Mark
Lycett

Robert D.
Macredie

Chaitali
Patel

Ray J.
Paul

Brunel University

0018-9162/03/$17.00 © 2003 IEEE

COVER FEATURE

Vigrating Agile

Methods to

Standardized

.‘?[

)
— :
e
—
=
= =
=

Development Practice

Situated process and quality frameworks offer a way to resolve the
tensions that arise when introducing agile methods into standardized

software development engineering.

odern business organizations are
emergent—they reside in a state of
continual process change.' Globaliza-
tion, deregulation, increased compe-
tition, mergers and acquisitions, and
the like all reveal organizations in transition, adapt-
ing to a continuously changing business environ-
ment. In this dynamic context, however, organiza-
tions must still project quality of product, service,
and process to gain market presence and competi-
tive edge. Significant organizational tension arises
as the stability that underpins notions of quality
control is overlaid on environments in flux.

In software development, this tension is most obvi-
ous in the difference between standardized engi-
neering approaches and more recent agile methods.
Engineering approaches tend toward explicitly
defined processes that can be standardized both
within and across organizations. The significant
industry investment in engineering approaches is evi-
dent in standards such as the International Organiza-
tion for Standardization’s ISO 9000 series, the
Software Engineering Institute’s Capability Maturity
Model (CMM), and a number of industry-led ini-
tiatives such as the Object Management Group’s
Unified Modeling Language and the Rational Unified
Process (RUP) from Rational Software.

However, the agile development movement has
begun to question the philosophy behind engineer-

Published by the IEEE Computer Society

ing initiatives. Agile development emphasizes the
human or crafted aspects of software development
over the engineering aspects—individuals and inter-
actions over processes and tools, working software
over comprehensive documentation, customer col-
laboration over contract negotiation, and respond-
ing to change over following a plan.

The “Industrial Context: AgCo Legacy Migra-
tion” sidebar introduces our work with a large
international systems integrator, which we pseudo-
nymously call “AgCo.” In this work, we found
engineering and agile perspectives to be equally
important to modern software development. We
developed a framework approach to implementing
agile values and principles in the context of AgCo’s
organizational mandate for the consistent use of
RUP and CMM.

BACKGROUND

The rise of capitalism, modern bureaucracy, and
scientific management has propelled the creation of
managed, repeatable, and quantifiable organiza-
tional processes.” In general, the power of rational
systems has been proved in the context of market
competition and is well evidenced in the success of
the “manufacturing” approach to production.

Software crisis
In 1968 and 1969, the North Atlantic Treaty

June 2003

Industrial Context: AgCo Legacy Migration

AgCo (a pseudonym) was originally a mainframe manufacturer. Since
the mid-1990s, however, the company has moved its strategic focus
toward information management. This focus includes industrial and orga-
nizational expertise as well as the application and support of informa-
tion technology. Thus, the company offers its services in the areas of sys-
tems endurance, business transformation, business enhancement, and
systems replacement. Although these services are available across a range
of industrial sectors, financial services provide a major revenue area and
one in which the company has a considerable history.

AgCo has several legacy products catering to the financial services
industry. The products were developed in a fourth-generation language.
Perceived customer demand and technology advances motivated a deci-
sion to migrate three legacy products toward a service-based environ-
ment. AgCo wanted to increase product flexibility and scalability as well
as component reusability, thereby supporting system tailoring and growth
to suit changing contexts. It expected to do so with less overhead than
traditionally developed systems impose.

Legacy migration was part of a larger organizational strategy aimed at
standardizing organizational development approaches. AgCo has adopted
the Rational Unified Process (www.rational.com/products/rup/) for soft-
ware development and is working toward quality certification via the Capa-
bility Maturity Model Integration (www.sei.cmu.edu/cmmi).

RUP uses an iterative, incremental approach to software development,
offering a set of common processes to improve communication and cre-
ate a common understanding of all necessary development tasks, respon-
sibilities, and artifacts. CMMI provides models for organizational process
improvement in the areas of software, system engineering, and integrated
product and process development. In addition to providing a “staged”
model for process improvement and audit, CMMI offers a continuous
representation that allows different organizational processes to improve
capabilities at their own pace.

