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Abstract

In this paper we derive an expression for the point source Green's function for the
reduced wave equation, valid in an angular sector whose angle is equal to a rational
multiple of 77. This Green's function can be used to find new expressions for the field
produced by the diffraction of a spherical wave by a wedge whose angle can be
expressed as a rational multiple of n. The expressions obtained will be in the form of
source terms and real integrals representing the diffracted field. The general result
obtained is used to derive a new representation for the solution of the problem of
diffraction by a mixed hard-soft half plane.

1. Introduction

In this work we shall give new solutions to various problems of diffraction of a
spherical acoustic wave by a wedge whose angle can be expressed as a rational
multiple of n. The solutions, corresponding to various soft (Dirichlet) and/or hard
(Neumann) boundary conditions on the wedge faces, is given in terms of geometrical
acoustic source terms, and real integrals representing the diffracted field, for all
positions of source and receiver.

In acoustics such a field representation is useful for physical interpretation and
analytical calculations. Besides the problems of diffraction by a soft wedge or a hard
wedge, we include in our consideration the field produced by diffraction of the
spherical source wave by a hard-soft wedge, that is, a wedge, one face of which is
rigid, the other soft. This type of boundary value problem has applications in noise
barrier design (see Rawlins[9]), and in underwater acoustic problems connected with
sound propagation in coastal channels (see Jacobson et al. [4, 5]).

In 1896 A. Sommerfeld obtained an exact closed form solution to the problem of
plane wave diffraction by a half plane. He used the method of images on Riemann
surfaces corresponding to multivalued solutions of the reduced wave equation, and
indicated how this method could be used to obtain exact closed form solution for the
problem of diffraction by a wedge. The method of constructing the required many-
valued solution of the wave equation was simplified by Sommerfeld in a subsequent
paper [13]. Subsequently Carslaw[2] replaced the image method by a direct
construction of the solution which yields simpler formulae for various types of wave
sources. These solutions had been obtained independently by Macdonald [6, 7] by
summing the Fourier series representation of the Green's function. Other methods of
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obtaining some or all of the principal results have since been put forward by various
authors, including Bromwich[l], Whipple[14], Garnir[3] and Oberhettinger[8]. The
last two authors give extensive bibliographies.

Recently Rawlins[10, 11] derived some new representations for the Green's
function for plane and cylindrical wave diffraction by a rational wedge. The result
for the cylindrical wave Green's function was based on the plane wave Green's
function. Here we derive in a different, more direct, and simpler manner the Green's
function for a spherical point source. The method used here can be applied without
difficulty to deal with more general types of sources, in particular the plane wave and
cylindrical wave source already considered.

In §2 we shall give the geometry of the physical diffraction problems. In §3 we
shall define a periodic Green's function as the solution of a periodic boundary value
problem for a wedge of open angle 2a. By means of this periodic Green's function we
show in §4 that one can obtain expressions for the Green's function for Dirichlet,
Neumann or mixed Dirichlet—Neumann boundary value problems for a wedge of
open angle a. In §5 we give a general complex integral representation for the periodic
Green's function. This complex integral representation for the periodic Green's
function is not new. It has appeared in various guises in the papers already cited. In
§ 6 we show how this Green's function can be reduced to source terms and real integrals
representing the diffracted waves for the special case of a rational wedge a = pn/q (p
and q positive integers). Finally in §7 we give an application in the form of a new
solution for the problem of acoustic diffraction of a spherical wave by a hard—soft
half plane.

2. Geometry of diffraction problems

We shall be interested in finding solution to diffraction problems in wedge shaped
regions. To be specific, we shall consider acoustic diffraction by time harmonic waves
(with harmonic time variation eiwt assumed, but not shown explicitly, in the rest of
the paper).

