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Abstract

The reduction of noise levels in the shadow region of a rigid barrier of finite thickness
is considered when the end face of the barrier is lined with either a soft or a perfectly
absorbent material. Solutions, obtained by the method of matched asymptotic expansions,
are given for both a semi-infinite barrier and for a finite length barrier placed on a rigid

plane. Comparisons are made with existing solutions for barriers that have a rigid end face.

1 Introduction

Noise reduction by barriers is a common sense measure of environmental protection in heavily
built-up areas. In particular, noise from motorways, railways and airports can be shielded
by a barrier which intercepts the line-of-sight from the source to the receiver. The acoustic
field in the shadow region of a barrier {(when transmission through the barrier is negligible)

is due to diffraction at the edge alone.
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The design of such noise barriers should meet two important requirements: namely that
they are effective noise attenuators and that their construction and maintenance should
be economical. The latter requirement is not difficult to appreciate when one considers
the miles of motorway which run through built-up areas. One possible economical barrier
construction is to have a rigid barrier (hence eliminating transmitted noise) of cheap material
which is robust, and not necessarily a good attenuator of edge diffracted noise, and to
cover the surface of the barrier with a sound absorbing lining which is a good attenuator
of sound. The provision of a barrier covered completely with an absorbing lining presents
several difficulties, among them the costs of construction and maintenance. However, since
diffraction phenomena are governed by conditions at the diffracting edge, it would be more
economic to cover the region only in thé immediate vicinity of the edge with sound absorbing
material. Butler [1] found, when dealing with thin barriers, reasonable agreement with the
experimental results of Mackawal[2]. All practical barriers have thickness, and the object of
the present work is to consider the qualitative effect of the thickness of a noise barrier, with
local absorbency at the edge, on the sound attenuation in the shadow region of the barrier.
The direct solution of this problem with the absorbent type boundary condition on the finife
absorptive end face is very difficult and becomes involved in very complicated mathematics.
To simplify matters we shall replace the absorptive boundary condition by a perfectly soft
houndary condition. However, as pointed out by Jones [3], this barrier would be expected to
produce much higher levels of noise attenuation, in the shadow region of the barrier, than an
absorbent end-face barrier. A compromise which gives some realistic quantitative estimate
of the attenuation due to an absorbent region on a barrier is to use the concept of a ‘perfectly
absorbing’ end surface (Butler [1], Jones [3], Rawlins [4]). This is obtained by adding the
solutions (for the same incident wave) for a completely rigid thick half-plane, Crighton &
Leppington [5], and the rigid thick half-plane with a soft end face and divided by two. As a
further practical application we shall also include the effect of such a barrier of finite length
placed on rigid, flat ground.

The solution for the canonical problem of a thick half-plane with a soft edge will be
obtained by an application of the method of matched asymptotic expansions. This canonical

problem will be formulated and solved in §§2-3. In §4, the effect of a rigid ground, with a
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Figure 1: Definition sketch for wave scattering by semi-infinite barrier.

finite thick barrier perpendicularty emplaced, will be considered. Throughout the problems
are taken to be purely two dimensional. In §5, graphical results will be given and comparisons

made with a thin rigid barrier.

2 Formulation for the semi-infinite barrier

A plane wave of wavenumber k and frequency w is incident at an angle o to a semi-infinite
barrier of constant thickness 2a. Cartesian coordinates (z’, %) are chosen with origin in the
flat end of the barrier as illustrated in figure 1. Assuming that a time factor e=** has been

removed, the total velocity potential describing the flow is written
¢r =1 +¢' 1)
where the incident wave potential
¢y = exp [—ik(z' cosa + ¢ sina)] . (2)

Solutions of the scattering problem are sought that satisfy a ‘soft’ condition on the barrier

end face,

$r=0 on 2'=0, |y <a, 3)
and a ‘hard’ condition on the long sides of the barrier,

I¢ip
oy’

=0 on lyl=a, 2/ <0 (4)

The scattered field ¢’ must also satisfy a radiation condition specifying outgoing waves.