AgCo adopted both RUP and CMMI with an engineering philosophy
in mind. To develop a means of legacy migration, it needed to institu-
tionalize RUP and align the migration with it. To achieve and demon-
strate process maturity, it needed to institutionalize CMMI as well.

Clearly, institutionalization involves significant, ongoing organizational
change, but it also implies that “one size fits all.” To some extent, this
accurately reflected management thinking, but it does not filter through
to the reality of development practice, which commonly adapts processes
and so on. This disconnect signals an opportunity for introducing agile
software development.

Organization held two conferences to discuss the
“software crisis.” The conference proceedings doc-
ument the perceived need for rational systems in
software development.’* Perceived problems
included the increasing size and complexity of soft-
ware systems, difficulties in estimating costs and
managing large numbers of people, shortages of
skilled software professionals, emphasis on coding
at the expense of design and testing, and poor doc-
umentation.

Key conference recommendations sought to stan-
dardize the software development process with
emphasis on quality, costs, and development prac-
tices. In keeping with a rational system approach,

Computer

proponents expected the process to improve qual-
ity at the same time it reduced costs and increased
productivity.

Software development has since come to rely on
a methodical approach. Comprehensive develop-
ment reviews testify to this reliance, which is also
evident in an identifiable orthodoxy in information
systems research.’ This orthodoxy structures the
system development process through a purposeful
framework that organizes and regulates activities
and ensures their comprehensiveness.

From crisis through depression to agility

Because software is so woven into the fabric of
modern business, it is in many ways pointless to
argue that the engineering approach has failed.
However, the manufacturing ideal of software pro-
duction remains unfulfilled, and significant evi-
dence indicates that many of the software crisis
problems remain with us today.

Results of a recent study, for example, showed
that 80 to 90 percent of software does not meet
performance goals, 80 percent of systems are deliv-
ered late and over budget, about 40 percent of
developments fail or are abandoned, less than 25
percent of systems properly integrate business and
technology objectives, and only 10 to 20 percent
meet their success criteria.®

A compelling perspective on these enduring
problems argues that software development
process is not a product so much as a communica-
tion medium.” The process must translate tacit,
evolutionary, and often undefined knowledge into
digital form. The translation involves not just basic
grammar, syntax, and rules but also issues of mean-
ing and intent that are both contextual and sub-
jective.” In this view, software development is a
knowledge-acquiring as well as a product-produc-
ing activity, and its structure must address a com-
munication medium’s demands in good part.

The agile approach implicitly embodies this view.
It strongly favors human communication and col-
laboration over defined and repeatable activities as
mechanisms for developing quality software. In
practice, the difficulties that many organizations
face with the agile approach reside, first, in the cul-
tural change necessary to convince management of
its benefits and, second, in its feasibility within the
increasingly global market forces, regulatory prac-
tices, and government oversight that fuel stan-
dardization.

To reduce the disjunction between software
development management, theory, and practice
that has remained unresolved since the NATO con-

ferences,” we must examine the needs that emerge
from each perspective.

Process theories and realities

In engineering development, the demands on
software development are relatively well articu-
lated. The perspective assumes that requirements
can be fairly well defined and that the development
process concentrates on moving software process
control from producers to managers. Three princi-
ples underlie this view:

e Formalism—seeking a universal approach to
a wide range of problem situations. An
abstract set of processes, activities, and so on
transform inputs into outputs to deduce a
repeatable solution.

o External knowledge capture—capturing and
standardizing the development process to sup-
port a learning paradigm of inert knowledge
transfer as a basis for coordination, commu-
nication, and training.

¢ Economics—using the division of process and
labor to rationalize cost and effort. By estab-
lishing a purposeful framework of component
activities, management can eliminate the activ-
ities that appear to be redundant, irrational,
and counterproductive. It can also partition
the process, allowing task specialization and
pay rates differentiated for particular skills.

Several theories influence this approach.® A trans-
formation view of process, which decomposes a
problem into sequential activities that change
inputs to outputs, has dominated production think-
ing for many decades.

