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Abstract 

 

This study presents the application of the finite element method and intelligent systems techniques to the 

prediction of microstructural mapping for aluminium alloys. Here, the material within each finite element is 

defined using a hybrid model. The hybrid model is based on neuro-fuzzy and physically based components 

and it has been combined with the finite element technique. The model simulates the evolution of the internal 

state variables (i.e. dislocation density, subgrain size and subgrain boundary misorientation) and their effect 

on the recrystallisation behaviour of the stock. This paper presents the theory behind the model development, 

the integration between the numerical techniques, and the application of the technique to a hot rolling 

operation using aluminium, 1wt% magnesium alloy. Furthermore, experimental data from plane strain 

compression (PSC) tests and rolling are used to validate the modelling outcome. The results show that the 

recrystallisation kinetics agree well with the experimental results for different annealing times. This hybrid 

approach has proved to be more accurate than conventional methods using empirical equations. 

 

Keywords: modelling, finite element, hybrid model, hot rolling, neuro-fuzzy, microstructure, 

recrystallisation. 
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1. Introduction 

Modelling the microstructural evolution in aluminium alloys during hot deformation, in which static 

recrystallisation plays a major role, has proved to be a difficult task. Different physically-based models have 

been developed in which recrystallisation is analysed in terms of nucleation and growth. The internal state 

variables used in these phenomenological models are the main factors that control the flow stress and 

recrystallisation kinetics of the material. Thus, suitable prediction of these variables is essential. During hot 

deformation operations such as forging, rolling and extrusion, the workpiece undergoes continuous changes in 

the strain rate and temperature during straining. Such changes have a significant effect on the evolution of the 

microstructure and subsequent recrystallisation behaviour [1][2].  

 

This paper shows how the combination of a hybrid model with the finite element (FE) technique can be used 

to develop a model for predicting the evolution of the internal state variables (i.e. dislocation density, 

subgrain size and subgrain boundary misorientation) and subsequent recrystallisation behaviour.  This hybrid 

model has been developed for aluminium alloys and it covers a wide range of deformation conditions, namely 

temperature, strain rate and time. The model is built to include compositional ranges, but this paper presents 

results for only one alloy composition. The model predicts the evolution of the transient transformation 

behaviour of the internal states using neuro-fuzzy models and the final flow stress using phenomenological 

equations based on internal state variables. Subsequently, the static recrystallisation kinetics have also been 

predicted using physically-based equations.  

 

Hybrid modelling techniques provide a valuable modelling tool combining different modelling approaches in 

one dynamic model [3]. The hybrid model efficiently combines black-box data-driven models (neuro-fuzzy) 

and white-box models (physical equations). The white-box model ensures that the results are physically 

acceptable, while the black-box model is used to increase the accuracy of the results. A hybrid modelling 

approach was adopted in this study using parallel and serial parametric and non-parametric models. They 

have the advantages of dealing better with sparse data, extrapolation and uncertainty in the initial model [4]. 

 

It is common practice to use plane strain compression (PSC) testing to establish the flow stress behaviour of a 

particular material [5] under different hot working conditions. The derived constitutive empirical relationship 

is then used in computer models to simulate thermomechanical processes such as rolling, forging or extrusion. 

The finite element method is a well established and increasingly popular technique for such 

thermomechanical simulations. When using this technique, the local prediction of strain, strain rate and 

temperature can be mapped and then used in other models to predict microstructural evolution. This strategy 

was adopted in the present work to predict the microstructural evolution and recrystallisation kinetics of 

aluminium alloys using phenomenological models. Furthermore, a comparison of finite element results 

between classical constitutive equations and the embedded neuro-fuzzy approach developed in this work is 

presented. This is done using both hot rolling and PSC testing of an Al-1wt% magnesium alloy (Al-1%Mg). 

 

 



 3 

2. Physical Modelling of Materials Properties 

 

Modelling of the thermomechanical processing effects on metal properties during rolling, forging and 

extrusion involves local regions undergoing change of deformation conditions. Such changes involve a 

continuous change in strain rate and/or temperature and changes in strain path. A decrease in strain rate and 

change in straining direction have been found to have a significant effect on the evolution of deformation 

microstructure, texture and subsequent recrystallisation behaviour [6][7][8][9]. 

