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Abstract - This contribution looks into a technique to 
reduce numerical errors when employing non-
orthogonal mesh in modelling curved structures.  A 
novel technique is analysed using microstrip line and 
a patch antenna and the results are presented. 

I.   INTRODUCTION 

Numerical electromagnetic models, such as Finite-
Difference Time-Domain (FDTD), have many 
applications.  This method was originally put forward by 
K.S.Yee [1] and implemented in Cartesian co-ordinates.  
However, if the structure being modelled does not align 
to the orthogonal Cartesian grid, staircasing errors are 
introduced.  To resolve this problem, a number of 
conformal mesh-based FDTD methods have been 
developed, such as Contour Path FDTD (CPFDTD)[2], 
non-orthogonal FDTD [3

Results from numerical electromagnetic analysis 
methods, such as FDTD technique, are often degraded 
by an error known as numerical dispersion.  A practical 
guide to the dispersion caused by the use of Non-
Orthogonal FDTD meshes was published [

] and the Discrete Surface 
Integral (DSI) method.  This contribution focuses on the 
Non-Orthogonal FDTD method.  This method is based 
upon a discretisation of Maxwell's curl equations in local 
curvilinear co-ordinates on a structured mesh employing 
covariant and contravariant field components.  The Non-
Orthogonal FDTD method is very useful in modelling 
curved structures such as conformal antennas.   

4] and 
subsequent research work revealed that these numerical 
dispersion errors are higher when modelling metallic 
boundaries in non-orthogonal FDTD due to the 
algorithm's reciprocal field interpolation scheme [5

This paper analyses a technique to reduce numerical 
errors when employing non-orthogonal mesh in 
modelling curved structures.  A novel technique is 
analysed using Microstrip line and a patch antenna and 
the results are presented.  The stability issues are also 
considered carefully when implementing this technique. 

].   

II.   MODELLING METAL BOUNDARIES WITH NON-
ORTHOGONAL COORDINATES 

Non-Orthogonal FDTD is formulated on a structured 
grid, described by a local non-orthogonal coordinate 
system, which is characterised by covariant unit vectors 
U1, U2, U3 (tangential to the unit cell edges) as shown by 

Figure 1, and contravariant unit vectors U1, U2, U3 (lying 
normal to the cell faces). 
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Figure 1: Location of a metallic boundary in a unit cell. 
 
The Non-Orthogonal algorithm may be described by a 

system of matrix-vector equations [6
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], an iteration step 
(where new values of contravariant fields are 
calculated): 

 (1) 

 
and an interpolation step (yielding covariant 

components): 
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And similarly, 
 

BMH µ=  (3) 

Where, E and H are vectors consisting of all the 
covariant field values in the algorithm, B and D are the 
contravariant components and Ce and Ch are matrices 
that implement the curl operation.  Mε and Mµ  are 
matrices that describe both material properties and the 
interpolation that yields the necessary covariant 
components. g   represents the volume of the cell. 

Considering the covariant component E1|i+0.5,j,k in 
Figure 1, the interpolation step equation 2, yields: 
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Whereas for E3|i,j,k+0.5, the interpolation gives: 
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For stability [6] the material matrices Mε and Mµ must 
be symmetric, this is achieved as a result of the coupling 
between components E1|i+0.5,j,k and E3|i,j,k+0.5, being 
reciprocal, since: 

 
gg

kjikjikjikji

εε 44
,,3,,1,,1,,3 UUUU ⋅

=
⋅

 (6) 

 However, at a metallic boundary, such as that shown 
in Figure 1, the tangential electric field E1|i+0.5,j,k must be 
zero, and hence the contribution to this component from 
E3|i,j,k+0.5 (D3|i,j,k+0.5) in equation (4), must be set to zero.  
However, as a necessary consequence of reciprocity, the 
contribution from E1|i+0.5,j,k (D1|i+0.5,j,k) to E3|i,j,k+0.5 in 
equation (5) must also then be zero (if this is ignored, 
instability will result). 