The management tasks of planning, execution,
and control all have underlying theories. Planning
assumes that the organization consists of separate
management and production elements—that
“thinking” can be separated from “doing” and that
producing plans is synonymous with action.
Execution provides the interface between plan and
work, dispatching authorization to proceed.
Control uses a thermostatic model that monitors
variances between standard and actual values and
corrects the process accordingly.

The realities of emergent organizations, however,
are disjoint from these theories, which have failed
to solve the software crisis problems.

In agile development, solutions evolve collec-
tively over time. The process concentrates on con-
solidating control with the producers, thus
implying a coordination role for management. The

principles underlying this view contrast with
the engineering approach:”°

e Context awareness—varying the
approach based on a collective under-
standing of contextual needs and deliv-
ering working software frequently as the
principal check on quality and progress.

¢ Individual excellence—emphasizing the
human aspects of skill development and
motivation, mandating management
trust, and exploiting pride in the job.

® Peer-based knowledge capture—using pairing
and periodic group reflection as mechanisms
for explicit collective learning and emphasizing
face-to-face communication as the principal
means of knowledge transfer—explicit and
implicit—between developers and customers.

® Minimalist methodology—concentrating only
on effort that is judged to be necessary and suf-
ficient in a particular situation.

From a production perspective, agile develop-
ment is more akin to value generation than to trans-
formation. Value generation aims to provide the
best possible value from the customer’s perspec-
tive.!! It accepts that customer requirements are
neither necessarily available nor well understood
and that allocating requirements to different devel-
opment activities is a difficult problem.

From a management perspective, management-
as-organizing'? supersedes planning, executing, and
controlling. In this view, management involves the
design, coordination, and enabling of activities and
is primarily concerned with shaping the physical,
political, and cultural environment for action.
Importantly, agile development views action as
inherently situated—it is never adequately captured
in a plan.

RESOLVING TENSIONS

Agile development is based on theory more
appropriate to emergent organizations, but it faces
a significant barrier to implementation: the resis-
tance of large, mature organizations to wholesale
change in working practice. However, while theo-
ries may differ, the broad goals of engineering and
agile development are implicitly the same: produce
the intended software artifact, observe internal
needs such as minimizing cost, and fulfill external
customer-related needs such as quality and flexi-
bility. The congruence in these broad goals provides
a lever for migrating organizations across the
theoretical divide.

The agile
development
process implies
a coordination
role for
management.

June 2003

A process
generic enough
to deal with any

situation is
too high-level
to be practical.

However, two practicalities arise from
attempting to introduce agility while contin-
uing to project product, service, and process
quality while managing both a market pres-
ence and a competitive edge.

Situated processes

The primary tension that agile principles
and values impose on development practice
is in balancing between implementing repeat-
able processes and allowing for the nuances
in a particular development context.

From an engineering development perspective,
management expects predictable processes to
achieve its primary goal of quality product devel-
opment at minimal cost. But uncertainty and con-
textual differences are a fact of life in software
development. While it may appear easier to plan,
execute, and control development via globally
applied standard processes, management is not use-
ful if it does not reflect project realities. Further, a
process generic enough to deal with any situation
is too high-level to be practical. It must be tailored,
which requires substantial up-front effort. Many
reuse efforts attest to this observation, yielding nei-
ther use nor reuse.

Agile software development accepts these diffi-
culties, adopting collaborative principles and values
that engender informal trust and interaction; a
chaordic perspective that sees complete order as a
fallacy; and a “barely sufficient” methodology’ that
reflects a “less is more” philosophy.

To management, these elements shout risk and,
furthermore, risk that increases significantly in rela-
tion to project size. The contractual nature of much
large-scale software development makes it easy to
understand why production and management the-
ories are what they are. Developers at AgCo, for
example, rarely have contact with clients—other
parts of the organization act as gatekeepers in this
regard.

Rational Unified Process. Given AgCo’s adoption of
RUP and pursuit of CMM quality certification, we
proposed using RUP for a learning framework that
would educate the organization in agile principles
while mitigating risk.