 

2.1. Microstructure Internal States 

The reason for the above effects is considered to arise from the different evolution of so-called geometrically 

necessary dislocations during monotonic and reversed deformation, or during change in strain rates.  The 

dislocation density within sub-boundaries, b, changes according to the relationship b = C/b, where C is a 

geometrical constant (≈1-2 depending on the type of the sub-boundaries),   is the subboundary 

misorientation in radians, b is the Burger vector, and  is the mean linear intercept subgrain size.  The value of 

C increases with strain in monotonic deformation, but decreases with strain after change in straining direction 

[6][7][8][9] or decrease in strain-rate [7][10][11].  On the other hand, spacing between the sub-boundaries  

decreases while misorientation across the sub-boundaries  increases. 

 

The evolution of dislocation substructure and subsequent recrystallisation behaviour under deformation 

conditions with changes in strain-rate or strain path is very complex. The complex evolution of dislocation 

substructure cannot be quantitatively described using conventional evolution laws [12][1], which have been 

developed based on experimental results obtained in laboratory scale tests under constant deformation 

conditions. By considering the internal states produced by deformation, substructure and subsequent 

recrystallisation behaviour can be modelled successfully for a commercial Al-1%Mg alloy [13].  

 

2.2. Modelling of Flow Stress 

Modelling of the flow stress is carried out in terms of the internal state variables (i
-1/2, , ) where i  is the 

dislocation density inside the subgrains,  and  are the subgrain boundary parameters defined above. These 

in turn are determined by the deformation conditions of temperature, strain rate and strain (T,  , ). The final 

flow stress () is the sum of the effective stress (e) (known as friction stress (f) [7] and the internal stress 

(i) that arises from microstructure as shown in equation 1. 
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where i is the thermal stress due to interaction of dislocations inside subgrains,  is the long range internal 

back stress due to subgrain boundaries, d is the stress arising from grain boundaries, p is the stress due to 

second phase particles. 
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In single phase polycrystals with large grains compared to subgrains, which undergo only recovery processes 

such as for aluminium alloys, the terms p and d can be neglected and the internal stress is mainly the sum of 

i and Therefore the final flow stress during deformation involves stresses arising from internal 

dislocation (ifrom subgrain boundariesand the friction stress arising from glide of internal 

dislocationsfas [1]: 
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where 1 = 0.38 and 2 = 0.79 for aluminium alloys are constants, M = 3 for polycrystals is the Taylor factor, 

D0  = 1 m2/s is the diffusion frequency, G = (29484-13.6T) MPa  is the shear modulus, b = 0.28610-9m is the 

Burgers vector,  m is the mobile dislocation density, which is the same order of magnitude as internal 

dislocation density i for hot deformation at constant strain rate, B is a material constant reflecting solution 

hardening, and Z is the Zener-Hollomon parameter. 

 

2.3. Modelling of Recrystallisation Behaviour 

Nucleation of recrystallisation takes place in different places within a deformed material. A generalised model 

to relate the internal state variables and their distribution has been proposed [13] and is described by equations 

(5-11). The number of nuclei formed per unit volume,  

3442332211
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where PV is the number of grain corners per unit volume, and Lv is the line length per unit volume at which 

three grains meet, Sv is the grains boundary surface area per unit volume, P is the probability of finding 

mobile sub-boundaries, 1 - 4 are geometrical parameters and p1 – p4 are probabilities for finding subgrains 

with a size larger than a critical value that can provide the nuclei for recrystallisation related to the four 

different sites. For plane strain compression tests (PSC),  

Lv = 1.513[exp(/1.155)+0.5(1 + exp(-(/1.155))].d0
-2 

Sv = (0.429 exp(-/1.155) + exp((/1.155) + 0.571).d0
-1

 

where d0 is the original grain size. 

 

As the strain regime covers a wide range of thermomechanical processing conditions and the grain boundaries 

surfaces are the most significant places for nucleation, the equation can be simplified to: 

233


 v
V

S
pN   (6) 

where for the present alloy d0 = 117 m and  p3 = 0.0191. 

