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Abstract. Let M be a matroid. When M is 2-connected, Cunningham and
Edmonds gave a tree decomposition of M that displays all of its 2-separations.
This result was extended by Oxley, Semple, and Whittle, who showed that,
when M is 3-connected, there is a corresponding tree decomposition that dis-
plays all non-trivial 3-separations of M up to a certain natural equivalence.
This equivalence is based on the notion of the full closure fcl(Y ) of a set Y in M ,
which is obtained by beginning with Y and alternately applying the closure op-
erators of M and M∗ until no new elements can be added. Two 3-separations
(Y1, Y2) and (Z1, Z2) are equivalent if {fcl(Y1), fcl(Y2)} = {fcl(Z1), fcl(Z2)}.
The purpose of this paper is to identify all the structures in M that lead
to two 3-separations being equivalent and to describe the precise role these
structures have in determining this equivalence.

1. Introduction

A matroid M is 2-connected if it has no 1-separations, where a k-separation
is a set X such that |X |, |E(M) − X | ≥ k and r(X) + r(E(M) − X) < r(M) +
k. If M has no 1- or 2-separations, then it is 3-connected. Many problems in
matroid theory are easily reduced to the study of 3-connected matroids, for matroids
that are not 3-connected have easy decompositions using analogues of the graph
operations of 1-sum and 2-sum. For some time, it was believed that this paradigm
applied to representable matroids so that, in particular, Rota’s Conjecture [8] that
every finite field has a finite set of excluded minors could be attacked without the
need to go beyond 3-connected matroids. Indeed, Kahn [2] conjectured that, for
all q, there is an integer µ(q) such that every 3-connected GF (q)-representable
matroid has at most µ(q) inequivalent GF (q) representations. This conjecture was
shown to be false for all q ≥ 7 by Oxley, Vertigan, and Whittle [7] using two
families of counterexamples of 3-connected matroids, each of which had numerous
3-separations. The abundance of 3-separations in these examples led to the hope
that, by imposing some control on the behaviour of 3-separations, one may be able
to recover a version of Kahn’s conjecture. This motivated a study of the structure
of the 3-separations in a 3-connected matroid. Such a study was initiated by Oxley,
Semple, and Whittle [6] and this paper is a continuation of that study.

The initial paper in this study [6] has fulfilled the promise that initiated it,
with Geelen, Gerards, and Whittle [3] having used the ideas of that paper to find
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an appropriate constraint on the 3-separations of a 3-connected matroid to allow
its number of inequivalent GF (q)-representations to be bounded. Rather than
terminating this study, this result has provided impetus for its continuation. Indeed,
there are numerous matroid structural results, for example, Tutte’s Wheels and
Whirls Theorem [10] and Seymour’s Splitter Theorem [9], where the situation for
3-connected matroids is well understood, but little has been developed beyond that.

In [6], a tree decomposition was obtained that described all non-trivial 3-separa-
tions of a 3-connected matroid up to the equivalence based on full closure that was
defined in the abstract. The introduction of this equivalence is an essential tool
in proving the main result in [6], but this equivalence ignores some of the finer
structure of the matroid. The goal of this paper is to make a detailed examination
of this equivalence and to explain what substructures in the matroid result in two
3-separations being equivalent.

2. Outline

This paper is long and the proofs of the main results have many technicalities.
Because of this, we include here an outline of the paper which not only describes the
content of various sections of the paper but, more importantly, includes statements
of the main results together with the required definitions.

For a matroid M on a set E, the connectivity function λ of M is defined, for all
subsets Z of E, by λ(Z) = r(Z) + r(E − Z) − r(M). The set Z or the partition
(Z, E − Z) is k-separating if λ(Z) < k. Thus the partition (Z, E − Z) is a k-
separation if it is k-separating and |Z|, |E − Z| ≥ k; and M is n-connected if it
has no (n − j)-separations for all j with 1 ≤ j ≤ n − 1. A k-separating set Z, or
k-separating partition (Z, E−Z), or k-separation (Z, E−Z) is exact if λ(Z) = k−1.

The following is a well-known elementary property of matroids.

Lemma 2.1. Let e be an element of a matroid M , and Y and Z be disjoint sets
whose union is E(M) − {e}. Then e ∈ cl(Y ) if and only if e 6∈ cl∗(Z).

Our primary concern throughout this paper will be with exactly 3-separating
partitions in 3-connected matroids. In particular, from now on, all matroids con-
sidered will be 3-connected unless otherwise specified.

Let (Y, Z) be a 3-separating partition of a 3-connected matroid M with |Y |, |Z| ≥
2. The guts of (Y, Z) is cl(Y ) ∩ cl(Z) and, dually, the coguts of (Y, Z) is cl∗(Y ) ∩
cl∗(Z). As M is 3-connected, it is straightforward to show that the guts of (Y, Z)
is the set of elements e of E such that e ∈ cl(Y − e)∩ cl(Z − e). Dually, the coguts
of (Y, Z) is the set of elements e such that e ∈ cl∗(Y − e) ∩ cl∗(Z − e).

The proof of the next result is elementary. On combining this result with
Lemma 2.1, we get that, for a partition (Y, e, Z) of the ground set of a 3-connected
matroid M , the partitions (Y, e ∪ Z) and (Y ∪ e, Z) are both exactly 3-separating
if and only if e is in the guts or coguts of (Y, e ∪ Z). Intuitively, the elements that
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can be moved from one side of a 3-separation to the other while maintaining a
3-separation are exactly the guts and coguts elements of the 3-separation.

Lemma 2.2. Let Z be an exactly 3-separating set in a 3-connected matroid M and
suppose e ∈ E(M) − Z. Then Z ∪ {e} is 3-separating if and only if e ∈ cl(Z) or
e ∈ cl∗(Z).

For a set Y in a matroid M , if Y equals its closure in both M and M∗, we say
that Y is fully closed in M . The full closure of Y , denoted fcl(Y ), is the intersection
of all fully closed sets containing Y . One way to obtain the full closure of Y is to
take cl(Y ), and then cl∗(cl(Y )) and so on until neither the closure nor coclosure
operator adds any new elements.

The full closure operator enables one to define a natural equivalence on exactly
3-separating partitions as follows. Let M be a matroid, and let Z and Y be exactly
3-separating sets of M . We say that Z is equivalent to Y if fcl(Z) = fcl(Y ). For
two exactly 3-separating partitions (Z1, Z2) and (Y1, Y2) of M , we say (Z1, Z2) and
(Y1, Y2) are equivalent if, for some ordering of Y1 and Y2, we have Z1 is equivalent
to Y1, and Z2 is equivalent to Y2. If either fcl(Z1) or fcl(Z2) is E(M), then (Z1, Z2)
is called sequential. As noted in the introduction, Oxley, Semple, and Whittle [6]
showed that every 3-connected matroid M has a tree decomposition that displays,
up to this equivalence, all non-sequential 3-separations of M . In this paper, we
examine, for a non-sequential 3-separation (Y, Z), the members of its equivalence
class and we describe the structural relationships between the members of this class.
We believe that the techniques of this paper can be extended to include the case
when (Y, Z) is sequential but, because the paper is already long, we do not attempt
this analysis here.

Let M be a matroid with ground set E and let K be an equivalence class of
non-sequential 3-separations of M . Suppose that (A1, B1) ∈ K. Then (A1 −
fcl(B1), fcl(B1)) and (fcl(A1), B1 − fcl(A1)) are also 3-separations in K. Let A =
A1 − fcl(B1) and B = B1 − fcl(A1). If X = E − (A ∪ B), then there is an ordering−→
X of X , say

−→
X = (x1, x2, . . . , xn), such that, for some j in {0, 1, . . . , n},

(A1, B1) = (A ∪ {x1, x2, . . . , xj}, {xj+1, xj+2, . . . , xn} ∪ B)

and, for all i in {0, 1, . . . , n},
(2.1) (A ∪ {x1, x2, . . . , xi}, {xi+1, xi+2, . . . , xn} ∪ B) is exactly 3-separating.

We define an exact 3-sequence or, more briefly, a 3-sequence to be an ordered
partition (A, x1, x2, . . . , xn, B) of the ground set of a matroid M such that |A|, |B| ≥
2 and (2.1) holds. If (A2, B2) is an arbitrary member of the equivalence class K
above, then, without loss of generality, we may assume that fcl(A1) = fcl(A2) and
fcl(B1) = fcl(B2). Thus

A2 − fcl(B2) = E(M) − fcl(B2) = E(M) − fcl(B1) = A1 − fcl(B1) = A

and, by symmetry,
B2 − fcl(A2) = B1 − fcl(A1) = B.

Hence there is an ordering
−→
X ′ of X , say

−→
X ′ = (x′

1, x
′
2, . . . , x

′
n) such that (A,

−→
X ′, B)

is a 3-sequence and (A2, B2) = (A ∪ {x′
1, x

′
2, . . . , x

′
k}, {x′

k+1, x
′
k+2, . . . , x

′
n} ∪ B) for
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some k in {0, 1, . . . , n}. Thus, to consider the structural relationships amongst
the members of an equivalence class of non-sequential 3-separations, it suffices to
consider, for an exact 3-sequence (A,

−→
X, B),

(i) which orderings of X result in an exact 3-sequence of M , and
(ii) what type of substructures of M result in these orderings.

If A and B are disjoint subsets of the ground set of a matroid M , an (A, B)
3-sequence is a 3-sequence of M of the form (A, x1, x2, . . . , xn, B). Given such a
3-sequence, we call each xi a guts or coguts element depending on whether xi is in
the closure or coclosure of A ∪ {x1, x2, . . . , xi−1}. Lemmas 2.1 and 2.2 imply that
no element is both a guts and a coguts element. Moreover, it will be shown in
Lemma 5.2 that if xi is a guts element of some (A, B) 3-sequence, then it is a guts
element of all (A, B) 3-sequences. This means that we can designate every element
of X in an (A, B) 3-sequence as either a guts element or a coguts element. We shall
refer to this designation as the type of the element.

For the rest of the paper, whenever we discuss a 3-sequence (A, X, B), it will
be implicit that there is an ordering

−→
X and a 3-connected matroid M with ground

set A ∪ X ∪ B such that (A,
−→
X, B) is a 3-sequence in M . Similarly, when we refer

to (A, Z1, Z2, . . . , Zn, B) as a 3-sequence, we shall mean that there are orderings−→
Z1,

−→
Z2, . . . ,

−→
Zn of Z1, Z2, . . . , Zn such that (A,

−→
Z1,

−→
Z2, . . . ,

−→
Zn, B) is a 3-sequence. Let

(A, X, B) be a 3-sequence. If x and y are elements of X and there are 3-sequences
(A,

−→
X1, B) and (A,

−→
X2, B) such that x precedes y in

−→
X1, and y precedes x in

−→
X2,

then we say that x is in the jump-set Jy of y, and y is in Jx. A crucial ingredient in
our discussion of (A, B) 3-sequences will be an analysis of the jump-sets of elements.

Next we introduce the matroid structures that arise within X . Some of these
are familiar, while others are less well-known. The reader will observe that, while
these definitions will often refer to the sets A and B, they are independent of a
specific ordering of X .

Let (A,
−→
X, B) be a 3-sequence in a matroid M . Then (A,

−→
X, B) is also a 3-

sequence in M∗. Let S be a subset of X with |S| ≥ 4. Then S is a segment if each
3-element subset of S is a triangle; and S is a cosegment if each 3-element subset of
S is a triad. We call S a fan if there is an ordering (s1, s2, . . . , sn) of the elements
of S such that

(i) for all i ∈ {1, 2, . . . , n − 2}, the triple {si, si+1, si+2} is either a triangle or
a triad, and

(ii) if i ∈ {1, 2, . . . , n − 2} and {si, si+1, si+2} is a triangle, then {si+1, si+2,
si+3} is a triad, while if {si, si+1, si+2} is a triad, then {si+1, si+2, si+3} is
a triangle.

This ordering (s1, s2, . . . , sn) is called a fan ordering of S.

The above definitions impose the requirements that |S| ≥ 4. This is non-
standard. We now extend these definitions to include the cases when S is either a
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3-element or a 2-element subset of X . Usually a triangle can be viewed as both a
segment and a fan, while a triad can be viewed as both a cosegment and a fan. Al-
though we could follow this convention here, in the context of an (A, B) 3-sequence,
there is a natural dichotomy within the class of triangles between those that are
best viewed as segments and those that behave like small fans. It will be shown
in Lemmas 4.1 and 4.6 that a triangle must consist of either three guts elements
or two guts elements and a coguts element. In the first case, the triangle will be
viewed as a segment, in the second case as a fan. Similarly, a triad consisting of
three coguts elements will be viewed as a cosegment, while a triad with exactly
two coguts elements will be viewed as a fan. For |S| = 2, if there is an (A, B)
3-sequence in which the elements of S are consecutive, then S is a degenerate seg-
ment if it consists of two guts elements, a degenerate cosegment if it consists of two
coguts elements, and a degenerate fan if it consists of a guts and a coguts element
that are not in each other’s jump-sets.

Non-degenerate segments and cosegments can be characterised in terms of the
jump-sets of their elements. The next result is proved later as Corollary 6.5.

Theorem 2.3. Let (A, X, B) be a 3-sequence. Let Y be a subset of X having at
least three elements. Then Y is a segment or a cosegment if and only if every
member y of Y is in the jump-sets of all of the members of Y − {y}.

As we shall show in Lemma 6.1 and Theorem 6.9, if Y is a segment, a cosegment,
or a fan in a 3-sequence (A,

−→
X, B), then there is an ordering

−→
X1 of X in which the

elements of Y are consecutive and (A,
−→
X1, B) is a 3-sequence. Theorem 6.9 also

shows that the elements of a fan Y always occur in the same relative order in every
(A, B) 3-sequence. Hence each fan has a first and a last element, a left and a right
end.

A maximal segment in a 3-sequence (A, X, B) is a segment Y in X so that there
is no segment Z that properly contains Y . When x is a guts element in X that is
not contained in any segment with two or more elements, it will be convenient to
view {x} as a maximal segment. We call this a degenerate maximal segment noting
that it is strictly neither a segment nor a degenerate segment. Maximal cosegments
are defined dually.

The main result of this paper is that once four special substructures are elim-
inated from a 3-sequence (A, X, B), the set X can be partitioned into maximal
segments and maximal cosegments. Moreover, there is a canonical ordering on
these maximal segments and maximal cosegments that induces an ordering

−→
X0 on

X such that (A,
−→
X, B) is a 3-sequence if and only if

−→
X is obtained from

−→
X0 by

arbitrarily permuting the elements within each maximal segment and each maxi-
mal cosegment or, at each interface between a maximal segment and a maximal
cosegment, by interchanging a guts element and a coguts element.

Before giving a more formal statement of this theorem, we identify the substruc-
tures that must be eliminated to get the theorem. An example of the first of these,
a clock, is shown in Figure 1. There A = {a1, a2, . . . , a9} and B = {b1, b2, . . . , b9}.
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Figure 1. A graph whose cycle matroid contains the clock
{x1, x2, . . . , x7, y1, y2, y3, y4}.

In the cycle matroid of the graph G shown, (A, x1, x2, . . . , x7, y1, y2, y3, y4, B) is a
3-sequence, as is (A, y1, y2, y3, y4, x1, x2, . . . , x7, B).

Let (A,
−→
X, B) be a 3-sequence in a matroid M . Let F1 and F2 be disjoint fans

contained in X such that each is maximal with this property. We call F1 ∪ F2

a clock if there is a partition (A′, B′) of E(M) − (F1 ∪ F2) such that A′ and B′

contain A and B, respectively, and each of A′, A′ ∪ F1, A
′ ∪ F2, and A′ ∪ F1 ∪ F2

is 3-separating. Observe that we allow F1 or F2 to be a degenerate fan consisting
of one guts and one coguts element. The clock F1 ∪ F2 is proper if both |F1| and
|F2| exceed two. It is semidegenerate if one of |F1| and |F2| is two and the other
exceeds two. It is degenerate if both |F1| and |F2| are two.

The following characterisation of clocks in terms of jump-sets will follow from
Theorem 7.2.

Theorem 2.4. Let (A, X, B) be a 3-sequence. Then X contains a clock if and only
if X contains elements y and z of different types such that |Jy ∩ Jz | ≥ 2. Indeed,
when such elements y and z exist, the corresponding clock has as its fans Jy ∩ Jz

and Ju ∩ Jv where u and v are arbitrary distinct members of Jy ∩ Jz.

In a 3-sequence (A, X, B), if Y is a clock, a maximal segment, or a maximal
cosegment, then the elements of Y can be made consecutive in some (A, B) 3-
sequence. Moreover, when this is done, the sets LY and RY of elements of X that
occur to the left and right of Y are uniquely determined. Thus such a set Y forms a
barrier in the 3-sequence in that no element e of X −Y has all of Y in its jump-set.

There is a natural ordering on the set of non-degenerate clocks in X . Since a
clock is the union of two fans, the clock contains the first and last elements of
these fans. All other clock elements are called internal. A degenerate clock is even
if its first elements are of the same type, and is odd otherwise. The ordering on
non-degenerate clocks referred to above can be extended to include odd degenerate
clocks. However, even degenerate clocks can interlock in a structure we call a non-
degenerate crocodile. Such a structure is built from a maximal segment and a
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maximal cosegment with the property that at least two elements in the segment
have distinct cosegment elements in their jump-sets.

Let (A,
−→
X, B) be a 3-sequence in a matroid M . Let S and S∗ be a maximal

segment and a maximal cosegment in X such that |S ∪ S∗| ≥ 5. We call S ∪ S∗

a crocodile if, for some (C, D) in {(A, B), (B, A)}, there is a partition (C′, D′) of
E(M) − (S ∪ S∗) such that

(i) C′ and D′ contain C and D, respectively;
(ii) each of C′, C′ ∪ S, and C′ ∪ S ∪ S∗ is 3-separating; and
(iii) for some k ≥ 2, there are k-element subsets Sw = {s1, s2, . . . , sk} and

S∗
w = {s∗1, s∗2, . . . , s∗k} of S and S∗ such that
(a) C′ ∪ (S − {si}) ∪ {s∗i } is 3-separating for all i in {1, 2, . . . , k}; and
(b) if s ∈ S − Sw, there is no s∗ in S∗ such that C′ ∪ (S − {s}) ∪ {s∗} is

3-separating.

If (C, D) = (A, B), we call S ∪S∗ a segment-first crocodile; otherwise S ∪S∗ is a
cosegment-first crocodile. The crocodile S ∪ S∗ is degenerate if |S| = 2 or |S∗| = 2.
We shall show in Lemma 8.2 that when S ∪ S∗ is a non-degenerate crocodile in X ,
for all distinct i and j in {1, 2, . . . , k}, there is an even degenerate clock with fans
(si, s

∗
j ) and (sj , s

∗
i ).

While segments, cosegments, and fans are well-known substructures of ma-
troids, crocodiles are less so. We show next that the matroids that give rise to
crocodiles have appeared previously in the literature [5]. For each k ≥ 3, take
a basis {b1, b2, . . . , bk} of PG(k − 1, R) and a line L that is freely placed relative
to this basis. By modularity, for each i, the hyperplane of PG(k − 1, R) that is
spanned by {b1, b2, . . . , bk} − {bi} meets L. Let ai be the point of intersection. We
shall denote by Θk the restriction of PG(k − 1, R) to {b1, b2, . . . , bk, a1, a2, . . . , ak}.
The reader can easily check that Θ3 is isomorphic to M(K4). We extend the
definition above to include the case k = 2. In that case, we begin with two in-
dependent points b1 and b2 and we add a1 in parallel with b2, and a2 in parallel
with b1. Alternatively, for all k ≥ 2, we can define Θk to be the matroid with
ground set {b1, b2, . . . , bk, a1, a2, . . . , ak} whose circuits consist of all 3-element sub-
sets of {a1, a2, . . . , ak}; all sets of the form ({b1, b2, . . . , bk} − {bi}) ∪ {ai}, where
i ∈ {1, 2, . . . , k}; and all sets of the form ({b1, b2, . . . , bk} − {bl}) ∪ {ag, ah}, where
l, g, and h are distinct elements of {1, 2, . . . , k} [5, Lemma 2.2]. As noted in [5,
Lemma 2.1], for all k ≥ 2, the matroid Θk is isomorphic to its dual under the map
that interchanges ai and bi for all i.

Describing a 3-sequence that contains a crocodile is now straightforward. Be-
gin with Θk for some k ≥ 2 and, for some m ≥ 2, add elements {z1, z2, . . . , zm,
y1, y2, . . . , yn} freely on the line spanned by {a1, a2, . . . , ak} to form the matroid M1.
Because these elements were freely added on this line, every 3-element subset of
{b1, b2, . . . , bk} is a cocircuit of M1. Then, for some p ≥ 2, add {u1, u2, . . . , up,
v1, v2, . . . , vq} freely on the line of M∗

1 that is spanned by {b1, b2, . . . , bk}. It is
not difficult to check that if A = {z1, z2, . . . , zm} and B = {u1, u2, . . . , up}, then,
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b1b2

u1

u2
a1

z1 y1
z2 a2

Figure 2. A geometric representation of a matroid that contains
the crocodile {y1, a1, a2, b1, b2}.

provided n + q ≥ 1,

(A, y1, y2, . . . , yn, a1, a2, . . . , ak, b1, b2, . . . , bk, v1, v2, . . . , vq, B)

is a 3-sequence having S ∪ S∗ as a crocodile where S = {y1, y2, . . . , yn, a1, a2,
. . . , ak} and S∗ = {b1, b2, . . . , bk, v1, v2, . . . , vq}. Moreover, Sw = {a1, a2, . . . , ak}
and S∗

w = {b1, b2, . . . , bk} where the swap partner of ai is bi. An example with
k = m = p = 2 and n − 1 = q = 0 is shown in Figure 2.

In Theorem 8.3, we show that every occurrence of a crocodile in a 3-sequence
corresponds to the presence of a minor isomorphic to Θk.

Let C be a clock whose fans F1(C) and F2(C) are non-degenerate. If z is an
internal element of C and z ∈ F2(C), then the jump-set of z equals F1(C). This
phenomenon of an element being able to jump a non-trivial sequence of guts and
coguts elements also occurs in a more general context. This leads us to define a
p-flan, a generalisation of the idea of a fan.

Let (A,
−→
X, B) be a 3-sequence and z be a guts element of X . For a subset F of

X − {z}, we call F ∪ {z} a pointed flan or p-flan if there is an ordered partition
({z}, F1, F2, . . . , Fm) of F ∪ {z} with m ≥ 3 such that the following hold:

(i) for all i ∈ {1, 2, . . . , m}, either Fi consists of a single coguts element or
Fi ∪ {z} is a maximal segment;

(ii) if i ∈ {1, 2, . . . , m − 1}, then Fi contains a coguts element if and only if
Fi+1 does not;

(iii) if i ∈ {1, 2, . . . , m−2} and Fi is a singleton coguts set, then Fi∪Fi+1∪Fi+2

is a cocircuit; and
(iv) if i ∈ {1, 2, . . . , m − 2} and Fi is a set of guts elements, then Fi ∪ Fi+1 ∪

Fi+2 ∪ {z} has rank three.

We call z the tip of the p-flan F ∪ {z}. Dually, F ∪ {z} is a p-coflan of M with
cotip z if it is a p-flan of M with tip z. Note that, in the definition of a p-flan,
if Fi contains exactly one guts element, then Fi ∪ {z} is a degenerate segment.
Indeed, in the example of a clock in the previous paragraph, if z is a guts element,
then (z, {x1}, {x2}, . . . , {xk}) is a p-flan where (x1, x2, . . . , xk) is the fan ordering
on F1(C).
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A p-flan ({z}, F1, F2, . . . , Fm) in a 3-sequence (A, X, B) is maximal if there is no
p-flan F ∪ {z} such that F properly contains F1 ∪ F2 ∪ · · · ∪ Fm.

The next result, which is proved later as Corollary 9.6, shows that maximal p-
flans coincide with the jump-sets of guts elements that contain either two coguts
elements or two guts elements that are not in a common segment.

Theorem 2.5. Let (z, F1, F2, . . . , Fm) be a maximal p-flan in an exact 3-sequence
(A,

−→
X, B). Then F1 ∪ F2 ∪ · · · ∪ Fm = Jz.

The main results of the paper appear in Section 10. There we describe three
decomposition results for a 3-sequence (A,

−→
X, B). The first of these, Theorem 10.2,

begins with a non-degenerate or odd degenerate clock C in X and breaks (A,
−→
X, B)

into two 3-sequences (A′,
−→
Y , B) and (A,

−→
Z , B′). Recalling that LC is the set of

elements of X − C that occur to the left of C in an (A, B) 3-sequence having the
elements of C consecutive, we have that A′ is the union of A with LC and all of
C except the last elements of its fans, and B′ is defined symmetrically. The key
point about this decomposition is that every pair of orderings

−→
Y1 and

−→
Z1 of Y and

Z such that (A′,
−→
Y1, B) and (A,

−→
Z1, B

′) are 3-sequences can be combined to produce
a 3-sequence (A,

−→
X1, B), and every (A, B) 3-sequence arises in this way.