At a senior management level, we first intended
to standardize on a set of activities, artifacts, work-
flows, and roles for each RUP discipline across
three legacy migration projects. This approach
seemingly offered easier rollout and monitoring.
However, a significant number of RUP activities
and actifacts soon proved to be unsuitable to the
development context of legacy migration.

Computer

At a tactical management level, we tried map-
ping RUP activities and artifacts to the existing
AgCo methodology to provide some consistency
of understanding. However, this approach also
became problematic. Even though we completed a
nominal mapping at the activity level, RUP’s iter-
ative and incremental aspect was new to AgCo,
which had a waterfall mentality. A simplistic map-
ping of RUP standards to existing company meth-
ods only repeated difficulties that inhere in the
engineering approach.

Explicit tailoring. Accounting for a more situational
view, the most culturally acceptable solution was
to translate implicit tailoring to explicit tailoring.
This meant finding a level at which we could
broadly reuse processes, activities, artifacts, and
the like. We thus sought to migrate to a more agile
approach by

e Factoring a core set of artifacts judged to be
necessary—but not necessarily sufficient—for
a wide range of development. These artifacts
provided a means for working back to the core
generic processes and activities. We took arti-
facts as a starting point because AgCo man-
agement saw them as the elements providing
the most value.

e Identifying a set of candidate patterns judged
to cover (a) the core types of development—
legacy migration being one type—and (b) the
contextual application of activities, artifacts,
and guidelines. Patterns were used as they pro-
vide repeatable solutions to a given contextual
problem. Core patterns provide a means of
configuring a set of context patterns to meet a
development level need.

e Examining each pattern’s additional artifacts
for those considered both necessary and barely
sufficient.

¢ Producing a skeletal decision framework for
selecting patterns from four characteristic sets:
project elements, such as scope, scale, and nov-
elty; product elements, such as technology base
and complexity; team elements, such as exper-
tise, size, and work location; and organiza-
tional elements, such as structure and cultural
mentality. These characteristic sets can expand
or evolve with the repository of good working
practice/pattern catalogs.

The framework implements a “learn by doing”
philosophy and an evolving repository of good
working practice. The practice is embodied in pat-
terns documented by lightweight development

Refinement

Framework
Core for
Contextual | pattern | configuring
characteristics Pattern context
Project Decision (RUP patterns
PO making development :
Team case) Consists of:
Organizational Context Workflows
— pattern Activities
Artifacts
Draws from Guidelines

Pattern
catalog

Reflection

Contributes

Figure 1. Situated process framework. Patterns are developed via a situated examination of contextual characteristics, which results in a
pattern catalog of RUP workflows, activities, artifacts, and the like. Patterns are expressed as an RUP development case. The development
case is reviewed and refined as the project goes through iterations and is housed in the context pattern repository of good working practice.

Agile principles Situated process framework

cases. The cases, in turn, are based on RUP arti-
facts that capture configuration and rationale on
necessary and sufficient aspects of a development
pattern. The overall framework is not prescriptive
per se. Rather, it is an aid in tailoring the process to
context and in educating the people involved.
Consequently, developers actively revisit the case
in each development iteration.

Visibility. Figure 1 shows how the situated process
framework functions. In practice, making the deci-
sion process visible is extremely valuable because it
forces management to actively determine whether
an activity or artifact is both necessary and sufficient.

Different projects need different
processes.
In methodology, “less is more.”

Tailoring a process to meet a project’s contextual
needs

Selecting patterns, activities, and artifacts based
on the “barely sufficient” criterion

Adopting an incremental and iterative approach
to enforce iteration of all software development
phases, including build

Suggesting interaction and communication
techniques suitable to a project’s contextual

Deliver working software
frequently and establish
feedback loops.

Enhance interaction and
communication.

Table 1 describes how the framework applies in
the context of agile principles and practice. In broad
terms, the situated process framework aims to ori-
ent users toward adopting agile development in
everyday practice by suggesting suitable techniques
for collaboration, interaction, and communication.
For example, observing a pattern’s evolution can
suggest new or more effective ways to apply the
pattern in specific situations. It can also help in
determining how often the process must deliver
software to form effective feedback and trust loops
as well as what forms and frequency of communi-
cation are necessary for effective delivery.