 



 5 

Recrystallisation kinetics is determined by both nucleation density and growth rate of nuclei. If the nucleation 

is site-saturated, which is a reasonable approximation after hot deformation, then the following kinetics law of 

recrystallisation is obtained: 

))(exp(1)( tXtX ext  (7) 

where X(t) is the fraction recrystallised after annealing time t and Xext(t) is the corresponding extended volume 

which is determined by: 

3).(
4

3
)( tGNtX rVext   

(8) 

where Gr is the growth rate of the recrystallisation nuclei which is mainly affected by the recovery from the 

deformed microstructure, and by the spatial distribution of the stored energy on the scale of the grain size, 

which is the same as that calculated from experimental results of the internal dislocation structure and 

statistical analysis and is related to the stored energy (PD, J.m-3) and calculated by: 
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where c is the critical angle for distinguishing between a grain and subgrain boundary (approximately 15). 

The time for 50% recrystallisation can be calculated by the following equation 

3/11
350

 VD NPCt  (10) 

where C3 is a temperature-dependent material constant. For the present alloy at 400C (C3 = 71010 J.s.m-4).  

 

For site-saturated nucleation, the recrystallised grain size is simply calculated from the nucleation density as: 

3/1
v

ANdrex  (11) 

where A is a geometric parameter to relate the surface linear intercept size and spatial diameter of the grains. 

For a grain structure of tetrakiadecahedra A = 0.2347. 

 

3.  Hybrid Modelling Developments 

The combination of physical knowledge and black-box data, termed “hybrid model” in this work, is an 

attractive way for further development of modelling. It has been shown [4][14] that hybrid modelling 

approaches can be applied to simulate plastic deformation behaviour and microstructural evolution during 

thermomechanical processing.  

 

3.1 Neuro-Fuzzy Modelling 

Intelligent systems researchers have developed computational theories that begin with well-defined 

computational goals and that provide information-processing descriptions of target behaviours in terms of 

inputs, outputs, and algorithms [15]. 

 

Modelling plays a very important role in designing an intelligent system, because in modelling one tries to 

uncover what actually happens in the natural system. Not only should a model reproduce some features of the 
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natural system it is supposed to describe, but its formulation should also be consistent with what is known 

about the considered natural system: parameters cannot take arbitrary values, and the mechanisms and 

structures of the model must have some physical plausibility. Furthermore, the model should make testable 

predictions, and ideally all variables and parameters should be accessible to experiment.  

 

The Adaptive Network based Fuzzy Inference System (ANFIS) architecture and learning is based on a fuzzy 

inference system [16] implemented in a framework of an adaptive network. Using a hybrid learning 

procedure, ANFIS can learn an input-output mapping based on human knowledge (in the form of if-then 

fuzzy rules). The ANFIS architecture has been employed to model non-linear functions, identify non-linear 

components on-line in a control system, and predict a chaotic time series. ANFIS performs the identification 

of an input-output mapping, available in the form of a set of N input-output examples, with a fuzzy 

architecture, inspired by the Takagi-Sugeno modelling approach [17].  

 

3.2. Internal States Evolution 

The dynamic evolution of the internal states has been modelled using a neuro-fuzzy technique which has been 

applied to hot deformation of Al-1%Mg alloy during plane strain compression tests with constant, increasing 

and decreasing strain rates. 

 

Based on the developed model for the stress-strain relationship the steady-state levels of the internal states are 

calculated and utilised to scale the dynamic behaviour of each state for the selected composition with respect 

to the temperature and strain rate. The internal states are the dislocation density (geometrically-necessary and 

random), the subgrain size and misorientation. The evolution equation for the internal variables can be 

represented by the following equation: 

),...,,,( 1 nj SSTfS    (12) 

where Sj is a microstructural characteristic. 

 

3.3. Hybrid Model 

After the internal states have been calculated, the stress due to each individual state can be calculated and 

summed together to calculate the final stress. Nevertheless, there is the friction stress which is another 

component to be added to the final stress. The friction stress is not measurable and therefore it is estimated as 

the difference between the final stress (measured) and the summed stress due to the internal states. This 

approach means that the stress/strain data used in the FE models of deformation processes are accurate, and 

only the internal states captured in the microstructure are used to compute the recrystallisation behaviour. 

This distinction is hidden in the empirical modelling. 

 

In the hybrid model, (Figure 1), the model inputs are the composition, temperature, strain-rate and strain. The 

model calculates the internal state variables, the final flow stress and the recrystallisation behaviour (Nv, drex, 

t50). Since the model covers a wide range of temperature and strain rate for each individual composition, it 
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was important to tune the model to adjust some of the parameters for scaling the internal state variables and 

calculating the individual internal stresses. 