We shall work in Euclidean space of three dimensions with cylindrical polar
coordinates (r, 8, z). In this space we shall assume there is a wedge of open angle a
with faces defined by the planes 0 = 0 and 8 = ex.. For a = 0 the wedge disappears;
for a = v it becomes a half space. For a =2n the wedge becomes a semi-infinite plane
whose upper and lower faces are considered as distinct.

In physical problems a is necessarily not greater than 2n. However, in the
mathematical analysis that follows we shall be dealing with functions that make
mathematical sense for all real a. Therefore it is of interest to consider wedge angles
a which are virtual with opening a > 2n; their existence is purely mathematical.

We shall consider two points P = (r, 8, z) and Po = (r0,80, z0) which both lie within
the open angle region 0 < 8 < a, and let

R(P, Po) = (r» + r2 + (z - z0)
2 - 2rr0 cos (8 - 0O))»,

R(P,P0) is the shortest distance (in the Euclidean plane) between Po and P; and
D(P,P0) is the shortest distance of the broken line from Po to the edge of the wedge
and thence to P.

We shall assume that a time harmonic point wave source is situated at Po.
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3. Periodic boundary value problem defining a Green's function

We shall define a periodic Green's function for the reduced wave equation operator
V2 + k2 (where k = w/c, c being the velocity of sound) by means of a periodic boundary
value problem posed on a wedge, real or virtual, of open angle 2a.

We shall denote this periodic Green's function by Ga(r,6,z; ro,8o,z0; k) or
Ga{P,P0; k) for an angular opening 2a. Ga(P,P0; k), which is a function of P and Po,
is defined uniquely by the following periodic boundary value problem.

(a) It is a solution of

o) (0 < r <oo,0 < 6 < 2a, -oo < z < o o ) .

(b) I t satisfies the periodic boundary conditions

Ga(r,0,z; r0,60,z0; k) = Ga(r,2a,z; r0,60,zo;k),

-^(r,O,z;ro,6o,zo;k) = -^(r,2a,,z;ro,6o,zo;k).

(c) It satisfies the Sommerfeld radiation condition

lim R(P, Po) (
8G;£p

P°' *> + ikGa(P, Po; *)) = 0.

(d) It satisfies the edge condition

GJP,P0; k) = 0(1) and |gradGa(P,Po; k)\ = o(l/r) as r ^ O .

We remark that it follows from the above properties that the Green's function will
be symmetric, i.e.

Once the above periodic Green's function has been obtained, it is a simple matter to
obtain Green's functions for acoustically hard, soft or mixed hard-soft boundary
value problems for wedges of half this open angle.

4. Green's functions for hard and soft boundaries for a wedge of open angle a.

To simplify notation in this section we shall let the periodic Green's function
Ga(r,6,z; ro,6Q,zo; k) be denoted by Ga(6) or equivalently Ga(60). Then it is not
difficult to show, using the fact that Ga(2noc + 6) = Ga(d) where n is any integer,
that: the Green's function Gs

a(P,P0\ k) for a soft wedge of open angle a is given by
/~*8 / D £> . ln\ /^ / /3 \ t~1 / t ) - . ZJ\ .
\jr \x , ±n , IC) — Ur \U I — VT_I ^ a — (71 ,

the Green's function G*(P,P0; k) for a hard wedge of open angle a is given by

In the same way it can be shown that

G«-ft(P,P0; k) = G2a(d) + G2a(2a-d)-G

is the appropriate Green's function for the wedge which is soft on the face 6 = 0 and
hard on the face 6 = a. The corresponding Green's function for a hard boundary on
the face 6 = 0 and a soft boundary on the face 6 = a is given by

^•8(P,P0; k) = Gta(0)-Gta{2*-6)-G
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For n < a < 2n and n/2 < a ̂  2n the functions Ga(6) and G^Jd) respectively,
mathematically relate to a virtual wedge angle, which explains the necessity to
consider such wedges.