Situated quality

A second tension that agility imposes on engineer-
ing practice relates to the perception of quality. From
an engineering perspective, quality is strongly linked
to the use of standards and the subsequent certifica-
tion against those standards. Most quality standards,
such as ISO 9000 and CMM, function under the “say
what you do, then do what you say you do” philos-
ophy. In practice, certification requires an audit of
both the “saying” and “doing” and assumes that
process quality will equate to product quality.

The audit mentality mandates tangible output

characteristics

Empower individuals to

make decisions. patterns

Enabling individuals to further tailor selected

Learn by doing.
framework

and tends toward common development difficul-
ties such as excessive documentation, reduced com-
munication-oriented activity, and a growing
disjunction between the working code and docu-
mentation.

An agile perspective puts more emphasis on
product quality. Process quality can lead to prod-
uct quality, but a good process is not necessarily
standardized or repeatable. The agile perspective
sees a key distinction between consistency and
repeatability. Emergent situations never give rise to
repeatability because the development context—
information, constraints, politics, and so on—is
always different.'

Outcome consistency, however, is more likely
achievable when project aspects equate with simi-
lar experience and when the experience is oriented
toward reflective practice as opposed to “follow-
ing a process.” However, in keeping with the engi-

Capturing good working practice to enrich the

June 2003

cMmI Context pattern
Process area Workflow » Artifact
Specific » Activity]
practice Artifact
Specific » Activity » Artifact
practice
Workflow Artifact
Process area » Activity >
” » Artifact
Specific
practice
Activity Artifact
Artifact

Figure 2. Mapping Capability Maturity Model Integration practices to process
pattern elements. We map the CMMI specific practices within each process area
to context patterns on many different levels: RUP workflows, workflow details,
activities, artifacts, and guidelines.

neering perspective, customer trust currently rests
in the software process infrastructure.

The institutionalization of quality was impor-
tant to AgCo from both the practical development
and marketing perspectives. However, the organi-
zational aim of mapping CMM Integration prac-
tices to RUP artifacts as directly as possible created
the impression of a “one size fits all” process
that did not work. We solved the immediate diffi-
culty by

¢ adopting the pattern-based framework to sup-
plant repeatability with consistency, while still
providing the audit trail necessary for assess-
ment; and

e mapping CMMI practices to candidate devel-
opment patterns and accepting that combina-
tions of RUP workflows, activities, artifacts,
and so on can participate in more than one
CMMI practice.

Figure 2 illustrates this mapping.

This approach does not violate the “say what
you do, do what you say you do” principle, but it
does seek to replace the weak notion of repeata-
bility with a strong notion of consistency in
approach, decision making, and expected product
quality. It has important implications for certifica-
tion—specifically, an audit of continuously devel-
oping capability, which in turn suggests continuous
CMMI implementation.

In addition, the approach’s tailored nature sug-
gests that process capabilities will be certified at the
level of “Defined,” which explicitly acknowledges
the value of tailoring and configuration.

Computer

rganizations must derive development pat-

terns and the necessary and barely sufficient

processes, activities, and artifacts from their
experience over time. Our learning framework
allows mature organizations to migrate from an
engineering view of development to a more agile
View.

The argument that software development has a
strong communication element means that an
entirely rational process model will always have
limited applicability. Accepting this problem is a
prerequisite for addressing it. At the same time,
large and mature organizations are unlikely to
adopt a big-bang approach to agility. Management
sees the associated risks as too great.

Despite a clear rationale for a migratory
approach, it is not without difficulties. First, build-
ing the pattern repository takes time and effort.
Further, the repository’s evolution requires some
form of configuration management system. Finally,
the framework and configurations pose complex
maintenance issues.

We propose the application of agile thinking to
manage these issues. Agile process does not fly in
the face of engineering practice. If used thought-
fully, it provides a clear mandate for making engi-
neering practice lean and well focused. For the
approach to be truly successful, however, organi-
zations must grasp the opportunity to reintegrate
software development management, theory, and
practice. The effects of disjunction have been evi-
dent long enough.

