is an assign-
ment y:=g(c) in 7" which references x. Then M[S].(y) = M[T].(y) is an
fFgG-term for F,G € F*, by Lemma 29, Part (1) and so M[5"].(y) is an
fFgG-term using Proposition 21, since = # y. But this is impossible since S
is linear and so f ¢ Funcs(S').

Let a;, b;, t; be the ith components of the vectors a, b, t. Since 7' is conservative,
there is some n < arity(f) such that z = b,.

We now show that a; = b; for all 7, and hence a, = x. Let i < arity(f).
Observe that

M) (ai) = ti = MIT'],(bs). (1)
Suppose a; # x. Then by Proposition 21 M[S’],(a;) = M[S],.(a;) = M[T].(a;)
and so by (1) and Proposition 32 applied to T, it follows that a; = b; and there
is no assignment to a; in 7”. On the other hand, suppose a; = x = a,,. Then
from (1) we get t; = t, and so M[T"].(b;) = M][T"].(b,). By Proposition 32

Thus we have shown that a = b and z:=f(b) commutes with every assignment
in 7",

It remains to show that S’ =2 T'"T". If y # = then by Proposition 21
M5 (y) = M[S].(y) = MIT].(y) = M[T"T"].(y),

and

giving the result.

6 Equivalent Schemas have Identical Predicate Sets

In this section, it is shown that two equivalent CFL schemas have the same
set of predicates and that corresponding predicates are of the same type (if or
while) in each schema. A summary of the proof is now given:-

Summary

A path through S is unitary if it does not enter the body of any while schema
more than once. Similarly we define an interpretation ¢ to be unitary with
respect to a set of predicate symbols () if and only if for all ¢ in @), there is at
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most one predicate term for which outermost symbol is ¢ that gets mapped
by i to True.

Let whilePreds(S) be the set of while predicate symbols occurring in S. In
Lemma 36 we show

(1) If an interpretation ¢ is unitary with respect to whilePreds(S) then it
terminates and the path 7(S, ) is unitary.

(2) If a path o € II(S) is unitary then there exists a unitary interpretation i
with respect to P satisfying o = 7(S, 1, e)

where S is a free, linear schema.

From this result and other results in Section 4 we prove Proposition 37, which
states that for all predicate symbols p in S,

(1) p € whilePreds(S) if and only if for every interpretation i € Passpred(S,p),
the interpretation i(p = True) does not terminate.
(2) For all p € Preds(S) there exists an interpretation in Passpred (S, p).

where S is a CFL Schema.

From this it immediately follows that equivalent CFL schemas, S and T have
the same set of while and if predicates, since (1) shows that equivalent CFL
schemas have the same set of while predicates and (2) shows that equivalent
CFL schemas have the same set of predicates (ifs and whiles together).

The main result of this section is Theorem 38. This Theorem is the first strong
statement concerning the similarity in the structure of two equivalent schemas.

Definition 34 (Unitary Paths)

If a schema S is linear, we say that a path through S is unitary if it does
not enter the body of any while schema more than once (that is, for all while
predicates p, no letter <p(x) = True> occurs more than once in the path).

If a path through a linear schema is unitary, then no if predicate and no
assignment occurs more than once in the path.

Definition 35 (Unitary Interpretations with respect to Predicates)

Let Q C P be a set of predicate symbols and let ¢+ be an interpretation. We
say that i is Unitary with respect to @Q if for every ¢ € Q we have ¢*(t) = True
for at most one vector term t.

Lemma 36 Let S be a free, linear schema.

(1) If an interpretation i is unitary with respect to whilePreds(S) then it

17



terminates and the path 7(S,1) is unitary.
(2) If a path o € 11(S) is unitary then there exists a unitary interpretation i
with respect to P satisfying o = w(S,1).

Proof.

(1) Let o0 = 7(S,7) and suppose that the path o is not unitary; thus we may
write

o' <p(x) = True> 0" <p(x) = True>€ pre(o)
for some p € whilePreds(S). Hence
p' (M[Atrace(c")],(x)) = p' (M[Atrace(o’ <p(x) = True> o")],(x)) = True.
Since 7 is unitary with respect to whilePreds(S), we have
M{[Atrace(o")],(x) = M[Atrace(o" <p(x) = True> o")],(x).
Thus there is no interpretation j for which
o' <p(x) = True> 0" <p(x) = False>€ pre(n(S, 7)),

contradicting freeness since o' <p(x) = True> o" <p(x) = False>¢€
pre(I1(S)) by Lemma 11 applied to o' <p(x) = True> o¢". Thus o is
unitary and hence ¢ terminates.

(2) Given such a path o, let ¢ be an interpretation satisfying o = (S, 1).
For any predicate symbol p, the path o does not contain more than one
occurrence of <p(x) = True>, and so a maximum of one vector term
needs to map to True under p’, and so i may be assumed to be unitary
with respect to P.

The following result is in fact true without the linearity hypothesis, but then
the proof is somewhat more complicated.

Proposition 37 Let S be a CFL schema and let p € Preds(S).

(1) If for every interpretation i in Passpred(S,p), the interpretation i(p =
True) does not terminate, then p € whilePreds(S).
(2) There exists an interpretation in Passpred(S,p).

Proof.