The second decomposition result, Theorem 10.3, has the same flavour as the first.
It breaks up a 3-sequence having an even degenerate clock. This decomposition the-
orem is applicable to 3-sequences with non-degenerate crocodiles. It also applies to
degenerate crocodiles that occur within 3-sequences with no non-degenerate clocks.
In view of the first decomposition theorem, the imposition of the last restriction is
quite natural.

The final decomposition result, Theorem 10.7, treats 3-sequences having no
clocks. In such a 3-sequence (A, X, B), when the elements of a p-flan z ∪ F are
consecutive, it is shown in Lemma 10.4, that the sets LF and RF of elements of
X occurring to the left and right of z ∪ F in X are determined. This enables us
to obtain the third decomposition theorem, which has a similar format to the first
two.

In view of the three decomposition theorems, it is natural to exclude clocks,
p-flans, and p-coflans from the 3-sequences we are considering. In Lemma 10.8, we
show that, in such a 3-sequence, every guts element is in a unique maximal segment
and every coguts element is in a unique maximal cosegment. Moreover, for such a
3-sequence, we have the following theorem, the main result of the paper. A slightly
more explicit statement of this result appears later as Theorem 10.13.

Theorem 2.6. Let (A,
−→
X, B) be a 3-sequence that contains no clocks, no p-flans,

and no p-coflans and suppose that |X | ≥ 3. Let T1, T2, . . . , Tn be the collection of
maximal segments and maximal cosegments in X. Then there is a unique order-
ing on these sets such that (A, T1, T2, . . . , Tn, B) is a 3-sequence. Moreover, every
(A, B) 3-sequence can be obtained from this one by the following two steps:

(i) arbitrarily reorder the elements of each Ti; and
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(ii) look among these reorderings at when the last element of Ti is in the jump-
set of the first element of Ti+1. These swap pairs are disjoint and, for each
i and i+1 in {1, 2, . . . , n}, there is at most one such pair. Pick some subset
of these swap pairs and swap each element with its partner.

To conclude this section, we now briefly describe the organisation of the paper.
In Section 3, we present some basic matroid preliminaries. Section 4 describes some
elementary properties of 3-sequences, while Section 5 considers how elements can be
moved around in 3-sequences. Section 6 treats segments, cosegments, and fans in 3-
sequences, while Sections 7, 8, and 9 examine the properties of, respectively, clocks,
crocodiles, and pointed flans. The main results of the paper, the decomposition
theorems described above, appear in Section 10. The last section of the paper gives
an algorithm to determine the jump-set of every element x of X in a 3-sequence
(A, X, B).

3. Preliminaries

In this section, we present some matroid results, which we shall need in the paper
but which have not yet appeared. Any otherwise unexplained matroid terminology
will follow [4]. In a matroid M , if e is an element of M and A ⊆ E(M), we shall
write e ∈ cl(∗)(A) to indicate that e ∈ cl(A) or e ∈ cl∗(A).

The connectivity functions of a matroid M and its dual M∗ are equal. Moreover,
the connectivity function of M is submodular, that is, λ(X) + λ(Y ) ≥ λ(X ∩ Y ) +
λ(X ∪ Y ) for all X, Y ⊆ E. One useful consequence of this is the following:

Lemma 3.1. Let M be a 3-connected matroid, and let X and Y be 3-separating
subsets of E(M).

(i) If |X ∩ Y | ≥ 2, then X ∪ Y is 3-separating.
(ii) If |E(M) − (X ∪ Y )| ≥ 2, then X ∩ Y is 3-separating.

The following well-known result, whose proof is straightforward, helps to explain
why segments, cosegments, and fans are so omnipresent in this paper.

Lemma 3.2. Let S be a set in a 3-connected matroid. If S has an ordering
(s1, s2, . . . , sn) such that, for all i ∈ {1, 2, . . . , n − 2}, the triple {si, si+1, si+2}
is 3-separating, then the 3-sets {s1, s2, s3}, {s2, s3, s4}, . . . , {sn−2, sn−1, sn} are all
triangles, all triads, or are alternately triangles and triads.

If X and Y are subsets of the ground set of a matroid M , the local connectivity
u(X, Y ) between X and Y is defined by

u(X, Y ) = r(X) + r(Y ) − r(X ∪ Y ).

In particular, if (X, Y ) is a partition of E(M), then u(X, Y ) = λ(X). If M is a
representable matroid and we view it as a restriction of a projective geometry P ,
then the modularity of P means that u(X, Y ) is the rank of the intersection of the
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closures, in P , of X and Y . The next lemma is just a restatement of Lemma 8.2.10
of [4].

Lemma 3.3. Let X1,X2, Y1, and Y2 be subsets of the ground set of a matroid M .
If X1 ⊆ Y1 and X2 ⊆ Y2, then u(X1, X2) ≤ u(Y1, Y2).

By the definition of u, we have that r(cl(X)∩cl(Y )) ≤ u(X, Y ). The next lemma
is an immediate consequence of this inequality.

Lemma 3.4. Let M be a 3-connected matroid with at least four elements, let X and
Y be subsets of E(M), and let Z = cl(X) ∩ cl(Y ). If u(X, Y ) = 2, then r(Z) ≤ 2;
if u(X, Y ) = 1, then |Z| ≤ 1; and if u(X, Y ) = 0, then Z = ∅.

4. Properties of 3-sequences

In this section, we begin our analysis of 3-sequences by noting some of their
elementary properties.

Lemma 4.1. Let (A, x1, x2, . . . , xn, B) be a 3-sequence of a 3-connected matroid,
and let xi be an element of the sequence. Then either

(i) xi ∈ cl(A ∪ {x1, . . . , xi−1}) ∩ cl({xi+1, . . . , xn} ∪ B) or
(ii) xi ∈ cl∗(A ∪ {x1, . . . , xi−1}) ∩ cl∗({xi+1, . . . , xn} ∪ B),

but not both.

Proof. Since (A, x1, . . . , xn, B) is a 3-sequence,

r(A ∪ {x1, . . . , xi−1}) + r({xi, . . . , xn} ∪ B) = r(M) + 2

and
r(A ∪ {x1, . . . , xi}) + r({xi+1, . . . , xn} ∪ B) = r(M) + 2.

Therefore, if xi ∈ cl(A ∪ {x1, . . . , xi−1}), then xi ∈ cl({xi+1, . . . , xn} ∪ B), while
if xi 6∈ cl(A ∪ {x1, . . . , xi−1}), then xi 6∈ cl({xi+1, . . . , xn} ∪ B). The result now
readily follows by Lemma 2.1. �

Given a 3-sequence (A, x1, x2, . . . , xn, B) of a 3-connected matroid, we say that
xi is a guts element of

−→
X if xi ∈ cl(A ∪ {x1, . . . , xi−1}) ∩ cl({xi+1, . . . , xn} ∪ B),

and we say that xi is a coguts element of
−→
X if xi ∈ cl∗(A ∪ {x1, . . . , xi−1}) ∩

cl∗({xi+1, . . . , xn} ∪ B).

An immediate consequence of Lemmas 4.1 and 2.1 is the following.

Corollary 4.2. Let (A, x1, x2, . . . , xn, B) be a 3-sequence of a 3-connected matroid.
If i ∈ {1, 2, . . . , n}, then xi is either a guts element of

−→
X or a coguts element of

−→
X ,

but it cannot be both.

Let M be a matroid with ground set E. A partition (X, Y ) of E is displayed by
a sequence (A, x1, x2, . . . , xn, B) if {X, Y } = {A∪ x1 ∪ · · · ∪ xi, xi+1 ∪ · · · ∪ xn ∪B}
for some i in {0, 1, . . . , n}.
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Lemma 4.3. Let (A, x1, x2, . . . , xn, B) be a 3-sequence of a matroid M and let
i < j. Suppose that either xj ∈ cl(A ∪ {x1, . . . , xi}) or xj ∈ cl∗(A ∪ {x1, . . . , xi}).
Then

(A, x1, . . . , xi, xj , xi+1, . . . , xj−1, xj+1, . . . , xn, B)
is also a 3-sequence of M .

Proof. For all k in {i, i+1, . . . , j−1}, the set A∪{x1, x2, . . . , xk} is 3-separating so,
by Lemma 2.2, A∪{x1, x2, . . . , xk}∪xj is also 3-separating. The lemma follows. �

For an ordered set
−→
X = (x1, x2, . . . , xn) and an ordinary set Y , we denote the

ordered set obtained from
−→
X by deleting the elements of Y in X by

−→
X −Y ; and we

denote the ordered set that consists of the members of X∩Y by
−→
X∩Y . For example,

if Y = {x2, x3, x5}, then
−→
X − Y = (x1, x4, x6, . . . , xn) and

−→
X ∩ Y = (x2, x3, x5).

Lemma 4.4. Let (A,
−→
X, B) be a 3-sequence. Let

−→
X = (x1, x2, . . . , xn). If A ∪

{xi1 , xi2 , . . . , xik
} is 3-separating for some i1, i2, . . . , ik with 1 ≤ i1 < i2 < · · · <

ik ≤ n, then (A, xi1 , xi2 , . . . , xik
,
−→
X − {xi1 , xi2 , . . . , xik

}, B) is a 3-sequence.

Proof. For each j in {1, 2, . . . , n}, both of the sets A ∪ {x1, x2, . . . , xj} and A ∪
{xi1 , xi2 , . . . , xik

} are 3-separating, and each avoids B. Thus, by Lemma 3.1, their
intersection is 3-separating. Hence A∪{xi1 , xi2 , . . . , xis} is 3-separating for all s in
{0, 1, . . . , k}. Moreover, by Lemma 4.1, xt ∈ cl(∗)(A ∪ {x1, x2, . . . , xt−1}) for all t

in {1, 2, . . . , n}. Hence if t /∈ {i1, i2, . . . , ik}, then xt ∈ cl(∗)(A∪{x1, x2, . . . , xt−1}∪
{xi1 , . . . , xik

}). Therefore (A, xi1 , xi2 , . . . , xik
,
−→
X − {xi1 , xi2 , . . . , xik

}, B) is indeed
a 3-sequence. �

The following is a straightforward consequence of the last lemma.

Corollary 4.5. Let (A, x1, x2, . . . , xn, B) and (A, y1, y2, . . . , yn, B) be 3-sequences.
Let

−→
Y = (y1, y2, . . . , yn). Then, for all k, both

(A, x1, x2, . . . , xk,
−→
Y − {x1, x2, . . . , xk}, B)

and
(A,

−→
Y − {xn−k+1, xn−k+2, . . . , xn}, xn−k+1, xn−k+2, . . . , xn, B)

are 3-sequences.

Proof. By symmetry, it suffices to prove that the second-last sequence is a 3-
sequence. It follows immediately from the last lemma that (A,

−→
Y ∩{x1, x2, . . . , xk},−→

Y −{x1, x2, . . . , xk}, B) is a 3-sequence because A∪{x1, x2, . . . , xk} is 3-separating
and (A, y1, y2, . . . , yn, B) is a 3-sequence. To see that (A, x1, x2, . . . , xk,

−→
Y −{x1, x2,

. . . , xk}, B) is a 3-sequence, we note that (A, x1, x2, . . . , xn, B) is a 3-sequence, and
hence A ∪ {x1, x2, . . . , xi} is 3-separating for all i in {0, 1, . . . , k}. �
Lemma 4.6. Let S and S′ be (A, B) 3-sequences in a matroid M . Let x ∈ E(M)−
(A ∪ B). If x is a guts element of S, then x is a guts element of S′. Furthermore,
if x is a coguts element of S, then x is a coguts element of S′.
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Proof. Without loss of generality, we may assume that S = (A,
−→
X1, x,

−→
X2, B) and

S′ = (A,
−→
Y1, x,

−→
Y2, B), where the disjoint unions of X1 and X2, and Y1 and Y2 are

E(M) − (A ∪ {x} ∪ B). By duality, we may assume that x is a guts element of
S. By Corollary 4.5, S′ can be modified to produce the 3-sequence (A,

−→
X1,

−→
Y1 −

X1, x,
−→
Y2 −X1, B). Since x is a guts element of S, we have that x ∈ cl(A∪X1) and

so x ∈ cl(A ∪ X1 ∪ Y1). Therefore, by Lemma 4.1, x ∈ cl(B ∪ (Y2 − X1)), which in
turn implies that x ∈ cl(B ∪ Y2). Thus x is a guts element of S′. �

The last lemma means that in a 3-sequence (A, X, B), we can designate every
element as either a guts or a coguts element. We shall refer to this designation as
the type of the element.

5. Jumping and Sorting

Lemma 4.3 illustrates the idea that an element xi in a 3-sequence (A, x1, x2, . . . ,
xn, B) can jump over other elements in the sequence and be inserted somewhere
else in the ordered set (x1, x2, . . . , xn), so that the resulting sequence is also a 3-
sequence. The next series of lemmas, which culminates with Theorem 5.5, describes
exactly when this can be done. This section also begins the discussion of the
structural implications of an element being able to jump over other elements.

Let (A,
−→
X, B) be a 3-sequence and let x ∈ X . Recall from Section 2 that the

jump-set, Jx, of x is the set of elements z of X such that there is an (A, B) 3-
sequence with z appearing to the left of x and an (A, B) 3-sequence with z appearing
to the right of x. The left-set, Lx, of x and the right-set, Rx, of x are the sets of
elements of X that appear to the left and right, respectively, of x in every (A, B)
3-sequence.

The next lemma says that, for every element x, there is an (A, B) 3-sequence in
which the elements of Jx are consecutive.

Lemma 5.1. Let (A,
−→
X1, x,

−→
X2, B) and (A,

−→
Y1, x,

−→
Y2, B) be (A, B) 3-sequences of a

matroid M in which the cardinalities of X1 and Y2 are minimised. Then X1 = Lx

and Y2 = Rx and both (A,
−→
X1,

−→
Jx, x,

−→
Y2, B) and (A,

−→
X1, x,

−→
Jx,

−→
Y2, B) are 3-sequences

of M . Moreover, if
−→
Jx = (y1, y2, . . . , yk), then (A,

−→
Lx, y1, . . . , yi, x, yi+1, . . . , yk,

−→
Rx,

B) is a 3-sequence for all i in {1, 2, . . . , k − 1}.

Proof. Let S1 = (A,
−→
X1, x,

−→
X2, B) and S2 = (A,

−→
Y1, x,

−→
Y2, B). Applying Corol-

lary 4.5 to S1 and S2, we deduce that S3 = (A,
−→
X1,

−→
Y1 − X1, x,

−→
Y2 − X1, B) is a

3-sequence of M . Consider this 3-sequence. We first observe that X1 ∩ Y2 = ∅; for
otherwise the number of elements to the right of x in S3 is strictly less than |Y2|,
contradicting the minimality of |Y2|. Thus S3 = (A,

−→
X1,

−→
Y1−X1, x,

−→
Y2, B). Now, by

duality, we may assume that x is a guts element of S3. Therefore, by Lemma 4.6, x
is a guts element of S1 and S2, so x ∈ cl(A∪X1) and x ∈ cl(Y2∪B). By Lemma 4.3,
this implies that x may be moved in S3 to any position that lies between the last
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member of X1 and the first member of Y2. Thus every element of Y1 − X1 is an
element of the jump-set Jx of x. We show next that Jx = Y1 − X1.

Suppose that there is an element z of Y2 that is also an element of Jx. Then
there is an (A, B) 3-sequence in which z is to the left of x and another (A, B)
3-sequence of M in which z is to the right of x. Now z is to the right of x in
S2 as z ∈ Y2. Let S4 = (A,

−→
Z1, x,

−→
Z2, B) be some 3-sequence of M in which z

is to the left of x. Then, by applying Corollary 4.5 to S2 and S4, we get that
(A,

−→
Z1,

−→
Y1 − Z1, x,

−→
Y2 − Z1, B) is a 3-sequence of M . But then, as z ∈ Z1 ∩ Y2,

the 3-sequence (A,
−→
Z1,

−→
Y1 − Z1, x,

−→
Y2 − Z1, B) has the property that the number of

elements of X to the right of x is strictly less that |Y2|, contradicting the minimality
of |Y2|. Hence, no element of Y2 is an element of Jx. A similar argument shows
that no element of X1 is also an element of Jx.

Having established that Jx = Y1 −X1, we now conclude that S3 = (A,
−→
X1,

−→
Jx, x,−→

Y2, B), where X1 = Lx and Y2 = Rx. Since x can be moved to any position between
the last member of X1 and the first member of Y2 in S3 maintaining a 3-sequence,
the remainder of the lemma follows. �

The following are two useful consequences of Lemma 5.1.

Corollary 5.2. Let (A,
−→
X, B) be an (A, B) 3-sequence S, and suppose x ∈ X. If

x is a guts element of S, then x ∈ cl(A ∪Lx) ∩ cl(Rx ∪B). Dually, if x is a coguts
element of S, then x ∈ cl∗(A ∪ Lx) ∩ cl∗(Rx ∪ B).

Corollary 5.3. Let (A,
−→
X, B) be a 3-sequence. Let x and y be elements of X. If

x ∈ Jy, then there is an (A, B) 3-sequence in which x and y are consecutive.

The next lemma says that, whenever we have a 3-sequence (A,
−→
X, B) in which

an element x ∈ X is adjacent to elements of its jump-set, x can jump over these
elements and the resulting sequence is also an (A, B) 3-sequence.

Lemma 5.4. Let (A,
−→
X, B) be a 3-sequence of a matroid M . Let x ∈ X. If x

immediately follows an element x′ in
−→
X and x′ ∈ Jx, then interchanging x′ and x

results in an (A, B) 3-sequence of M .

Proof. Let (A,
−→
X, B) = (A,

−→
L , x′, x,

−→
R, B). Then Lx ⊆ L so, by Corollary 5.2,

x ∈ cl(A ∪ L) or x ∈ cl∗(A ∪ L). Thus, by Lemma 4.3, (A,
−→
L , x, x′,

−→
R, B) is a

3-sequence. �

Suppose (A,
−→
X, B) is an (A, B) 3-sequence of a matroid M . Lemma 5.4 enables

us to determine exactly which orderings of X give an (A, B) 3-sequence of M
provided, for each x ∈ X , we know Jx, Lx, and Rx. This is the content of the next
theorem.

Theorem 5.5. Let M be a matroid, and suppose that there exists an (A, B) 3-
sequence of M . Let X = E(M)−(A∪B) and let

−→
X = (x1, x2, . . . , xn) be an ordering
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of the elements of X. Then (A,
−→
X, B) is an (A, B) 3-sequence of M if and only if,

for each i ∈ {1, 2, . . . , n}, Lxi ⊆ {x1, x2, . . . , xi−1} and Rxi ⊆ {xi+1, xi+2, . . . , xn}.

Proof. If (A, x1, x2, . . . , xn, B) is a 3-sequence of M , then, by definition, Lxi ⊆
{x1, x2, . . . , xi−1} and Rxi ⊆ {xi+1, xi+2, . . . , xn} for each i ∈ {1, 2, . . . , n}.

For the converse, suppose that (x1, x2, . . . , xn) is an ordering of the elements of
X such that, for each i, Lxi ⊆ {x1, x2, . . . , xi−1} and Rxi ⊆ {xi+1, xi+2, . . . , xn}.
We shall show that, with this ordering, (A,

−→
X, B) is a 3-sequence of M .

By our initial assumptions, there is an (A, B) 3-sequence of M . Let S0 =
(A, y1, y2, . . . , yn, B) be such a sequence. Then there exists some j ∈ {1, 2, . . . , n}
such that yj = x1. Since Lx1 = ∅ and Rx1 ⊆ {yj+1, yj+2, . . . , yn}, we see that
{y1, y2, . . . , yj−1} ⊆ Jx1 = Jyj . Therefore, by repeated application of Lemma 5.4,
S1 = (A, yj , y1, y2, . . . , yj−1, yj+1, . . . , yn, B) is an (A, B) 3-sequence of M . More-
over, the sequence (A,

−→
X, B) and S1 agree in the first two coordinates.

Set S1 = (A, z1, z2, . . . , zn, B) by replacing yj, y1, . . . , yj−1, yj+1, . . . , yn with
z1, z2, . . . , zn, respectively. Note that z1 = x1. Now there is some j ∈ {2, 3, . . . , n}
such that zj = x2. As Lx2 ⊆ {x1} = {z1} and Rx2 = Rzj ⊆ {zj+1, zj+2, . . . , zn},
we deduce that {z2, z3, . . . , zj−1} ⊆ Jx2 = Jzj . Therefore, by repeated application
of Lemma 5.4, S2 = (A, z1, zj, z2, . . . , zj−1, zj+1, . . . , zn, B) is an (A, B) 3-sequence
of M that agrees with (A,

−→
X, B) in the first three coordinates. By considering S2

and the sequence (A,
−→
X, B), and repeating this process, we eventually obtain the

sequence (A,
−→
X, B). This shows that (A,

−→
X, B) is indeed an (A, B) 3-sequence of

M . �

Lemma 5.6. Let (A, X, B) be a 3-sequence. If y and z are elements of X such that
y ∈ Lz, then there is a 3-sequence in which the elements of Jy ∩Jz are consecutive.
Moreover, if there is a 3-sequence in which y and z are consecutive, then (A, Ly, Jy−
Jz, y, Jy ∩ Jz, z, Jz − Jy, Rz, B) is a 3-sequence.

Proof. Since y ∈ Lz, it follows that Ly ⊆ Lz, so Ly ∩ (Jz ∪ Rz) = ∅ and, similarly,
Rz ∩ (Ly ∪ Jy) = ∅. By Lemma 5.1, all of Ly, Jy, Ry, Lz, Jz, and Rz have orderings
such that (A,

−→
Ly, y,

−→
Jy,

−→
Ry, B) and (A,

−→
Lz ,

−→
Jz, z,

−→
Rz, B) are 3-sequences. By Corol-

lary 4.5, there is a 3-sequence that begins like the first sequence above and ends
like the second, namely (A,

−→
Ly, y,

−→
Jy,

−→
Lz ∩ Ry,

−→
Jz − Jy, z,

−→
Rz, B). By Corollary 4.5

again, there is a 3-sequence that begins like the second sequence and ends like the
last 3-sequence, namely (A,

−→
Lz,

−→
Jy − Lz,

−→
Jz − Jy, z,

−→
Rz, B). But Jy ∩ Rz = ∅, so

Jy − Lz = Jy ∩ Jz, and hence this sequence is (A,
−→
Lz ,

−→
Jy ∩ Jz,

−→
Jz − Jy, z,

−→
Rz, B).

Evidently, in this sequence, the elements of Jy ∩ Jz occur consecutively.

Now assume there is a 3-sequence in which y and z are consecutive. Then
Lz ∩ Ry = ∅. By Corollary 4.5 again, there is a 3-sequence that ends like the last
3-sequence in the previous paragraph and begins like the first 3-sequence, namely
(A,

−→
Ly, y,

−→
Jy ∩Lz,

−→
Jy ∩ Jz ,

−→
Jz − Jy, z,

−→
Rz, B). Now, since Jy ∩Rz = ∅, we have that
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−→
Jy ∩ Lz =

−→
Jy − Jz. Furthermore, by repeated application of Lemma 5.4, y can be

moved to the right of the elements of Jy − Jz, while z can be moved to the left
of Jz − Jy. Hence, as required, (A,

−→
Ly,

−→
Jy − Jz , y,

−→
Jy ∩ Jz , z,

−→
Jz − Jy,

−→
Rz, B) is a

3-sequence. �

Lemma 5.7. Let (A, X, B) be a 3-sequence. If y and z are elements of X such
that y ∈ Jz, then (A, Ly ∪ Lz, {y, z} ∪ (Jy ∩ Jz), Ry ∪ Rz, B) is a 3-sequence.

Proof. Observe that z ∈ Jy, so y and z are symmetric under the hypotheses. Sup-
pose x ∈ Ly ∩Rz for some x ∈ X . Then, as y ∈ Jz , there is an (A, B) 3-sequence in
which y occurs to the left of z. But x must occur to the left of y in this sequence,
putting x to the left of z; a contradiction. Thus Ly∩Rz is empty and, by symmetry,
so is Lz∩Ry . By Lemma 5.1, both (A,

−→
Ly, y,

−→
Jy,

−→
Ry, B) and (A,

−→
Lz ,

−→
Jz, z,

−→
Rz, B) are

3-sequences. By Lemma 4.5, there is an (A, B) 3-sequence that begins A,
−→
Ly and

finishes as in the second sequence. In this sequence, all the elements of Ly ∪Lz are
used before any other elements of X . By symmetry, there is an (A, B) 3-sequence
in which all the elements of Ry ∪Rz occur after all the other elements of X . Then,
since Ly∩Rz and Lz∩Ry are empty, Lemma 4.5 implies that the last two sequences
can be used to produce an (A, B) 3-sequence that uses all the elements of Ly ∪ Lz

as the first elements of X and uses all the elements of Ry ∪Rz as the last elements
of X . This sequence must be (A, Ly ∪ Lz, {y, z} ∪ (Jy ∩ Jz), Ry ∪ Rz, B). �

Lemma 5.8. Let (A, x1, x2, . . . , xn, B) be a 3-sequence. If xi and xi+1 are of the
same type, then

(A, x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn, B)

is also a 3-sequence.