The geometry and boundary conditions to be applied are symmetric about 3’ = 0 so that

the scattered potential ¢' may be split into symmetric and antisymmetric parts as
@,y = ¢l y) + u(@y), ¥ =0 (5)

The field for 3 < 0 is then defined through

ds(@, —y) = ¢5(e,y) and &, —y) = ~¢4(2,¥) (6)
so that
s ' ' '
—é—yTﬂ and ¢4=0 on y =0, 2'>0. (7)

The incident wave potential also may be split into symmetric and antisymmetric parts as
&) = e~ 2 [eas(ke/ sin @) — i sin(ky sina)]. (8)

As a consequence of these relations it is sufficient to consider only the region 3/ > 0.
Throughout it will be assumed that the barrier thickness 2a is much smaller than the
wavelength 27 /k so that ¢ = ka < 1. The method of matched asymptotic expansions will

be used to obtain the solutions as perturbation series in the small parameter ¢.

2.1 Symmetric problem

The symmetric part of the scattered potential, defined through equations (5-7), is a solu-
tion of the Helmholtz equation and, as a consequence of the above definitions, satisfies the

boundary conditions

a‘ﬁ’S 9 ~ik! f s

2 = —— e % eag(ky sin

oy oy [ (ky )] (©)
= ksinae *“s%gin(kgsina) on Yy =a, 2’ <0

for the barrier sides, and
¢g = —cos(ky'sina) on =0, 0<y <a, (10)

for the barrier tip. The symmetry condition in (7) and the radiation condition are assumed

to hold throughout but will not be explicitly stated.



For the solution by matched asymptotic expansions, the flow region is divided into two
regions. These are an inner region around the barrier tip to radial distances ' < k=1 and
an outer region at distances #' 3> a. The length scale of the outer region flow is k™' and

non-dimensional coordinates are defined by
z=kr and y=~ky; (11)
plane polar coordinates (r, ) defined by
z=rcosf and y=rsind (12)

will also be used. With this change of variables, the outer potential ¢s(z,y) = d5(z',7)
satisfies the field equation
(V2 + 1) $s =0, (13)

and the boundary condition

—ircoso

= sino e sin(esina) on y=¢ <0 (14)

3¢s

dy

on the barrier sides. Under the assumption ka < 1, the barrier thickness is not discernible
on the length scale of the outer region so that the boundary condition (10) is not applied
in this region. The boundary condition (14) may be transferred to y = 0 by Taylor series

expansion so that

%s , o
Oy oy?

= esin® ae™ =¥ L0 (62) on y=0, <0 (15)
For the inner region with length scale a, suitable non-dimensional coordinates are
X=1'fa and Y =1y /a, (16)
and plane polar coordinates (R, #) defined by
X =Rcos and Y = Rsiné (1
will also be used. The inner potential ¥s(X,Y) = ¢%(2’,y’) satisfies the field equation
(V2 + €) ths = 0. (18)
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In the inner region both of the boundary conditions (9-10) must be applied and in terms of

the inner variables these are

%’%"1 = esina e X 5 %gin(eY sina) = sina+0(®) on Y =1, X <0 (19)
and

g = — cos(eY sina) = ~1 + 22Y%sina+ O(¢*) on X =0, Y <1 (20}
)

2.2 Antisymmetric problem

The antisymmetric part of the scattered potential, defined through equations (5-7), is a
solution of the Helmholtz equation and, as a consequence of the above definitions, satisfies
the boundary conditions

a(bi; 0 ike' cosa ; o3 !

—2 w7 isin(ky sina

oy’ oy’ [ ( ) (21)

. . —a ' .
= ik sin a6~ %" 52 cos(kasing) on ¢ =a, ¥’ <0,

for the barrier sides, and
¢, = isin(ky'sina) on 2 =0, 0<y <a, (22)

for the barrier tip. The antisymmetry condition in (7) and the radiation condition are
assumed to hold throughout but will not be explicitly stated.

The flow region is divided into two regions as described in §2.1 and scaled variables
introduced as in equations (11) and (16). With this change of variables, the outer potential
dalz,y) = ¢4(z',y") satisfies the field equation

(V2+1) ¢a =0, (23)
and the boundary condition
% = jsinae % cos(esina) on y=¢ <0 (24)

on the barrier sides. Under the assumption ka < 1, the barrier thickness is not discernible

on the length scale of the outer region so that the boundary condition (22) is not applied



in this region. The boundary condition (24) may be transferred to y = 0 by Taylor series

expansion so that

84 s
Oy 0y?