(1) Assume that p € ifPreds(S). Thus p has a function symbol f in one
of its parts; its X-part, say. Let {X,Y} = {True, False}. Let o €
I1(S) be a unitary path passing through f. By Lemma 36, there exists
an interpretation 7, unitary with respect to whilePreds(S), satisfying
7(S,i) = 0. By Part (2) of Lemma 29, i € Passfunc(S, f). Clearly i(p =
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True) is unitary with respect to whilePreds(S) and hence terminates
and i(p =Y) ¢ Passfunc(S, f) and so i € Passpred (S, p), as required.
(2) If p € ifPreds(S) this follows from Part (1) of the Proposition. If p €
whilePreds(S) this follows from the freeness of S and Part (2) of Lemma
27.

We can use Proposition 37 and Lemma 27 to show that equivalent CFL
schemas have the same set of while and if predicates.

Theorem 38 Let S, T be equivalent CFL schemas. Then
ifPreds(S) = ifPreds(T)

and

whilePreds(S) = whilePreds(T).

Proof.

If p € Preds(S), then by Part (2) of Proposition 37, there exists an in-
terpretation passing through p in S, and hence in T, since S = T; thus
Preds(S) C Preds(T) and equality similarly holds.

If p € ifPreds(S), then by Part (1) of Proposition 37, there exists an interpre-
tation i passing through p in S such that i(p = True) terminates for S. But
these statements hold with 7 replacing S, since S = T, and so by both parts
of Lemma 27, p ¢ whilePreds(T).

Thus ifPreds(S) C ifPreds(T) and equality similarly holds. Since
whilePreds(S) = Preds(S) — ifPreds(S)

and

whilePreds(T) = Preds(S) — ifPreds(T),

the results follow.

7 Equivalent Schemas have Identical Symbol Sets in Loop Bodies

The main result of this section, Theorem 41, extends Theorem 38 in that it
gives information about the symbols lying in the body of a while predicate
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of two equivalent schemas. The result is first sketched in outline and then
presented in detail.

Summary

Let S be a linear schema, let p € whilePreds(S) and let i be an interpretation
which passes through p. We say that i passes truly through p (in S) if the
meanings of S with respect to ¢ and i(p = False) are different.

In Lemma 40, the main result of this section, it is proved that if z is a function
or predicate symbol then z is in the body of while predicate, p, of a CFL schema,
if and only if

(1) there exists an interpretation passing through z, and
(2) any interpretation passing through x passes truly through p.

From this it immediately follows that corresponding while loops of equivalent
CFL schemas contain the same symbols.

Definition 39 (True Passing through a While Predicate Symbol)
Let S be a linear schema, let p € whilePreds(S) and let i be an interpreta-

tion which passes through p. We say that i passes truly through p (in S) if
MIST=F0) 2 MST.

Clearly, if S = T and ¢ passes truly through p in S, then ¢ passes truly through
pin T

Lemma 40 Let x € Funcs(S) U Preds(S) be a symbol in a CFL schema S
and let p € whilePreds(S). Then x € Symbols(S, p) if and only if there exists
an interpretation passing through x, and any interpretation passing through x
passes truly through p.

Proof.

(=) If z € F, by Lemma 29, Part (2), and the freeness of S, there exists an
interpretation passing through x. If x € P, the same conclusion follows
from Part 2 of Proposition 37.

To prove the second assertion, assume that an interpretation i passes
through = € Symbols(S,p). Hence x € PathSymbols(m(S,i)). Thus we may
write

7(S,1) = o' <p(x) = True> 0" <p(x) = False> o™ € TI(S),

where the word ¢” does not contain a letter <p(x) = True>, and hence is
a path through the body of p. Since S is free, by Proposition 22 there is
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an assignment a:=f(b) in ¢”. Hence f € |J TermSymbols(M[S].(v)) by
veV
Lemma 29, Part (2). But f € Symbols(S,p) and so

f & |J TermSymbols(M[S]P=T") (v)),

e
vey

so ¢ passes truly through p.

Clearly the schema S contains x. Assume that x ¢ Symbols(S,p). We will
find an interpretation ¢ = i(p = False) passing through z, giving a contra-
diction.

If z € F or x is a while predicate then by the freeness of S there exists
a finite path o € II(S) passing through z and not containing a letter <
p(x) = True>, and so there exists an interpretation, ¢ with o = 7(5,7) and
i = i(p = False). If x € F then i passes through = by Lemma 29, Part (2);
if © € whilePreds(S), then this follows from Part (2) of Lemma 27.

If = € ifPreds(S) and p ¢ Symbols(S, x), then the same argument is valid
if o is chosen to be a path which passes through a function symbol in one of
the parts of x (by Proposition 23, there must be one) and does not contain
the letter <p(x) = True>.

Lastly, if = is an if predicate and (say) p € Symbols(S, x, True), then the
interpretation ¢ is found as follows:

Let o € II(S) be a unitary path passing through p and let j be a uni-
tary interpretation with respect to whilePreds(S) and satisfying 7 (S, j) =
o. Then i = j(p = True)(z = False) satisfies L # M[S]ip=Fatse) —

e

M[S]: since i(p = False) is unitary with respect to whilePreds(S) and
p ¢ PathSymbols(w(S,i)); and i passes through x since it terminates and
i(x = True) = j(p = True)(x = True) does not terminate, by Lemma 27,
Part (1), again giving a contradiction.

A similar argument is valid if p € Symbols(S, x, False).

Theorem 41 Let S, T be equivalent CFL schemas and let p € whilePreds(S).
Then

Symbols(S, p) = Symbols(T, p).

Proof.
This follows from Lemma 40.

8 Standardised CFL schemas: A Canonical Form

The main result of this section, Theorem 49, is the counterpart of Theorem
41 for if predicates.