In effect, therefore, it appears to the model as if 
0

,,1,,3 =⋅
kjikji

UU , which is not true - unless the 

mesh is orthogonal at the boundary.  This is an 
undesirable approximation, which gives rise to 
additional error in non-orthogonal FDTD.  A detailed 
analysis of this error was presented in [5]. 

These errors can be reduced if the interpolation step at 
the metallic boundary is not ignored.  If D1|i+0.5,j,k ≠ 0 
and this field component is calculated in such a way that  
E1|i+0.5,j,k = 0, the need to ignore the interpolation step 
will not arise.  In this new technique, the D1|i+0.5,j,k 
component is calculated from equation 7. 
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This technique will ensure the symmetry of the 
material matrices and hence the stability of the 
algorithm. The physical conditions required for a 
metallic boundary is also satisfied as the tangential 
covariant components are zero.  However, contributions 
from field components on the metallic boundary such as 
D2|i,j+0.5,k, D2|i+1,j+0.5,k must be set to zero as it will 
complicate the calculation of D1|i+0.5,j,k.  Initial numerical 
analysis with this technique showed improvements on 
numerical errors, however the mesh still suffered 
numerical dispersion for very small cell sizes.  These 
small errors may be due to the calculation of D1|i+0.5,j,k 

being different from the  main non-orthogonal FDTD 
algorithm (Equations 1-5).  Adding extra weights to 
interpolation coefficients while maintaining symmetry in 
the calculation of D1|i+0.5,j,k improved the results further.  
In this analysis, a weighting factor of 4/2.8 was 
employed to weight the interpolation coefficients. i.e. 
the:  

g
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ε4
,,3,,1 UU ⋅

  ,  
g

kjikji

ε4
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⋅UU  

terms in equation 4 were multiplied by this factor and 
the same value is then used in the calculation of the 
fields such as E3|i,j,k+0.5 to ensure stability. This factor 
was estimated by investigating different mesh structures.  
The following section numerically analyse these 
techniques using a Microstrip line and a patch antenna.   

III.   NUMERICAL ANALYSIS AND RESULTS 

Figure 2 shows an air-spaced (non-dispersive) 
microstrip line which is used here to demonstrate the 
metallic boundary effect through an analysis of the 
numerical dispersion in the model [4].  
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Figure 2: Microstrip line and skewed cells. 

A Gaussian pulse of 200ps width was used to excite 
the problem and the electric fields were observed at four 
different locations.  The microstrip line was made 
sufficiently long to avoid any influences from Mur’s 
first order absorbing boundary conditions [7

The dispersion suffered by the pulse as it propagates 
through the model was calculated as described in [

].  The 
interpolation step was ignored at the absorbing 
boundaries to avoid complexities arising due to non-
orthogonal unit cells.  The problem space was uniformly 
discretised into 140×25×40 unit cells, with a dimension 
of 6.5 mm in the longitudinal direction.  As shown in 
Figure 2, the unit cells were distorted with either 2 or 3 
angles of skew (θ1, θ2, θ3).  The problem space was 
limited by employing absorbing boundaries and an 
electric wall to represent the ground plane. 

4].  
Figure 3 and Figure 4 show the normalised wave 
numbers for meshes with θ1=90o, θ2=90o, θ3=45o and 
θ1=60o, θ2=80o, θ3=50o respectively.  The simulation 



results include the original technique, the proposed 
technique where D1|i+0.5,j,k ≠ 0 and the incorporation of 
weighting factors.     
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Figure 3: Dispersive behaviour with one skew angle. 
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Figure 4: Dispersive behaviour with three skew angles. 
Figure 5 shows a second test structure, an air-spaced 

microstrip patch antenna (50×40 mm, lying 3.2 mm 
above the ground plane); a dielectric substrate was not 
included in this structure in order to simplify the 
problem and to separate the errors due to the metallic 
boundary. As before, Mur’s first-order absorbing 
condition was employed to limit the problem space. For 
simplicity, a feed is not included, the fields being 
excited and recorded directly on the antenna.  A 
uniformly skewed mesh with θ1=90o, θ2=90o, θ3=45o as 
in Figure 2 was employed to analyse the patch antenna 
structure.   
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Figure 5: Air-spaced microstrip patch antenna. 
 