= isinae”®* +0(?) on y=0, z <O0. (25)
The inner potential ¥4(X,Y) = ¢, (', y/) satisfies the field equation
(V2 +€) s = 0. (26)

In the inner region both of the boundary conditions (21-22) must be applied and in terms
of the inner variables these are
%ij}ﬁ = jesin o e X 3 cos(eY sin o) .
Y (27)
= jesina(l —ieXcosa)+0(?) on Y =1, X <0
and

¥4 =isin{cY sina) = ie¥ sina+ O(€) on X=0,Y <1 (28)

3 Solution for the semi-infinite barrier

The solution will be presented in two main parts corresponding to the symmetric and an-
tisymmetric potentials defined in §2. The aim is to develop perturbation expansions for
the inner and outer potentials ¢ and + in terms of the small parameter e. Superscripts in
parentheses are used to indicate the order in e of an expansion. So, for example, &™) is the
expansion of ¢ up to terms of order ¢*. When written in terms of inner coordinates and re-
expanded to order €™ this is written as ¢™™. Similarly, the inner solution expansion up to
order €™ is written %™ and when expressed in terms of outer coordinates and re-expanded
to order ¢ it is denoted by #™™, The matching principle, discussed fully by Crighton &
Leppington [5], requires ¢™™ = (™™ term by term, when both are expressed in the same
coordinates.

Before giving the full details of the formal matching procedure, it is useful to examine
an informal procedure for the symmetric problem in order to guide the choice of an appro-

priate gauge function. One of the difficulties in applying the method of matched asymptotic



expansions to problems involving ‘soft’ boundary conditions is the appearance of a purely
logarithmic basic gauge function, of the form (Ine)™!, leading to series which would be of
use only for extremely small values of ¢. This problem is discussed in §6.8 of [6] and the
suggested remedy is a slight change in the gauge function to one of the form (Ine+ K)™, for
some constant K. Here, a suitable choice of K is found by considering the informal solution

given next.

3.1 Informal solution of the symmetric problem

The pressure condition (10), to be applied on the barrier tip, indicates a non-zero flux across
the barrier surface which in turn suggests that the principal effect on the scattered field will
be source like. The leading-order outer solution of the symmetric problem satisfying (13)

and (14), with e set to zero, is therefore taken as
¢s = B H" (1), (29)

where HV is the Hankel function of the first kind and order n and B is a constant to be

found. The leading terms in the inner expansion of this solution as r — 0 are

¢s~B{1+g§(ln%r+'}')}, (30)
where -y is Euler’s constant.
The solution for the inner potential may be determined with the aid of the conformal
mapping
Z+j=~?r~{ln [¢+(g2—1)”2}-¢(g2_1)”2}, (31)
where j = +/—1, which maps the region exterior to the barrier in the Z = X + jY plane to
the upper half of the ¢ plane. This mapping was used by Crighton & Leppington [5] in their

solution of the hard barrier problem. For later use it is noted that
¢=jxZ/2)V =L (2/x2)* (1 +In2nZ) + O(Z3*n* Z) as |Z|—o0.  (32)

The leading-order inner solution must satisfy the boundary conditions (19) and (20), with ¢

set to zero, and also be source like at large distances in order to match with (30). It is easily



verified that all of these conditions are satisfied by
9 1/2
Yo =1+ ARe;in|¢+ (¢~ 1) E (33)
where A is to be found from the matching. As [¢| — oo
s = ~1+ ARe; {In2( + O(¢"%)} (34)
so that from (32), as |Z]| — oo,

s ~ —1+ ARe;In(2rZ)/2

(35)
= -1+ 34 {zn?g + lnr}
when written in terms of the outer coordinates.
Matching the constant and Inr terms in (30) and (35) gives
4 -1
A= —;TEB and B = (36)

1+ %f«(ry ~In(4r/€))

The denominators of A and B suggest that a suitable choice for a modified gauge function
is
£

o 21 _ )
Iné = 5 (1 + ;(’ywln(f-lvr/e))) =7-3 +In yy

37

so that
§= e where §=4dmie™". (38)