Lemma 42 Let S be a CFL schema with p € ifPreds(S) and let {X,Y} =
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{True, False}. A symbol x € F U whilePreds(S) lies in Symbols(S,p, X) if
and only if there exists an interpretation © which is unitary with respect to
whilePreds(S) and passes through x, and if an interpretation k satisfies k =
k(p =Y) then k does not pass through x.

Proof.

(=)

Let o € TI(S) be a unitary path with = € PathSymbols(c). By Lemma 36,
Part 2, there exists an interpretation i, unitary with respect to whilePreds(S)
and satisfying o = 7(S5,j). We may assume that i = i(p = X) since the
path o has exactly one occurrence of a letter <p(x) = X >, and none of
<p(x) = Y>. By Lemma 29, Part (2) (if x € F) or Part (2) of Lemma 27
(if x € whilePreds(S)), the interpretation i passes through z.

On the other hand, clearly, any interpretation & such that &k = k(p =Y")
does not pass through x.
Clearly S contains the symbol z. If z ¢ Symbols(S, p, X), then there exists
a unitary path o € I1(S) passing through = and not entering the X-part of
p. Let k be an interpretation which is unitary with respect to whilePreds(S)
and satisfies 0 = 7(S, k). We may assume k = k(p = Y) since the path o
has no occurrences of the form <p(x) = X>, giving a contradiction.

Theorem 43 Let S, T be equivalent CFL schemas. Then

p € ifPreds(S) and X € {True, False}
—
F N Symbols(S, p, X) = F N Symbols(T, p, X)

and
whilePreds(S) N Symbols(S, p, X) = whilePreds(S) N Symbols(T, p, X).

Proof.
This follows from Lemma 42.

Before attempting to extend Lemma 42 to allow x € ifPreds(S), we have to
deal with the fact that this Lemma is false under this hypothesis; indeed, the
schemas:-

if p(x)

then if q(y)
then S
else A

else A
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and

if q(y)
then if p(x)

then S’
else A\
else A\

are equivalent so S = T" does not imply
Symbols(S, p, True) = Symbols(T, p, True)
for schemas, S, T, containing the two above respectively.

Definition 44 (Ambiguous Predicates)
If S is a schema and p, g € ifPreds(S) and g € Symbols(S,p) and

F N Symbols(S,p) = F N Symbols(S, q)
and one part of ¢ is A and every predicate p’ satisfying
p' € Symbols(S,p) and g € Symbols(S,p’)
is an if predicate, then p is called an ambiguous predicate.
We call ¢ a non—initial predicate of the ambiguous predicate p.
This motivates the following definition, which eliminates this problem.

Definition 45 (Standardised Schemas)

We assume a total ordering < on the set P. A schema S is standardised if it
satisfies the following condition; if S has an if predicate p, and one part of p
is A and the other is an if schema guarded by ¢, one of whose parts is A, then

pq.

Every schema can be replaced by an equivalent standardised schema in finitely
many steps each of which consists of interchanging predicates and possibly
interchanging true and false parts of predicates.

Definition 46 (Indecomposable Schemas)
A schema S is said to be indecomposable if it cannot be expressed as S = 515
unless S; or Sy = A; that is, S is either atomic, an ¢f schema or a while schema.

Lemma 47 (Nesting of If Predicates)
If p is an ambiguous predicate of a CFL schema S and q is a non—initial
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predicate of p then there exists a sequence of if predicates pg = p,p1,... ,Pp =
q € ifPreds(S) satisfying {p1,...,pn} = Symbols(S,p) — Symbols(S,q) and
one part of each p; for j <n is X\ and the other is the if schema of S guarded
by pjy1. Also, if S is standardised then p; <pjiq for all j < n.

Proof.

For every predicate r of S, let S, be the subschema of which it is the guard.
Note that every subschema of S is either A or contains an element of F. Thus
F N Symbols(S, p) = F N Symbols(S, q) implies that one part of p is A. Let S’
be the other part, which clearly contains q.

The result follows by induction on |Symbols(S,p)|. If S" = S,, the result is
immediate, so we assume that this is false. Necessarily S’ is indecomposable,
since if S" = S5 with S; containing ¢, say, then S, would contain an element
of F N Symbols(S, p) — FN Symbols(S, q) = (. Thus S" = S, for a predicate p;
which according to the hypotheses, must be an if predicate. Also, the part of
p1 not containing ¢ must be A, since F N Symbols(S, p) = F N Symbols(S, q),
and so p < p; if S is standardised. The result now follows from the inductive
hypotheses applied to p; and q.

We now extend Theorem 43 to all predicates for equivalent standardised CFL
schemas (Theorem 49).

Lemma 48 Let S, T be equivalent standardised CFL schemas. Then
p € ifPreds(S) and X € {True, False}
—
ifPreds(S) N Symbols(S, p, X) = ifPreds(S) N Symbols(T, p, X).
Proof.
The equality
F N Symbols(S, p, X) = F N Symbols(T, p, X) (1)

follows from Theorem 43. We now use (1) to prove the corresponding result
for intersections with ifPreds(S).

Now assume that ¢ € ifPreds(S) and ¢ # p. Write {X,Y} = {True, False}.
Assume that

q € Symbols(S,p, X) — Symbols(T, p, X); (2)
thus

F N Symbols(S, q) C F N Symbols(S,p, X)
and so

F N Symbols(T, q) € F N Symbols(T, p, X) (3)
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using (1) and Theorem 43.