Proof. By duality, we may suppose that xi and xi+1 are both guts elements. Then,
as xi ∈ cl(A ∪ {x1, . . . , xi−1}) and xi+1 ∈ cl(A ∪ {x1, . . . , xi}), it follows that
xi+1 ∈ cl(A ∪ {x1, . . . , xi−1}). By Lemma 4.3, this now implies that

(A, x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn, B)

is a 3-sequence. �

Given an (A, B) 3-sequence, the next result characterizes when two adjacent
elements, one guts and one coguts can be interchanged.

Lemma 5.9. Let (A, x1, x2, . . . , xn, B) be a 3-sequence. Suppose that xi is a guts
element and xi+1 is a coguts element. Let A′ = A ∪ {x1, . . . , xi−1} and B′ =
{xi+2, . . . , xn} ∪ B. Then

(A, x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xn, B)

is a 3-sequence if and only if xi ∈ cl(A′) ∩ cl(B′) and xi+1 ∈ cl∗(A′) ∩ cl∗(B′).

Proof. Let S = (A, x1, x2, . . . , xn, B) and S′ = (A, x1, . . . , xi−1, xi+1, xi,
xi+2, . . . , xn, B). If xi+1 ∈ cl∗(B′), then, by Lemma 4.3, S′ is a 3-sequence.
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For the converse, suppose that S′ is a 3-sequence. Since xi is a guts element
and xi+1 is a coguts element of S, it follows that xi ∈ cl(A′) and xi+1 ∈ cl∗(B′).
Moreover, as both S and S′ are (A, B) 3-sequences, Lemma 4.6 implies that xi

is a guts element and xi+1 is a coguts element of S′. Therefore xi ∈ cl(B′) and
xi+1 ∈ cl∗(A′). �

The next result states that if (A,
−→
X, B) is a 3-sequence, then no guts element

can have two adjacent coguts elements in its jump-set. This will be useful when
discussing the structure of large jump-sets.

Lemma 5.10. Let (A,
−→
X, B) be a 3-sequence of a matroid M . Let y ∈ X, and

suppose that x and x′ are adjacent elements in
−→
X with x preceding x′.

(i) If y is a guts element, but x and x′ are both coguts elements of this 3-
sequence, then Jy does not contain both x and x′.

(ii) Dually, if y is a coguts element, but x and x′ are both guts elements of this
3-sequence, then Jy does not contain both x and x′.

Proof. By duality, it suffices to prove that (i) holds. Suppose that y is a guts
element, but x and x′ are both elements of Jy. Since x and x′ are adjacent
in (A,

−→
X, B), it follows by Lemma 5.1 that, for some fixed ordering of the sub-

sets X1 and X2 of X , each of (A,
−→
X1, y, x, x′,

−→
X2, B), (A,

−→
X1, x, y, x′,

−→
X2, B), and

(A,
−→
X1, x, x′, y,

−→
X2, B) are 3-sequences of M . Let A′ = A ∪ X1 and B′ = B ∪ X2.

Using Lemma 5.9 and considering the first and third of these sequences, we deduce
that y ∈ cl(A′)∩ cl(B′). Similarly, we also deduce that x ∈ cl∗(A′)∩ cl∗(B′ ∪{x′}),
and x′ ∈ cl∗(A′∪{x})∩cl∗(B′). It now follows by Lemma 2.1 that r(A′∪{y, x, x′}) =
r(A′ ∪ {y, x}) + 1, r(A′ ∪ {y, x}) = r(A′ ∪ {y}) + 1, and r(A′ ∪ {y}) = r(A′). Thus
r(A′ ∪{y, x, x′}) = r(A′)+ 2 and so, as (A′ ∪{y, x, x′}, B′) is an 3-separation of M ,
r(A′∪{y, x, x′})+r(B′)−r(M) = 2. Since r(A′∪{y, x, x′}) = r(A′)+2, this implies
that r(A′)+ r(B′) = r(M). As y ∈ cl(A′)∩ cl(B′), it follows by submodularity that
r(A′) + r(B′) ≥ r(A′ ∪ B′) + 1 and so r(A′ ∪B′) ≤ r(M)− 1. But this means that,
as y ∈ cl(A′ ∪ B′), the set {x, x′} is 2-separating, contradicting the fact that M is
3-connected. We conclude that Jy does not contain both x and x′. �

The following corollary is an immediate consequence of Lemma 5.10.

Corollary 5.11. Let (A,
−→
X, B) be a 3-sequence and suppose that y ∈ X. If y is

a guts element of X and Jy contains two coguts elements x and x′, then x and
x′ are not adjacent in any (A, B) 3-sequence. Dually, if y is a coguts element of
this sequence and Jy contains two guts elements x and x′, then x and x′ are not
adjacent in any (A, B) 3-sequence.

6. Segments, Cosegments, and Fans

In this section, we explain why segments, cosegments, and fans occur in 3-
sequences and we analyse how such substructures behave in a 3-sequence (A, X, B).
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The reader may recall from Section 2 that the 3-element segments in X coincide
with all triangles of X containing only guts elements, while a 2-element subset of
X is a segment if and only if it consists of two guts elements that can be made
consecutive in some (A, B) 3-sequence. The second part of the next result helps to
explain the reason for these definitions.

Lemma 6.1. Let (A,
−→
X, B) be a 3-sequence and let Y be a subset of X with at

least three elements such that every 3-element subset of Y is a triangle.

(i) Let
−→
X ∩ Y = (y1, y2, . . . , yk). Then there is an (A, B) 3-sequence in which

the elements of Y are consecutive and preserve the ordering (y1, y2, . . . , yk).
(ii) If |Y | ≥ 4, then each element of Y is a guts element of (A,

−→
X, B).

Proof. Let S0 = (A,
−→
X, B). Since every 3-element subset of Y is a triangle, yi ∈

cl({yi+1, yi+2}) for all i ∈ {1, 2, . . . , k− 2}. Therefore, by Lemma 4.3, the sequence
S1 obtained from S0 by moving yk−2 to the right so that it immediately precedes
yk−1 is also an (A, B) 3-sequence. So too is the sequence S2 that is obtained from S1

by moving yk−3 to the right so that it immediately precedes yk−2. By repeating this
process, we eventually obtain an (A, B) 3-sequence Sk−2 in which y1, y2, . . . , yk−1 is
a consecutive subsequence having yk to its right. A final application of Lemma 4.3
allows yk to be moved to the left so that it immediately succeeds yk−1, and (i)
follows.

To prove (ii), let y ∈ Y . Then, in (A,
−→
X, B), there are two elements y′ and y′′

of Y such that, in
−→
X , both occur to the right of y or both occur ro the left of y.

Since y ∈ cl({y′, y′′}), it now follows by Lemma 4.1 that y is a guts element of
(A,

−→
X, B). �

In this section, we establish some structural properties for segments that are
contained in an (A, B) 3-sequence. All of the results in this section are written
for segments. However, each of them can be dualised to obtain the corresponding
results for cosegments by simply interchanging “segment” with “cosegment”, “guts”
with “coguts”, and “closure” with “coclosure”.

Corollary 6.2 is an immediate consequence of Lemma 5.8.

Corollary 6.2. Let (A,
−→
X, B) be a 3-sequence in a matroid M , and suppose that

Y is a segment of M whose elements are consecutive in
−→
X . Then replacing the

subsequence of (A,
−→
X, B) consisting of the elements of Y with any other ordering

of Y results in an (A, B) 3-sequence of M .

Lemma 6.3. Let (A,
−→
X, B) be a 3-sequence. For any consecutive subsequence

−→
Y

of
−→
X consisting entirely of guts elements, if |Y | ≥ 2, then Y is a segment of M .

Proof. Let
−→
X = (x1, x2, . . . , xn) and suppose all of xi, xi+1, . . . , xi+j are guts ele-

ments for some j ≥ 1. Then xk ∈ cl(A ∪ {x1, x2, . . . , xk−1}) for all k ∈ {i, i + 1,
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. . . , i + j}. Using a simple induction argument, this implies that, for all such k,

xk ∈ cl(A ∪ {x1, x2, . . . , xi−1}).
Since (A,

−→
X, B) is a 3-sequence,

r(A ∪ {x1, x2, . . . , xi−1}) + r({xi, xi+1, . . . , xn} ∪ B) = r(M) + 2.

Therefore, as r(A ∪ {x1, x2, . . . , xi−1}) = r(A ∪ {x1, x2, . . . , xi+j}), we have r(A ∪
{x1, x2, . . . , xi+j}) + r({xi, xi+1, . . . , xn} ∪ B) = r(M) + 2. By submodularity, this
implies that r({xi, xi+1, . . . , xi+j}) ≤ 2, and so {xi, xi+1, . . . , xi+j} is a segment. �
Lemma 6.4. If, in a 3-sequence (A, X, B), each of x, y, and z is in X and is in
the jump-set of each of the others, then {x, y, z} is a segment or a cosegment.

Proof. Without loss of generality, we may assume that there is a 3-sequence (A, Lx,−→
J ′

x, x, y,
−→
J ′′

x , z,
−→
J ′′′

x , Rx, B) where Jx = J ′
x ∪ y ∪ J ′′

x ∪ z ∪ J ′′′
x . We argue by induction

on |J ′′
x | to establish the result. If |J ′′

x | = 0, then, without loss of generality, by
Theorem 5.4, we can arrange x, y, and z consecutively in the sequence so that the
first two are guts elements. Since the last element can jump over the first two, it
follows, by the dual of Lemma 5.10, that all three elements are guts elements. Then
Lemma 6.3 implies that {x, y, z} is a triangle.

Now assume the result holds for |J ′′
x | = n and let |J ′′

x | = n + 1, say
−→
J ′′

x =
(a1, a2, . . . , an+1). By the induction assumption, a1 6∈ Jy and an+1 6∈ Jz. Because y
and z are in each other’s jump-sets, there is a 3-sequence Syz in which y and z occur
consecutively. Because an+1 6∈ Jz , we must have that an+1 occurs to the left of y in
Syz. Thus an+1 ∈ Jy. Similarly, as a1 6∈ Jy, we must have that a1 occurs to the right
of z in Syz. Hence a1 ∈ Jz . This means that there is a 3-sequence Sa1z in which a1

and z occur consecutively. As an+1 6∈ Jz, we must have that an+1 occurs to the left
of a1 in Sa1z. Hence an+1 ∈ Ja1 . Now (A, Lx,

−→
J ′

x, y, x, a1, a2, . . . , an+1, z,
−→
J ′′′

x , Rx, B)
is a 3-sequence and each of x, a1, and an+1 is in the jump-set of the other. Thus,
by the induction assumption, {x, a1, an+1} is a triangle or a triad. Therefore, by
Lemma 4.3, (A, Lx,

−→
J ′

x, x, y, a1, an+1, a2, . . . , an, z,
−→
J ′′′

x , Rx, B) is a 3-sequence. As
an+1 is in all of Ja1 , Jy, and Jx, we get that (A, Lx,

−→
J ′

x, an+1, x, y, a1, a2, . . . , an, z,−→
J ′′′

x , Rx, B) is a 3-sequence. Then the induction assumption implies that {x, y, z}
is a triangle of guts elements or a triad of coguts elements, that is, a segment or a
cosegment. �

The next result characterises non-degenerate segments and cosegments in terms
of the jump-sets of their elements.

Corollary 6.5. Let (A, X, B) be a 3-sequence. Let Y be a subset of X having
at least three elements. Then Y is a segment or a cosegment if and only if every
member of Y is in the jump-sets of all members of Y − {y}.

Proof. If Y is a segment or a cosegment, then, by Lemma 6.1, there is an (A, B)
3-sequence in which the elements of Y are consecutive. Moreover, Corollary 6.2
implies that if y ∈ Y , then y is in the jump-sets of every member of Y − {y}. The
converse is a straightforward consequence of Lemma 6.4. �
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In the characterisation of non-degenerate segments and cosegments just given,
the hypothesis did not require that all elements of Y are of the same type. By
adding this hypothesis, we can extend the last result to characterise degenerate
segments and cosegments where we recall, for example, that two guts elements
form a segment if there is a 3-sequence in which they are consecutive. The proof is
a straightforward combination of Lemmas 5.1 and 5.8.

Corollary 6.6. Let (A,
−→
X, B) be a 3-sequence. Let x and y be elements of X of

the same type. Then {x, y} is a segment or a cosegment if and only if x ∈ Jy.

The next result is our first example of a number of results about a set of elements
in an (A, B) 3-sequence forming a barrier over which no element can jump. Its proof
is an easy combination of Corollary 5.3 and Lemma 6.4.

Corollary 6.7. Let (A,
−→
X, B) be a 3-sequence. Let x and y be elements of X of

the different types. If x and y are in each other’s jump-sets, then there is an (A, B)
3-sequence in which x and y are consecutive. Moreover, there are sets L and R
such that, for every (A, B) 3-sequence of the form (A, Z1, {x, y}, Z2, B), the sets Z1

and Z2 equal L and R, respectively.

In a 3-sequence (A,
−→
X, B), a segment S is maximal if there is no segment T that

is contained in X and properly contains S. The next result gives several useful
properties of a maximal segment S showing, for example, that, in any (A, B) 3-
sequence, most of the members of S are consecutive. Moreover, whenever all the
members of S are consecutive in an (A, B) 3-sequence, the sets of elements occurring
to the left and right of S are uniquely determined. Indeed, S forms a barrier in
every (A, B) 3-sequence with no element being able to jump over all of S.

Theorem 6.8. Let S be a maximal segment in a 3-sequence (A,
−→
X, B) and suppose

that (s1, s2, . . . , sk) is the ordering induced on S by
−→
X . Then the following hold.

(i) No element of X − S is in the jump-sets of two distinct elements of S.
(ii) There are subsets LS and RS of X−S such that, in every (A, B) 3-sequence

of the form (A, L, S, R, B), the sets L and R equal LS and RS , respectively.
(iii) The elements s2, s3, . . . , sk−1 are consecutive.
(iv) If k ≥ 3 and s1 is not adjacent to s2 in

−→
X , then every element of

−→
X − S

lying between s1 and s2 is in Js1 ∩ LS.
(v) If k ≥ 3 and sk is not adjacent to sk−1 in

−→
X , then every element of

−→
X −S

lying between sk and sk−1 is in Jsk
∩ RS .

Proof. Suppose that z ∈ X − S and z is in the jump-sets of si and sj for some
distinct i and j. As {si, sj} ⊆ S, by Corollary 6.5 or 6.6, si and sj jump each other.
Hence si, sj , and z are mutually jumping so, by Lemma 6.4, {si, sj , z} is contained
in a segment. Hence S∪{z} is a segment, contradicting the maximality of S. Thus
(i) holds.

Part (ii) follows from (i) by noting that if (A, L, S, R, B) and (A, L′, S, R′, B) are
3-sequences and z ∈ L ∩ R′, then z jumps every element of S. Hence L ∩ R′ = ∅
and, similarly, R ∩ L′ = ∅.
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Part (iii) is trivial if k ≤ 3 so assume that k ≥ 4. Let z be an element of X − S

that lies between s2 and sk−1 in
−→
X . By Lemma 6.1, there is an (A, B) 3-sequence

in which s1, s2, . . . , sk occurs as a consecutive subsequence. The element z must
occur to the left or right of this subsequence. In both cases, z is in the jump-sets
of two elements of S, contradicting (i).

Parts (iv) and (v) follow by similar arguments to the above. �

The final result of this section, which summarises some basic properties of fans
when they occur in (A, B) 3-sequences, justifies the definition of a degenerate fan.
In the next section, we shall discuss a special substructure in a 3-sequence called
a clock. As we shall see, every clock is a union of two fans. If s1, s2, . . . , sk is a
fan ordering of a fan F , then sk, sk−1, . . . , s1 is also a fan ordering of F . Moreover,
when k ≥ 5, this reversal is the only other fan ordering of F . When k = 4, there
are two other fan orderings, namely s1, s3, s2, s4 and its reversal.

Theorem 6.9. Let (A,
−→
X, B) be a 3-sequence and F be a subset of X such that F

is a fan. Let x1, x2, . . . , xk be the ordering of F induced by
−→
X . Then the following

hold.

(i) There is an (A, B) 3-sequence having x1, x2, . . . , xk as a consecutive subse-
quence.

(ii) The elements x1, x2, . . . , xk are alternately guts and coguts elements.
(iii) The ordering x1, x2, . . . , xk is a fan ordering of F .
(iv) In all (A, B) 3-sequences, the elements of F occur in the order x1, x2, . . . , xk.

Proof. If k = 2, then the definition of a degenerate fan ensures that all four parts
hold. Now suppose that k = 3. By duality, we may assume that {x1, x2, x3} is a
triangle. Since x3 ∈ cl({x1, x2}) and x1 ∈ cl({x2, x3}), we deduce that x1 and x3

are guts elements. By our definition of a three-element fan, it follows that x2 is a
coguts element. Moreover, by Lemma 4.5, we can move x1 and x3 in

−→
X to get an

(A, B) 3-sequence having x1, x2, x3 as a consecutive subsequence. To see that (iv)
holds when k = 3, note that, if not, then there is an (A, B) 3-sequence in which the
fan elements occur in the order x3, x2, x1. In that case, x1, x2, and x3 are mutually
jumping so, by Lemma 6.4, all these elements are of the same type; a contradiction.
We conclude that (i)–(iv) hold for k = 2 and k = 3.

Now assume that (i)–(iv) hold for k < n and let k = n ≥ 4. If xk is in
both a triangle and a triad of F , then xk ∈ cl({x1, x2, . . . , xk−1}) and xk ∈
cl∗({x1, x2, . . . , xk−1}). Thus xk is both a guts and a coguts element of

−→
X ; a

contradiction to Corollary 4.2. Hence, by duality, we may assume that xk is in a
triangle but no triad of F . It follows that F − {xk} is a fan. Likewise, F − {x1} is
a fan. By the induction assumption, (i)–(iv) hold for both F −{x1} and F −{xk}.
It is straightforward to deduce that (ii) and (iv) hold for F . Moreover, as there is
an (A, B) 3-sequence having x1, x2, . . . , xk−1 as a consecutive subsequence and (iv)
holds for F , the element xk occurs to the right of this subsequence. By Lemma 4.5,
since xk ∈ cl({x1, x2, . . . , xk−1}), it follows that (i) holds for F . Finally, since
x2, x3, . . . , xk is a fan ordering of F − {x1}, and xk is in a triangle but no triad
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of F , we deduce that {xk−2, xk−1, xk} is a triangle. Combining this with the fact
that x1, x2, . . . , xk−1 is a fan ordering of F − {xk} gives that x1, x2, . . . , xk is a fan
ordering of F . �

7. Clocks

In this section, we investigate what happens when two elements y and z have
jump-sets that meet in two or more elements. One case when we know this occurs
is when y and z have the same type and belong to a common segment or cosegment
with four or more elements. The other case, which will be the focus of this section
arises, for example, when y and z have different types.

Lemma 7.1. Let (A, X, B) be a 3-sequence in a matroid M and let y and z be
elements of X that can be made consecutive in some (A, B) 3-sequence with y to
the left of z. Suppose that Jy ∩ Jz = {x1, x2, . . . , xn} for some n ≥ 2. Then one of
the following holds:

(i) {y, z, x1, x2, . . . , xn} is a segment or a cosegment; or
(ii) (a) y ∈ Lz;

(b) the elements of Jy ∩ Jz occur in the same order, say x1, x2, . . . , xn, in
every (A, B) 3-sequence;

(c) (x1, x2, . . . , xn) is a fan whose elements are alternately guts and coguts
elements;

(d) exactly one of y and z is a guts element; and
(e) Jxi ∩ Jxi+s = Jxj ∩ Jxj+t for all non-zero s and t such that {i, i +

s, j, j + t} ⊆ {1, 2, . . . , n}.

Proof. First suppose that y ∈ Jz . Then, for each i in {1, 2, . . . , n}, the elements
y, z, and xi are all in each other’s jump-sets. Thus, by Lemma 6.4, {y, z, xi} is
either a segment or a cosegment. It follows that {y, z, x1, x2, . . . , xn} is a segment
or a cosegment.

Now assume that y ∈ Lz. By Lemma 5.6, there is an (A, B) 3-sequence in which
(y, Jy ∩ Jz , z) is a consecutive subsequence. Let this subsequence be (y, x1, x2, . . . ,
xn, z). Then there are (A, B) 3-sequences in which (y, z, x1, x2, . . . , xn) and (x1, x2,
. . . , xn, y, z) occur as consecutive subsequences. It follows by Lemma 5.8 that
exactly one of y and z is a guts element. Moreover, for some disjoint sets A′

and B′ that contain A and B, respectively and satisfy E(M) − (A′ ∪ B′) =
{y, z, x1, x2, . . . , xn}, both A′ ∪ {x1, x2, . . . , xi} and {xj , xj+1, . . . , xn} ∪ B′ are 3-
separating for all i and j in {1, 2, . . . , n}. Hence, for all i in {1, 2, . . . , n − 2}, by
Lemma 3.1, {xi, xi+1, xi+2} is 3-separating. By Lemma 3.2, the 3-sets {x1, x2, x3},
{x2, x3, x4}, . . . , {xn−2, xn−1, xn} are all triangles, all triads, or are alternately tri-
angles and triads. Since one of y and z is a guts element and the other is a coguts
element, and both are in the jump-set of each xi, it follows by Lemma 5.10 that the
elements x1, x2, . . . , xn are alternately guts and coguts elements. Hence if n ≥ 3,
then {x1, x2, . . . , xn} is neither a segment nor a cosegment; so it is a fan. It follows,
by Theorem 6.9, that, when n ≥ 3, the elements x1, x2, . . . , xn occur in the same
order in all (A, B) 3-sequences. Now let n = 2. Then, since y jumps both x1 and
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x2 and these are of different types, they are not in each other’s jump-sets, so x1, x2

is a degenerate fan. Thus (c) and (b) hold for n = 2.

To prove (ii)(e), first note that we may assume that n ≥ 3. Next we show that,
for all s ≥ 1 such that i, i + s ∈ {1, 2, . . . , n},
(7.1) Jxi ∩ Jxi+1 = Jxi ∩ Jxi+s .

Clearly, we may assume that s ≥ 2. By (ii)(b), x1, x2, . . . , xn always occur in that
order in all (A, B) 3-sequences. Thus if a ∈ Jxi ∩ Jxi+s , then there are (A, B) 3-
sequences in which a is to the left of xi and hence of xi+1, and to the right of xi+s and
hence of xi+1. Thus a ∈ Jxi+1 and Jxi ∩Jxi+1 ⊇ Jxi ∩Jxi+s . To establish the reverse
inclusion, suppose that a ∈ Jxi ∩Jxi+1 . Then there is certainly an (A, B) 3-sequence
in which a is to the left of xi and hence of xi+s. Moreover, there is an (A, B) 3-
sequence in which a is to the right of xi+1. Because xi ∈ cl(∗)({xi+1, xi+2}), we can
use Lemma 4.3 to move xi in this sequence so that it immediately precedes xi+1.
Similarly, we can move xi+2, xi+3, . . . , xi+s one at a time so that these elements
occur consecutively. As a is to the right of xi+s in the last sequence, we deduce
that a ∈ Jxi+s and (7.1) follows.

By repeatedly applying (7.1), we deduce that (ii)(e) holds. �

Theorem 7.2. Let (A, X, B) be a 3-sequence. Let y and z be elements of X such
that Jy ∩ Jz = {x1, x2, . . . , xn} for some n ≥ 2 and {y, z} ∪ (Jy ∩ Jz) contains both
a guts and a coguts element. Let Jx1 ∩ Jx2 = {y1, y2, . . . , ym}. Then

(i) X contains a clock with fans {x1, x2, . . . , xn} and {y1, y2, . . . , ym}.
(ii) {y, z} ⊆ {y1, y2, . . . , ym}.
(iii) Jxi ∩ Jxi+s = {y1, y2, . . . , ym} for all i and s such that 1 ≤ i < i + s ≤ n;

these elements have the same ordering, say (y1, y2, . . . , ym), in every (A, B)
3-sequence; and this ordering is a fan ordering.

(iv) Jyj ∩ Jyj+t = {x1, x2, . . . , xn} for all j and t such that 1 ≤ j < j + t ≤ m;
these elements have the same ordering, say (x1, x2, . . . , xn), in every (A, B)
3-sequence; and this ordering is a fan ordering.

(v) There are (A, B) 3-sequences in which each of (y1, y2, . . . , ym,
x1, x2, . . . , xn) and (x1, x2, . . . , xn, y1, y2, . . . , ym) occurs as a consecutive
subsequence.

Proof. By Lemmas 5.6 and 5.7, there is an (A, B) 3-sequence in which the elements
of Jy ∩ Jz are consecutive with the ordering (x1, x2, . . . , xn), say. Then y and z are
both in Jx1 ∩ Jx2 and Lemma 7.1 implies that either

(a) the elements of {x1, x2} ∪ (Jx1 ∩ Jx2) form a segment or a cosegment; or
(b) the elements of Jx1 ∩Jx2 form a fan whose elements occur in the same order

in every (A, B) 3-sequence and are alternately guts and coguts elements;
exactly one of x1 and x2 is a guts element; and x1 ∈ Lx2.