3.2 Formal solution of the symmetric problem

In view of the fact that the solution obtained in the previous sub-section involves an inverse
power of In 6, it is convenient to solve the problem here in terms of modified inner and outer
potentials defined by

ds=1psné and ¢s=pslné (39)

respectively. For the outer region the field equation is now

(V2 +1)ds=0 (40)



and the relevant boundary condition is

0ds 8%bs
By %

By = B6Iné sin®ae™®°**1+0(6*Iné) on y=0, z <0. (41)

Similarly, the governing equations for the inner region are now
(V2 + 826%) s =0 (42)

in the flow region together with the boundary conditions

%—%‘9— = 26%Iné§ sin®a+OFIné) on Y =1, X <0, (43)
and
Ps=—Iné +1%6°In6 Y?sin’a+ O(8*Ind) on X =0, Y <1. (44)

For the leading-order inner solution the same form is adopted as in the informal solution

given in the previous section, thus
0) 2 1/2
P m—1n5+AURe,-1n[g+(< ~1) ] (45)

The validity of this form will be confirmed by the subsequent matching. From (32) the outer

expansion of (45) is
990 = —1n6 (140 + 1) + Ao(In(2r/B) +Inr). (46)

This source-like behaviour in the outer expansion of the inner solution suggests the leading-

order outer solution

88 = BH{ (r) ()
which has an inner expansion
" Py
399 = B, {1 + 2 (Indr+ 'y)} . (48)

Application of the matching principle 1,3?’0) = qag?*‘” gives
Ap= -2 and By=mi/2 (49)
confirming the results of §3.1.
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The outer expansion of the inner solution may be continued using (32) and, after some

algebra, it is found that

90 = —In 35“-"51 53 +6ﬁ ( 1nggf+y9) (50)

which suggests that the outer solution must continue as
{iS(Sl) 'H"I,H () (r) + 6 In 6 yo + 0o (51)

From (40-41), each of ¢12 and ¢ is a solution of the Helmholtz equation with the barrier

boundary conditions

Mag; = Bsinq €7 on y=0, <0 (52)

and

¢ . 8? HY(r
——55- = —1 m-é-i’wﬁ [Hé”(r)} = 1 fmi lr( ) on y=0,z<0 (53)
respectively. A particular solution ¢yg, satisfying (52) (without the constant factor () is

given by Mclver & Rawlins [7], and in particular from eqn (3.44) of that paper as r — 0
Prop = 6% sina + O(rInr). (54)
It is easily verified by substitution that a particular solution satisfying (53) is
= 1pi [9 sin OHO (r) — COSQH“)( )} (55)
The outer solution to O(8) in equation (51) is therefore taken as
3D = LriHP(r) + 6106 ($12p + BLHD (1) cos) +6 (dap + BHS (), (56)

where any outer eigensolutions required to complete the matching with the inner solution
have been included. The first order Hankel function at O(61n 6) is forced by the dipole term
at the same order in (50), while the zero order Hankel function at O(6) is forced through the
constant in the inner expansion of ¢y, given by (54). No other outer eigenfunctions can be

matched with the inner solution and so they are excluded at this point. The inner expansion
of (56) is

é(sl,i) = —In(276R) + é1Iné (ﬁg sina — 3123 COSH)

fsind  cosd e (57)
+6 (-%%m + 222 = In(2n6R) + Bz—}n(fl?rﬁR))

11



where the definition of 8 in (38) has been used to simplify some of the terms.
The inner expansion of the outer solution in (57) contains a source-like term at O(6)

which requires the inner solution to be continued as
J§) = —In§— 2Re;In [¢ + (¢2 — 1)"/2] + § A1 Re;In [¢ + (¢* — 1)/?] (58)
which has the outer expansion
P8 = —1né — In(2nR) + %%(9 siné + cosf. In(27R)) + 6 A& In(27 R). (59)

'The matching principle @fgl’l) = ﬁ‘(s;l,l) determines the unknown constants to be

4i .
A= ";f"Bg = w%ga sine and B; = ~1ig. (60)

The full outer solution is therefore

&(91) _ %m’H‘gi) (r) +6Iné (9512,? - %iﬁﬂgl} (r) cos 0) 61)
+ 6 (¢2 + 3Basina H ().