 

 

4. Conventional Empirical Modelling 

The conventional empirical model is based on the following equations for calculating the stress/strain (-) 

relationships:  

5.0
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where 0.5 is the stress at a strain of 0.05, ss is the steady state stress, r  is the strain at which 
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where a and b are composition dependant constants with values of 0.074 and 2.4710-5  respectively for the 

present alloy and 
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Z is the Zener–Hollomon parameter, which is defined by: 
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where   is the equivalent strain rate, Qdef is the activation energy for deformation (Qdef =156 kJ/mol), and T is 

the deformation temperature measured in Kelvin. 

 

The relationship between the fraction recrystallised (XV ) and the holding time (t) is generally represented by 

the following equation: 
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where t is annealing time, k is the Avrami exponent with a commonly reported value of 2 [18], and t50 is the 

time to 50% recrystallisation. For the calculation of t50, the empirical model bypasses the evolution of 

substructure, and relates the final microstructure to strain, strain rate and temperature by regression of the 

experimental data.  
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where ε is the final equivalent strain, Qrex is the activation energy for recrystallisation (Qrex  = 230 kJ/mol), R 

is the universal gas constant (R = 8.31 J.mol-1.K-1), and T is the annealing temperature measured in Kelvin and 

,  and α is a constant (α = 5.59 for the present alloy). The recrystallised grain size is calculated by 

39.024.051081.1  Zd rex
 (20) 

 

 

 

5. Finite Element Modelling 

The finite element method has been used to simulate both hot rolling and PSC testing of Al-1%Mg.  The first 

model focuses on hot rolling on a laboratory mill. Figure 2 shows a schematic of the hot rolling process 

including the thermal phenomena involved. Here, the hot aluminium alloy (at about 420C) is drawn into the 

roll gap, where its thickness is reduced by up to 50%. The process was simulated using a two-dimensional 

finite element model (plane strain), which was built using a commercial general purpose finite element 

software package (MSC.MARC). Figure 3(a) shows the finite element mesh used for the analysis. The stock 

was modelled as a rigid viscoplastic material, 100mm long with a thickness of 20mm using 2-dimensional 

quadrilateral elements, which are full integration 4-node plane strain elements. This element uses 4 

integration or Gauss points to evaluate the behaviour inside every element. Symmetry conditions were applied 

at the bottom of the stock; thus only half of the process was modelled. The model was thermomechanically 

coupled and all the material properties were functions of temperature. The heat transfer coefficient at the 

contact zone was assumed to be 50 kW.m-2.K-1. The heat generated by both friction and plastic work was 

included, with 0.95 of the plastic work converted to heat.  

 

To represent friction an algorithm based on Coulomb‟s law was applied: 

t nf f  (21) 

where  is the coefficient of friction, ft is the tangential or friction force and fn is the normal reaction. For the 

finite elements models the above equation was modified thus: 

2
arctan r

t n

v
f f

C




 
  

 
 (22) 

where vr is the relative sliding velocity and C is a constant that has a typical value of 10% of the mean sliding 

velocity. This formula smoothes the sudden changes in direction of the frictional forces at the neutral zone.  

 

The stock was modelled as an Al-1weight % magnesium alloy (Al-1%Mg) and its flow stress was represented 

using two different approaches: a conventional constitutive equation [19] and the hybrid model developed in 

this work as described in the preceding sections of the paper. For both, the flow stress depends upon the 

strain, strain rate, and temperature. 

 

The model was thermomechanically coupled, incorporating thermal effects on the deformation behaviour of 

the stock (see Figure 2). The heat generated by friction at the roll-stock interface was evaluated as: 
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f f r mQ f v Q    (23) 

where Qf is the heat generated by friction, ff is the friction force, vr is the relative sliding velocity and Qm is 

the mechanical equivalent of heat. In addition, the heat generated by plastic deformation was considered in 

the modelling. 

 

For the PSC test, the specimen was again modelled as a rigid viscoplastic material, 50mm long with a 

thickness of 10mm, and the tools were modelled as rigid, with heat transfer. The initial temperature was set to 

400C and the nominal strain rate was 1 s-1. Symmetry conditions were applied at the bottom and on the right 

side; thus only one quarter of the specimen was modelled as shown in Figure 3b. The same type of element 

and thermal boundary condition as in the rolling case were applied. Automatic re-meshing was used during 

this analysis to avoid excessive element distortion and to produce a finer mesh. 