In the first case, there is an (A, B) 3-sequence in which y and z are consecutive.
Then, since y and z are of the same type, it follows by Lemma 7.1, that the elements
of {y, z} ∪ (Jy ∩ Jz) are all of the same type, contradicting the hypothesis.
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We conclude that (b) holds. Now let (y1, y2, . . . , ym) be the ordering on the
elements of Jx1∩Jx2 in some (A, B) 3-sequence. Then, by Lemma 7.1(ii), Jx1∩Jx2 =
Jxi ∩ Jxi+s for all i and s with 1 ≤ i < i + s ≤ n, and these elements occur in the
order (y1, y2, . . . , ym) in every (A, B) 3-sequence.

Let y = yj and z = yj+t for some t ≥ 1. Since yj and yj+1 occur consecutively
in some (A, B) 3-sequence, and exactly one is a guts element, by Lemma 7.1(ii)
again, Jyj ∩ Jyj+1 = Jy ∩ Jz = Jyk

∩ Jyk+t
= {x1, x2, . . . , xn} for all k and t such

that 1 ≤ k < k + t ≤ m. Moreover, {x1, x2, . . . , xn} is a fan and, since the elements
of this fan occur in the order (x1, x2, . . . , xn) in some (A, B) 3-sequence, they occur
in this order in every such sequence.

By Lemma 7.1, y1, x1, x2, . . . , xn, y2 occur consecutively in that order in some
(A, B) 3-sequence. Hence so do y1, y2, x1, x2, . . . , xn and x1, x2, . . . , xn, y1, y2. Be-
cause (y1, y2, . . . , ym) is a fan, we know that yi+2 ∈ cl(∗)({yi, yi+1}) provided
1 ≤ i ≤ n − 2. Thus we can move the elements y3, y4, . . . , ym one at a time
so that both (y1, y2, . . . , ym, x1, x2, . . . , xn) and (x1, x2, . . . , xn, y1, y2, . . . , ym) oc-
cur as consecutive subsequences of (A, B) 3-sequences. We conclude that (v) holds
and also that {x1, x2, . . . , xn} and {y1, y2, . . . , ym} are fans Fx and Fy such that for
some set A′ containing A but avoiding B ∪ Fx ∪ Fy, all of A′, A′ ∪Fx, A′ ∪Fy , and
A′ ∪ Fx ∪ Fy are 3-separating.

Finally, we note that if there is an element x0 of X such that x0, x1, . . . , xn is
a fan, then, as in the last paragraph, both (x0, Fx, Fy) and (Fy, x0, Fx) occur as
consecutive subsequences of (A, B) 3-sequences. Hence x0 ∈ Jy1 ∩Jy2 ; a contradic-
tion. �

The next result shows that the fans in a clock are uniquely determined by the
clock.

Corollary 7.3. Let (A, X, B) be an (A, B) 3-sequence and let Z and Z ′ be clocks
contained in X with fans F1 and F2, and F ′

1 and F ′
2, respectively. If Z ′ ⊇ Z, then

Z ′ = Z, and {F ′
1, F

′
2} = {F1, F2}.

Proof. Let F ′
1 = {x1, x2, . . . , xn} and F ′

2 = {y1, y2, . . . , ym}. Then Jx1 ∩ Jx2 ⊇ F ′
2

and Jy1 ∩Jy2 ⊇ F ′
1. By Theorem 7.2, Jx1 ∩Jx2 and Jy1 ∩Jy2 are disjoint fans whose

union is a clock. Since F ′
2 and F ′

1 are maximal disjoint fans whose union is a clock,
we conclude that Jx1 ∩Jx2 = F ′

2 and Jy1 ∩Jy2 = F ′
1. By Theorem 7.2 again, we may

assume that both (x1, x2, . . . , xn) and (y1, y2, . . . , ym) maintain these orderings in
every (A, B) 3-sequence. Hence Jxi ∩ F ′

1 = ∅ for all i and Jyj ∩ F ′
2 = ∅ for all i.

Now consider Z. Its elements are contained in F ′
1 ∪ F ′

2, and every element of
F1 is in the jump-set of every element of F2. Without loss of generality, we may
assume that F1 contains some xi. Then no element of F ′

1 is in F2. Hence F2 ⊆ F ′
2,

so no element of F ′
2 is in F1. Thus F1 ⊆ F ′

1. We conclude, since F1 and F2 are
maximal disjoint fans contained in X whose union is a clock, that F1 = F ′

1 and
F2 = F ′

2. Thus Z ′ = Z. �
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The next result describes how the elements of a clock can be permuted within
the clock in an (A, B) 3-sequence.

Theorem 7.4. Let (A, X, B) be a 3-sequence with a clock Fx∪Fy, where Fx and Fy

are the fans of this clock with orderings (x1, x2, . . . , xn) and (y1, y2, . . . , ym), respec-
tively, in this sequence. Let (A, L,

−−−−−−−→
(Fx ∪ Fy)1, R, B) be a 3-sequence in which the

clock elements are consecutive. Then a sequence of the form (A, L,
−−−−−−−→
(Fx ∪ Fy)2, R, B)

is a 3-sequence if and only if the subsequence of the elements of Fx has the order-
ing (x1, x2, . . . , xn) and the subsequence of the elements of Fy has the ordering
(y1, y2, . . . , ym).

Proof. By Theorem 7.2, the elements of Fx and Fy occur in the order (x1, x2, . . . , xn)
and (y1, y2, . . . , ym), respectively, in (A, L,

−−−−−−−→
(Fx ∪ Fy)1, R, B), and these orderings

are fan orderings for Fx and Fy. Let A′ = A ∪ L and B′ = R ∪ B. By the def-
inition of a clock, x1 ∈ cl(∗)(A′) and x2 ∈ cl(∗)(A′ ∪ x1); and y1 ∈ cl(∗)(A′) and
y2 ∈ cl(∗)(A′ ∪ y1). Thus, there is an (A, B) 3-sequence that begins A, L, x1, x2.
Since (x1, x2, . . . , xn) is a fan ordering for Fx, using Lemma 4.3, we can move
x3, x4, . . . , xn one at a time in this sequence until the sequence becomes (A, L, x1, x2,
. . . , xn, y1, y2, . . . , ym, R, B). Call this sequence S1. By symmetry, (A, L, y1, y2, . . . ,
ym, x1, x2, . . . , xn, R, B) is also an (A, B) 3-sequence.

It remains to show that every ordering of Fx ∪ Fy in which the elements of Fx

and Fy occur in the order (x1, x2, . . . , xn) and (y1, y2, . . . , ym), respectively, gives an
(A, B) 3-sequences. To see this, we observe, from S1 and S2, that {y1, y2, . . . , ym} ⊆
Jxi for each i ∈ {1, 2, . . . , n}, and {x1, x2, . . . , xn} ⊆ Jyj for each j ∈ {1, 2, . . . , m}.
The result follows by repeatedly applying Lemma 5.4. �

Let (A, X, B) be a 3-sequence and Fx ∪ Fy be a clock contained in X where Fx

and Fy are the fans of this clock. By Theorem 7.2, the ordering of each of Fx and
Fy is the same in every (A, B) 3-sequence. This means that each of Fx and Fy has
a first and last element in X . These elements are called the ends of the clock. All
other elements of the clock are called internal clock elements.

The next result, a consequence of Theorem 7.2, tells us that no element can jump
over a clock, so the clock forms a barrier between the elements to its left and those
to its right.

Corollary 7.5. Let (A, X, B) be a 3-sequence and Fx ∪ Fy be a clock contained
in X where Fx and Fy, the fans of this clock, have orderings (x1, x2, . . . , xn) and
(y1, y2, . . . , ym), respectively, in (A, X, B). Suppose z ∈ X − (Fx ∪ Fy). Then both
Jz ∩ Fx and Jz ∩ Fy have at most one element.

Proof. Suppose that Jz contains xi and xj for some distinct i and j. Then z ∈
Jxi ∩ Jxj . But this contradicts the fact that Jxi ∩ Jxj = Fy . �

As an immediate consequence of this, we get that when the elements of a clock
are consecutive in a 3-sequence, the sets of elements occurring to the left and to
the right of the clock are uniquely determined.
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Corollary 7.6. Let (A, X, B) be an (A, B) 3-sequence and let Z be a clock contained
in X. If (A, A1, Z, B1, B) and (A, A2, Z, B2, B) are 3-sequences, then A1 = A2, and
B1 = B2.

We now show that only the four ends of a clock can have jump-set members that
are not in the clock, so no internal elements of a clock can interact with any non-
clock elements. In particular, when a clock occurs in a 3-sequence, all of its internal
elements must be consecutive except for the possible insertion of clock ends.

Lemma 7.7. Let (A,
−→
X, B) be a 3-sequence and Fx ∪ Fy be a clock contained in

X where Fx and Fy, the fans of this clock, have orderings (x1, x2, . . . , xn) and
(y1, y2, . . . , ym), respectively, in (A, X, B).

(i) If z is a clock element whose jump-set contains some element s of X −
(Fx ∪ Fy), then z ∈ {x1, xn, y1, ym}. In particular, no element outside of
the clock jumps an internal clock element.

(ii) There is a subset Z of the clock Fx ∪ Fy that contains all of the internal
clock elements such that the elements of Z are consecutive in X.

(iii) If x2 occurs to the left of ym−1, then every element of
−→
X occurring between

x2 and ym−1 is in Fx ∪ Fy.

Proof. To prove (i), we may suppose, by symmetry, that z = xi for some i that
is strictly beween 1 and n. Let S1 and S2 be (A, B) 3-sequences in which s is,
respectively, to the left and to the right of xi. Then, in S1, both xi and xi+1 lie
to the right of s, while, in S2, both xi−1 and xi lie to the left of s. Hence, in S1,
by using Lemma 4.3, all elements of Fx can be moved to the right of s to obtain
another 3-sequence. Similarly, in S2, all elements of Fx can be moved to the left of
s to obtain another 3-sequence. Hence s ∈ Jxj for all j ∈ {1, 2, . . . , n}. But then
Theorem 7.2 implies that s ∈ Fy ; a contradiction.

Suppose that (ii) fails. Then there is an element s of X−(Fx∪Fy) such that s has
internal clock elements to both its left and its right. Without loss of generality, we
may assume that xi occurs to the left of s for some i ≥ 2. If xn−1 occurs to the right
of s, then xn−1 can be moved so that x1, x2, . . . , xn−1 are consecutive and to the left
of s, contrary to (i). Hence we may assume that {x1, x2, . . . , xn−1} ⊆ Ls. Similarly,
the result follows by (i) unless {y2, y3, . . . , ym} ⊆ Rs. Now there is an (A, B) 3-
sequence in which y1, y2, . . . , ym, x1, x2, . . . , xn is a consecutive subsequence. But s
cannot occur to the left or right of this subsequence without contradicting (i).

For (iii), we note that, by Corollary 7.6 and Theorem 7.4, there is a 3-sequence
of the form (A, A1, Fx, Fy, B1, B). Now suppose that (A,

−→
X, B) has the form

(A, Z1, x2, Z2, ym−1, Z3, B). If z ∈ Z2 − (Fx ∪ Fy), then z ∈ A1 or z ∈ B1. In
the first case, z jumps x1 and x2 and (ii) gives the contradiction that z ∈ Fy.
In the second case, z jumps both ym and ym−1 so z ∈ Fx; a contradiction. We
conclude that Z2 ⊆ Fx ∪ Fy. �

The following is another characterisation of clocks.
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Theorem 7.8. Let (A, X, B) be a 3-sequence. A subset Z of X is a clock with fans
F and F ′ if and only if Z is a maximal subset of X that can be partitioned into
sets F and F ′ each having at least two elements such that every element of F is in
the jump-set of every element of F ′ and, in every (A, B) 3-sequence, the elements
of F occur in the same order.

Proof. Assume that Z is a maximal subset of X that can be partitioned into sets
F and F ′, each having at least two elements such that every element of F is in
the jump-set of every element of F ′ and, in every (A, B) 3-sequence, the elements
of F occur in the same order. Let F and F ′ have elements x1, x2, . . . , xn and
y1, y2, . . . , ym and assume that the elements of F occur in this order in every (A, B)
3-sequence. Then Jy1 ∩ Jy2 ⊇ F .

Suppose that {y1, y2} ∪ F does not contain both a guts and a coguts element.
Then, by Theorem 7.1, this set is a segment or a cosegment. Hence, by Lemma 6.1,
its elements can be made consecutive in some (A, B) 3-sequence and hence can
be permuted arbitrarily within this consecutive subsequence. This contradicts the
fact that the elements of F occur in the same order in every (A, B) 3-sequence. We
conclude that {y1, y2}∪F contains both a guts and a coguts element. Thus, we can
apply Theorem 7.2 to get that X contains a clock, the fans of which are Jy1 ∩ Jy2

and Jx1 ∩ Jx2 . If Jy1 ∩ Jy2 6= F or Jx1 ∩ Jx2 6= F ′, then the maximality of Z is
contradicted. We conclude that Z is a clock with fans F and F ′.

Conversely, if Z0 is a clock with fans Fx and Fy , then |Fx|, |Fy| ≥ 2; every
element of Fx is in the jump-set of every element of Fy; and the elements of Fx

occur in the same order in every (A, B) 3-sequence. Thus Z satisfies the specified
conditions except that we are not guaranteed that it is a maximal such set. Assume
that Z0 ⊆ Z where Z is a maximal subset of X that can be partitioned into sets
F and F ′ satisfying the specified conditions. Then, by the first part, Z is a clock
with fans F and F ′. By Corollary 7.3, Z0 = Z and {Fx, Fy} = {F1, F2}. �

Finally, we specify how different clocks can overlap.

Lemma 7.9. Let (A, X, B) be a 3-sequence and let Z be a clock contained in X.

(i) The clock Z has at most two common elements with any other clock Z ′

contained in X.
(ii) If z is an internal element of Z, then Z is the unique clock containing z

that is contained in X.
(iii) If z is an end of Z and Z is non-degenerate, then X contains at most one

other non-degenerate clock containing z. Moreover, when there is a second
non-degenerate clock containing z, that clock has z as an end.

(iv) If the distinct clocks Z and Z ′ have two common elements, then
(a) these elements are in different fans in each of Z and Z ′; and
(b) these elements are ends of their respective clocks.

Proof. Let the fans of Z be Fx and Fy and suppose z ∈ Fx. Let Z ′ be another
clock containing z and suppose its fans are F ′

x and F ′
y where z ∈ F ′

x.
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Assume that a fan F of Z meets both F ′
x and F ′

y with x′ and y′, respectively,
being in these intersections. Since x′ and y′ are both in F , they occur in the same
order in every (A, B) 3-sequence. But, since x′ ∈ F ′

x and y′ ∈ F ′
y, we have x′ ∈ Jy′ ;

a contradiction. We conclude that each of Fx and Fy meets at most one of F ′
x and

F ′
y. Likewise, each of F ′

x and F ′
y meets at most one of Fx and Fy.

If a fan F of Z meets a fan F ′ of Z ′ in at least two elements, say f1 and f2,
then Jf1 ∩ Jf2 is one of the fans of each of Z and Z ′. Moreover, if g1 and g2 are
in Jf1 ∩ Jf2 , then the other fan of each of Z and Z ′ is Jg1 ∩ Jg2 . This implies that
Z = Z ′; a contradiction.

On combining the last two paragraphs and using the fact that z ∈ Fx ∩ Fx′ , we
deduce that Z ∩ Z ′ = {z}, or Z ∩ Z ′ = {z, z′}, where z′ ∈ Fy ∩ F ′

y. Hence (i) and
(iv)(a) hold.

Now suppose that z is an internal element of Z. By Lemma 7.7(i), the jump-set
of z is Fy. But z ∈ F ′

x, so its jump-set contains F ′
y . Hence F ′

y ⊆ Fy ; a contradiction.
We conclude that (ii) holds.

Next suppose that z is an end of Z, say the left end of Fx. Suppose that Z and
Z ′ are non-degenerate. Then, by (ii), z is not an internal element of Z ′. Thus z is
an end of F ′

x. We shall show that z must be the right end of F ′
x. Part (iii) follows

immediately from this. Assume that z is the left end of F ′
x.

Suppose that |F ′
x| ≥ 3. Then there is an (A, B) 3-sequence in which Fy, z, Fx −

{z} occurs as a consecutive subsequence. Since z is the left end of F ′
x, this subse-

quence has F ′
x − {z} to its right. Hence, we can move z in this 3-sequence so that

it immediately precedes the first element of F ′
x − {z}. Thus z can jump Fx − {z};

a contradiction. We conclude that |F ′
x| = 2. By symmetry, |Fx| = 2.

As Z and Z ′ are both non-denenerate, Fy and F ′
y have internal elements y and

y′, say. By (ii), these elements are distinct. Let F ′
x = {z, x′

1} and Fx = {z, x1}.
Then we have (A, B) 3-sequences having as consecutive subsequences, (z, x′

1, F
′
y)

and (z, x1, Fy). As x1 and x′
1 are in Rz , the element x1 occurs to the right of F ′

y

in the first 3-sequence while x′
1 occurs to the right of Fy in the second 3-sequence.

Thus the first 3-sequence has as a subsequence one of (I) (z, x′
1, F

′
y, x1, y); (II)

(z, x′
1, F

′
y, y, x1); or (III) (y, z, x′

1, F
′
y, x1). The second 3-sequence has as a subse-

quence one of (a) (z, x1, Fy, x′
1, y

′); (b) (z, x1, Fy, y′, x′
1); or (c) (y′, z, x1, Fy, x′

1). If
(I) or (II) occurs, then neither (a) nor (b) does because, by Lemma 7.7(ii), y′ 6∈ Jy.
If (I) or (II) occurs, then (c) does not, otherwise x′

1 is in the jump-sets of both
y and the element of Fy to the right of y. Thus, by Lemma 7.7(ii), x′

1 ∈ Fx; a
contradiction. We deduce that (III) occurs and, by symmetry, so does (c). But this
implies that y′ ∈ Jy; a contradiction. Hence (iii) holds.

Finally, suppose that Z ∩ Z ′ = {z, z′}. Then it follows by (ii) and (iv)(a), that
z is an end of both Fx and F ′

x, while z′ is an end of both Fy and F ′
y. Hence (iv)(b)

holds. �
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We know from above that the elements of a clock Z form a barrier between the
elements to their left and those to their right. Suppose that e1 lies to the left of
the clock but can jump over the clock’s two left ends x1 and y1. Suppose also that
e2 lies to the right of the clock and can jump its two right ends. Then, provided
Z is non-degenerate, there is at least one internal clock element lying between e1

and e2, so e1 and e2 cannot interact with each other. Now suppose that Z is
degenerate. Then, after the jumps described above, e1 and e2 are adjacent and
may be able to jump each other. This means that while a degenerate clock still
forms a barrier preventing elements from jumping over it completely, for some non-
degenerate clocks, the elements on the left and right may still interact with each
other within this barrier.

Let us consider further which degenerate clocks allow the kind of interaction
described in the previous paragraph. For x1, y1 and e1 to all be able to jump each
other, by duality, we may assume, by Lemma 6.4, that {x1, y1, e1} is a segment.
As Z is degenerate, x2 and y2 are coguts elements and so, as x2, y2 and e2 can
jump each other, {x2, y2, e2} is a cosegment. Thus the situation we are looking
at is where we have a segment and a cosegment lying side by side, and there is
a pairing between some segment and cosegment elements, such that a segment
element can jump over its cosegment partner. In the next section, we shall examine
this situation in more detail. What we also see with the example above is that
(x1, x2) ∪ (y1, y2), (x1, e2) ∪ (e1, y2) and (y1, e2) ∪ (e1, x2) are all degenerate clocks
(with fan orderings as shown). Thus, although proper clocks and semi-degenerate
clocks may only lie side by side in an (A, B) 3-sequence, the above example raises
the possibility that degenerate clocks can lie on top of each other. We showed in
Figure 2 that this situation does actually arise and leads to what we call a crocodile.
We observe, however, that, for this to occur, the degenerate clocks must all have
their first elements of the same type. We recall from Section 2 that such degenerate
clocks are called even.

8. Crocodiles

This section analyses the properties of crocodiles in a 3-sequence (A, X, B). Re-
call from Section 2 that the definition of a crocodile involves S and S∗, a maximal
segment and maximal cosegment contained in X , and subsets {s1, s2, . . . , sk} and
{s∗1, s∗2, . . . , s∗k} of S and S∗, respectively. We shall show that, when a crocodile
arises in a 3-sequence, it corresponds to the presence of a minor isomorphic to the
matroid Θk where we recall from Section 2 that, for example, Θ3

∼= M(K4).

Lemma 8.1. Let (A,
−→
X, B) be a 3-sequence in a matroid M , let S ∪ S∗ be a

segment-first crocodile contained in X, and let (C′, D′) be the associated partition
of E(M) − (S ∪ S∗). Then

(i) there is an (A, B) 3-sequence in which the elements of S∪S∗ are consecutive
with those in S preceding those in S∗;

(ii) an element of X whose jump-set contains two elements of S is in S, and
an element of X whose jump-set contains two elements of S∗ is in S∗;

(iii) if (A, A1, S∪S∗, B1, B) is a 3-sequence, then A1 = C′−A and B1 = D′−B;



30 RHIANNON HALL, JAMES OXLEY, AND CHARLES SEMPLE

(iv) for each i in {1, 2, . . . , k}, there is an (A, B) 3-sequence in which s∗i lies to
the left of si, specifically, (A, C′ − A, S − {si}, s∗i , si,
S∗ − {s∗i }, D′ − B, B);

(v) if s is an element of S and s∗ is an element of S∗ such that s occurs to the
right of s∗ in

−→
X , then (s, s∗) = (si, s

∗
i ) for some i in {1, 2, . . . , k};

(vi) in every 3-sequence in which the elements of S ∪ S∗ are consecutive, the
first |S| − 1 elements of S ∪ S∗ are in S and the last |S∗| − 1 elements of
S ∪ S∗ are in S∗;

(vii) r(C′ ∪ S) = r(C′) and r∗(D′ ∪ S∗) = r∗(D′); and
(viii) for each distinct i and j in {1, 2, . . . , k}, there is a clock in X whose fans

are Jsi ∩ Js∗
j

and Jsj ∩ Js∗
i

and these fans meet S ∪ S∗ in {sj, s
∗
i } and

{si, s
∗
j}, respectively.

Proof. Let C′ − A = A0 and D′ − B = B0. Since each of A ∪ A0, A ∪ A0 ∪ S, and
A ∪ A0 ∪ S ∪ S∗ is 3-separating, by Lemma 4.4, there are 3-sequences (A, A0,

−→
X −

A0, B), (A, A0 ∪ S,
−→
X − (A0 ∪ S), B), and (A, A0 ∪ S ∪ S∗,

−→
X − (A0 ∪ S ∪ S∗), B).

By Corollary 4.5, there is a 3-sequence that begins A, A0 as in the first of these 3-
sequences and then finishes as in the second. This 3-sequence is (A, A0, S,

−→
X−(A0∪

S), B). Applying Corollary 4.5 again, we get that there is a 3-sequence that begins
A, A0, S and then finishes as in the third 3-sequence above. This 3-sequence is
(A, A0, S, S∗, B0, B). Hence (i) holds. The fact that r(C′∪S) = r(C′) is immediate
from this because S is a segment and so consists entirely of guts elements. By
duality, r∗(D′ ∪ S∗) = r∗(D′). Thus (vii) holds.

For (ii), suppose that z ∈ X − S and the jump-set of z contains elements s
and t of S. By (i), s and t can jump each other. Thus, z, s, and t are mutually
jumping, so, by Lemma 6.4, {z, s, t} is a triangle of guts elements. Hence S ∪ {z}
is a segment, contradicting the maximality of S. This establishes the first part of
(ii), and the second part follows by duality.

To prove (iii), let (A, A1, S ∪ S∗, B1, B) be a 3-sequence. If A1 6= A0, then
there is an element z that precedes S ∪ S∗ in one of (A, A1, S ∪ S∗, B1, B) and
(A, A0, S ∪ S∗, B0, B) and follows S ∪ S∗ in the other. Thus z is in the jump-set of
every element of S, contradicting (ii).

For (iv), note that, by (i), (iii), and the fact that S is a segment and S∗ a
cosegment, we get that there is an (A, B) 3-sequence of the form (A, A0, S −
{si}, si, s

∗
i , S

∗−{s∗i }, B0, B). Because A∪A0∪ (S−{si})∪{s∗i } is 3-separating, we
can interchange si and s∗i in the last 3-sequence to obtain another (A, B) 3-sequence
with the desired property.

For (v), we note first that if s = si, then s∗ = s∗i , otherwise s, s∗, and s∗i
are mutually jumping; a contradiction. The converse of the last assertion follows
similarly. We may now assume that s 6∈ Sw and s∗ 6∈ S∗

w. As in the last paragraph,
we have an (A, B) 3-sequence of the form (A, A0, S − {s}, s, s∗, S∗ − {s∗}, B0, B).
By (iii), A0 = C′ − A. By hypothesis, we also have such a sequence of the form
(A,

−→
W1, s

∗, W2, s, W3, B). Thus we have such a sequence (A,
−→
X1, B) where

−→
X1 begins

A0, S − {s} and ends as in (A,
−→
W1, s

∗, W2, s, W3, B). If W1 ⊆ A0 ∪ (S − {s}), then
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the element of
−→
X1 following S−{s} is s∗. We deduce that A∪A0∪ (S−{s})∪{s∗}

is 3-separating and so (iii)(b) in the definition of a crocodile is contradicted. Thus
there is an element in W1 − (A0 ∪ (S −{s})). Let w be the left-most element of

−→
W1

in this set. By (ii), w 6∈ S∗ − {s∗}, otherwise w, s∗, and s are mutually jumping.
Hence w ∈ B0 and w is the first element following S − {s} in

−→
X1. Thus w is in the

jump-sets of every element of S∗. This contradiction to (ii) establishes (v).