5. A complex integral representation of the periodic Green's function

A complex integral representation for the periodic Green's function defined in §3
for S(P,PQ) = — 4:nS(\P—PO\) has been shown by Carslaw and others [3] to be given

Gct(r,6,z;ro,do,zo;k) = 7±-f 9(0 , T ^ ^ a i / w "W
2^aJ^ cos(£7r/a)-cos((0-0o)7r/a)

where 9(0 = ^ p r , «(g) = (r2 + r\ + (z -zof - 2rr0 cos £)*. (2)

The square root is defined uniquely by ^(0) =Z)(P,P0), so that &(Q is analytic
everywhere except along branch cuts that extend vertically up and down from
branch points above and below the real axis, respectively. These branch points are
located at 2nl±ifl, where ft = cosh"1 {(r2 + rl + (z — z0)

2)/(2rr0)}, and I is any integer:
see Figure 1. In the chosen cut plane — n/2 ^ arg^2(£) ^ n/2. The contour of
integration ^ in the expression (1) is such that the starting point is given by c1+ico
and the termination point is given by c2 + ioo, where — n ^ Cj ̂  0, n ̂  c2 ^ 2TT; and
the contour lies between the branch points £ = + if} and does not intersect any of the
other branch cuts which run parallel to the imaginary axis: see Figure 1.

We shall now use the complex integral representation (1) to obtain a different
representation for the special case of a being a rational multiple of n, i.e. a = pn/q,
where p and q are positive integers. This new representation will be in terms of point
source terms and real integrals. From the results we have already given in §4 this
means we can represent the acoustic field scattered by a soft, hard, or mixed
sofi^hard wedge with an open angle a = pn/q in terms of point sources and real
integrals representing the diffracted field.

6. Green's function for a rational wedge

If the angle is a = pn/q, where p and q are positive integers, the expression (1)
becomes

Q (P p. ft-
2ipn J / ( € ) cos (fy/p) - cos ((d-0o) q/p)' (6)

By using the identity

g sin (£p/q) = ^ sin (g/p)
cos(&/q)-cos((d-d0)p/q) Jl0cosa/p)cos((ff6)/p + 2nm/q) ( '

(see Rawlins [10]) we can rewrite (3) in the form

pn/g(P,P0;k)= S Iv(d-d0 + 2nmp/q), (5)

W-^L™~£X*,fy
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f-plane

Fig. 1. Diagram of the paths of integration in the f-plane. The shaded regions show
where the integral (6) is uniformly convergent. The wavy lines are the branch cuts for
the function

We now distort the path of integration %> in the integral (6), so that it takes up the
new path <<?', as shown in Figure 1. The new path of integration # ' lies along regions
where the integral is uniformly convergent. In distorting the contour <& to take up
the contour # ' the line 0 < Re £ ̂  n, Im £ = 0, is crossed, and therefore if any zeros
of cos(£/p} — cos (l/r/p), (viz £ = ±(ifr + 2npN) where N is an integer) are captured
then they will give rise to pole contributions. Thus

IPW) = S H[TJ- \rjf + 2npN\] <$(i/r + 2npN)

(n + iy)

(x-ip)

cosh (y/p) — cos

sin ((n + iy)/p)idy
cos ((iy + n)/p) — cos (f/p)

sin ((x — ip)/p)dx

cos ((x — ip)/p—cos
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where C0ioTZ<0
H[x] = h

Ufora;> 1

is the Heaviside step function, and where the summation is performed for all integer
values of N which satisfy the inequality — n ^ \jr 4- 2npN ^ n.