Recall that
F N Symbols(T, q) # 0,

since the parts of ¢ are not both \.
Observe that
Symbols(T, p) N Symbols(T, q) # O = p € Symbols(T, q) or q € Symbols(T, p)
from the geometry of a linear schema.
If ¢ € Symbols(T,p) then ¢ € Symbols(T,p,Y) by (2).
Thus
0 £ F 0 Symbols(T, q) C F N Symbols(T, p,Y),

contradicting (3) and linearity of 7" and so

p € Symbols(T, q) (4)
by the observation above.

Thus the inclusion in (3) is not strict and so
F N Symbols(T, q) = F N Symbols(T, p, X). (5)

From (4) and (5), and using Proposition 23, the part of ¢ not containing p and
the Y-part of p must be A in T (similarly, the Y—part of p in S is A and one
part of ¢ in S is A, by (1) applied to p and ¢). If there were a while predicate p'
satisfying p' € Symbols(S,p), ¢ € Symbols(S,p'), then ¢ € Symbols(T,p, X),
follows from Theorem 43 and Theorem 41 applied to p'. This is a contradiction,
since we are assuming that g ¢ Symbols(T, p, X). There is thus, no such while
predicate p’ and therefore p is an ambiguous predicate in S and ¢ is a non—
initial predicate in p. Thus by Lemma 47, we have p <q.

Similarly for 7', if there were a while predicate p’ satisfying p' € Symbols(T, q),
and p € Symbols(T,p'), then by Theorem 41 applied to p’ and Theorem 43
applied to ¢, (3) would be false; Therefore ¢ is an ambiguous predicate in T
and p is a non—initial predicate in ¢ and hence by Lemma 47, we have ¢ < p,
giving a contradiction.

We have shown that ¢ € Symbols(S, p, X) = g € Symbols(T,p, X) and clearly
the converse holds. This proves the Lemma.

Combining Lemma 48 with Theorem 41 and Theorem 43 gives the following
result.
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Theorem 49 Let S, T be equivalent standardised CFL schemas and let p be
a predicate symbol in S and X € {True, False}. Then (where defined)

Symbols(S, p) = Symbols(T, p)
and

Symbols(S,p, X) = Symbols(T, p, X).

9 Interchanging Commuting Subschemas

First, Theorem 49 is strengthened to show that two equivalent standardised
CFL schemas S and T are almost identical except for differences in the order-
ing of subschemas assembled sequentially (Proposition 50). Lemma 56 then
strengthens this further by proving that if the order of two subschemas of S
differs from the order of the corresponding subschemas in 7', these subschemas
may be interchanged while preserving equivalence.

This interchange of subschemas may be performed finitely many times to
obtain a schema which is identical to 7. Thus there are finitely many schemas
equivalent to a given schema, and it is this that makes equivalence decidable.

The following result restricts still further the ways in which two equivalent
schemas may differ.

Proposition 50 If S, T are equivalent CFL schemas, then
Funes(S) = Funes(T)

and assigng(f) = assigny(f) and refvecs(f) = refvecy(f) for each f € Funes(S).
Also refvecg(p) = refvecy(p) for each p € Preds(S).

Proof.

For assignments the results follow from the fact that for every assignment there
exists an interpretation ¢ that passes through it which is unitary with respect
to whilePreds(S) and Theorem 33 applied to Atrace(w(S,7)) =2 Atrace(n (T, 1)).

We now consider the case of a predicate. Let p € Preds(S) = Preds(T) and
let n < arity(p). Suppose p contains a function symbol f in its body or true
part and has the variable x as its nth argument in S, whereas in T" the cor-
responding variable is y # x. There is an interpretation ¢ passing through
f which is unitary with respect to whilePreds(S) = whilePreds(T). Write
7(S,i1) = 0 <p(x) = True> o' and 7(T,i) = 6 <p(y) = True> ', where p
does not occur in o or #, and o and 6’ do not contain the letters <p(x) = True>
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and <p(y) = True> respectively. Thus M[Atrace(o)],(x) is a g,-term for
some g, € Funcs(S) with assigng(g,) = z. Let j be the interpretation which
differs from ¢ only in that p’ maps to False if the nth argument of p is a
gz-term. Then j is unitary with respect to whilePreds(S) = whilePreds(T)
and the path 7(S,j) does not pass through f, whereas 7(T,5) = =(T,1),
since M[Atrace(0)],(y) is not a g,-term, and so M[T]} = M][T]’, con-
tradicting Lemma 29, Part (2) and S = T. A similar argument holds if
f € Symbols(T, p, False) = Symbols(T', p, False).

Thus, two equivalent schemas may only differ in the way that their symbols
are ordered. This motivates the following definition of the ordering of symbols
in a schema.

Definition 51 (Ordering of Functions Symbols in a Schema)
We write f <g g if f # g and f occurs before g on at least one unitary path
through S.

Lemma 52 Let S be a schema with distinct function symbols f, g, h.

(1) If f <s g then f occurs before g on every unitary path passing through
both symbols.

(2) There ezists a unitary path passing through both f and g if and only if f
and g do not lie in different parts of the same if predicate.

(3) If f, f' € Symbols(S,p) and g ¢ Symbols(S,p) for some predicate p, then
f<sg = f<sgandg<sf < g<sf.

(4) If f <s g and g <s h then f <g h.