For (vi), by duality, it suffices to observe, using (i), that if an element s∗ of S∗

has two elements, s and t, of S to its right, then s∗, s, and t are mutually jumping;
a contradiction to (ii).

For (viii), we note that, by (iv), Jsi ∩ Js∗
j

contains {sj, s
∗
i }. Then, by Theorem

7.2, there is a clock whose fans are Jsi ∩ Js∗
j

and Jsj ∩ Js∗
i
. Since the elements of

each of these fans occur in the same order in every (A, B) 3-sequence, while there
are (A, B) 3-sequences in which every possible permutation of each of S and S∗

occurs, we deduce that Jsi ∩ Js∗
j

and Jsj ∩ Js∗
i

meet S ∪S∗ in {sj , s
∗
i } and {si, s

∗
j},

respectively. �

The last lemma does not use the fact that a crocodile must have at least five
elements. The reason we have added this requirement is revealed in (viii), namely
to prevent a crocodile from being contained in a clock.

Parts (iv) and (v) of the last lemma establish that the pairing of the elements
si and s∗i in a crocodile is uniquely determined. We call si and s∗i swap partners in
the crocodile and call the pair (si, s

∗
i ) a swap pair.

Lemma 8.2. Let (A,
−→
X, B) be a 3-sequence and S ∪ S∗ be a segment-first non-

degenerate crocodile contained in X. Let the orderings of S and S∗ in
−→
X be

(x1, x2, . . . , xm) and (y1, y2, . . . , yn). Then

(i) the elements of (S − {x1}) ∪ (S∗ − {yn}) are consecutive in
−→
X ;

(ii) if z ∈ X − (S ∪ S∗), then z is in the jump-set of at most one element of
S ∪ S∗;

(iii) for all distinct i and j in {1, 2, . . . , k}, there is an even degenerate clock in
X with fans (si, s

∗
j ) and (sj , s

∗
i ).

Proof. By Lemma 8.1(i), we have a 3-sequence (A,
−→
A0, x1, x2, . . . , xm, y1, y2,

. . . , yn,
−→
B0, B). By Lemma 5.11, x2, x3, . . . , xm−1 and y2, y3, . . . , yn−1 are consec-

utive subsequences of
−→
X . If y2, y3, . . . , yn−1 precedes x2, x3, . . . , xm−1 in

−→
X , then

y1 is in the jump-set of both xm−1 and xm contradicting Lemma 8.1(ii). Thus
(A,

−→
X, B) has the form

(A, A′
1, x1, A

′′
1 , x2, . . . , xm−1,

−→
Z1, y2, . . . , yn−1, B

′′
1 , yn, B′

1, B)

and y1 ∈ Z1. Moreover, xm ∈ Z1 otherwise xm is in the jump-sets of y1 and y2,
contradicting Lemma 8.1(ii). Similarly, there is no element z in B0 ∩ (A′

1 ∪ A′′
1 ),

otherwise z is in the jump-sets of both y1 and y2. Thus B0 ∩ (A′
1 ∪ A′′

1 ) = ∅. If
z ∈ A0 ∩ (B′

1 ∪ B′′
1 ∪ Z1), then z is in the jump-set of both x1 and x2. Thus
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A0 ∩ (B′
1 ∪B′′

1 ∪Z1) = ∅, so A′
1 ∪A′′

1 = A0. Now B0 ∩Z1 is empty since an element
in this set is in the jump-sets of y2 and y3. Hence Z1 is {xm, y1} and we conclude
that the elements of (S − {x1}) ∪ (S∗ − {yn}) are consecutive in

−→
X .

To prove (ii), let z ∈ X − (S ∪ S∗) and suppose that z is in the jump-set of two
elements of S∪S∗. Then, by Lemma 8.1 (ii), one of these elements is in S while the
other is in S∗. We may assume without loss of generality that z ∈ A0 so that z is to
the left of all members of S∪S∗ in (A,

−→
A0, x1, x2, . . . , xm, y1, y2, . . . , yn, B0, B). Let

(A,
−→
Z , B) be a 3-sequence in which z is to the right of yi, where z ∈ Jyi . Then, by

Lemma 6.4, in
−→
Z , at most one member of S is right of yi and at most one member

of S is left of z, and hence left of yi. Thus |S| ≤ 2, contradicting the fact that
S ∪ S∗ is non-degenerate. Thus (ii) holds.

To prove (iii), let F1 = Jsj ∩ Js∗
i

and F2 = Jsi ∩ Js∗
j
. Then, by (ii), neither F1

nor F2 contains any member of X − (S ∪ S∗). It follows easily that F1 = (si, s
∗
j )

and F2 = (sj , s
∗
i ), and then Theorem 7.8 implies that F1 ∪F2 is an even degenerate

clock. �

Next we briefly consider the behaviour of degenerate crocodiles. Let S ∪S∗ be a
crocodile in which |T | = 2 for some T ∈ {S, S∗}. Let T = {t1, t2} and define t∗i to be
s∗i or si depending on whether ti is si or s∗i , respectively. Consider the clock K whose
fans are Jt1 ∩Jt∗2 and Jt2 ∩Jt∗1 . This clock may be degenerate, in which case S ∪S∗

behaves like a non-degenerate crocodile. When K is non-degenerate, S ∪ S∗ ∪K is
a (degenerate) crocodile attached to a non-degenerate clock. Alternatively, we can
view S∪S∗∪K as a non-degenerate clock for which both first elements or both last
elements belong to the same non-degenerate segment or cosegment. This situation
can be analysed more thoroughly and an earlier version of this paper included this
analysis. However, the decomposition results in Section 10 circumvent the need for
this analysis.

To conclude this section, we prove that, whenever a crocodile occurs in a 3-
sequence, the associated matroid has a minor isomorphic to Θk. The matroid W3,
which also appears in the next result, is the rank-3 whirl.

Theorem 8.3. Let (A, A0, S, S∗, B0, B) be a 3-sequence in which S ∪ S∗ is a
crocodile with S as its segment and S∗ as its cosegment. Then

M\[A ∪ A0 ∪ (S − {s1, s2, . . . , sk})]/[B ∪ B0 ∪ (S∗ − {s∗1, s∗2, . . . , s∗k})] ∼= Θk.

Moreover, if k = 2 and S − {s1, s2} and S∗ − {s∗1, s∗2} contain elements s0 and s∗0,
then

M\[A ∪ A0 ∪ (S − {s0, s1, s2})]/[B ∪ B0 ∪ (S∗ − {s∗0, s∗1, s∗2})] ∼= W3.

Proof. Since S ∪ S∗ is a crocodile, we may assume that |S∗| ≥ 3. If |S| = 2, then
extend M by an element s0 that is freely placed on cl(S). In the resulting matroid
M ′, we have that (A, A0, s0, S, S∗, B0, B) is a 3-sequence and {s0} ∪ S ∪ S∗ is a
crocodile with {s0} ∪ S as its segment and S∗ as its cosegment. In this case, let
S′ = {s0} ∪ S. If |S| ≥ 3, then we let (M ′, S′) = (M, S).
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We show next that M ′\(A ∪ A0) is 3-connected. Suppose M ′\(A ∪ A0) has a
j-separation (U, V ) for some j in {1, 2}. Then,

(8.1) rM ′\(A∪A0)(U) + rM ′\(A∪A0)(V ) − r(M ′\(A ∪ A0)) ≤ j − 1.

Without loss of generality, |U ∩ S′| ≥ 2. Thus r(U ∪ S′) = r(U). Moreover, we
recall that r(A ∪ A0 ∪ S′) = r(A ∪ A0) by Lemma 8.1(v). Therefore,

r(A ∪ A0 ∪ U) = r(A ∪ A0 ∪ U ∪ S′)
≤ r(A ∪ A0 ∪ S′) + r(U) − r(U ∩ S′)
≤ r(A ∪ A0) + r(U) − 2
= r(U) + [r(A ∪ A0) − 2]
= r(U) + [r(M ′) − r(M ′\(A ∪ A0))]

where the last step follows since (A ∪ A0, E(M ′) − (A ∪ A0)) is a 3-separation of
M ′. Thus

r(A ∪ A0 ∪ U) − r(M ′) ≤ r(U) − r(M ′\(A ∪ A0)).

Substituting into (8.1) establishes that M ′ is not 3-connected; a contradiction.
We conclude that M ′\(A∪A0) is 3-connected. By applying the above argument to
[M ′\(A∪A0)]∗, we obtain that M ′\(A∪A0)/(B∪B0) is 3-connected. This matroid
has S′ as a segment and S∗ as a cosegment. Moreover, for all i in {1, 2, . . . , k}, as
A∪A0 ∪ (S′ −{si})∪ {s∗i }, is 3-separating in M ′, it follows without difficulty that
(S′ − {si}) ∪ {s∗i } is 3-separating in M ′\(A ∪ A0)/(B ∪ B0).

Now suppose that k ≥ 3. Then we can delete S′−{s1, s2, . . . , sk} from M ′\(A∪
A0)/(B∪B0) to get a 3-connected matroid. Finally, contracting S∗−{s∗1, s∗2, . . . , s∗k}
leaves a 3-connected matroid N having {s1, s2, . . . , sk} as a segment, {s∗1, s∗2, . . . , s∗k}
as a cosegment, and ({s1, s2, . . . , sk} − {si}) ∪ {s∗i } as a 3-separating set for all i.
One easily checks that N has rank k having {s∗1, s∗2, . . . , s∗k} as a basis. Evidently,
every 3-element subset of {s1, s2, . . . , sk} is a circuit and every 3-element subset of
{s∗1, s∗2, . . . , s∗k} is a cocircuit. The latter implies that a non-spanning circuit C of N
that meets {s∗1, s∗2, . . . , s∗k} must contain at least k − 1 elements of this set. As the
whole set is a basis of N , it follows that C contains exactly k− 1 of the elements of
{s∗1, s∗2, . . . , s∗k}, say all but s∗i . As ({s∗1, s∗2, . . . , s∗k}− {s∗i })∪ {si} is 3-separating in
N , the last set must have rank r(N)−1. Hence it is a circuit and also a hyperplane.
We deduce that this circuit is C, and conclude that N ∼= Θk, that is,

Θk
∼= M\[A ∪ A0 ∪ (S − {s1, s2, . . . , sk})]/[B ∪ B0 ∪ (S∗ − {s∗1, s∗2, . . . , s∗k})].

Now suppose that k = 2. Then M ′\[A ∪ A0 ∪ (S − {s0, s1, s2})]/[B ∪ B0 ∪
(S∗ − {s∗0, s∗1, s∗2})] is a 3-connected matroid having {s0, s1, s2} as a segment and
{s∗0, s∗1, s∗2} as a cosegment. Moreover, {s0, s2, s

∗
1} and {s0, s1, s

∗
2} are 3-separating,

so their complements are 3-point lines. We conclude that this matroid is isomorphic
to W3. To see this, observe that the only other possible 3-circuit is {s0, s

∗
1, s

∗
2} but

it is not a circuit, for if |S| = 2, then s0 was freely added to cl(S), while if |S| ≥ 3,
then s0 6∈ Sw.

Finally, we note that contracting s∗0 and deleting s0 from the last matroid gives
Θ2. �
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9. Pointed Flans

This section discusses how pointed flans arise in 3-sequences and, when they
arise, how they behave. We observe that, although the definition of a p-flan in
Section 2 imposes an ordering on the sets F1, F2, . . . , Fm, the definition does not
explicitly link this ordering to any (A, B) 3-sequence. One of the tasks of this
section will be to prove that, when a p-flan occurs in a 3-sequence (A,

−→
X, B), the

ordering induced on F1 ∪ F2 ∪ · · · ∪ Fm has one of the forms (F1, F2, . . . , Fm) or
(Fm, Fm−1, . . . , F1), and this form is the same for every other 3-sequence (A,

−→
X1, B).

The other main task of this section is to show that p-flans are associated with
elements that have non-trivial jump-sets. Let z be a guts element in an (A, B) 3-
sequence. We define z to be wild if either Jz contains at least two coguts elements,
or Jz contains at least two guts elements that are not in a common segment. By
dualising this definition, we get the definition of a wild coguts element.

The next lemma is an immediate consequence of Lemma 6.4.

Lemma 9.1. Let (A,
−→
X, B) be a 3-sequence of a matroid M and let y be an element

of this sequence. Suppose that Jy contains both a guts element x and a coguts
element x′. Then x is not in the jump-set of x′, and x′ is not in the jump-set of x.

The proof that a wild guts element gives rise to a p-flan will use the following
result.

Lemma 9.2. Let M be a matroid with a 3-sequence (A,
−→
A1,

−→
Z1,

−→
Z2,

−→
Z3,

−→
B1, B).

(i) If Z1 and Z3 are non-empty sets of guts elements and Z2 is a singleton
coguts set, then Z1 ∪ Z2 ∪ Z3 has rank two or three.

(ii) If Z1 and Z3 are singleton coguts sets and Z2 is a non-empty set of guts
elements, then r(A ∪ A1) + r(B ∪ B1) = r(M).

Proof. Let A′ = A ∪ A1 and B′ = B ∪ B1. Assume that Z1 and Z3 are non-empty
sets of guts elements and Z2 is a singleton coguts set. Since (A′ ∪Z1, B

′ ∪Z2 ∪Z3)
is a 3-separation of M and Z2 is a singleton coguts set,

r(M) + 2 = r(A′ ∪ Z1) + r(B′ ∪ Z2 ∪ Z3)

= r(A′ ∪ Z1 ∪ Z2) − 1 + r(B′ ∪ Z2 ∪ Z3)

= r(A′ ∪ Z1 ∪ Z2 ∪ Z3) + r(B′ ∪ Z1 ∪ Z2 ∪ Z3) − 1

≥ r(M) + r(Z1 ∪ Z2 ∪ Z3) − 1 by submodularity.

Thus r(Z1 ∪ Z2 ∪ Z3) ≤ 3 so r(Z1 ∪ Z2 ∪ Z3) ∈ {2, 3} and (i) holds.

For the proof of (ii), let Z1 and Z3 be singleton coguts sets, and Z2 be a non-
empty set of guts elements. Then r(A′ ∪ Z1) = r(A′) + 1, r(A′ ∪ Z1 ∪ Z2) =
r(A′) + 1, and r(A′ ∪ Z1 ∪ Z2 ∪ Z3) = r(A′) + 2. Therefore, as B′ is 3-separating,
r(A′ ∪ Z1 ∪ Z2 ∪ Z3) + r(B′) = r(M) + 2, and so r(A′) + r(B′) = r(M). �
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Theorem 9.3. Let z be a guts element of a 3-sequence (A,
−→
X, B). Suppose that Jz

contains two guts elements that are not in a common segment or Jz contains two
coguts elements. Then Jz ∪ {z} is a p-flan of M with tip z.

Proof. By Lemma 5.1, there is an (A, B) 3-sequence (A,
−→
X1, B) in which the el-

ements of Jz are consecutive. Let
−→
Jz be the ordering imposed on Jz by

−→
X1.

This ordering induces an ordered partition (F1, F2, . . . , Fn) on Jz where
−→
Jz =−→

F1,
−→
F2, . . . ,

−→
Fn, the elements of each Fi are all of the same type and this type is

different from the type of the elements of Fi+1. By Lemma 6.4, if Fi consists of
coguts elements, then |Fi| = 1. Since Jz contains two guts elements that are not in
a common segment or Jz contains two coguts elements, it follows that n ≥ 3.

We show first that if Fi ∪ z is a segment, then it is maximal. If not, then there
is an element x such that Fi ∪ z ∪ x is a segment. By Lemma 5.4, there are 3-
sequences having z,

−→
Fi and

−→
Fi, z as consecutive subsequences. Since x ∈ cl(Fi ∪ z),

it follows by Lemma 4.3 that there is a 3-sequence (A,
−→
X2, B) in which the elements

of Fi ∪ x ∪ z are consecutive. Hence x ∈ Jz . Without loss of generality, we may
assume that x ∈ Fj for some j > i. By Lemma 9.1, the coguts element c in Fi+1

cannot jump any element of Fi. Thus, in
−→
X2, the element x occurs to the left of

c. Hence x jumps c, contradicting Lemma 9.1. Thus Fi ∪ z is indeed a maximal
segment.

Suppose Fi is a set of guts elements. Since Fi∪z is a maximal segment, it follows
by Lemma 9.2 that Fi ∪ Fi+1 ∪ Fi+2 ∪ {z} has rank three.

Now suppose that Fi is a singleton coguts set. Let A′ be the union of A and the
elements to the left of Fi in

−→
X1, and let B′ be the union of B and the elements

of X to the right of Fi+2 in
−→
X1. We show that Fi ∪ Fi+1 ∪ Fi+2 is a cocircuit by

showing that r(A′ ∪ B′) = r(M) − 1 and that no member of Fi ∪ Fi+1 ∪ Fi+2 is in
cl(A′ ∪ B′).

By Lemma 9.2, r(A′) + r(B′) = r(M). Furthermore, as z is a guts element, it
follows by Lemmas 4.1 and 5.1 that z ∈ cl(A′) and z ∈ cl(B′). Thus cl(A′)∩ cl(B′)
is non-empty and so, by submodularity, r(A′) + r(B′) ≥ r(A′ ∪ B′) + 1. Therefore
r(A′ ∪ B′) ≤ r(M) − 1. Now

r(M) = r(A′ ∪ B′ ∪ Fi ∪ Fi+1)

= r(A′ ∪ B′ ∪ Fi) as Fi+1 ⊆ cl(A′ ∪ Fi),

≤ r(A′ ∪ B′) + 1 as |Fi| = 1,

≤ r(M).

We deduce that equality holds throughout the last chain of inequalities, so r(A′ ∪
B′) = r(M)−1 and r(A′∪B′∪Fi) = r(M). By symmetry, r(A′∪B′∪Fi+2) = r(M).
Hence A′ ∪ B′ is a hyperplane of M unless cl(A′ ∪ B′) contains some element x of
Fi+1. In the exceptional case, since z ∈ cl(A′) and {x, z} spans Fi+1, we deduce that
cl(A′∪B′) ⊇ Fi+1. Hence Fi∪Fi+2 is a 2-element cocircuit of M . This contradiction
implies that A′ ∪ B′ is a hyperplane, so Fi ∪ Fi+1 ∪ Fi+2 is a cocircuit. �
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Lemma 9.4. Let (A, X, B) be a 3-sequence and {z}, F1, F2, . . . , Fm be a collec-
tion of disjoint subsets of X. If (z, F1, F2, . . . , Fm) is a p-flan, then there is an
(A, B) 3-sequence that has as a consecutive subsequence either z, F1, F2, . . . , Fm or
z, Fm, Fm−1, . . . , F1.

Proof. We argue by induction on m. Let m = 3. Suppose first that F1 is a
singleton coguts element. As F2 ∪ z is a maximal segment, there is an (A, B) 3-
sequence (A,

−→
X1, B) in which the elements of F2 ∪ z are consecutive. Now if both

the elements in F1 ∪F3 occur to the left of F2 ∪ z, then when we read from the left,
the last element of F2 in X1 must be a coguts element because F1 ∪ F2 ∪ F3 is a
cocircuit. But this contradicts the fact that every element of F2 is a guts element.
It follows that one element of F1 ∪ F3 occurs to the left of F2 ∪ z while the other
element occurs to the right of F2∪z. Then, again since F1∪F2∪F3 is a cocircuit, we
can move the elements of F1 and F3 so that either (z, F1, F2, F3) or (z, F3, F2, F1)
occurs as a consecutive subsequence.

Now suppose that F1 is a set of guts elements. There is an (A, B) 3-sequence in
which the elements of F1 ∪ z are consecutive. In that sequence, the elements of F3

all lie to the left or all to the right of F1∪z, otherwise we can move an element of F3

so that it is consecutive with F1 ∪ z contradicting the fact that F1 ∪ z is a maximal
segment. We shall assume that the elements of F3 all lie to the right of F1 ∪ z.
If e is the first element of F3, then we can move the other elements of F3 so that
they all immediately follow e. Now choose (A,

−→
X1, B) to be an (A, B) 3-sequence in

which both the sets F1 ∪ z and F3 are consecutive. Suppose
−→
X1 has (F1 ∪ z, T, F3)

as a consecutive subsequence. Because F2 is in the closure of F1∪z∪F3, we deduce
that F2 ⊆ T . If |T | = 1, then the required result holds. Thus we may assume that
|T | > 1. Because F1 ∪ z is a maximal segment, it follows that the first element of
T is a coguts element.

Assume that |F3| > 1. Then we can move z so that it is consecutive with the
elements of F3. Thus T ⊆ Jz and, as F3 ∪ z is a maximal segment, the last element
of T is a coguts element. Since T ⊆ Jz, it follows that T does not contain two
consecutive coguts elements. If we consider all the elements between F2 and the
closest coguts element in T , including both the coguts elements, then we have a
cocircuit by Lemma 9.2 and the proof of Lemma 9.3. But this cocircuit has a unique
common element with a circuit that contains F2 and is contained in F1 ∪ F2 ∪ F3;
a contradiction.

We may now assume that |F3| = 1 and, by symmetry, we may also assume
that |F1| = 1. For each i in {1, 2, 3}, let Fi = {fi}. Let (A,

−→
X2, B) be an (A, B)

3-sequence in which f1 and z are consecutive such that the number of elements
occurring between f1 and f3 is minimised. Without loss of generality, we may
assume that

−→
X2 has, as a consecutive subsequence, (z, f1,

−→
Z2, f3). There is also an

(A, B) 3-sequence in which f3 and z are consecutive. Choose such a 3-sequence in
which the number of elements occurring between f1 and f3 is minimised. Now f1

and f3 are not mutually jumping, otherwise f1, f3, and z are mutually jumping; a
contradiction. Hence we may assume that

−→
X3 has, as a consecutive subsequence,

(f1,
−→
Z3, f3, z). Since {z, f1, f2, f3} has rank 3 and is spanned by any of its 3-element
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subsets containing z, we deduce that f2 ∈ cl({z, f1, f3}). But f2 is a coguts element.
Hence f2 ∈ Z2 ∩ Z3. Moreover, since f3 ∈ cl({z, f1, f2}), the choice of

−→
X2 implies

that f2 is the last element of
−→
Z2. By symmetry, f2 is the first element of

−→
Z3.

Suppose that (Z2 − f2) ∩ (Z3 − f2) contains some element e. Then e, f2, and z
are mutually jumping; a contradiction. Therefore (Z2 − f2) ∩ (Z3 − f2) = ∅. Now
if Z2 − f2 is empty, then the result holds. Thus we may consider the last element
z2 of

−→
Z2 − f2. In

−→
X3, either z2 precedes f1, or z2 succeeds z. In the former case,

z2, f1, and z are mutually jumping; a contradiction. Hence z2 succeeds z in
−→
X3, so

f2 jumps z2. Hence, in
−→
X2, we can interchange z2 and f2 maintaining an (A, B)

3-sequence. As before, since f3 ∈ cl({z, f1, f2}), we can next move f3 so that it
immediately follows f2. We now have an (A, B) 3-sequence that contradicts the
choice of

−→
X2 since it has |Z2| − 1 elements betwen f1 and f3. We conclude that the

result holds if m = 3.

Now assume the result holds for m < n and let m = n > 3. Then there is
an (A, B) 3-sequence in which z, F1, F2, . . . , Fm−1 or z, Fm−1, Fm−2, . . . , F1 occurs
as a consecutive subsequence. If Fm is a singleton coguts element, then because
Fm−2 ∪ Fm−1 ∪ Fm is a cocircuit, we deduce that Fm must follow Fm−1 in the
first case, and precede it in the second. Moreover, it can be moved to immediately
follow Fm−1 in the first case, or to immediately precede Fm−1 in the second. Thus
the required result holds if Fm is a singleton coguts element. Hence we may assume
that Fm is a set of guts elements.

By the induction assumption again, there is an (A, B) 3-sequence in which z, F2,
F3, . . . , Fm or z, Fm, Fm−1, . . . , F2 occurs as a consecutive subsequence. Arguing
as in the last paragraph, it follows that we may assume that F1 is a set of guts
elements. We conclude that m is odd, so m ≥ 5.