The far field of ¢12, is given by making the substitution A = — cos(f + it) in the integral
(3.38) of Mclver & Rawlins [7] and then distorting the path of integration in order to apply
the method of stationary phase, see p. 31 of Noble [8] for details of the method. The result
of this calculation is

Bsin® o H(r)
2(cos 8 + cos o)

brop ~ —if|sina] e ) HP 4 o — 7]+ as r—oo (62

for0 <@ <7, 0<a<wand @+« % . The first term represents the possible pole capture

in the deformation of the path of integration and

1 >0
Hia] = { (63)
0 <0
is the Heaviside step function. Thus as r — oo
@ T
d)S Zln(ﬁ/ﬁ)HO (T)

sin® o

1.1 o2 ~ir cos(f-4-ax) — e
+2e( 2i|sinaje H0+ o ﬁ]+cosﬂ+coso:

Hé.l)(r) - z'H?) (r) cos 9)

cosf

(9 sing HV(r) — —?—Hél)(r) — iasina HSY ('r')) .

(e}
2 In(e/B) o
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3.3 Formal solution of the antisymmetric problem

In this section the solution of the antisymmetric problem given in §2.2 is described. The
leading-order solution qbff) of (23) subject to (24), with € set to zero, is the scattered wave
part of the Sommerfeld solution for diffraction by a thin plate, two forms for which are given
in equations (2.4-5) of Crighton & Leppington {5]. According to equation (2.8) of that paper,

the Sommerfeld solution has an inner expansion
¢ = Sel/2R12 sin 10 + ieY sino (65)

where

S = (282 /xV* e " A gin Lo (66)

Now from (26-28) the leading-order inner solution is a harmonic function satisfying homo-
geneous boundary conditions and, furthermore, it is required to match with the first term
in (65). The appropriate solution is found with the aid of the conformal mapping in (31-32)
so that

)

¢A — 61/2A0 Rej Kz _ 1]1/2
N 9 \1/2 (67)
— €12 44 Re, {j (—5) 1 (—7;2-) (1—1n2rZ) + O(Z~*21n? Z)} .

In particular

GO 1 TNV g

Vi =4 [~ (5) RY<sin 30 (68)
so that matching with the first term in (65) gives
2 1/2

Further terms in the outer expansion of the inner solution follow from (67) and, in terms

of the outer variables,

(3.0

. S .
Yy = Sr1/2gin 50 — €ln €5 i3 Sl %9 .
S
teo 17 ["”(1 ~In2n) sin 46 + Inr. sin 36 — 0 cos %9] ,
This suggests that the outer solution continues as
oD = ¢ 4 elnedy + ey o

13



where ¢ satisfies homogeneous boundary conditions and ¢; the boundary condition

a1 87
gy Oy

A particular solution of the Helmholtz equation that satisfies (72) and the antisymmetry

on y=0, z<0. (72)

condition on z > 0 can be obtained by carrying out to completion the partial solution given
by Crighton & Leppington [5] (for their ¢, with e()) = 0 in their equation 3.11, pp. 320-321).
Thus it can be shown that

sinfa o gmira-(N-1)}%y

G1p == V272 Jeo (A= 1)1/2(A — cos @)
which has the far-field asymptotic form

{()\2 ~1)¥2 cos (= A) ~ darsin a} dh  (73)

brp ~ —isinae™reo0+) Hig 4 o — 7]
(74)

in Loyain 1
31112«1311129

i 5 H(l)
7(cos @ + cos @) (0sin@ + asina}Hy '(r) as r— 00

for 0 <@ <7, 0<a<mand @+ azx, and the expansion (c.f. [5], p. 322)
b1 = balz| "2 In || + bolz| Y2 + O(|z|"*In|z]) as z—0 on O=m, (75)
where

2r\ 2
The form of the O(e) outer solution is therefore

S S (i
b1="§;r" and b2=————~(ﬂ——’y—ln2). (76)

oW = oD 4 elne BoH S;(r) sin 20 + ¢ (qbl,p + B H i%(r) sin %9) (77)

where appropriate eigenfunctions have been introduced to ensure matching with the inner

solution. The inner expansion of this outer solution follows from (75) and on § = =
a4 1o 2\ ? bilnr b [ 2\1/?
¢A g =S?”/ +elne By {m'& (;;) + € W-Fm"i*Bl —1 (7-;;) . (78)