 

6. Experimental Procedure 

The experimental procedure used for PSC testing and measurement of fraction recrystallised after subsequent 

annealing has been described in detail elsewhere [20][18][21]. For the specific conditions in this paper, tests 

were carried out on a laboratory melted Al – 1% Mg alloy, designated Mat B previously [21], of composition, 

by weight: 1.06%Mg, 0.12%Si, 0.47%Fe, 0.016%Cu, 0.005%Mn, 0.013%Ti, 0.02%Zn, remainder Al, and 

initial grain size of 90 μm. The test furnace temperature was 400C, and the tools were heated so that the 

faces in contact with the specimen were also at 400C. The specimens of initial thickness 10 mm were 

deformed at an equivalent strain rate of 1 s-1 to an equivalent strain of 0.67. They were then held in the test 

furnace for times of 40, 100, 160 and 320 s and water quenched to room temperature. 

 

A central longitudinal section through the deformed region was mechanically polished, electropolished and 

anodised for measurement of the fraction recrystallised. Measurements were made under polarised light using 

a graticule with 21 points in the eyepiece of the microscope. The fraction of the 21 points falling in the 

recrystallised grains was counted. The magnification was such that no two adjacent points fell in the same 

grain. After each count, the specimen was moved so that the adjacent area on the traverse line was measured. 

Point counting was carried out on 16 traverse lines through the thickness and 1 mm apart, so that the 

distribution of recrystallisation across the whole of the deformed area was determined. Values in the four 

quadrants were averaged to eliminate any asymmetry, and the resulting distributions are presented as contours 

on the quadrant with the left edge in line with the edge of the tool and the bottom right hand corner at the 

centre of the specimen. 

 

The hybrid model and the training data used in this work have been reported elsewhere [22][23]. For the 

conventional approach, the model was based on equations (13-20). For comparison of the overall 

recrystallisation kinetics from experiment with those from the models, the mean value of fraction 

recrystallised in the deformation zone was determined from the contour plots for local fraction recrystallised 

by linear summation of the area fractions of the different values of X. 



 10 

 

7. Results and Discussion 

Figure 4 (a), (b) and (c) show the microstructure variables computed by the hybrid model as a function of 

strain, and Figure 4 (d) shows the stress-strain curves computed from these data together with a friction stress, 

which is independent of microstructure [22]. As expected from the hybrid modelling procedure, these stress - 

strain curves are in excellent agreement with the experimental curves from plane strain compression tests 

[19]. The model also uses the microstructure variables in equations (5-11) to obtain the static recrystallisation 

variables shown in Figure 5 [22]. 

 

Figure 6 compares the local distributions of temperature, equivalent strain, and equivalent strain rate, together 

with the flow stress computed by the conventional and hybrid models by linking them to finite element 

software for plane strain rolling. It can be seen that the temperature and strain distributions produced by both 

approaches are in close agreement, but there are minor systematic differences in the strain rate distributions, 

with the hybrid model giving a narrower band of higher strain rate. Minor differences also arise in the flow 

stress distributions, with the hybrid model giving slightly larger region of higher flow stress. The hybrid 

model also maps the distributions of microstructure variables in the deforming material assuming no static 

recovery in the short time after exit, as shown in Figure 7. Figure 7(c) indicates that the dislocation density in 

the rolled slab increases from centre to surface, but the difference for the present rolling conditions is too 

small to measure experimentally. The same is true for the subgrain size, Figure 7(a), but Figure 7(b) indicates 

that misorientation is expected to vary from 3 to more than 4, which should be detectable experimentally. 

 

Figures 8 and 9 show equivalent results from the hybrid model for the deformation variables and for the 

microstructure variables at the end of a PSC test.  It can be seen that that the characteristic heterogeneity of 

the deformation variables leads to larger variations in the as-deformed microstructure variables than expected 

after rolling. In principle, they could all be mapped experimentally. Although measuring the distribution of 

dislocation density by transmission electron microscopy would be impractical, subgrain size and 

misorientation could be determined by electron back scattered diffraction (EBSD). However, from an 

industrial point of view, the consequences of these microstructure distributions on subsequent recrystallisation 

behaviour are of more interest than the distributions of the deformed microstructures themselves. 