If there are (A, B) 3-sequences in which both z, F1, F2, . . . , Fm−1 and z, Fm,
Fm−1, . . . , F2 occur as consecutive subsequences, then the elements of F2 ∪ F3 ∪
F4 are mutually jumping; a contradiction. By symmetry, we may assume that
there are 3-sequences (A,

−→
X1, B) and (A,

−→
X2, B) in which (z, F1, F2, . . . , Fm−1) and

(z, F2, F3, . . . , Fm), respectively, occur as consecutive subsequences. If, in
−→
X1, the

elements of Fm occur to the left of z, then Fm and Fm−2 are mutually jumping.
Thus the elements of Fm−2 ∪ Fm ∪ z are mutually jumping, contradicting the fact
that Fm∪z is a maximal segment. We deduce that, in

−→
X1, the elements of Fm occur

to the right of Fm−1. Since both z∪Fm−2 ∪Fm−1 and z ∪Fm−2 ∪Fm−1 ∪Fm have
rank 3, it follows that Fm ⊆ cl(z ∪Fm−2 ∪Fm−1). Thus we can move the elements
of Fm in

−→
X1 so that they immediately follow those of Fm−1. Hence we have an

(A, B) 3-sequence in which (z, F1, F2, . . . , Fm) occurs as a consecutive subsequence.
The lemma follows immediately by induction. �

Lemma 9.5. Let (z, F1, F2, . . . , Fm) be a p-flan in a 3-sequence (A, X, B). Then
F1 ∪ F2 ∪ · · · ∪ Fm ⊆ Jz. Moreover, either

(i) in every (A, B) 3-sequence, the subsequence consisting of the elements of
F1 ∪ F2 ∪ · · · ∪ Fm is (F1, F2, . . . , Fm); or
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(ii) in every (A, B) 3-sequence, the subsequence consisting of the elements of
F1 ∪ F2 ∪ · · · ∪ Fm is (Fm, Fm−1, . . . , F1).

Proof. Without loss of generality, by Lemma 9.4, we may assume that there is an
(A, B) 3-sequence in which (z, F1, F2, . . . , Fm) is a consecutive subsequence.

If Fk is a set of guts elements for some k in {1, 2, . . . , m}, then, because Fk∪z is a
maximal segment, its elements can be made consecutive in some (A, B) 3-sequence.
Hence every guts element of F1 ∪ F2 ∪ · · · ∪ Fm is in Jz. Now suppose that x and
y are guts elements in Fi and Fj , respectively, where i < j. If there is an (A, B)
3-sequence in which y precedes x, then x, y, and z are mutually jumping. Thus
{x, y, z} is contained in a maximal segment and this will be the unique maximal
segment containing {x, z}. But {x, z} is contained in the maximal segment Fi ∪ z
and this segment does not contain y; a contradiction. We conclude that if Fi and
Fj are sets of guts elements with i < j, then, in every (A, B) 3-sequence, every
element of Fi precedes every element of Fj .

Now let Fi be a singleton coguts set with i ≤ m− 2. Because Fi ∪Fi+1 ∪Fi+2 is
a cocircuit, in every (A, B) 3-sequence, the first and last elements Fi ∪ Fi+1 ∪Fi+2

must be coguts elements. Thus the subsequence consisting of the elements of Fi ∪
Fi+1 ∪ Fi+2 is Fi, Fi+1, Fi+2 or Fi+2, Fi+1, Fi. But the latter does not occur since
it implies that the elements of Fi ∪ Fi+1 ∪ Fi+2 are mutually jumping. We deduce
that (i) holds unless Fm is a set of guts elements. By symmetry, (i) holds unless F1

is a set of guts elements.

To show that F1∪F2∪· · ·∪Fm ⊆ Jz, assume first that Fm is a set of guts elements.
Then there is an (A, B) 3-sequence (A,

−→
X1, B) in which the elements of Fm ∪ z are

consecutive. From above, we know that every guts element of F1 ∪F2 ∪ · · · ∪Fm−1

occurs to the left of Fm. Suppose c is a coguts element of F1 ∪ F2 ∪ · · · ∪ Fm−1.
Either c is in Jz , or c occurs to the right of Fm∪z in

−→
X1. In the latter case, because

c is in the span of the set of guts elements in F1 ∪ F2 ∪ · · · ∪ Fm ∪ z, we get a
contradiction. We conclude that if Fm is a set of guts elements, then Jz contains
F1 ∪ F2 ∪ · · · ∪ Fm. By symmetry, the same conclusion holds if F1 is a set of guts
elements. We deduce that F1 ∪ F2 ∪ · · · ∪ Fm ⊆ Jz unless both F1 and Fm are
singleton coguts sets.

Consider the exceptional case. Then, from above, (i) holds since F1 is not a
set of guts elements. Now the elements of F2 ∪ z can be made consecutive in
some 3-sequence (A,

−→
X2, B). By (i), the subsequence consisting of the elements of

F1 ∪ F2 ∪ F3 is F1, F2, F3. We may assume that z is the first element of F2 ∪ z in−→
X2. Then, since F1 ∪ F2 ∪ F3 is a cocircuit, we obtain another (A, B) 3-sequence
from (A,

−→
X2, B) by moving the unique element of F1 so that it immediately follows

z. Thus F1 ⊆ Jz. By symmetry, Fm ⊆ Jz . If m = 3, then, as F2 ∪ z is a maximal
segment, F2 ⊆ Jz, so F1∪F2∪· · ·∪Fm ⊆ Jz. If m ≥ 4, then (z, F1, F2, . . . , Fm−1) is
a p-flan whose last set is a set of guts elements. Hence, from the previous paragraph,
Jz contains F1∪F2∪· · ·∪Fm−1. We conclude that, in general, F1∪F2∪· · ·∪Fm ⊆ Jz.
It follows that if x ∈ Fi and y ∈ Fj for some distinct i and j, then x, y, and z are not
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mutually jumping. Since there is an (A, B) 3-sequence in which z, F1, F2, . . . , Fm

is a consecutive subsequence, we deduce that (i) holds. �

In view of the last result, from now on, when we refer to a p-flan ({z}, F1, F2,

. . . , Fm) in a 3-sequence (A,
−→
X, B), we shall assume that the ordering on the sub-

sequence of
−→
X consisting of the elements of F1 ∪ F2 ∪ · · · ∪ Fm is (F1, F2, . . . , Fm).

Corollary 9.6. Let (z, F1, F2, . . . , Fm) be a maximal p-flan in a 3-sequence (A,
−→
X, B).

Then F1 ∪ F2 ∪ · · · ∪ Fm = Jz.

Proof. By Lemma 9.5, F1∪F2∪ . . .∪Fm ⊆ Jz. As m ≥ 3, by Theorem 9.3, Jz ∪{z}
is a p-flan with tip z. The result follows immediately. �

The next lemma uses the local connectivity function to recognize a p-flan in an
(A, B) 3-sequence of a special form. The result is proved in more generality than is
needed here as it will be used again at the end of the next section when 3-sequences
of this form will arise naturally.

Lemma 9.7. Let (A,
−→
X, B) be a 3-sequence. Suppose that

−→
X =

(
−→
A1,

−→
T1,

−→
T2, . . . ,

−−−→
T2k+1,

−→
B1) where each of T1, T3, . . . , T2k+1 contains a single coguts

element and each of T2, T4, . . . , T2k is a non-empty set of guts elements. Then
u(A ∪ A1, B ∪ B1) = 1 if and only if, for all j in {0, 1, . . . , k − 1}, the set T1+2j ∪
T2+2j ∪ T3+2j contains a unique cocircuit and this cocircuit contains T1+2j ∪T3+2j.
Moreover, if u(A ∪ A1, B ∪ B1) = 1 and, for some j in {0, 1, . . . , k − 1}, the set
T1+2j ∪ T2+2j ∪ T3+2j is not a cocircuit, then

(i) T2+2j contains an element z such that (T1+2j ∪ T2+2j ∪ T3+2j) − {z} is a
cocircuit;

(ii) T1+2i ∪ T2+2i ∪ T3+2i is a cocircuit for all i in {0, 1, . . . , k − 1} − {j}; and
(iii) (z, T1, T2, . . . , T1+2j, T2+2j − {z}, T3+2j, . . . , T2k+1) is a p-flan with tip z.

Proof. Let A′ = A∪A1 and B′ = B∪B1. Suppose first that, for all j in {0, 1, . . . , k−
1}, the set T1+2j∪T2+2j ∪T3+2j contains a cocircuit containing T1+2j∪T3+2j . Then

(9.1) r(A′ ∪ B′) ≤ r(M) − k.

Now, because each of T1, T3, . . . , T2k+1 contains a single coguts element while each of
T2, T4, . . . , T2k is a non-empty set of guts elements, we have, for all i in {0, 1, . . . , k}
and all j in {1, 2}, that

(9.2) r(A′ ∪ T1 ∪ T2 ∪ · · · ∪ T2i+j) + r(B′) = r(A′) + (i + 1) + r(B′).

Thus, as (A′ ∪ T1 ∪ T2 ∪ · · · ∪ T2k+1, B
′) is a 3-separation of M ,

(9.3) r(A′) + r(B′) = r(M) − (k − 1).

On combining (9.1) and (9.3), we get that

u(A′, B′) = r(A′) + r(B′) − r(A′ ∪ B′) ≥ [r(M) − (k − 1)] − [r(M) − k] = 1.
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But, by Lemma 3.3, (9.2), and (9.3 and using the fact that T2k−1 ∪ T2k ∪ T2k+1 is
a cocircuit, we have

u(A′, B′) ≤ u(A′ ∪ T1 ∪ T2 ∪ · · · ∪ T2k−2, B
′)

= r(A′ ∪ T1 ∪ T2 ∪ · · · ∪ T2k−2) + r(B′)
−r(A′ ∪ T1 ∪ T2 ∪ · · · ∪ T2k−2 ∪ B′)

= r(A′) + (k − 1) + r(B′) − (r(M) − 1)
= 1.

We conclude that u(A′, B′) = 1.

Conversely, suppose that u(A′, B′) = 1. Then, by Lemma 3.3, for all j in
{0, 1, . . . , k − 1}

1 ≤ u(A′ ∪ T1 ∪ T2 ∪ · · · ∪ T2j , T2j+4 ∪ · · · ∪ T2k+1 ∪ B′)
= r(A′ ∪ T1 ∪ T2 ∪ · · · ∪ T2j) + r(T2j+4 ∪ · · · ∪ T2k+1 ∪ B′)

−r(E(M) − (T1+2j ∪ T2+2j ∪ T3+2j))
= r(M) − r(E(M) − (T1+2j ∪ T2+2j ∪ T3+2j)) by Lemma 9.2(ii).

Thus T1+2j ∪T2+2j ∪T3+2j contains a cocircuit of M . Since both E(M)− (T1+2j ∪
T2+2j) and E(M)− (T2+2j ∪ T3+2j) span T2+2j and hence span M , we deduce that
each cocircuit contained in T1+2j∪T2+2j∪T3+2j contains T1+2j∪T3+2j . By cocircuit
elimination, it follows that T1+2j ∪ T2+2j ∪ T3+2j contains a unique cocircuit.

Now suppose that, for some j in {0, 1, . . . , k − 1}, the set T1+2j ∪ T2+2j ∪ T3+2j

is not a cocircuit. Since T2+2j is a single guts element or a segment, the cocircuit
C∗ contained in T1+2j ∪ T2+2j ∪ T3+2j avoids at most one element of T2+2j. Thus
C∗ = (T1+2j ∪ T2+2j ∪ T3+2j) − {z} for some z in T2j+2.

Clearly r(A ∪ A1 ∪ T1 ∪ · · · ∪ T1+2j ∪ {z}) = r(A ∪ A1 ∪ T1 ∪ · · · ∪ T2j) + 1.
If r(A ∪ A1 ∪ T1 ∪ · · · ∪ T2j ∪ {z}) = r(A ∪ A1 ∪ T1 ∪ · · · ∪ T2j) + 1, then A ∪
A1 ∪ T1 ∪ · · · ∪ T2j ∪ {z} spans T1+2j ; a contradiction. Thus r(A ∪ A1 ∪ T1 ∪ · · · ∪
T2j ∪ {z}) = r(A ∪ A1 ∪ T1 ∪ · · · ∪ T2j). Hence, in

−→
X , we can remove z from T2+2j

and add it to T2j. This new sequence obeys the same hypotheses as the original
sequence. In particular, the value of u(A′, B′) remains at 1. Using the equivalence
established in the first part of the proof and applying it to the new sequence with
z moved, we get that T2j−1 ∪ (T2j ∪ {z}) ∪ T2j+1 contains a unique cocircuit D∗.
But applying the equivalence to the initial sequence before z was moved, we have
that T2j−1 ∪ T2j ∪ T2j+1 contains a unique cocircuit. This cocircuit must be D∗

and it avoids at most one element of the segment T2j ∪ {z}. Hence z is the unique
element of T2j ∪ {z} avoided by D∗. We conclude that T2j−1 ∪ T2j ∪ T2j+1 is a
cocircuit. Moreover, z jumps T2j ∪ T2j+1. By repeating this argument, we deduce
that (ii) holds and z jumps every element of T1 ∪ T2 ∪ · · · ∪ T2k+1 except itself.
It follows that each of T2 ∪ {z}, T4 ∪ {z}, . . . , T2k ∪ {z} is a maximal segment for
if there is an element y that can be added to one of these sets to get a larger
segment, say to T2t, then y jumps both z and a coguts element c in T2t−1 or
T2t+1. Thus y, z, and c are mutually jumping; a contradiction. We conclude that
(z, T1, T2, . . . , T1+2j , T2+2j − {z}, T3+2j, . . . , T2k+1) is a p-flan with tip z. �
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10. Decompositions

In earlier sections, we have identified various structures in a matroid M that allow
for the elements of X to be permuted in an 3-sequence (A,

−→
X, B) to give another

such sequence (A,
−→
X1, B). In this section, we shall complete the task of describing

all possible such permutations
−→
X1. Because of the complexity of the behaviour of

such permutations, we shall adopt a strategy of breaking up the sequence
−→
X when

certain previously discussed structures occur within X . The first such break-up
will occur when we have a clock C. We know that C is the union of two fans
F1(C) and F2(C) each of which has a fan ordering meaning that, in every (A, B)
3-sequence, all its elements occur in the same order. For each i in {1, 2}, let fi

be the first element of Fi(C) and let li be its last element. Let IC be the set of
internal elements of C, that is, IC = C − {f1, f2, l1, l2}. By Corollary 7.6, when
the elements of C are consecutive in an (A, B) 3-sequence, the sets LC and RC of
elements that occur to the left and right of C are uniquely determined.

Now suppose that C is non-degenerate. Let A′ = A ∪ LC ∪ (C − {l1, l2}) and
B′ = (C − {f1, f2}) ∪ RC ∪ B. We break (A,

−→
X, B) into (A′,

−−−−−−−−−→
RC ∪ {l1, l2}, B) and

(A,
−−−−−−−−−→
LC ∪ {f1, f2}, B′) where the orderings

−−−−−−−−−→
LC ∪ {f1, f2} and

−−−−−−−−−→
RC ∪ {l1, l2} are in-

duced by
−→
X . Both (A′,

−−−−−−−−−→
RC ∪ {l1, l2}, B) and (A,

−−−−−−−−−→
LC ∪ {f1, f2}, B′) can be shown

to be 3-sequences. More significantly, if we take orderings
−−−−−−−−−−→
[RC ∪ {l1, l2}]1 and−−−−−−−−−−−→

[LC ∪ {f1, f2}]1 of these sets such that both (A′,
−−−−−−−−−−→
[RC ∪ {l1, l2}]1, B) and (A,−−−−−−−−−−−→

[LC ∪ {f1, f2}]1, B′) are 3-sequences, then (A,
−−−−−−−−−−−→
[LC ∪ {f1, f2}]1,−→IC ,

−−−−−−−−−−→
[RC ∪ {l1, l2}]1,

B) is a 3-sequence where
−→
IC is any ordering of the internal elements of C that re-

spects the fan orderings in C. Furthermore, we can obtain every (A, B) 3-sequence
in this way by allowing as a final step, the movement of clock ends over adjacent
elements in their jump-sets.

In this section, we shall describe three break-up results. The first treats non-
degenerate or odd degenerate clocks; the second treats even degenerate clocks; and
the last treats p-flans in the absence of clocks. By applying these three results
and the dual of the third, we will be left with a 3-sequence in which there are
no clocks, no p-flans, and no p-coflans. Such 3-sequences are treated in the last
theorem of the section. There it is shown that such a 3-sequence breaks up into
a collection of segments and cosegments. Moreover, the only allowable movements
of elements within this 3-sequence are arbitrary shufflings of the elements within
each segment and cosegment along with swaps of pairs of elements at the interfaces
between segments and cosegments.

Before stating our first decomposition theorem, we consider how the elements
of a degenerate clock can sit in an (A, B) 3-sequence. Recall that the type of an
element is its designation as a guts or a coguts element.

Lemma 10.1. Let (A,
−→
X, B) be a 3-sequence and C be a degenerate clock in X.

Suppose
−→
X =

−→
Z1, fi,

−→
Z2, xu,

−→
Z3, xv,

−→
Z4, lp,

−→
Z5, where {fi, xu, xv, lp} = {f1, f2, l1, l2}.
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(i) If fi and xu are of different types, then Z3 = ∅. In particular, if C is odd,
then Z3 = ∅.

(ii) If fi and xu are of the same type, then {fi, xu} = {f1, f2} and C is even.
Moreover, either Z3 is empty; or there is a crocodile for which the seg-
ment S is cl({f1, f2}) or cl({l1, l2} and the cosegment S∗ is cl∗({l1, l2}) or
cl∗({f1, f2}. In the latter case, Z3 ⊆ S ∪ S∗.

(iii) Z1 ∪ Z2 ⊆ LC and Z4 ∪ Z5 ⊆ RC .

Proof. To prove (i) and (ii), suppose that Z3 is non-empty and consider e in Z3.
Since there is an (A, B) 3-sequence in which fi, xu, xv, lp is a consecutive subse-
quence, e jumps both fi and xu or both xv and lp. If {fi, xu} = Fi(C), then
Corollary 7.5 implies that e ∈ C; a contradiction. Thus, we may assume that
{fi, xu} = {f1, f2}. Then either f1, f2, and e are mutually jumping or l1, l2, and
e are mutually jumping. Hence f1 and xu are of the same type and (i) holds.
Moreover, C is even and, since the elements of C can be made consecutive in some
3-sequence, it follows that either

(a) f1 and f2 are guts elements, in which case, cl({f1, f2}) is a maximal segment
S and cl∗({l1, l2}) is a maximal cosegment S∗; or

(b) f1 and f2 are coguts elements, in which case, cl∗({f1, f2}) is a maximal
cosegment S∗ and cl({l1, l2}) is a maximal segment S.

In both cases, S ∪ S∗ is a (possibly degenerate) crocodile and Z3 ⊆ S ∪ S∗.

Part (iii) is an immediate cosequence of Corollary 7.5. �

The next result describes how the presence of a clock C enables us to break a
3-sequence (A, X, B). We have assumed here that C is a non-degenerate or odd
degenerate clock. The break-up associated with an even degenerate clock will be
treated in the subsequent result.

Theorem 10.2. Let C be a non-degenerate or odd degenerate clock in a 3-sequence
(A,

−→
X, B). Let

−−−−−−−−−→
RC ∪ {l1, l2} and

−−−−−−−−−→
LC ∪ {f1, f2} be the orderings induced on these

sets by the ordering
−→
X . Let A′ = A ∪ LC ∪ (C − {l1, l2}) and B′ = B ∪RC ∪ (C −

{f1, f2}). Then

(i) (A′,
−−−−−−−−−→
RC ∪ {l1, l2}, B) and (A,

−−−−−−−−−→
LC ∪ {f1, f2}, B′) are 3-sequences.

(ii) For some orderings
−−−−−−−−−−→
[RC ∪ {l1, l2}]1 and

−−−−−−−−−−−→
[LC ∪ {f1, f2}]1 of RC ∪ {l1, l2}

and LC ∪ {f1, f2}, let (A′,
−−−−−−−−−−→
[RC ∪ {l1, l2}]1, B) and (A,

−−−−−−−−−−−→
[LC ∪ {f1, f2}]1, B′)

be 3-sequences. Let I ′C be obtained from IC by adjoining the last element
of

−−−−−−−−−−−→
[LC ∪ {f1, f2}]1 if this last element is in {f1, f2}, and adjoining the first

element of
−−−−−−−−−−→
[RC ∪ {l1, l2}]1 if this first element is in {l1, l2}. Let

−→
I ′C be

an ordering of I ′C that respects the fan orderings on F1(C) and F2(C).
Then (A,

−−−−−−−−−−−→
[LC ∪ {f1, f2}]1 − I ′C ,

−→
I ′C ,

−−−−−−−−−−→
[RC ∪ {l1, l2}]1 − I ′C , B) is an (A, B) 3-

sequence. Moreover, every (A, B) 3-sequence arises in this way from some
3-sequences (A′,

−−−−−−−−−−→
[RC ∪ {l1, l2}]1, B) and (A,

−−−−−−−−−−−→
[LC ∪ {f1, f2}]1, B′).
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Proof. By Theorem 7.2, there is a 3-sequence of the form (A,
−→
LC ,

−→
C ,−→

RC , B). Moreover, by Theorem 7.4, we may choose
−→
C so that its first two ele-

ments are f1 and f2 and its last two elements are l1 and l2. Thus (A ∪ LC ∪ (C −
{l1, l2}, RC ∪{l1, l2}∪B) and (A∪LC ∪{f1, f2}, RC ∪ (C −{f1, f2})∪B) are exact
3-separations of M .

We want to show that (A ∪ Y, Z ∪ B′) is a 3-separation for any Y and Z such
that

−−−−−−−−−→
LC ∪ {f1, f2} =

−→
Y ,

−→
Z . Certainly (A∪Y, Z∪B′) is a 3-sequence if

−→
Y coincides

with a consecutive initial subsequence of
−→
X . Assume that C is non-degenerate.

By Lemma 7.7(ii), in
−→
X , there is a consecutive subsequence

−→
X ′ that contains IC

and has all its elements in C. By Lemma 7.7(iii), neither f1 nor f2 occurs to the
right of

−→
X ′. If f1 or f2 occurs in X ′, then we can move these elements so that they

maintain their relative order and occur at the left end of
−→
X ′. Likewise, if l1 or l2

occurs in X ′, then we can move these elements so that they maintain their relative
order and occur at the right end of

−→
X ′. By Theorem 7.4, these moves do not alter

the fact that we have an (A, B) 3-sequence. Thus we have an (A, B) 3-sequence in
which the elements of IC are consecutive, so we may assume that

−→
X has the form−→

Y1, fi,
−→
Y2, fj,

−→
Y3,

−→
IC ,

−→
Z3, lp,

−→
Z2, lq,

−→
Z1, where {i, j} = {1, 2} = {p, q}.

By Theorem 7.2, if an element e of X has two elements of one of the fans of C in
its jump-set, then e ∈ C. It follows that Y1∪Y2 ⊆ LC and Z2∪Z1 ⊆ RC . Moreover,
as C is non-degenerate, Y3 ⊆ LC and Z3 ⊆ RC . Hence, if C is non-degenerate, then
Y1 ∪Y2 ∪Y3 ∪{f1, f2} = LC ∪{f1, f2} and so (A,

−−−−−−−−−→
LC ∪ {f1, f2}, B′) is a 3-sequence.

Now assume that C is an odd degenerate clock and let
−→
X =

−→
Z1, fi,

−→
Z2, xu,−→

Z3, xv,
−→
Z4, lp,

−→
Z5, where {fi, xu, xv, lp} = {f1, f2, l1, l2}. By Lemma 10.1, Z3 = ∅

and LC and RC are Z1∪Z2 and Z4∪Z5, respectively. Evidently, {xu, xv} = {lj, fk},
where {j, k} = {1, 2}, so we can interchange xu and xv if necessary to get that
xu = fj . Thus (i) holds if C is an odd degenerate clock.

To prove (ii), assume that C is a non-degenerate or an odd degenerate clock,
and let (A′,

−−−−−−−−−−→
[RC ∪ {l1, l2}]1, B) and (A,

−−−−−−−−−−−→
[LC ∪ {f1, f2}]1, B′) be 3-sequences. Take−→

IC to be an ordering of IC that respects the fan orderings on F1(C) and F2(C).
We show first that (A,

−−−−−−−−−−−→
[LC ∪ {f1, f2}]1,−→IC ,

−−−−−−−−−−→
[RC ∪ {l1, l2}]1B) is a 3-sequence. To do

this, it suffices to show that (A∪LC ∪{f1, f2}∪IC,1, IC,2∪{l1, l2}∪RC ∪B) is a 3-
sequence for every IC,1 and IC,2 such that

−→
IC =

−−→
IC,1,

−−→
IC,2. But f1, f2,

−−→
IC,1,

−−→
IC,2, l1, l2

respects the fan orderings on F1(C) and F2(C), and so, by Theorem 7.4, there is
a 3-sequence of the form (A, LC , f1, f2,

−−→
IC,1,

−−→
IC,2, l1, l2, RC , B). Hence (A ∪ LC ∪

{f1, f2} ∪ IC,1, IC,2 ∪ {l1, l2} ∪ RC ∪ B) is indeed a 3-sequence.

Let I ′C be obtained from IC as follows: if the last element of
−−−−−−−−−−−→
[LC ∪ {f1, f2}]1

is in {f1, f2}, then adjoin this last element to IC ; and if the first element of−−−−−−−−−−→
[RC ∪ {l1, l2}]1 is in {l1, l2}, then adjoin this element to IC . Let

−→
I ′C be an ordering of

I ′C that respects the fan orderings on F1(C) and F2(C). Then (A,
−−−−−−−−−−−→
[LC ∪ {f1, f2}]1−

I ′C ,
−→
I ′C ,

−−−−−−−−−−→
[RC ∪ {l1, l2}]1 − I ′C , B) is an (A, B) 3-sequence because it can be obtained
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from the (A, B) 3-sequence (A,
−−−−−−−−−−−→
[LC ∪ {f1, f2}]1,−→IC ,

−−−−−−−−−−→
[RC ∪ {l1, l2}]1, B) by allowing

some fi or some lj to jump elements in C from their jump-sets.