Proof. (1)

This follows by induction on |S|. Clearly S does not just consist of one as-
signment. If S is indecomposable, then either S is a while schema (in which
case the result follows by the inductive hypothesis) or an if schema. If f and
g lie in the same part of this schema, again the result follows by the inductive
hypothesis; if they lie in different parts, then f <g ¢ is impossible.
Alternatively, S is not indecomposable; so let S = S5, nontrivially. If S;
contains f and Sy contains g then the result is obvious; otherwise the result
follows from the inductive hypothesis.

(2), (3), (4), (5). These again follow by induction on |S|.

Lemma 53 Let Ty, Ty be schemas with whilePreds(T)) = whilePreds(Ty),
ifPreds(Ty) = ifPreds(T3), Symbols(Ti,p) = Symbols(Tz,p) and (where de-
fined)

Symbols(Ty, p, X) = Symbols(Ty, p, X)
for all p € Preds(Ty) and X € {True, False} and <p, = <r,. Then Ty and Ty

are identical except for the variables referenced by elements of F UP and the
variables assigned by elements of F.
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Proof.
This follows by induction on |T7| = |T3|.

Lemma 54

(1) Let dy # 1,dy # L be states, let S be any schema and let i be an inter-
pretation and assume that dy(x) = da(x) for every variable x € V refer-
enced in S. Then M[S] = 1L <= MI[S],, = L and M[S], (y) =
MISN, (y) for every variable y assigned in S.

(2) Let Sy, Sy be schemas and assume that every assignment in Sy commutes
with every assignment in Sy and that no predicate in Sy references a
variable assigned in Sy, or vice versa. Then S Sy = S5 S;.

Proof.

(1) This follows by induction on |S].
(2) Let ¢ be an interpretation. We first prove

M[SS:]) = L <= M[S,S:]} = L. (1)
We have
M[S]. # L= M[S\]. = L = M[S:8]. = 1) (2)
by the previous result applied to the states e and M[S,]’. Similarly
M[SI]L # L= (M[S]. = L <= M[S:S,]" = 1). (3)

Also clearly
M[S1]E = L = M[S,S,]" = L.
If./\/l[[ i = M[S2]% # L then (1) follows from (2) and (3). If M[S,]! =
M([S5]! then (1) follows from (2) and (4). (1) follows similarly if

[[ ]] 1 7é M[[Sl]]iz L&Stly, if M[[Sl]] =1 = M[[SQ]]l then ( ) is
clear.

Thus we may assume that i terminates for S; S and Sy S7. Let y be a
variable assigned in S;. Since the assignments of S; commute with those
of Sy, this means that y is not assigned in S,. Thus M[S; So]¢(y) =
M[S1]i(y). Also M[S1]%(y) = M[S2 S1]%(y) by the previous result, since
Sy clearly terminates. Thus

M(S1 So]i(y) = M[S2 S1]%(y).

(4)

Interchanging the schemas shows that this holds if instead y is assigned
by S,; and it clearly holds if y is not assigned by either schema. Thus
S1 52 =2 .55 5].

Lemma 55 Let S,T be equivalent CFL schemas and assume that f <g g and
g <t f. Then the f-assignment commutes with the g-assignment.

28



Proof. Let i be an interpretation which is unitary with respect to whilePreds(S) =
whilePreds(T) and such that 7(S,7) passes through f and g. By Part (1) of
Lemma 52, f occurs before g on m(S,i), and by Part (1) of this Lemma
and Part (2) of Lemma 29, ¢g occurs before f on m(T,i). The result fol-
lows from Theorem 33 applied to the equivalent schemas Atrace(m(S,i)) and
Atrace(m (T, 1)).

Lemma 56 Let S, T be distinct equivalent standardised CFL schemas.

(1) There is a pair f,g € Funcs(S) satisfying f <s g and g <t f, such that
there is no h € F satisfying f <s h <s g.

(2) Given f,g € Funcs(S) satisfying the conditions in Part (1) of this Lemma,
let S be the minimal subschema of S (with respect to ||) containing f and
g. Then S has the form SiSy with f € Funcs(S;) and g € Funcs(Ss),
and no variable referenced in Sy (including variables referenced by pred-
icates) is assigned in Sy, or vice versa. Also, if f' € Funcs(Sy) and
g' € Funcs(Ss), then f' <s ¢ and ¢ <r f'.

(3) Lastly, S can be transformed into T by finitely many transformations of
the following form; finding f,g € Funcs(S) satisfying the conditions in
Part (1) of this Lemma, finding S = S|S, satisfying the conditions in
Part (2), and replacing S1Sy in S by SuSi.

Proof.

(1) If <g=<7 then S =T follows from Lemma 53, Theorem 33, and Propo-
sition 50, contradicting the hypotheses of the Lemma. Assume, thus, that
<g# <7 holds. If a pair of function symbols are incomparable with re-
spect to <g, then by part (2) of Lemma 52 and using Lemma 49, they
are incomparable with respect to <7. Thus by the transitivity of these
relations there exists f,g € F' such that ¢ <r f and f immediately pre-
cedes ¢g in S (that is, f <g g, and there does not exist h € F satisfying
f<sh<sg). B

(2) If S were a while schema, this would contradict the minimality of |:S], since
the body of S would also contain f and g; and if S’ were an if schema,
then f and g would have to lie in different parts of S, contradicting Part
(2) of Lemma 52; thus we can write S' = 515y with f € Funes(S))
and g € Funcs(Sy). By the immediacy and minimality conditions, each
S, is indecomposable. Thus either Funcs(S;) = {f} or Funcs(S;) =
FNSymbols(S, p) = FNSymbols(T, p) for some p € Preds(S) = Preds(T);
and a similar statement holds for S, and g.