 

Experimental measurements of the distribution of fractions recrystallised after annealing for four different 

times are compared directly with the predictions of the conventional and hybrid models in Figure 10. For the 

conventional model, the distributions of temperature, equivalent strain and strain rate shown in Figure 8 were 

applied in equations (18) and (19). It can be seen that the overall distributions show similar characteristics, 

with the hybrid model results appearing to be superior, but detailed comparison is made difficult by the fact 

that the fractions recrystallised predicted by the models differ somewhat from the experimental value for a 

given annealing time. As described in Section 4, the mean fractions recrystallised in the deformation zone 

were determined from the distributions. The results are shown as recrystallisation curves in Figure 11. All the 

curves are of similar slope, and the hybrid model gives kinetics reasonably close to experiment. In fact, the 
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kinetics are in surprisingly good agreement considering that the hybrid model was trained on data [13], and 

the constant α in equation (19) was found from data [13], which were not from the same research as the 

experimental observations [21]. In contrast, the conventional model gives a value of t50 more than twice the 

experimental value. In this context, it is of interest to note that in the experimental research [21] two different 

alloys of similar composition were investigated and the value of α was found to differ by about a factor of 

three. The computed curves in Figure 11 cannot be accurately fitted to an Avrami equation, but are consistent 

in slope with an exponent of 1 found experimentally [21]. 

 

Figure 12 shows the recrystallisation curves computed for four locations in which the local equivalent strain is 

0.670±0.005. These are compared with the curve for the experimental data determined from the contours in 

Figure 10. It can be seen that all the data fit equation (18) with a time exponent of 2 and optimised values of 

t50 for each case. These values of t50 differ somewhat for each of the selected elements because, as shown in 

Figure 8, the final strain rates and temperatures differ somewhat, leading to differences in the final value of Z 

in equation (19). Comparison of the curves in Figure 12 for elements having a final strain of 0.67 with the 

curves in Figure 11 for the mean fraction recrystallised in the deformation zone for a nominal equivalent 

strain of 0.67 shows that the heterogeneity of deformation conditions in the deformation zone causes 

recrystallisation to take place over a much longer time period, but has only a relatively minor effect on the 

value of t50. 

 

From the recrystallisation curves in Figure 11, the annealing times required in the models to give the same 

mean fractions recrystallised in the deformation zone as for the experimental observations were determined. 

Figure 13 shows the distributions of recrystallised fraction predicted by the two models for mean 

recrystallised fractions of 0.11, 0.42, 0.65, and 0.87, which are the same as for the experimental distributions 

after annealing times of 40, 100, 160, and 320 s shown in Figure 10. From Figure 13 it is clear that the two 

models produce closely similar results. Comparison of these results with the experimental results in Figure 10 

for the same fractions recrystallised shows that there are some systematic differences in the distributions. It is 

not certain why these differences arise, but it is probable that they originate from using mean fractions 

recrystallised in the deformation zone in deducing equation (19) used in the  conventional model, and using 

mean fractions recrystallised correlated with nominal equivalent strain in the training data for the hybrid 

model, i.e. the redundant shear strains in the strain distribution, Figure 8(b), were not considered, so the 

effects of all the deformation variables, and changes with strain were not captured in either model. 

 

From these results, it is apparent that the hybrid model should be trained from experimental values of 

microstructure variables mapped onto the local deformation conditions computed by the FE model. As 

emphasised by Pietrzyk et al [24], a heterogeneous distribution of deformation conditions, as in the plane 

strain compression test, Figure 8, then becomes advantageous, because it provides a wide range of data from a 

single test. Having trained the model on such data, it should then apply accurately to the heterogeneous 

deformation conditions on industrial thermomechanical processing, such as rolling. In fact, by using EBSD 

instead of optical and transmission electron microscopy, it is feasible to extend the range of training data 
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available by extending the range of heterogeneous and transient deformation conditions in the PSC tests, e.g. 

by testing specimens of different breadths to examine the influence of different deviations from plane strain 

conditions, or by testing with tools at different temperatures from the specimens to extend the range of 

thermal transients. Three dimensional FE models are available to analyse such results [25] and the models can 

handle the asymmetry sometimes found in experimental tests [26]. A wider range of training data would 

extend the accurate range of applicability of hybrid models for mapping microstructure variables in industrial 

thermomechanical processes. 