To complete the proof, we need to show that every permutation
−→
X1 of X such

that (A,
−→
X1, B) is a 3-sequence arises as described. By Lemma 7.7, the elements of

IC are consecutive in
−→
X1 except for the possible insertion of clock ends. When C is

non-degenerate, let
−→
I ′′C be the longest consecutive subsequence of

−→
X1 that contains

IC and is contained in C. When C is an odd degenerate clock, by Lemma 10.1, the
second and third elements of C are consecutive in

−→
X1. In this case, we let

−→
I ′′C be the

longest consecutive subsequence of
−→
X1 that is contained in C and contains these

second and third elements. Let
−→
X1 =

−→
L ,

−→
I ′′C ,

−→
R . Because there is a 3-sequence

of the form (A, LC , C, RC , B), we deduce, using the fact that either IC 6= ∅ or
Lemma 10.1 applies, that R ∩ LC = ∅ and L ∩ RC = ∅. Thus L − C = LC and
R − C = RC . If both f1 and f2 are in I ′′C , then the first element of

−→
I ′′C is f1 or f2.

In this case, we remove that element from
−→
I ′′C . Likewise, if both l1 and l2 are in−→

I ′′C , then the last element of
−→
I ′′C is l1 or l2. In this case, we remove this element

from
−→
I ′′C . Let

−→
I ′C be the result of these two potential removals. Now if fi is in−→

I ′C , we can move it so that it is the first element of
−→
I ′C and this move maintains a

3-sequence. Similarly, if lj is in
−→
I ′C , we can move it so that it is the last element of−→

I ′C and this move maintains a 3-sequence. These reorderings maintain the order-
ings

−−−−−−−−−−−→
[LC ∪ {f1, f2}]1 and

−−−−−−−−−−→
[RC ∪ {l1, l2}]1 induced on these sets by the ordering

−→
X1.

Moreover, the ordering we now have on X is
−−−−−−−−−−−→
[LC ∪ {f1, f2}]1,−→IC ,

−−−−−−−−−−→
[RC ∪ {l1, l2}]1,

where
−→
IC is the ordering induced on this set by the ordering

−→
X1. We conclude

that
−→
X1 can be obtained by following the procedure described beginning with some

3-sequences (A′,
−−−−−−−−−−→
[RC ∪ {l1, l2}]1, B) and (A,

−−−−−−−−−−−→
[LC ∪ {f1, f2}]1, B′). �

Next we consider breaking up an (A, B) 3-sequence when it has an even degen-
erate clock C. If g1 and g2 are the guts elements of C, and c1 and c2 are its coguts
elements, then cl({g1, g2}) and cl∗({c1, c2}) are, respectively, a segment S and a
cosegment S∗. If |S∪S∗| ≥ 5, then it is easily seen that S∪S∗ is a crocodile. Thus
the next result includes a decomposition result for a non-degenerate crocodile. To
enable the result to be applied to degenerate crocodiles, one may, for example, add
the assumption that no non-degenerate clocks are present. In view of Theorem 10.2,
this is a natural assumption.

Theorem 10.3. Let C be an even degenerate clock in a 3-sequence (A,
−→
X, B).

Assume that the first elements of the fans F1(C) and F2(C) are both guts ele-
ments. Let S be the segment that is the closure of these first elements and let S∗

be the cosegment that is the coclosure of the last elements of F1(C) and F2(C). Let−−−−−→
RC ∪ S∗ and

−−−−→
LC ∪ S be the orderings induced on these sets by the ordering

−→
X . Let

A′ = A ∪ LC ∪ S and B′ = B ∪ RC ∪ S∗. Then

(i) (A′,
−−−−−→
RC ∪ S∗, B) and (A,

−−−−→
LC ∪ S, B′) are 3-sequences.
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(ii) For some orderings
−−−−−−−→
[RC ∪ S∗]1 and

−−−−−−→
[LC ∪ S]1 of RC ∪ S∗ and LC ∪ S,

respectively, let (A′,
−−−−−−−→
[RC ∪ S∗]1, B) and (A,

−−−−−−→
[LC ∪ S]1, B′) be 3-sequences.

Then (A,
−−−−−−→
[LC ∪ S]1,

−−−−−−−→
[RC ∪ S∗]1, B) is an (A, B) 3-sequence; and the last

element of
−−−−−−→
[LC ∪ S]1 is in S while the first element of

−−−−−−−→
[RC ∪ S∗]1 is in

S∗. If these elements are in each other’s jump-sets, then they can be in-
terchanged to give another (A, B) 3-sequence. Moreover, every (A, B) 3-
sequence arises in this way from some 3-sequences (A′,

−−−−−−−→
[RC ∪ S∗]1, B) and

(A,
−−−−−−→
[LC ∪ S]1, B′).

Proof. First we note the following easy consequence of the fact that there is a
3-sequence in which the elements of C are consecutive.

10.3.1. S − {f1, f2} ⊆ LC and S∗ − {l1, l2} ⊆ RC .

Next we prove the first part of (ii). Let (A′,
−−−−−−−→
[RC ∪ S∗]1, B) and (A,

−−−−−−→
[LC ∪ S]1, B′)

be 3-sequences. Consider (A,
−−−−−−→
[LC ∪ S]1,

−−−−−−−→
[RC ∪ S∗]1, B). Because A′ = A∪LC∪S, it

is clear that (A∪LC ∪S, RC ∪S∗∪B) is a 3-separation. It follows immediately from
this that (A,

−−−−−−→
[LC ∪ S]1,

−−−−−−−→
[RC ∪ S∗]1, B) is a 3-sequence. Let s be the last element of

S in
−−−−−−→
[LC ∪ S]1 and let s∗ be the first element of S∗ in

−−−−−−−→
[RC ∪ S∗]1. Let Z be the

set of elements that occur between s and s∗ in (A,
−−−−−−→
[LC ∪ S]1,

−−−−−−−→
[RC ∪ S∗]1, B). By

Lemmas 10.1 and 8.1, there is a 3-sequence of the form (A, LC −S, S−s, s, s∗, S∗−
s∗, RC −S∗, B). It follows that every element of Z jumps all of S or all of S∗. Thus
every such element is in S or S∗; a contradiction. We conclude that Z is empty, so s

is the last element of
−−−−−−→
[LC ∪ S]1 and s∗ is the first element of

−−−−−−−→
[RC ∪ S∗]1. Evidently,

if these two elements are in each other’s jump-sets, then we can interchange them
to get another 3-sequence. This proves all of (ii) except for the final assertion.

It remains to prove (i) and to check that every permutation
−→
X1 of X such that

(A,
−→
X1, B) is a 3-sequence arises as described. Let

−→
X1 =

−→
Z1, fi,

−→
Z2, xu,

−→
Z3, xv,

−→
Z4, lp,−→

Z5, where {fi, xu, xv, lp} = {f1, f2, l1, l2}.

Suppose first that {fi, xu} is a fan of C. Then, by Lemma 10.1, Z3 = ∅ and we
have LC = Z1 ∪ Z2 and RC = Z4 ∪ Z5. Now xu and xv are adjacent and are in
each other’s jump-sets. It follows that if we interchange xu and xv in (A,

−→
X1, B),

we get (A,
−−−−→
LC ∪ S,

−−−−−→
RC ∪ S∗, B) as a 3-sequence. We deduce that, in this case, (i)

and the last part of (ii) hold.

We may now suppose that {fi, xu} = {f1, f2}. Then, by Lemma 10.1, Z3 ⊆
S∪S∗. Moreover, by Lemma 8.1, no element in Z3∩S∗ has two elements of Z3∩S
to its right, and no element of Z3 ∩ S has two elements of Z3 ∩ S∗ to its left. Thus−→
Z3 consists of a consecutive sequence of elements of S followed by a consecutive
sequence of elements of S∗ with possibly the last S-element and the first S∗-element
being interchanged. In the latter case, these two elements are in each other’s jump-
sets and interchanging them gives (A,

−−−−→
LC ∪ S,

−−−−−→
RC ∪ S∗, B) as a 3-sequence. Using

this, it is easy to complete the proof that (i) and the last part of (ii) hold. �
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We now turn attention to p-flans in (A, B) 3-sequnces with no clocks. We begin
with a straightforward lemma.

Lemma 10.4. Let (A,
−→
X, B) be a 3-sequence with no non-degenerate clocks. Let

F ∪ z be a p-flan in X with tip z. If (A, L, F ∪ z, R, B) and (A, L′, F ∪ z, R′, B) are
3-sequences, then L = L′ and R = R′.

Proof. If L′ contains an element e of R, then e jumps F ∪ z. But, by Lemma 9.5,
F ⊆ Jz , and so |Je ∩ Jz | ≥ 3. Therefore, by Theorem 7.2, X contains a non-
degenerate clock; a contradiction. Thus L′ ∩ R = ∅. Similarly, L ∩ R′ = ∅. Hence
L = L′ and R = R′. �

In view of the last lemma, for a p-flan F ∪ z with tip z in a 3-sequence (A,
−→
X, B)

with no non-degenerate clocks, we can define LF and RF to be the sets of elements
that, respectively, precede and succeed F ∪ z when the elements of the last set are
consecutive.

Lemma 10.5. Let (A,
−→
X, B) be a 3-sequence with no clocks. Let F ∪ z be a p-flan

in X with tip z. Then no element of X − (F ∪ z) has two elements of F in its
jump-set.

Proof. Suppose that e is in X − (F ∪ z) and e has two elements of F in its jump-
set. Let the p-flan F ∪ z be (z, F1, F2, . . . , Fm). As the subsequence of

−→
X induced

by F has the form
−→
F1,

−→
F2, . . . ,

−→
Fm and there is an (A, B) 3-sequence (A,

−→
X1, B) in

which (
−→
F1,

−→
F2, . . . ,

−→
Fm) is a consecutive subsequence, we deduce that Je contains

two elements of F1, or Je contains two elements of Fm, or Je contains both a guts
and a coguts element of F . But F ⊆ Jz so |Jz ∩ Je| ≥ 2. Since we have no clocks,
Theorem 7.2 and the fact that z is a guts element implies that all the elements of
(Jz∩Je)∪{z, e} are guts elements. We conclude that Je contains two guts elements
of F1 or two guts elements of Fm. These two elements with e form a segment and
so F1∪z∪e or Fm∪z∪e is a segment contradicting the fact that F1∪z and Fm ∪z
are maximal segments. �

Lemma 10.6. Let (A,
−→
X, B) be a 3-sequence with no clocks. Let F ∪ z be a p-flan

in X with tip z. In
−→
X , let f and l be the first and last elements of F . Then

the elements of F − {f, l} are consecutive except for the possible insertion of z.
Moreover, apart from possibly z, the elements to the left and to the right of F−{f, l}
are, respectively, LF ∪ f and RF ∪ l. If

−→
X does not have a consecutive subsequence

whose elements are (F − {f, l}) ∪ z, then either

(i) f immediately precedes F − {f, l} and z precedes f ; also each element be-
tween z and f is in Jz. In particular, if the p-flan is maximal, then z
immediately precedes f ; or

(ii) l immediately follows F − {f, l} and z follows l; also each element between
l and z is in Jz. In particular, if the p-flan is maximal, then z immediately
follows l.
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Proof. Let the p-flan F∪z be (z, F1, F2, . . . , Fm). Now suppose that e ∈ X−(F∪z).
If e has two elements of F to its left and two to its right, then because the elements
of F can be made consecutive in some (A, B) 3-sequence, it follows that e has two
elements of F in its jump-set; a contradiction to Lemma 10.5.

We now know that the elements of F − {f, l} are consecutive except for the
possible insertion of z. If there is an element g to the left of F − {f, l} that is in
RF or there is an element h to the right of F −{f, l} that is in LF , then g or h has
two elements of F in its jump-set, contradicting Lemma 10.5. Hence, apart from
possibly z, the sets of elements that precede and succeed F −{f, l} are LF ∪ f and
RF ∪ l, respectively.

Assume that the elements of F − {f, l} are consecutive and that z does not
immediately precede or succeed this subsequence. Without loss of generality, we
may assume that z occurs to the left of F − {f, l}. There are two possibilities for
consecutive subsequences of

−→
X :

(a) (z, Z1, f, Z2, F − {f, l}, Z3, l); or
(b) (f, Z1, z, Z2, F − {f, l}, Z3, l)

In both cases, since there is an (A, B) 3-sequence in which (z, f, F − {f, l}, l)
occurs as a consecutive subsequence, each element e of Z2 jumps F − f or jumps
{f, z}. If such an e jumps F − f , then e jumps at least two elements including
both a guts element and a coguts element, so X contains a clock; a contradiction.
Thus each element e of Z2 jumps f and z. Hence e, f , and z are mutually jumping.
As z is a guts element, it follows that {e, f, z} is contained in a segment so the
maximality of the segment F1 ∪ z is contradicted. Thus Z2 = ∅. This eliminates
case (b). In case (a), since no element of Z1 jumps all of F , every element of Z1 is
in Jz. Hence, when F ∪ z is a maximal p-flan, every element of Jz is in the p-flan
so Z1 is empty. �

Theorem 10.7. In a 3-sequence (A,
−→
X, B) with no clocks, let F ∪ z be a maximal

p-flan (z, F1, F2, . . . , Fm). Let
−−−−−→
LF ∪ F1 and

−−−−−−→
RF ∪ Fm be the orderings induced on

these sets by the ordering
−→
X . Let A′ = A ∪LF ∪ (F − Fm) ∪ z and B′ = B ∪RF ∪

(F − F1) ∪ z. Then

(i) (A′,
−−−−−−→
RF ∪ Fm, B) and (A,

−−−−−→
LF ∪ F1, B

′) are 3-sequences.
(ii) Let (A′,

−−−−−−−−→
[RF ∪ Fm]1, B) and (A,

−−−−−−−→
[LF ∪ F1]1, B′) be 3-sequences and

−→
F2,

−→
F3,

. . . ,
−−−→
Fm−1 be arbitrary orderings of each of these sets. Then (A,

−−−−−−−→
[LF ∪ F1]1, z,−→

F2,
−→
F3, . . . ,

−−−→
Fm−1,

−−−−−−−−→
[RF ∪ Fm]1, B) is a 3-sequence; so too is every sequence

that is obtained from this one by any series of moves each involving z jump-
ing an element of F to which it is adjacent. Moreover, every (A, B) 3-
sequence arises in this way from some 3-sequences (A′,

−−−−−−−−→
[RF ∪ Fm]1, B) and

(A,
−−−−−−−→
[LF ∪ F1]1, B′).

Proof. In
−→
X , let f and l be the first and last elements of F . Evidently, f ∈ F1 and

l ∈ Fm. By Lemma 10.6, the elements of F −{f, l} are consecutive in
−→
X except for
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the possible insertion of z; and, again apart from possibly z, the elements to the
left and to the right of F − {f, l} are, respectively, LF ∪ f and RF ∪ l. Moreover,
either

(a)
−→
X has a consecutive subsequence whose elements are (F − {f, l}) ∪ z; or

(b)
−→
X has (z, f, F − {f, l}) or (F − {f, l}, l, z) as a consecutive subsequence.

In each case, since the induced order on F − {f, l} is (
−→
F1 − f,

−→
F2,

−→
F3, . . . ,

−−−→
Fm−1,−→

Fm − l), we can move z over elements in its jump-set to obtain the 3-sequences
(A,

−−−−−→
LF ∪ F1, z,

−→
F2,

−→
F3, . . . ,

−−−→
Fm−1,

−−−−−−→
RF ∪ Fm, B) and (A,

−−−−−→
LF ∪ F1,

−→
F2,

−→
F3, . . . ,

−−−→
Fm−1, z,−−−−−−→

RF ∪ Fm, B) where
−−−−−→
LF ∪ F1 and

−−−−−−→
RF ∪ Fm are the orderings induced on these

sets by the ordering
−→
X . It is immediate from this that (A′,

−−−−−−→
RF ∪ Fm, B) and

(A,
−−−−−→
LF ∪ F1, B

′) are 3-sequences where A′ = A ∪ LF ∪ (F − Fm) ∪ z and B′ =
B ∪ RF ∪ (F − F1) ∪ z. Hence (i) holds.

Now let (A′,
−−−−−−−−→
[RF ∪ Fm]1, B) and (A,

−−−−−−−→
[LF ∪ F1]1, B′) be 3-sequences and

−→
F2,

−→
F3,

. . . ,
−−−→
Fm−1 be arbitrary orderings of each of these sets. Clearly (A,

−−−−−−−→
[LF ∪ F1]1, z,

−→
F2,−→

F3, . . . ,
−−−→
Fm−1,

−−−−−−−−→
[RF ∪ Fm]1, B) is a 3-sequence; and we obtain other 3-sequences by

moving z so that it immediately precedes or immediately succeeds any element of−→
F2,

−→
F3, . . . ,

−−−→
Fm−1. Finally, if, for some non-negative integers k and j, the last k

elements of
−−−−−−−→
[LF ∪ F1]1 and the first j elements of

−−−−−−−−→
[RF ∪ Fm]1 are in F1 and Fm,

respectively, then we can move z so that it immediately precedes or immediately
succeeds any of these elements. The theorem follows. �

Recall that a 2-element segment consists of two guts elements that can be made
consecutive in some (A, B) 3-sequence. It is also convenient to extend the definition
of a maximal segment to include a single guts element that is not contained in any
segment with two or more elements. Dually, we include, as a maximal cosegment,
a single coguts element that is not contained in any cosegment with two or more
elements.

Lemma 10.8. Let (A, X, B) be a 3-sequence that contains no p-flans and no p-
coflans. Then every guts element is in exactly one maximal segment and every
coguts element is in exactly one maximal cosegment.

Proof. By duality, we may suppose that a guts element e is in maximal segments
S1 ∪ e and S2 ∪ e where both S1 and S2 have at least one element and neither
contains e. Then the jump-set of e contains S1 ∪ S2. By Lemma 5.1, there is an
(A, B) 3-sequence in which the elements of Je ∪ e are consecutive. If Je contains
no coguts elements, then the fact that S1 ∪ e is maximal is contradicted. Hence, by
Theorem 9.3, there is a p-flan in X with tip e; a contradiction. �

Lemma 10.9. Let (A, X, B) be a 3-sequence that contains no clocks, no p-flans,
and no p-coflans. Let T be a maximal segment or a maximal cosegment in X and
suppose that x ∈ T . Then x is in the jump-set of at most one element not in T
and, when such an element exists, it is not of the same type as x.
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Proof. Suppose x is in the jump-set of an element y of X − T where x and y are of
the same type. Then, by Corollary 5.3, {x, y} is contained in a maximal segment
which is clearly different from T . This contradicts Lemma 10.8. Thus Jx − T
contains no element of the same type as x. If x is in the jump-set of at least two
elements of the other type, then, by Theorem 9.3, Jx ∪ x is a p-flan or a p-coflan;
a contradiction. �

The next result gives a fundamental structural result about (A, B) 3-sequences in
which there are no clocks, no p-flans, and no p-coflans. Recall that we are viewing
a single guts element g as a maximal segment if there is no segment that properly
contains {g}.
Theorem 10.10. Let (A, X, B) be a 3-sequence that contains no clocks, no p-
flans, and no p-coflans. Let {T1, T2, . . . , Tn} be the set of maximal segments and
maximal cosegments in X. Then the sets T1, T2, . . . , Tn can be relabelled so that,
for any orderings

−→
T1,

−→
T2, . . . ,

−→
Tn of these sets, (A,

−→
T1,

−→
T2, . . . ,

−→
Tn, B) is a 3-sequence.

Moreover, after this relabelling, if |X | ≥ 3, and σ is a permutation of {1, 2, . . . , n}
such that there is a 3-sequence of the form (A, Tσ(1), Tσ(2), . . . , Tσ(n), B), then σ is
the identity permutation.

Proof. We begin with the initial labelling on T1, T2, . . . , Tn and assume that |X | ≥ 3.
We shall define a relation < on {T1, T2, . . . , Tn} and show that < is a total order
on this set. To do this, we shall require some preliminaries. First recall that if T
is a segment or a cosegment in X and |T | ≥ 2, then there is an (A, B) 3-sequence
in which the elements of T are consecutive. Moreover, by Theorem 6.8(ii), for all
such (A, B) 3-sequences, the sets LT and RT of elements that occur to the left and
right of T are the same. We follow the convention below that, whenever some Ti

has a single element, this element will be denoted by ti.

10.10.1. Suppose that |Ti| ≥ 2 and |Tj| ≥ 2 where i 6= j. Then either Tj ⊆ LTi or
Tj ⊆ RTi .

To see this, assume that Tj has an element e in LTi and an element f in RTi .
Because e and f can be made consecutive in some (A, B) 3-sequence, each element
of Ti is in Je or Jf . If all of Ti is contained in Je, then, by Corollary 6.5, as e
and the elements of Ti are mutually jumping, Ti ∪ e is contained in a segment or a
cosegment, contradicting the maximality of Ti. Thus Ti contains distinct elements
e′ and f ′ that are in the jump-sets of e and f , respectively. Then Je ∩Jf ′ ⊇ {f, e′}.
Since there are no clocks, we deduce, by Theorem 7.2, that all of e, f, e′, and f ′ are
of the same type. Since e and e′ are mutually jumping, we have a contradiction to
Lemma 10.9. We conclude that (10.10.1) holds.

10.10.2. Suppose that |Ti| ≥ 2 and |Tj| ≥ 2 where i 6= j. Then Tj ⊆ LTi if and
only if Ti ⊆ RTj .

Suppose that Tj ⊆ LTi . Then, by (10.10.1), Ti ⊆ LTj or Ti ⊆ RTj . In the first
case, every element of Ti is in the jump-set of every element of Tj , contradicting
Lemma 10.9. Thus Ti ⊆ RTj and (10.10.2) follows.
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10.10.3. Suppose that |Ti| = |Tj | = 1 where i 6= j. If |X | ≥ 3, then either ti
precedes tj in every (A, B) 3-sequence, or tj precedes ti in every (A, B) 3-sequence.

Suppose that there are (A, B) 3-sequences in which ti precedes tj and in which
tj precedes ti. Then, by Lemma 10.9, ti and tj are of different types. Since ti and
tj are in each other’s jump-sets, there is a 3-sequence (A,

−→
X1, B) in which ti and

tj are consecutive. Since |X | ≥ 3, in either (A,
−→
X1, B) or the 3-sequence obtained

from it by interchanging ti and tj , we have an (A, B) 3-sequence in which ti or tj
is adjacent to an element of the same type. This contradicts the maximality of Ti

or of Tj, and (10.10.3) follows.

When |X | ≥ 3, we now define the relation < on {T1, T2, . . . , Tn} as follows. If
i 6= j, then

Ti < Tj

provided

(a) |Ti| ≥ 2 and Tj ⊆ RTi ;
(b) |Tj | ≥ 2 and Ti ⊆ LTj ; or
(c) |Ti| = |Tj | = 1 and ti precedes tj in every (A, B) 3-sequence.

By (10.10.1)–(10.10.3), this relation is well-defined. Moreover, for all distinct i and
j, either Ti < Tj or Tj < Ti, but not both. To ensure that this defines a total order
on {T1, T2, . . . , Tn}, we need to show that this relation is transitive.

10.10.4. If i, j, and k are distinct elements of {1, 2, . . . , n} and Ti < Tj and Tj <
Tk, then Ti < Tk.

Assume not. Then Tk < Ti. Suppose |Tj| ≥ 2. Then Ti ⊆ LTj and Tk ⊆ RTj .
As Tk < Ti, it follows that every element of Tk is in the jump-set of every element
of Ti. This contradicts Lemma 10.9 unless |Ti| = |Tk| = 1. But, in the exceptional
case, (10.10.3) is contradicted.

We may now assume that |Tj | = 1. If |Ti| = 1, then, as Ti < Tj, it follows from
the definition that Ti < Tk; a contradiction. Hence, we may assume that |Ti| ≥ 2,
and, by symmetry, that |Tk| ≥ 2. Since Tk < Ti, we have Tk ⊆ LTi . As Ti < Tj, we
have Tj ⊆ RTi . Thus, there is an (A, B) 3-sequence in which tj occurs to the right
of Tk. But Tj < Tk so Tj ⊆ LTk

. Hence every element of Tk is in the jump-set of
tj and Lemma 10.9 is contradicted. We conclude that (10.10.4) holds.

Now relabel T1, T2, . . . , Tn so that T1 < T2 < · · · < Tn. We show next that,
for any orderings

−→
T1,

−→
T2, . . . ,

−→
Tn of these sets, (A,

−→
T1,

−→
T2, . . . ,

−→
Tn, B) is a 3-sequence.

Again this will be done in several steps.

