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§1 Introduction 7 A.D. Rawlins and W.E. Williams,

The problem of the Wiener-Hopf factorisation of ar arbitrary
matrix still remaing an open problem and one whose general solution would
enable exact solutions to be found to many hitherto insoluble problems in
acoustics and elecﬁromagnetic theory. Some progress has been made in recent
yvears for some special cases and, in particular, Rawlins (%) and Hurd (g)
have developed techniques which effectively lead to the Wiener—Hopf
factorisation of particular matrices. The problems solved by these authors
can also be solved, without recourse to Wiener-Hopf theory, by uging the
method of integral representations described in (%,é). The general approach
developed by Hurd has however been shown, by Hurd and Prezdiecki (E)’ to be
applicable to problems which do not appear teo be soluble by the methods of

(3,4) -

Rawlins (}) and Hurd (%) reduce the problems under consideration
to the solufion of simultaneous Wiener-Hopf equations and, by making
plausible assumptions, obtain functional equations for the components of
the unknown vectors. The resulting functional eguations can be identified
~with parficular Riemann~Hilbert problems and a formal solution obtained.

This formal a@proach is adopted in (%) but in (E) the functional equations,
which are of a comparatively simple nature, are solved by an 'ad-hoc' method.
The solutions obtained by Rawlins and Hurd can be shown to satisfy all the
requisite conditions but, as has been pointed out by Chakrabarti (§), the
approach suffers from the logical deficiency tha£ equations ¥alid in a strip
in the complex plane are assumed, without apparent justification to be

valid in a half .plane. This deficiency has been remedied in a recent paper (Z)
where the approach described in (%) is used to cbtain functional equations

for the elements of the factor matrices sought. The method adopted in (7)

has also the advantage of demonstrating explicitly the required Wieper-Hopf



factorisation, the problem solved therein can also be solved by using the

method described in (3,4).

An alternative approach to the Wiener-Hopf factorisation of
matrices has been recently devised by Daniele (§), who gives a method of
factorising a class of matrices which includes those treated in (%), (g),
(g) and (Z} as special cases. The method used by Daniele is an algebraic
one and its basis seems to be entirely different to that adopted in

(1,2,5,7).

In this note we attempt to further extend the class of matrices
for which an explicit Wiener—Hopf factorisation can be obtained and show
that the technigue described in (Z) can be applied to a class of matrices,
of which those in (%,%,Z) are special cases, which does not appear to be
equivalent to that class for which Daniele's approach is applicable. 1t is
shown that, for the class of matrices considered, the problem of factorisation
can be transformed to one of solving two independent Riemann~Hilbert problems

on a half—line.

Factorisation procedure

The matrix A, which is to be factorised, is defined by
F(R) G(RF(R
A= [ (}-)

H(K) -G(RH(K)

where F, G and H are analytic functions (éxcept possibly at K = 0) of the
1

variable K defined by X = (kzwaz)z, where o is a complex variable and k a
constant with positive real and imaginary parts. The branch of the square
root is chosen which has positive real part with the branch cuts being along

the half-lines o = k+8, o = -k-8(6 20), The elements of A are therefore

analytic functions of ¢ within the strip —ki < Im(a) < ki’ where ki denotes



the imaginary part of k, and the Wiener—Hopf matrix factorisation problem
is the determination of matrices U(a) and L{o), whose elements are analytic

for Im{a) > wki and Im(a) < ki respectively, such that

A0) = U@) LT @), (2)
We shall assume that F, G and H do not have any zerosfor BéK > ( and
that G has to satisfy

G(X) = ~G(-K), (3
thus, unless G is unbounded at K = 0, G(0) = 0, The matrices studied
in (%,%,E,z) are particular cases of the general type of matrix defined in
equation (1) and for the particular example studied in detail in (Z) we have
that

F=K+KkB H=K, g=-i/K,

where B is a positive constant.

in order to effect the factorisation it will be assumed that
U is analytic except along the branch cut through &'# ~k whilst L is
analytic except along the branch cut thrgugh o = k, Evaluation of equation
(2) on both sides of the cut C through ¢ = -k gives, on using the suffices +

to denote values evaluated on the upper and lower sides of C,

i

A, @) = U, (@ L), ()

A_ (o)

i

-1
U_ (o) L “{o), . : (5)
(L is analytic except across the branch cut through ¢ = k and therefore
takes the same valueg on both sides of C). Eliminating L(a) between

equations (4) and (5) gives

U, (0) = A, (@ Al () U_ (o), onc. (6)

Equation (6) is a matrix Riemann-Hilbert problem and the
columns of U are solutions of vector Riemann-Hilbert problems very similar
to those encountered by Hurd (2). TFor k real the use of a suffix notation

to describe values on appropriate sides of C can be dispensed with and we can,



. . e .
for example, write U+ and U_ as U(Eelﬁ) and U{(fe * ), respectively, where
k < £ < «©, Tn this notation equation (6) becomes

im

vgel™ = age!™ a7t v "

)5 (7

which is a set of coupled ¢ ~ difference equations and in (Z) the
factorisation is reduced to a set of difference equations similar to those
defined by equation (7). It is to a certain extent a matter of taste as to
the notation adopted (the results obtained for treal k can be 3enralised to
complex values by analytic continuation) and we adopt the notation of
equation (6) as it enables results fof the scolution of Riemann-Hilbert problems
to be quoted directly, (The difference equations associated with equation (7)
can be solved by using the Plemelj férmula in exactly the same way as this
formula is used to solve Riemann~Hilbert problems). The values of K are
different on the upper and lower surfaces of C and we let K denote the

value on the upper side of C so that -K denotes its value on the lower side.