In the above expression the first integral has had its limits of integration broken
up, because the path traverses branch cuts. It can be shown, using the appropriately
defined values of @(iy) on the branch cuts, that this whole term vanishes because the
integrand is odd in y. The last integral in the above expression also gives zero
contribution because lim \'&{x — ip)\ ->0 for 0 ̂  x ^ rr. Thus

p->00

N

By using the identity (see Rawlins [10])

+_._, 9{n^ r ( , ( i r r ; y ^ # t . (7)

cos(C,/p) — cos (i/r/p)

_ cos £— cos xjr

where an(ifr) = sin((n+l)i/r/p)/{p sin(ijr/p)}, in the expression (7) we have

AT

1 f°° ^(n+iy) sin ((n + iy)/p) dy
2n p~x J_00 cosh

n - 0 _„„ cosh y + cos xjr

Now by using the fact that &(n + iy) = ^{n — iy) we can write the above expression
as

N

1 , • (A f°° ${n-iy) cosh
- —ap_1(^) s in | —' ' —

7T

- 1 5 (a Or) sinf^=^) T ̂ ~ ^ c o s h ( ^ -
71 n-li \ P I Jo COsh^ + COS

„ , . / ( P - 1 - » A fTO ^(?r - iy) cosh (y(p - 1 - n)/y) dy\
— t*«_iIuTj S i l l I 7T I I \ ; f . I o )

V P J Jo cosh^ + cos^- J v 7
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Thus finally on substituting (8) into (5) we get

Gv.lq(p>po'k)= S 2H[n-\6-60 + 2nmp/q + 2npN\]<<0(d-do + 2nmp/q + 2npN)

1 "^ sin (d-60 + 2nmp/q) sin (n/p)

pn m.o sin((0-<

cosh (y/p)^(n-iy)dy
i0 coshy + cos (6 —60 + 2ninp/q)

"-1 p~2 [sin ((n +1) (6 - 60 + 2nmp/q)/p) sin (nn/p)
sin ((6- 60 + 2nmp/q)/p)

cosh ((p — n) y/p) ^(n — iy) dy

Jo cosh ?/ + cos (# — ̂ 0 + 2nmp/q)

sin (n(0 — 60 + 27Tmp/q)/p) sin (
sin ((d-60 + 2nmp/q)/p)

cosh ((j>— 1 —ri)y/p)e§{Ti — iy)dy\
cosh y + cos (0 — 80 + 2nmp/q) Jr

Jo

, (9)

where the summation over N is for all integer values of N which can make the
argument of the Heaviside step function non-negative, and where $(£,) is given by
equation (2).

As a specific application we shall give the solution to the problem of acoustic
diffraction of a spherical sound wave by a hard-soft half plane.

7. Diffraction by a hard-soft half plane

In terms of the Green's function the solution Uh s for the problem of diffraction of
the spherical wave &(d — d0) by a hard-soft half plane is given by

Uh,s = Gin(r,0,z,r0,60,zo;k) + Gin(r,6,z,r0, -d0,z0; k)

-Gi7,(r, 6, z, r0, An - 60, zo;k)- Gin(r, d, z, ro,4n + 60, zo;k).

By using the expression (9) with p = 4, q = 1, it is not difficult to show that

-o.) f
Jo

4V o;Jo cosh< + cos (0-6o)
dt

\/2n Jo cosh< +cos (̂  + ̂ 0)

cosh lt&(n-it)
-dt
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The first term of the above expression represents the incident field which will only
exist in the region n ^ \6 — 00\. The second term represents the reflected field from the
rigid upper face of the half plane, which will only be present for n ^\8 + 60\. The third
term represents the reflected wave from the soft lower face of the half plane, which
will only be present for n ^ \0 + 6o — in\. The remaining integrals represent the field
diffracted by the edge of the half plane.

In conclusion we remark tha t if we replace &(£) in the expression (9) by eifcrcos? or
//Q2 ) (&??(£)) we get the appropriate Green's function for a plane or cylindrical wave
source, respectively. If we replace ^(£) by l/!M(Q, we obtain the Green's function for
Laplace's equation, which has applications in incompressible fluid mechanics and
electrostatics. Inversion of this problem will give the Green's function for a lens
problem as well. The author hopes to pursue this aspect in a later paper.
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