10.10.5. If 1 ≤ i ≤ n− 1 and |Ti| ≥ 2 or |Ti+1| ≥ 2, then (A∪ T1 ∪ · · · ∪Ti, Ti+1 ∪
· · · ∪ Tn ∪ B) is a 3-separation.

Assume that |Ti| ≥ 2. By the definition of <, in a 3-sequence of the form
(A, LTi , Ti, RTi , B), we have Tj ⊆ LTi when 1 ≤ j ≤ i − 1 and Tj ⊆ RTi when
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i + 1 ≤ j ≤ n. From this, (10.10.5) follows when |Ti| ≥ 2. By symmetry, it also
follows when |Ti+1| ≥ 2.

10.10.6. If 1 ≤ i ≤ n− 1 and |Ti| = |Ti+1| = 1, then (A∪ T1 ∪ · · · ∪ Ti, Ti+1 ∪ · · · ∪
Tn ∪ B) is a 3-separation.

Take a 3-sequence (A,
−→
Z1, ti,

−→
Z2, ti+1,

−→
Z3, B) in which the number of elements

occurring between ti and ti+1 is a minimum. If e ∈ Z2, then, without loss of
generality, we may assume that e ∈ Tj for some j < i. Evidently |Tj | ≥ 2 and
we have a 3-sequence of the form (A,

−→
Y1,

−→
Tj,

−→
Y2, ti,

−→
Y3, ti+1,

−→
Y4, B). By combining

the last two sequences using Corollary 4.5, we get the following 3-sequence, where
Y = Y1 ∪ Tj ∪ Y2:

(A,
−→
Y1,

−→
Tj ,

−→
Y2,

−→
Z1 − Y, ti,

−→
Z2 − Y, ti+1,

−→
Z3 − Y, B).

As e ∈ Z2 ∩ Y , this last 3-sequence contradicts the choice of (A,
−→
Z1, ti,

−→
Z2,

ti+1,
−→
Z3, B). We deduce that Z2 = ∅.

Now if |Tk| = 1, then Tk is contained in Z1 or Z3 depending on whether k < i or
k > i+1. Next assume that |Tk| ≥ 2 and k < i. No element e of Tk is in Z3 otherwise
e jumps ti and ti+1, which contradicts Lemma 10.9. Hence Z1 = T1 ∪ T2 ∪ · · ·Ti−1

and Z3 = Ti+2 ∪ · · · ∪ Tn and (10.10.6) follows.

On combining (10.10.5),(10.10.6), and the fact that each of A and B is exactly
3-separating, we immediately get:

10.10.7. If 0 ≤ i ≤ n, then (A ∪ T1 ∪ · · · ∪ Ti, Ti+1 ∪ · · · ∪ Tn ∪ B) is exactly
3-separating.

Finally, to establish that, for any orderings
−→
T1,

−→
T2, . . . ,

−→
Tn of these sets,

(A,
−→
T1,

−→
T2, . . . ,

−→
Tn, B) is a 3-sequence, we show the following.

10.10.8. Suppose |Ti| ≥ 2 for some 1 ≤ i ≤ n. If (T ′
i , T

′′
i ) is a partition of Ti

into non-empty sets, then (A ∪ T1 . . . ∪ Ti−1 ∪ T ′
i , T

′′
i ∪ Ti+1 ∪ · · · ∪ Tn ∪ B) is a

3-separation.

To see this, take a 3-sequence (A,
−→
L ,

−→
Ti,

−→
R, B). Then by Corollary 6.2, we get

another 3-sequence by permuting the elements of Ti so that
−→
Ti has the form T ′

i , T
′′
i .

Moreover, L = T1 ∪ · · · ∪ Ti−1 and R = Ti+1 ∪ · · · ∪ Ti, so the result follows.

Assume that we have a 3-sequence of the form (A, Tσ(1), Tσ(2), . . . ,
Tσ(n), B). If, in this sequence, Ti occurs before Tj where i > j, then every ele-
ment of Ti jumps every element of Tj so we get a contradiction to (10.10.3) or
Lemma 10.9. �

Lemma 10.11. Let (A, X, B) be a 3-sequence that contains no clocks,no p-flans,
and no p-coflans. Let {T1, T2, . . . , Tn} be the collection of maximal segments and
maximal cosegments in X, and assume that they are labelled so that there is an
(A, B) 3-sequence of the form (A, T1, T2, . . . , Tn, B).
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(i) If x ∈ Ti and x has an element y in its jump-set such that y 6∈ Ti, then y
is in Ti−1 or Ti+1.

(ii) If 2 ≤ i ≤ n − 1 and Ti has a single element ti, then ti has no element in
its jump-set.

(iii) If |Ti| = 2, then at most one element of Ti has an element of the other type
in its jump-set.

(iv) If |Ti| ≥ 3, then at most two elements of Ti have elements of the other type
in their jump-sets. Moreover, when there are two such elements, one has
its jump partner in Ti−1 and the other has its jump partner in Ti+1.

Proof. Suppose x ∈ Ti and y ∈ Tj , and x and y are in each other’s jump-sets.
Assume that j > i+1. Then, because there is an (A, B) 3-sequence in which x and
y are consecutive, it follows that, for some k with i+1 ≤ k < j, there is an element
z of Tk such that z jumps x or y. But this contradicts Lemma 10.9. We conclude
that j ≤ i + 1 and, similarly, j ≥ i − 1. Thus (i) holds.

Now suppose that Ti = {ti} and 2 ≤ i ≤ n−1. If ti has an element e in its jump-
set, then, by (i), we may assume that e ∈ Ti−1. Since there is an (A, B) 3-sequence
of the form (A,

−→
T1,

−→
T2, . . . ,

−→
Tn, B), we may assume that e is the last element of Ti−1.

Then, interchanging e and ti shows that Ti+1 ∪ e is a segment or cosegment that
contradicts the maximality of Ti+1. Hence (ii) holds.

Next suppose that 1 ≤ i ≤ n and |Ti| ≥ 2. Let {si, ti} ⊆ Ti and assume that
each of si and ti has an element outside of Ti in its jump-set. If s′i and t′i are in the
jump-sets of si and ti, respectively, and s′i and t′i are both in Ti−1 or are both in
Ti+1, then, by Theorem 7.2, we have a clock; a contradiction. Thus we may assume
that s′i ∈ Ti−1 and t′i ∈ Ti+1. Part (iv) follows from this. Now let |Ti| = 2. As
(s′i, si, ti, t

′
i) occurs as a consecutive subsequence of an (A, B) 3-sequence, it follows

that (si, s
′
i, t

′
i, ti) does too. Thus Jsi ∩Jt′i , which equals {ti, s′i}, contains an element

of each type, so we have a clock; a contradiction. �

The next lemma is the final preliminary result needed for the proof of the main
theorem of the paper.

Lemma 10.12. Let (A,
−→
X, B) be a 3-sequence that contains no clocks. Suppose

that (u, v, w, x) is a consecutive subsequence of
−→
X such that u and v are of different

types and w and x are of different types. Then either u and v cannot jump each
other, or w and x cannot jump each other.

Proof. Assume that u and v can jump each other, and w and x can jump each
other. Then, since (v, u, w, x) is also a consecutive subsequence of an (A, B) 3-
sequence, we may assume that v and w are of the same type. Then u and x are
also of the same type. As (v, u, x, w), and hence (v, x, u, w), occurs as a consecutive
subsequence of an (A, B) 3-sequence, we have that Ju ∩ Jw ⊇ {v, x}. Thus, by
Theorem 7.2,

−→
X contains a clock; a contradiction. �
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We are now ready to prove Theorem 10.13, which describes the very simple
structure of an (A, B) 3-sequence with no clocks, no p-flans, and no p-coflans.

Theorem 10.13. Let (A,
−→
X, B) be a 3-sequence that contains no clocks, no p-flans,

and no p-coflans and suppose that |X | ≥ 3. Let T1, T2, . . . , Tn be the collection of
maximal segments and maximal cosegments in X. Then there is a unique ordering
on these sets such that (A, T1, T2, . . . , Tn, B) is a 3-sequence, and every (A, B) 3-
sequence can be obtained from this one by the following two steps:

(i) arbitrarily reorder the elements of each Ti; and
(ii) look among these reorderings at when the last element of Ti is in the jump-

set of the first element of Ti+1. Such guts-coguts swap pairs are disjoint.
Pick some subset of these swap pairs and swap each element with its partner.

Furthermore, the swaps in (ii) are subject to the following restrictions:

(a) if Ti contains a single element, then this element has empty jump-set;
(b) if Ti contains two elements, then at most one of these elements has an

element outside of Ti in its jump-set, and the latter such element, which is
unique, is in Ti−1 or Ti+1; and

(c) if Ti has at least three elements, then Ti has a subset T ′
i containing at most

two elements such that no element of Ti − T ′
i has any elements outside of

Ti in its jump-set; each element e of T ′
i has a unique element j(e) outside

of Ti in its jump-set; j(e) is in Ti−1 or Ti+1; and if T ′
i contains e and f ,

then one of j(e) and j(f) is in Ti−1 and the other is in Ti+1.

Proof. The fact that there is a unique ordering on the sets T1, T2, . . . , Tn such that
(A, T1, T2, . . . , Tn, B) is a 3-sequence was proved in Theorem 10.10. Moreover, it is
clear that every sequence obtained from (A, T1, T2,
. . . , Tn, B) by (i) and (ii) is a 3-sequence. We now need to show that every 3-
sequence (A,

−→
X0, B) can be obtained by the procedure described. Clearly

−→
X0 breaks

into a collection of maximal consecutive subsequences of elements of the same type.
We shall call such subsequences pieces.

We should like to show that we can recover a sequence of the form T1, T2, . . . , Tn

from
−→
X0 by a sequence of swaps of two consecutive elements. More precisely, in−→

X0, consider all pairs (e, f) of elements such that

(a) e and f are consecutive;
(b) e and f are of different types;
(c) e and f are in each other’s jump-sets; and
(d) replacing (e, f) by (f, e) will reduce the number of pieces into which

−→
X0 is

divided.

By Lemma 10.9, each element is in the jump-set of at most one element of the
other type. In particular, distinct pairs satisfying (a)–(d) are disjoint. Moreover, by
Lemma 10.12, between any two consecutive such pairs, there is at least one element.
From these facts, we deduce that the swapping of one pair (e1, f1) satisfying (a)–(d)



54 RHIANNON HALL, JAMES OXLEY, AND CHARLES SEMPLE

will have no affect on any other pair (e2, f2) satisfying (a)–(d). Thus these swaps
can be done independently of each other. Let

−→
X1 be obtained from

−→
X0 by swapping

all pairs (e, f) satisfying (a)-(d).

We want to show that
−→
X1 has the form T1, T2, . . . , Tn. Assume it does not.

Let
−→
X1 = (x1, x2, . . . , xm). Take a sequence of the form (T1, T2, . . . , Tn) and or-

der the elements of each Ti to get a sequence
−→
X2 = (x1, x2, . . . , xk−1, yk, yk+1,

. . . , ym) where yk 6= xk and k is as large as possible. Then xk and yk are in each
other’s jump-sets. If they belong to the same Ti, then we can move xk in

−→
X2 so

that it immediately follows xk−1, contradicting the choice of
−→
X2. Thus xk and yk

belong to different Ti’s. By the definition of
−→
X2 and Lemma 10.11, we may assume

that yk ∈ Ti and xk ∈ Ti+1.

Now, by Lemma 10.9, xk is in the jump-set of no other element of Ti. It follows
that Ti ⊆ {x1, x2, . . . , xk−1, yk}. If k + 1 = m, then, by interchanging xk and
yk in

−→
X1, we reduce the number of pieces into which this sequence is divided,

contradicting the choice of
−→
X1. Thus m > k + 1.

Assume that yk 6= xk+1. Because of
−→
X2, we see that yk jumps both xk and

xk+1. Thus, by Lemma 5.10, xk and xk+1 are of different types. As xk and yk

are also of different types, we deduce that yk and xk+1 are of the same type. Also
yk jumps xk+1. Therefore, since yk ∈ Ti, Lemma 10.9 implies that, xk+1 ∈ Ti.
Then, from considering

−→
X1, we deduce that yk, xk, and xk+1 are mutually jumping;

a contradiction. We conclude that yk = xk+1.

If k = 1, then yk ∈ T1 and, since xk is the first element of
−→
X1, we deduce that

xk jumps every element of T1. Thus |T1| = 1, so xk+2 is of a different type to yk

and hence is of the same type as xk. Thus, interchanging yk and xk in
−→
X1 reduces

the number of pieces; a contradiction. We may now assume that k > 1.

Clearly xk−1 ∈ Ti−1 or xk−1 ∈ Ti. In the first case, xk−1 and yk are of different
types, so xk−1 and xk are of the same type. Since they are consecutive in

−→
X1, we

deduce that {xk−1, xk} ⊆ Ti−1; a contradiction. Thus xk−1 ∈ Ti. We also know
that yk ∈ Ti and that xk+2 6∈ Ti. It follows, since yk and xk+2 are consecutive in−→
X1, that xk+2 and yk are of different types. Thus xk+2 and xk are of the same type
and, interchanging xk and yk in

−→
X1 reduces its number of pieces; a contradiction.

We conclude that
−→
X1 has the form T1, T2, . . . , Tn. We can now recover

−→
X0 by

reversing all the swaps that were done to produce
−→
X1 from

−→
X0, noting that these

swaps satisfy (ii). �

The last theorem tells us that once we eliminate clocks, p-flans, and p-coflans,
we are left with 3-sequences that are essentially just sequences of maximal segments
and maximal cosegments. In order to achieve this result, we needed to view a single
coguts element that was not contained in any 2-element cosegment as a maximal
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cosegment. This may seem unsatisfactory. To remedy this, we now consider se-
quences that consists of single coguts elements broken by sets of consecutive guts
elements. Such a structure arises naturally when we have a p-flan with its elements
consecutive. We show in the next result that, when this situation arises, the union
of two consecutive coguts elements and the set of guts elements between them is
either a cocircuit or a coindependent set. In the case when we have a consecu-
tive sequence of these sets all being cocircuits, the local connectivity function and
Lemma 9.7 shows us that we have a structure that can basically be viewed as a
p-flan without a tip. The other situation, when the union of two consecutive coguts
elements and the set of guts elements between them is coindependent essentially
corresponds geometrically to having the segments that immediately precede and
succeed this part of the 3-sequence being skew lines.

Corollary 10.14. Let (A,
−→
X, B) be a 3-sequence that contains no clocks, no p-

flans, and no p-coflans and suppose that |X | ≥ 3. Let
−→
X = (T1, T2, . . . , Tn) where

each Ti is a maximal segment or a maximal cosegment in X. Suppose each maximal
cosegment contains a single element. If Ti is a cosegment and 1 ≤ i ≤ n − 2, then

(i) Ti ∪ Ti+1 ∪ Ti+2 is a cocircuit; or
(ii) Ti ∪ Ti+1 ∪ Ti+2 is coindependent.

Furthermore, if A′ = A∪T1∪· · ·∪Ti−1 and B′ = Ti+3∪· · ·∪Tn∪B, then u(A′, B′)
is 1 or 0 depending on which of (i) and (ii) occurs.

Proof. By Lemma 9.2, r(A′) + r(B′) = r(M). Thus u(A′, B′) = r(M)− r(A′ ∪B′).
Since

r(A′ ∪ B′) ≥ r(A′ ∪ B′ ∪ Ti) − 1 = r(A′ ∪ B′ ∪ Ti ∪ Ti+1) − 1 = r(M) − 1,

we deduce that u(A′, B′) is 0 or 1 with the first possibility occurring if and only if
Ti ∪ Ti+1 ∪ Ti+2 is coindependent. We may now assume that u(A′, B′) = 1. Then,
by Lemma 9.7, Ti ∪ Ti+1 ∪ Ti+2 contains a unique cocircuit and this cocircuit C∗

contains Ti ∪ Ti+2. Assume that C∗ avoids some element z of Ti+1. Then

r(A′ ∪ Ti ∪ Ti+1) = r(A′ ∪ Ti ∪ {z}) = r(A′ ∪ Ti) = r(A′) + 1.

If r(A′ ∪ {z}) = r(A′), then we can move z in
−→
X so that it precedes Ti. This

contradicts Lemma 10.11. Hence r(A′ ∪ {z}) = r(A′) + 1 = r(A′ ∪ Ti ∪ {z}). Thus
A′ ∪{z} spans Ti, so cl(A′ ∪B′ ∪{z}) = E(M); a contradiction. We conclude that,
when u(A′, B′) = 1, the set Ti ∪ Ti+1 ∪ Ti+2 is a cocircuit. �

11. An algorithm

Let (A,
−→
X, B) be a 3-sequence. The definitions of many of the structures that

appear earlier in the paper rely on knowing the jump-sets of each element x of X .

In this section, we describe an algorithm that finds Lx for every x in X . By a
symmetric algorithm, one can find each Rx, and hence Jx since Jx = X − (Lx ∪
Rx ∪ {x}). We assume that we have a rank oracle, which determines in unit time
the rank of any specified set Y . Equivalently, it suffices to have a closure oracle
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that will determine in unit time whether a specified element is in the closure or the
coclosure of a specified set.

The basis of the algorithm to determine Lx is the observation made in Lemma 5.1
that if (A,

−→
Y1, x,

−→
Z1, B) is a 3-sequence in which |Y1| is minimal, then Y1 = Lx. We

shall say that a 3-sequence of the form (A, Lx, x, Z, B) is one in which x is as far
left as possible. Given a 3-sequence (A,

−→
X1, B) and an element x of X for which

we know Lx, we move x as far left as possible by replacing (A,
−→
X1, B) by the

sequence (A,
−→
Lx, x,

−→
X1 − Lx, B) where the ordering on Lx is that induced by the

ordering on
−→
X1. It follows by Lemma 5.1 that A ∪ Lx ∪ x is 3-separating. The

fact that (A,
−→
Lx, x,

−→
X1 − Lx, B) is a 3-sequence is now an immediate consequence

of Lemma 4.4.

Left-set Algorithm

Given a 3-sequence (A,
−→
X, B) with

−→
X = (x1, x2, . . . , xn) and the sets Lx1 , Lx2,

. . . , Lxi−1 , the algorithm constructs sequence Si as follows.

Step 0 Let S0 = (A, x1, x2, . . . , xn, B) and L0 = ∅.
Step j (where j ≥ 1) Start with the sequence Sj−1 and the set Lj−1 obtained at

step j − 1.
(i) Ask whether there is an element of X to the left of xi in Sj−1.

• If no, then let Sj = Sj−1 and Lj = ∅; stop and output Sj = Si.
• If yes, then go to (ii).

(ii) Let xj−1
i−1 be the element of Sj−1 to the immediate left of xi in Sj−1.

Ask whether xj−1
i−1 jumps xi.

• If yes, then interchange xi and xj−1
i−1 in Sj−1 to give Sj , let

Lj = Lj−1, and go to step j + 1.
• If no, then move xj−1

i−1 as far left as possible in Sj−1 to give Sj,
let Lj = Lj−1 ∪ {xj−1

i−1}, and go to (iii).
(iii) Ask whether xj

i−1, the element of Sj to the immediate left of xi, is in
Lj.

• If yes, then stop and output Sj = Si.
• If no, then go to step j + 1.

Theorem 11.1. The left-set algorithm is well-defined and terminates within i steps.
If the sequence Si that it produces is (A,

−→
Yi , xi,

−→
Zi, B), then Si is an (A, B) 3-

sequence having Yi = Lxi.

Proof. We begin with the 3-sequence S0 = (A, x1, x2, . . . , xn, B) and argue by in-
duction on i. If i = 1, then the algorithm gives S1 = S0 in one step and, evidently,
Lx1 = ∅, so the result holds for i = 1. Assume it holds for i < m and let i = m ≥ 2.
The algorithm performs two types of moves on an (A, B) 3-sequence. The first
involves interchanging two consecutive jumping elements and, by Lemma 5.4, gives
another (A, B) 3-sequence. The second involves moving an element of the left-
set of xi as far left as possible. Initially, the set of elements to the left of xi is
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{x1, x2, . . . , xi−1}. Because each element that we want to move as far left as possi-
ble is an element of Lxi, it is in {x1, x2, . . . , xi−1} so, by the induction assumption,
we know its left-set and so the move can be performed. Furthermore, as noted prior
to the algorithm’s statement, this move produces another (A, B) 3-sequence.

To see that the algorithm terminates within i steps, note that it begins with i−1
elements to the left of xi. Step j takes an element to the left of xi and either moves
it to the right of xi or adds it to Lj. Since the algorithm will certainly terminate
when there are no elements to the left of xi that do not belong to Lj , it will finish
within i steps.

Now suppose that the algorithm terminates at step j outputting Sj . Consider
the reason why the algorithm stopped. One possibility is that, in Sj , there is no
element of {x1, x2, . . . , xn} to the left of xi. In that case, Yi = ∅ = Lxi and the
required result holds. The other possible reason for stopping is that xj

i−1 is in
Lj. Consider when xj

i−1 was added to Lj . This occurred because xj
i−1 = xj−t

i−1 for
some t ≥ 1 and we found that xj

i−1 could not jump xi, so xj
i−1 ∈ Lxi. Then the

algorithm moved xj
i−1 as far left as possible. After that move, the set of elements

to the left of xj
i−1 coincides with its left-set, so all such elements are also in Lxi.

Subsequent moves in the algorithm considered the elements xj−s
i−1 with 1 ≤ s ≤ t−1.

These elements either jump xi if possible, or are moved as far left as possible with
the latter occurring because xj−s

i−1 is in Lxi . If such a move takes an element xk

from the right to the left of xj
i−1, then the move maintains the property that all

elements to the left of xj
i−1 are in Lxi . Finally, at step j, the elements xj

i−1 and xi

are consecutive again. At that stage, the set of elements to the left of xi coincides
with Lxi . Since the algorithm terminates then because xj

i−1 ∈ Lj, we deduce, by
induction, that the theorem holds. �

Theorem 11.2. Let (A,
−→
X, B) be a 3-sequence where

−→
X = (x1, x2, . . . , xn). Sup-

pose that, for all i in {1, 2, . . . , n}, the sets Lxi , Jxi , and Rxi are known along
with the type of xi. Then all segments, cosegments, clocks, crocodiles, p-flans, and
p-coflans can be determined.

Proof. To find all segments, let G be the set of all guts elements in X . If g ∈ G,
then Jg ∩G contains every element that is in some segment with g. If g′ ∈ Jg ∩G,
then the maximal segment containing g and g′ is Jg∩Jg′ . By duality, all cosegments
in X can be found.

To find all clocks, take elements y and z in X that are of different types such
that z ∈ Ry. If |Jy ∩ Jz | ≤ 1, then y and z do not belong to a common clock. If
|Jy ∩Jz | ≥ 2, then y and z are both members of a clock, one fan of which is Jy ∩Jz,
and the other fan of which is Ju∩Jv, where u and v are distinct members of Jy∩Jz.

To find all crocodiles, see if there is a maximal segment Y and a maximal coseg-
ment Z such that, for some k ≥ 2, there are distinct elements y1, y2, . . . , yk of Y
and z1, z2, . . . , zk of Z such that yi ∈ Jzi for all i.
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To find all p-flans, take a guts element y, and see if Jy contains two coguts
elements or two guts elements that are not in a common segment. In both cases,
y ∪ Jy is a maximal p-flan with tip y. Since we know Lz and Rz for all z ∈ Jy, we
know the structure of the p-flan. By duality, all p-coflans can be found. �

Acknowledgements

The authors thank Geoff Whittle for suggesting the problem that this paper
addresses and for numerous helpful discussions while the research was being done.
The second author was supported by the National Security Agency. The third
author was supported by the New Zealand Marsden Fund and a University of
Canterbury Research Grant.

References

[1] Cunningham, W. H. and Edmonds, J., A combinatorial decomposition theory, Canad. J.
Math. 32 (1980), 734–765.

[2] Kahn, J., On the uniqueness of matroid representation over GF (4), Bull. London Math. Soc.
20 (1988), 5–10.

[3] Geelen, J., Gerards, A. M. H., and Whittle, G., Kahn’s Conjecture for 4-connected matroids,
in preparation.

[4] Oxley, J. G., Matroid Theory, Oxford University Press, New York, 1992.
[5] Oxley, J., Semple, C., and Vertigan, D., Generalized ∆−Y exchange and k-regular matroids,

J. Combin. Theory Ser. B 79 (2000), 1–65.
[6] Oxley, J., Semple, C., and Whittle, G., The structure of the 3-separations of 3-connected

matroids, J. Combin. Theory Ser. B, to appear.
[7] Oxley, J., Vertigan, D., and Whittle, G., On inequivalent representations of matroids, J.

Combin. Theory Ser. B 67 (1996), 325–343.
[8] Rota, G.-C., Combinatorial theory, old and new, Proc. Internat. Cong. Math. (Nice, 1970),

pp. 229–233, Gauthier-Villars, Paris, 1971.
[9] Seymour, P. D., Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980),

305–359.
[10] Tutte, W. T., Connectivity in matroids, Canad. J. Math. 18 (1966), 1301–1324.

Mathematical Institute, Oxford OX1 3LB,United Kingdom

E-mail address: rhiannon.hall@corpus-christi.oxford.ac.uk

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana,
USA

E-mail address: oxley@math.lsu.edu

Department of Mathematics and Statistics, University of Canterbury, Christchurch,
New Zealand

E-mail address: c.semple@math.canterbury.ac.nz