 

8. Conclusions 

The finite element method has been used in combination with intelligent hybrid neuro-fuzzy models for 

detailed modelling of flow stress for a thermomechanically processed aluminium alloy. The technique has 

been applied successfully to both hot rolling and PSC testing. The results are compared with those using 

traditional empirical equations for modelling the material properties. Both approaches have produced similar 

results in terms of stress, strain rate, strain and temperature, but the hybrid modelling approach gives the 

additional benefit of calculating the internal states of the process (dislocation density, subgrain size and 

misorientation) in a dynamic manner. In addition, when compared with experimental data, the 

recrystallisation kinetics predicted by the hybrid model were much more accurate than by conventional 

empirical equations. 
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Figure 1.  Block diagram of the microstructure hybrid model 

 

Figure 2.  Schematic diagram of the hot rolling process, showing the complex thermal phenomena taking 

place during rolling. 

 

Figure 3. Finite element meshes used for the modelling of (a) rolling, showing the fine elements used to give 

more accurate representation at the roll-stock interface (b) PSC testing, showing the quadrant of the specimen 

for which results are computed. 

 

Figure 4. Hybrid modelling results for microstructure evolution during static recrystallisation of Al – 1%Mg 

on annealing at the deformation temperature after deformation at a strain rate of 1 s-1 and temperatures of 300 

– 600 oC (a) dislocation density, ρ, m-2, (b) misorientation between subgrains, θo, (c) subgrain size, δ, μm, and 

(d) the resulting equivalent stress – strain curves. 

 

Figure 5. Hybrid modelling results for microstructure evolution during static recrystallisation of Al – 1%Mg 

on annealing at the deformation temperature after deformation at a strain rate of 1 s-1 and temperatures of 300 

– 600 oC (a) nucleation density, Nv, m-3, (b) recrystallised grain size, drex, μm, (c) time for 50% 

recrystallisation, t50, s. 

 

Figure  6.  Comparison of the distributions of (a) temperature, oC, (b) equivalent strain, (c) equivalent strain 

rate, s-1, and (d) flow stress, MPa, calculated by finite element modelling using conventional empirical 

equations (left) and using the hybrid model (right) for rolling a 20 mm thick slab with a uniform initial 

temperature of 400 oC to 10 mm thickness using rolls of 136 mm diameter and a peripheral speed of 60 RPM. 

 

Figure 7.  Hybrid model predictions for evolution of the microstructural variables during rolling (a) subgrain 

size, δ, μm, (b) misorientation between subgrains, θ, o, and (c) dislocation density, ρ, m-2. 

 

Figure 8.  Hybrid model predictions for the distributions of (a) temperature, oC, (b) equivalent strain, (c) 

equivalent final strain rate, s-1 and (d) final flow stress, MPa, calculated by finite element modelling for PSC 

testing a specimen of 10 mm initial thickness at an initial temperature of 400oC and a nominal equivalent 

strain rate of 1 s-1 to a nominal equivalent strain of 0.67. 

 

Figure 9.  Hybrid model predictions for the distributions of the microstructure variables after PSC testing (a) 

subgrain size, δ, μm, (b) misorientation between subgrains, θo, (c) dislocation density, ρ, m-2. 
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Figure 10. Comparison of the distributions of recrystallised fraction computed by the hybrid and conventional 

models with experimental results in specimens annealed at 400oC for (a) 40, (b) 100, (c) 160, and (d) 320 s 

after PSC tests. 

 

Figure 11. Comparison of recrystallisation curves predicted by the models and found experimentally for the 

mean fractions recrystallised in the deformation zone. 

 

Figure 12. (a) Upper-left quadrant of specimen showing the positions of elements with local equivalent 

strains of 0.67, (b)  recrystallisation curves for elements 1 to 4 (numbered from left to right in Figure 12(a)). 

 

Figure 13. Distributions of recrystallised fractions predicted by the hybrid and conventional models for mean 

fractions recrystallised in the deformation zone of (a) 0.11, (b) 0.42, (c) 0.65, and (d) 0.87 after PSC tests. 

 

 