Figure 6 shows a discrete Fourier transform (DFT) of 
the response of the patch.  Simulation results include, 
fine orthogonal mesh, which provides a reference result, 
the original technique, proposed technique and the 
incorporation of the weighting factors.   
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Figure 6: Frequency response of the patch. 

These results clearly show the improvements when 
applying the proposed technique and the incorporation 
of the weighting factors.  In Figure 6, the non-
orthogonal algorithm with proposed technique and 
weighting factors produced a very accurate estimation of 
the patch resonance.   

The numerical results from the two test structures in 
this section confirm that significant dispersive errors are 
introduced if, at a metallic boundaries on a non-
orthogonal mesh, it is assumed that the covariant 
tangential electric field components and the couplings 
from their contravariant components are zero.  As can be 
seen in Figures 3 and 4, the normalised wave numbers 
remain around 0.96 and 0.94 for the original technique.  
The alternative, suggested herein, is to calculate the 
contravariant components on the metallic surfaces while 
maintaining zero covariant components; this gives 
improved results in all cases and incorporation of 
weighting factors further improves the numerical errors. 

V.   CONCLUSIONS 

The modelling of metallic boundaries using a non-
orthogonal FDTD method has been presented. The 
difficulties in representing metallic boundaries have 
been described.  The modelling of metal surfaces using 
non-orthogonal meshes by assuming that the covariant 
tangential electric field components, and the coupling 
from their contravariant components, is zero, results in 
significant errors leading to numerical dispersion.   

An alternative technique where the calculation of 
contravariant components on the metallic surfaces while 
maintaining zero covariant components and non-zero 
coupling from other contravarient components has been 
presented.  Numerical analyses using microstrip line and 
an air-spaced patch antenna showed improve results and 
the stability of the algorithm was also maintained.  
Further enhancement to the numerical errors was also 
achieved through incorporating weighting factors when 



calculating the contravariant components on the metal 
surface.   

In conclusion, while non-orthogonal meshes offer a 
solution to staircasing problems in FDTD, suitable 
correction techniques are required to limit the numerical 
dispersion even for very small cell sizes. 

VII.   REFERENCES 
 

[1] K. S. Yee, “Numerical solutions of initial 
 boundary value problems involving Maxwell's 
 equations in isotropic media”, IEEE Trans., 
 Antennas and Prop., vol. 14, 1966, 302-307. 
[2] T. G. Jurgens, A.  Taflove, K. R. Umashankar, T. 
 G. Moore, “Finite Difference Time Domain 
 Modelling of Curved Surfaces”, IEEE Trans., 
 Antennas and Prop., vol. 40, 1992, , 357-366 
[3] R. Holland, “Finite-difference solution of 
 Maxwell’s equations in generalized 
 nonorthogonal coordinates”, IEEE Trans. Nucl. 
 Sci., vol. 30, 1983, 4586–459 
[4] R. Nilavalan, I. J. Craddock and C. J. Railton,  
 “Quantifying numerical dispersion in non-
 orthogonal FDTD meshes”, IEE Proceedings-
 Microwaves Antennas & Propagation, vol. 149, 
 2002, 23-27 
[5] R. Nilavalan, I. J. Craddock and C. J. Railton, 
 “Modelling metallic discontinuities with the non-
 orthogonal FDTD  method”, IEE Proceedings-
 Microwaves Antennas & Propagation, vol. 151, 
 2004, 425-429. 
[6] R. Schumann, and T. Weiland, “Stability of the 
 FDTD algorithm on non-orthogonal grids related 
 to the spatial interpolation scheme”, IEEE Trans. 
 Magn., vol. 34, 1998, 2751–2754 
[7] G. Mur, “Absorbing boundary conditions for the 
 finite difference approximation of the time 
 domain electromagnetic-field equations”, IEEE 
 Trans. on Electromagnetic Compatibility, 23, 
 1981, 377-382. 


	I.   Introduction
	II.   Modelling metal boundaries with non-orthogonal coordinates
	III.   Numerical analysis and results
	V.   Conclusions
	VII.   References