We will show that S; and S5 satisfy the hypotheses of Lemma 54. By
Lemma 52, Part (3), we get

f' € Funcs(Sy), g € Funcs(Ss) = f' <5 ¢ (1)
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Since also g <7 f, by Lemma 52, Part (3), and Theorem 49, if neces-
sary,

f' € Funcs(S,), g € Funcs(Ss) = ¢' <7 f'. (2)
By (1),(2) and Lemma 55, if f' € Funcs(S1), ¢’ € Funcs(Ss) then the
f'-assignment commutes with the g'-assignment.

We now show that Sy does not contain a predicate referencing a variable
assigned by a function symbol in S;. Thus suppose that S; contains a
predicate ¢ with a € Refsetg (q) and that S; contains an assignment
a:=h(b). (Thus S, is an if or while schema with guard r € P, say.) Let

gq € F N Symbols(S, q) C F N Symbols(S,r).

By (1) we get h <g g,. Let  be a unitary path passing through h and
gq; since 1 clearly passes through ¢, and h ¢ Symbols(S, q), we may write

p=p'(q(x) = X)u",

where h occurs in p' and ¢ does not. Let {X, Y} = { True, Fualse} and let
i be an interpretation satisfying 7 (S, ) = p which is unitary with respect
to whilePreds(S) = whilePreds(T); then ¢'(M[Atrace(1/)],(x)) = X. Let
the interpretation j be identical to i except that ¢'(M[Atrace(')],(x)) =
Y. Then j is also unitary with respect to whilePreds(S) (since if ¢ €
whilePreds(S), then X = True) and p'(¢(x) =Y) € pre(n(S,j)). Hence
jJ does not pass through g, and so

MS], # M[S].. (3)
We now show that g, < h. Observe that
gq € F N Symbols(S, q) C F N Symbols(S,r) = F N Symbols(T,r) > g

and recall that ¢ <p f. If h = f then g, <¢ h follows from Part (3)
of Lemma 52; otherwise S; is an if or while schema with guard s, say,
and f,h € Symbols(S,s) and Symbols(S, s) N Symbols(S,r) = (. These
statements also hold in 7', so again Lemma 52 may be used.

Thus the unitary path 7(7’,7) meets the predicate ¢ before it meets the
function symbol h and since ¢ € whilePreds(T) implies X = True, the
path 7(T,4) does not contain (¢(x) = X) after meeting h, so M[T]’ =
M[T], contradicting S = T and (3).

A similar argument disposes of the possibility that S; has a predicate
referencing a variable assigned in S,. Thus by Lemma 54, Part (2), the
subschemas S; and Sy may be interchanged while preserving equivalence
of S with the new schema. This schema can easily be shown to be CFL.
This transformation reduces the number of ‘disagreeing pairs’ of function
symbols, and so finitely many such transformations are sufficient to obtain
an equivalent schema 7" from S with <7 = <.

By Lemma 53, Theorem 33, and Proposition 50, T = T".
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Our main Theorem follows.

Theorem 57 Let S, T be CFL schemas. It is possible to decide whether they
are equivalent.

Proof.
We may assume that S and 7' are standardised. By Lemma 56, there are
finitely many schemas from our class which are equivalent to S, and it is
possible to construct all of them, so it suffices to check whether 7" is one of
them.

Complezxity

In this section we will show that the problem of determining equivalence of
CFL schemas S and T has time complexity that is polynomial in max(|S|, |T),
where |S| is the number of function and predicate symbols in S.

Theorem 58 Let S,T be CFL schemas. There is an algorithm for decid-
ing their equivalence which has polynomial time complexity with respect to

ma(|S|, [T1).

Proof.
The first step is to outline an algorithm for deciding whether 7" and S are
equivalent. The following algorithm suffices.

(1) If ifPreds(S) U Funcs(S) # ifPreds(T) U Funcs(T) then terminate with
the result that S and T are not equivalent.

(2) Choose an ordering < on the if predicate symbols of S in such a way that
S is standardised with respect to <. S defines such an ordering: if one
part of both p and ¢ in S is A and the other part of p is an if schema of
which ¢ is the guard then p<gq.

(3) Standardise T" with respect to < to form 7".

(4) Set i =0 and S° = S.

(5) Repeat the following steps:

(6) If S* =T" then terminate with the result that S and T are equivalent.

(7) Find f,g € Funcs(S) satisfying f <gi g and g <7+ f, and there is no h
with f <gi h and h <gi g. By Lemma 56, if S and T" are equivalent then
there are such f and g. If there is no such pair f, g then terminate with
the result that S and T are not equivalent.

(8) Find the minimal subschema S;S,, of S%, containing f and g.

(9) Interchange S; and Sy in S° to obtain a new schema S**! equivalent to
S’ (as described in Lemma 56).

(10) Set i =i+ 1.
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Let n = max(|S],|T]). It is now sufficient to prove that the above algorithm
has time complexity that is polynomial in n.

Clearly the first step can be performed in polynomial time: it simply involves
collecting and comparing the sets of function and ¢f predicate symbols of §
and T'. Note that, if the algorithm moves past the first step then n = |S| = |T'].

The time taken to create and store the ordering in the second step is polyno-
mial in n since the number of pairs of predicate symbols of S is bounded above
by n?. (Checking whether a predicate is ambiguous can be done in constant
time.)