=1

: 1
Applying the matching principle $2" = ¢y 2

):_—":qu on 8 = m gives

By = S S (m

— 5517 and By = i \ 5 —y+Inw— 1) . (79)

The far-field form of the antisymmetric solution now follows from (77) with the asymptotic

form of ¢y, given by (74).
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Figure 2: Definition sketch for wave scattering by finite barrier on plane.
4 Scattering by finite barrier on plane

Attention is now turned to a barrier of finite length b, again with a soft end face, that is
protruding normally from an infinite plane; the geometry is llustrated in figure 2. Although
the aim is to model a noise barrier standing on horizontal ground the coordinate system has
been chosen for consistency with previous work [5, 7] and is essentially the same as that used
in the earlier parts of the present work.

The basic formulation is very similar to that for the semi-infinite barrier given in §2. The

total potential is decomposed as

dp =7+ ¢ (80)

where
& = 2™ coglk(z’ + b) cos o e~ RV sine (81)
is now the incident wave together with its reflection from x = —b. Solutions for ¢} are
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sought that satisfy the ‘soft’ condition
#r=0 on =0,y <a (82)

and the hard condition on the barrier sides

Odly
oy’

=0 on |Yf|=a, ~b<2 <0 (83)

There is also the additional condition of no flow through the plane on which the barrier is

standing which requires
¢y
o'

The geometry is still symmetric about ¢ = 0 so that the decomposition of the potential into

=0 on z'=-b |¥]>a (84)

symmetric and antisymmetric parts described in §2 is also valid for this problem. Here, due
to the additional complexity, only the leading-order approximations to the far field will be

determined.

4.1 Informal solution of the symmetric problem

In the symmetric problem, for brevity, the leading-order solution will be obtained using the
informal procedure established for the semi-infinite barrier in §3.1. With the assumption
that the barrier thickness is much less than all other length scales in the problem, the inner
flow region is the same as for the semi-infinite barrier treated previously. The geometry
of the outer region is now a thin barrier of finite length standing on a plane. In terms of
the non-dimensional coordinates defined through equations (11-12), the leading-order outer
solution ¢g is required to satisfy the (scaled) Helmholtz equation subject to the boundary
conditions
O¢s

hC A =), — 15}
B 0 on y=0, —p<x<0 (85)

(see equation 15) and

0gs 0

= (Qei’”"s“ cos|(z + 1) cos o] cos(y sin a)) =0 on z=-—u (86)

together with the symmetry condition and a radiation condition specifying outgoing waves.

Here y = kb is the scaled length of the barrier. The leading-order inner solution ¢4 is a

16



harmonic function satisfying the boundary conditions

s
S =0 on Y=0,X<0 (87)
(see equation 19) and
g = —2€#%cosfcosa] on X =0, Y < 1. (88)

The leading order outer solution is source like at the barrier tip and the above boundary
conditions are satisfied by

¢s = B(HSP (r) + HP (1)) (89)

where polar coordinates (r;, 6;) have been introduced that are measured from the image of

the barrier tip in 2 = 0 and are defined through
T+ 21 == r;c080;, y = r;sin6;. (90)
The leading terms in the inner expansion of this outer solution as r — 0 are

9
bs NB{1+-;§ (Inir+v) +Hél)(2,u,)}. (91)
The leading-order inner solution is a simple modification of the semi-infinite barrier inner

solution (33) to account for the different constant appearing in the barrier-end boundary

condition (88), thus
ipcos o 2 1/2
ha = —2e*°*%cos[pcosa) + ARe;In [C + (C - 1) ] (92)
where ( is defined through (31). The outer expansion of this inner solution is

Ya ~ 26" coglp cos ] + A {In?—} +1n r}. (93)

Matching (91) and (93) yields

A E.Z.B and B = 2;(1 + exp(2iy cos o)) . (94)
4 1+;w—m@wm+ﬂﬁmm
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4.2 Solution for the antisymmetric problem