References

1. D.P. Truex, R. Baskerville, and H. Klein, “Growing
Systems in Emergent Organizations,” Comm. ACM,
vol. 42, no. 8, 1999, pp. 117-123.

2. K. Eischen, “Software Development: An Outsider’s
View,” Computer, May 2002, pp. 36-44.

3. P.Naur and B. Randell, eds., “Software Engineering:
Report of a Conference Sponsored by the NATO Sci-
ence Committee,” 1968; http://homepages.cs.ncl.
ac.uk/brian.randell/NATO/.

4. B. Randell and J.N. Buxton, eds., “Software Engi-
neering Techniques: Report of a Conference Spon-
sored by the NATO Science Committee,” 1969;
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/.

5. R. Hirschheim, H.K. Klein, and K. Lyytinen, Infor-
mation Systems Development and Data Modeling:
Conceptual and Philosophical Foundations, Cam-
bridge Univ. Press, 1995.

6. C. Clegg et al., The Performance of Information
Technology and the Role of Human and Organiza-

tional Factors, tech. report, Economic and Social
Research Council, UK, 1996.

7. P.G. Armour, “The Case for a New Business Model,”
Comm. ACM, vol. 43, no. 8, 2000, pp. 19-22.

8. L. Koskela and G. Howell, “The Underlying Theory
of Project Management Is Obsolete,” Proc. PMI
Research Conf., Project Management Institute, 2002.

9. A. Cockburn, Agile Software Development: Software
Through People, Addison-Wesley, 2002.

10. J. Highsmith, Agile Software Development Ecosys-
tems, Addison-Wesley, 2002.

11. H.E. Cook, Product Management: Value, Quality,
Cost, Price, Profit and Organization, Chapman and
Hall, 1997.

12. R.B. Johnston and M. Brennan, “Planning or Orga-
nizing: The Implications of Theories of Activity for
Management of Operations,” Omega, vol. 24, no. 4,
1996, pp. 367-384.

Mark Lycett is a research project manager and lec-
turer for the Department of Information Systems
and Computing at Brunel University. His research
interests include all aspects of software development,
with emphasis on agile, adaptive, and evolutionary
systems. Lycett received a PhD in information sys-
tems from Brunel University and is a member of the
IEEE, the ACM, and the Project Management Insti-
tute. Contact him at Mark.Lycett@ brunel.ac.uk.

Take your e-mail address with you
Get a free e-mail alias

from the

Gomputer Sgciety’

(]

and =

i I

DON'T(:

you@computer.org

Sign up today/at
computer.org/WebAccounis/alias:ntm™

Robert D. Macredie is a professor of interactive sys-
tems in the Department of Information Systems
and Computing at Brunel University. His research
is broadly grounded in information systems devel-
opment, particularly the integration of people,
process, and technology. Macredie received a PhD
in computer science from the University of Hull
and is a member of the IEEE, the ACM, and the
British Computer Society. Contact him at Robert.
Macredie@brunel.ac.uk.

Chaitali Patel is a research assistant in the Depart-
ment of Information Systems and Computing at
Brunel University. Her research interests are in agile
systems development, particularly method and
process. Patel received an MSc in distributed infor-
mation systems from Brunel University. Contact
her at Chaitali.Patel@brunel.ac.uk.

Ray J. Paul is a professor of simulation modeling in
the Department of Information Systems and Com-
puting at Brunel University. His research is broadly
grounded in information systems development,
with an emphasis on adaptive and evolutionary sys-
tems. Paul received a PhD in operational research
from the University of Hull. He is a member of
the Operational Research Society and a fellow of
the British Computer Society. Contact him at
Ray.Paul@brunel.ac.uk.

ompister
Wants You

other feature sections such as Perspectives,
Computing Practices, and Research Features as
well as numerous columns to which you can

contribute. Check out our author guidelines at

http://computer.org/computer/author.htm

for more information about how to contribute
to your magazine.

Computer is always looking for interesting editorial
content. In addition to our theme articles, we have

Computer

June 2003