In order to standardise 1" with respect to < it is sufficient to check each pair
p and q of if predicates of T', whether p is an ambiguous predicate one part
of which is an if schema guarded by ¢. This can be done in O(n) since it is
sufficient to check each predicate of T. (Checking whether p is an ambiguous
predicate, one part of which is an if schema guarded by ¢, can be done in con-
stant time.) To check whether it is necessary to reorder p and ¢ (as described
in Section 8) it is sufficient to look up the pair (p,q) in the list representing
<. This gives a polynomial time worst case complexity for each pair (p, q) of
predicates. Thus, since the number of pairs of predicates is polynomial in n,
the time taken to standardise 7" is polynomial in n.

Now consider the loop. Since each iteration of the loop reduces the differences
between the orderings <7 and <gi, and there are O(n?) such differences, the
number of iterations of the loop is of O(n?). Thus, it is sufficient to prove that
each step in the body of the loop may be completed in time that is polynomial
in n.

It is possible to determining whether S* = 7" in linear time.

Consider the problem of finding f, g € Funcs(S) satisfying f <gi gand g <7+ f
and there does not exist h with s <gi h and h <gi g, or determining that there
is no such pair. The number of pairs f,g € Funcs(S) satisfying f <g: g such
that there does not exist h with s <gi h and h <g:i ¢, is quadratic in n. Each
of these can be checked against < in polynomial time and thus this step may
be performed in polynomial time.

Note that a while schema has only one more subschema than its body and
an ¢f schema only has one more subschema than the sum of the number of
subschemas of its then and else parts. Thus, of all the linear schemas S’
with |S’| = n, the one with the most subschemas consist of a sequence of n

2 2
the total number of subschemas, of S, is of O(n?). The problem of finding

the minimal subschema S;S, thus reduces to searching through the O(n?)

assignment statements. In this case S’ has (”) = 2= gybschemas. Thus,
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subschemas that contain f and ¢ and may thus be solved in polynomial time.

Finally, S; and S, may be interchanged in constant time. This completes
the proof that there exists an algorithm, which has complexity polynomial in
max(|S|, |T|), for checking equivalence of CFL schemas S and 7.

10 The Relevance of Linear Schemas to Program Slicing

The primary application of the theory of program schemas was as a framework
for investigating program transformations, in particular those used by com-
pilers during optimisation. If it could be proved that a certain transformation
on schemas preserved equivalence, then this transformation could certainly
safely be applied to programs. Surveys on the theory of program schemas can
be found in the works of Ershov [8], Greibach [9] and Manna [7].

Our interest in the theory of program schemas, linear (or non-repeating)
schemas in particular, is motivated by certain theoretical questions concern-
ing program slicing [10]. In program slicing, statements are deleted from a
program, leaving a resulting program called a slice. The slice must preserve
the effect of the original program on a set of variables of interest, called the
slicing criterion. Like program optimisation, slicing can be thought of as a
transformation that preserves certain semantic properties. The equivalence
preserved by the common slicing algorithms [10-13] turns out to be based on
a lazy semantics [14,15] of programs. Slicing has many applications including
program comprehension [16,17], software maintenance [18-21], debugging [22—
25], testing [26-30], re—engineering [31,32], component re—use [33,34], program
integration [35,36], and software metrics [37-39]. There are several surveys of
slicing techniques, applications and variations [40-43]. All applications of slic-
ing rely upon the fact that a slice is faithful to a projection of the original
program’s semantics, yet it is typically a smaller program. A major aim in
program slicing is to produce small slices.

The most widely used slicing algorithms, Weiser’s [10,11] and the Program
Dependence Graph approach [12], essentially produce the same slices!. Im-
portantly, for this discussion, they both operate at a level of abstraction where,
in a program, the only information that can be utilised about each expression,
e, is the set of variables referenced by e. Weiser termed this approach Dataflow

I They both, in essence, compute the transitive closure of the union of control
dependence and data dependence [48].

33



Analysis, but we call it DefRef abstraction?, as the term Dataflow Analysis
now has more general connotations. Figure 1 shows two distinct programs
which are identical to each other under DefRef abstraction. Algorithms that
use DefRef abstraction are limited in the sense that they cannot take advan-
tage of situations where expressions in the program are equal, nor can any
form of expression simplification be used. All the information required to do
such things has been ‘abstracted away’. For example, after DefRef abstraction
of {y:=x +1; z:=x+ 1} the only remaining information is that the variable
y is assigned an expression which references x and the variable z is assigned
an expression which references x, and the assignments happen in that order.

Analysing a program, P, after doing DefRef abstraction, is identical to first
converting P to a corresponding linear schema, S, and then analysing S. A lin-
ear schema (see Definition 2), is one where each function and predicate name
is only allowed to occur once in the schema. The schema {y:=f(x); z:=f(x)},
for example, is not linear but {y:=f(x); z:=¢(x)} is. A linear schema corre-
sponding to program P has the same structure as P but much of the detail of
each expression has been removed. To produce a linear schema corresponding
to P, every expression, e, in P is replaced by a symbolic expression of the
form f(vy,...,v,) where {vq,...,v,} is the set of variables referenced by e.
To guarantee linearity, simply ensure that all function and predicate names
are distinct. In analysing a program via a corresponding linear schema, apart
from the program’s structure being preserved, the only information about the
program that is available is the name of the variable assigned to in each assign-
ment statement and the set of variables names referenced by each expression 3 .
Importantly, with linear schemas we can never infer that different variables or
expressions have the same value, nor may we exploit other properties which
can be derived from knowing that the same function or predicate has been
applied in more than one place.