As in §3.3, the leading-order outer antisymmetric solution is a Sommerfeld-type problem
corresponding to the scattering of (the antisymmetric part of) a plane wave by a thin barrier.
In terms of the non-dimensional coordinates defined through equations (11-12), it is required

to determine solutions of the (scaled) Helmholtz equation subject to the boundary conditions

O0da 0 . g .
L = e [ —2¢ e % eosl{2 4 ) cos af sin{y sin o
5 5 ( [(z + 1) cos o] sin(y sin o)) -
= 2isin ¢ e % cos[(z + p)cosa] on y=0, —p<z <0,
and
Obs _
T = 0 on z=-—pu (96)

together with the antisymmetry condition and a radiation condition specifying outgoing
waves.

The solution to this problem has been considered in §5 of Mclver & Rawlins [7] using the
Wiener-Hopf technique. The Wiener-Hopf equation was not solved exactly but an approx-
imation for u = kb >> 1 was obtained and this will be used in the calculations here. The

solution is
¢A = %;: [— e’izﬂcosa J(a: T, 0) - I(a} r, 9) + ez‘2p.coscx K(“? Tiy 92) -+ L(Oé, T, 92)] » (97)

where
I{a,r,0) =2rY 23"“/4{— g—ircos(6-c) fr [(27") Y2 cos 1(6 - a)]

+ gmircos(8+a) f [(21") Y2 cos 2(0 + a)] },
Jo,r,6) = —27r1/26i“/"‘{— gir oos(8+a) [ [(2’:‘)1/2 sin (6 + oz)]
4 gircos(f~c) [(21")1/ sin (0 — a)] },
K(a,r0) = 2r'/2¢w/ {e-—i'r cos(f—c) {(2?")1/2 o8 % © - a)] (98)
+gireos(fta) p [(27")1/ Zcos 3(0 + oz)] },
L{o,r,0) = 2x\/2i/ 4{6’* cos(f-+a) [ [(21‘)1/ 2sin1(6 + oz)]

_ pircos(f—a) F [(27.)1/2 sin %(9 . a)] }
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Figure 3: Semi-infinite barrier with either hard or soft end face: sound intensity
v. angle 8, comparison between O(1) and O(ka) solutions in shadow region for
ko = 0.1 at r = 107.

Here

Flo] = f@, e gy (99)

is the Fresnel integral.

5 Results

All of the results presented in this section are for an angle of wave incidence o = 7/2, that is
normal to the barrier. For the case of the semi-infinite barrier it was relatively straightforward
to derive the solution up to O(ka) (in this discussion terms of order ka (In ka)™ are considered
to be O(ka), for any integer n), but for a finite length barrier standing on a plane only the
O(1) solution has been found. Therefore it is important to obtain some information about
the expected accuracy of the O(1) approximation. Figures 3 and 4 compare the two levels
of approximation within the shadow region for barriers with both hard and soft end faces.
Fach figure displays the sound intensity, measured in decibels, based on the absolute value
of the potential. For the hard end face the solution is obtained from Crighton & Leppington

[5] and to order ¢ = ka the far-field form, as r — oo, is the sum of the symmetric and

19



Hard, 0(1)
mmmmmm Hard, O(ka)
~~~~~~~~~~~~ Soft, 0O(l)
««««« w Soft, Olka)

AR ENENE

llilli!il]!

intensity (dB)
&

-

——
-
o . e o 4 4 D U

b2
321

Y

[}
T T TR I T e e T Ty
RN FEEEE INENE EERER NN

&
=1

{ N SOV NN TN NN SN SN SN TN S NN SN NN SO SOUR [NU JOURE VN TN T SOV SO T SO A |

-1 -0.9 -0.8 -0.7 -0.6 -0.5

6/n

Figure 4: Semi-infinite barrier with either hard or soft end face: sound intensity
v. angle 6, comparison between O(1) and O(ka) solutions in shadow region for
ka = 0.5 at r = 107,

antisymmetric potentials

(1 1D 1+ cosfcosa 100
b5 ~ € 3Ho (T){ cosf + cosa } (100)
and .
qbfj) ~ ¢f§> —¢lne ;;ei”/ *sin fasin $0H S)z('r)
Loooa 1] nsa X (1)
+e —sin asin z01¢€ 14+Inm+ ER Hyjs(r) (101)
Osind + asina (1 }
H
cosf - cosar O )

respectively, where qbﬁ)} is the Sommerfeld solution for diffraction of a plane wave by a
semi-infinite barrier, see for example Crighton and Leppington [5] equation (2.5). (Here
and elsewhere the incident wave potential, equation (2) for the semi-infinite barrier and
equation (81) for the finite barrier, is included in the calculations.) The O(1) solution for
the semi-infinite barrier with a hard end face is found from the limit ¢ — 0 and so is just the
Sommerfeld solution. When the barrier has a soft end face the O(ke) solution is the sum of
the potentials in equations (64) and (77) and the O(1) solution comes from the first term
in each of those two equations. The agreement between the O(1) and O(ka) solutions for

ka = 0.1 {figure 3) is excellent however at ka = 0.5 (figure 4) there are some parts of the
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Figure 5: Semi-infinite barrier with either hard, soft or perfectly absorbent end
face: insertion loss v. angle @ in shadow region for ka = 0.5 at r = 107,

shadow region, particularly close to the barrier, where there are significant discrepancies.
Based on these, and other, comparisons a value of about ka = 0.5 appears to be the upper
end of the useful range of the O(1) solutions for obtaining qualitative information.

The effectiveness of different types of end face in reducing the sound intensity may be
measured by the so-called insertion loss. Let ¢, denote the total potential for a rigid thin
barrier, ¢yag for a thick barrier with a hard end face, and @sop for a thick barrier with a soft
end face. In addition, results will be given for a barrier with a perfectly absorbent end face

with the total potential defined by

Poert = 5 (Phard + Psort) - (102)

Insertion losses in decibels for the hard, soft and perfectly absorbent end faces are defined

as

¢hard ¢so& qbperf

PDthin Dehin Pthin

respectively, and measure the effectiveness in sound reduction of each of the three types of

20 logyq ,  20logy, and 20log,, (103)

end face relative to the thin barrier. In all cases the solutions are calculated to O(ka). Figure
5 shows these insertions losses as a function of angle in the shadow region. The greatest

losses are close to the barrier. Figure 6 shows that the insertion losses at a fixed angle in the
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Figure 6: Semi-infinite barrier with either hard, soft or perfectly absorbent end

face: insertion loss v. thickness ka at r = 10m, § = —3n /4.
shadow region are relatively insensitive to variation in the barrier thickness ka, at least for
the range considered here.

For the finite barrier on a plane the solutions have been calculated only to O(1), and at
this order of approximation the solution for the hard end face is the same as the thin barrier,
equation (97). This solution is illustrated in figure 7 which is a density plot of the absolute
value of the potential. The incident wave (of amplitude 2, see equation 81) propagates from
left to right and the barrier occupies the line —8 < z/7 < 0 on y == 0. Dark tones indicate a
region of small amplitude motion and light tones a region of high amplitude. The incident
wave is reflected from the front of the barrier to give a standing wave as indicated by the
alternating light and dark regions. Sound diffracted by the barrier tip enters the shadow
region and is reflected from the plane giving a region of non-planar standing waves, these
are of much lower amplitude than the direct reflections from the barrier face.

As only the thin barrier solution is available for the case of a hard end, insertion losses
may be calculated only for the soft and perfectly absorbent end faces. A density plot of the
insertion loss in the shadow region for the soft end face is given in figure 8. Over most of
the region displayed there is indeed a reduction in the sound level due to the presence of the
soft end face, although in small regions there is a significant enhancement of the sound levels

as indicated by bright tones. These result from local minima close to zero in the motion
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Figure 7: Finite barrier: absolute value of potential for hard barrier.

amplitudes of the thin barrier solution. A comparison of insertion losses for the soft and
perfectly absorbent end faces is given in figures 9 and 10. The losses are measured in the
shadow region along a line away from the barrier at a fixed height above the plane. The
sharp peaks result from a local minimum in the rigid barrier solution as mentioned above.
Roughly speaking, the largest reductions in noise levels due to the lined barrier end face are

found close to the barrier.
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Figure 9: Finite barrier with either soft or perfectly absorbent end face: inser-
tion loss v. distance —y from barrier in shadow region at x = —6x, ka = 0.1.
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