The connection between DefRef analysis and linear schemas just described
motivates us to use the theory of schemas in order both to give definitions
of, and to ask questions about, different forms of slice. For example, we can
define a strong slice [24] with respect to a set of variables V' of a schema S
as a schema T obtained from S by deleting statements where in all Herbrand
interpretations, 7, starting in the natural state, either S and 71" both fail to
terminate or S and 1" both terminate in ¢ with the same values for all variables
in V. A weak slice [11] with respect to a set of variables V' of a schema S,
on the other hand, is a schema T obtained from S by deleting statements

2 Other approaches to program slicing exist [44-46,18,19] which do not use DefRef
abstraction, but we are concerned with the theoretical properties of traditional
slicing.

3 Expressions occur both as predicates in ifs and whiles and on the right hand
side of assignment statements
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while i <0 while py (i) while i <0
do do do
begin begin begin
if c=3 if pa(c) if ¢c=3
then then then
begin begin begin
c:=4; c:= f3();
r:=5 x = f4() r:=5
end ; end ; end ;
i=i41 i:= fs5(i) Q=i+ 1
end end end
Program P, Schema S5 Dataflow Minimal Slice
Fig. 2.

where in all Herbrand interpretations, ¢, starting in the natural state, either
S does not terminate in 7 or S and T both terminate in ¢ with the same
values for all variables in V. One problem of particular interest to us, the
Dataflow Minimality Problem [10,49], concerns the existence of algorithms
for computing minimal slices at this level of abstraction. We now describe the
problem.

A statement minimal slice* of program, P, is a slice of P where deleting

further statements yields a non-slice of P. Statement minimal slices are not
computable [10]. Weiser noticed, further that his algorithm did not even pro-
duce dataflow minimal® slices. That is, it sometimes fails to delete statements
which, even after DefRef abstraction, can be shown to have no effect on the
slicing criterion. An example of this is now given.

Using Weiser’s definition [11], an end-slice of P, with respect to the variable
x is any program, P’, obtained from P by statement deletion such that P’
terminates whenever P does, with the same final value for z. In attempting
to slice P,, in Figure 2, Weiser’s algorithm returns P; it fails to delete any
statements at all. This is acceptable since, by definition, every program is a
valid end-slice of itself. The smaller program on the right hand side of Fig-
ure 2, however, is also a valid end-slice. To justify this, it turns out that we do
not need to consider program P, itself; analysis of S, a linear schema corre-
sponding to P, is sufficient. We observe that the constant assignment c:= f3()
is executed if and only if the constant assignment z:=f,() is executed. Having
been assigned a constant value, the value of x cannot be further changed by
the body of the loop. The initial value of ¢ is important, but the later assign-

4 To be precise, we should really talk about, ‘statement minimal strong slices’ or
statement minimal weak slices, or, in general, ‘statement minimal M-slices’ where
M is meaning intended to be preserved by the form of slicing of interest [44].

5 Weiser called it ‘dataflow consistent’[10].
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ment to ¢ cannot affect the final value of z. The assignment c¢:=f3(), therefore,
need not be included in the slice. The reason that Weiser’s algorithm includes
c:=f3() is that the assignment x:=f,() is controlled by the predicate ps(c),
which, in turn, is data dependent on ¢:=f3() and so, since Weiser’s algorithm
computes the transitive closure, it infers that x:=f;() depends on c:=f3()°.
The program, on the right hand side of Figure 2 is, in fact, a dataflow minimal
slice of P,.

A schema T is a dataflow minimal slice of S with respect to a set of variables
V, if and only if T is a slice of S with respect to V', and no schema 7"
obtained from 7" by deleting further statements is a slice of S. A program P’
is a dataflow minimal slice of P if and only if S’ is a dataflow minimal slice of
S where P and P’ correspond to schemas S and S’, respectively, via the same
interpretation.

Since Weiser first raised the question in his 1979 thesis [10], the question re-
mains open as to whether dataflow minimal slices are computable. A more
general question, of interest is: for what classes of schemas are dataflow mini-
mal slices computable? For linear schemas, decidability of equivalence implies
computability of dataflow minimal strong slices. A trivial algorithm for pro-
ducing dataflow minimal strong slices would first add a sequence of ‘killing
assignments’, K, to the variables not in the slicing criterion to the end of the
program, P, being sliced, and next, convert PK to a linear schema P'K’, and
finally, for all possible schemas S obtained from P’ by statement deletion, test
P'K" and SK' for equivalence. The ‘smallest’ such S correspond to dataflow
minimal slices of P. Unfortunately, this algorithm does not work for CFL
schemas since statement deletion does not preserve freeness. Future work,
therefore, will consider decidability of equivalence for more general classes
of linear schemas and also investigate conditions on schemas under which
Weiser’s algorithm is guaranteed to produce dataflow minimal slices.

11 Conclusion

We have proved that it is decidable whether two CFL schemas are equiva-
lent. Our method of proof was to show that equivalent schemas in the class
considered have almost identical structure:- two standardised equivalent struc-
tured CFL schemas can only differ in the ordering of sequentially combined
commuting sub-schemas. Clearly, there are only finitely many pairs of such
subschemas and trivially an algorithm for finding all of them exists. Since
standardising a schema is also computable, it follows that the equivalence of

6 Tt turns out that Weiser’s Algorithm includes unnecessary nodes, in this case,
because Sy is not liberal [1].
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structured CFL schemas is decidable.
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