Equation (7) is then seen to simplify to

o =T (K)
U, - 1K) U (8)
—H (K)
F(-K) 0

Equation (8), when written in component form, is equivalent

to the four scalar equations

+ =F(R) - + _ ~H(X) -

My TR Yo ) Uy T Freg) U1 (O
+ _ ~F(K) =~ v _ -HE) -

Uy = FeeRy Yp20 (D) Uy = Frmy Y120 (12

-+

where uzg are the elements of U+ respectively. Equations (9) to (12) can

clearly be solved if the coupled system

+_SF(K) - + _ =H(K) o~
V) = gy Vo (U9 v, = ooy Vi (19



can be solved. The system of equations (13) and (14) can be de~coupled

to give
+ _ FEH(K) -
Y T RO e (15)
- 4 _ FEKIF(-K)
Yy Wy T HEEED (16)

where W, = V1V2, WZ = V. /v

1 1zt

Equation (15) is a homogeneous Riemann-Hilbert problem for Wl

whilst equation (16) becomes, on taking logarithms and defining

g
Wy = (k+0}? log Wy
o 3 F(K)F (-K) -
WB ‘:N3 = (k+o) E.Gg W N (17)

which is an inhomogeneous Riemann-Hilbert problem for W3. Thus the original
factorisation problem has been reduced to the solution of the Riemann-—

Hilbert problems defined by eqguations (15 and (17).

For given F, H, particular solutions of equations (13) and (17)
can be obtained by standard methods and particular solutions of equations
(13) and (14) can therefore be found. Mére general solutions of the latter
equations are obtained by multiplying the particular solutions by solutions of

(18) v o= yT

Vo= vl
=V 2 = Vy»

1
R (19

and sufficiently general solutions of equations (18) and (19) are given by

v, = (k+u)%n, (20) v, = (~1)“(k+a>§n, (21)

with n being any integer., The arbitrariness in the determination of the
uij is a direct consequence of the fact that both U and L can be post-multiplied
by a matrix whose coefficients are analytic functions of w. In any specific

problem the arbitrariness can be reduced by placing restrictions on the

behaviour of the coefficients of U and L as |o| = o,

The procedure described above effectively constructs a matrix

U whose coefficents are analytic in the appropriate half plane and a matrix



L ~ whose coefficients are single-valued in the relevant half-plane. This
constructional approach does not however ensure that the matrix th is non-—
singular and that the elements of L are non-singular for Reo < k. This
latter requirement implies that

uo, fa N7 e S ) R ¥ I ¥

F H’ F H® FG GH® FG GH

are analytic, our assumptionsg about F, G, H mean that these can only be

zero for K = 0 and hence the values of n chosen in equations (20) and (21)
must be such that the above expressions do not have single or multiple poles
at o = -k, (The coanstruction has ensured that they will be single valued

in a neighbourhood of o = ~k). The calculations can be a trifle tedious

and are carried out in details for ome particular case in (7).

The general steps necessary in the general calculation can
however be illustrated without undue involvement in algebraic complexity

by considering the special case when A is defined by

A= . (22)

The matrix defined by eqguation (22) is that encountered in the direct
Wiener—Hopf solution of the physical problem solved in (%). This latter
problem corresponds to the case $ = « in the nomenclature of (Z); the limiting
procesg is non-uniform and the case B ﬂlw has to be examined separately.
Equations (15) and (16) become

+

W = W)
- 4 =1
Wy Wy = =5

K

with particular sclutions

W= e, W, = o™ L0 b P



Therefore more general solutions of equations (9) to (12) are given by

it

oy o) i a0t ¢ oy i

by, = (DR L0t 4 e it

i

im=1 1 1ol
up, = (o) *0F [(2) % + () ?T7%,
-n" .
Uy, = (k+a)2 {(Zk)a + (ko) 32
(Two separate integers m and n have been introduced as the pairs of equations
(9) and (10), (11) and (12) are independent and the values of the integer
in equations (20) and (21) which is appropriate for solving the pair

(9) and (10) need not be the same as that suitable for solving (11) and (12).2

The matrix A is non-singular and hence U being non~singular

-1
will ensure that L ig also nonus;ngular. Direct evaluation of the determinant

T Tt T o ey Pl e et by
W

o

of U then glves m-n to be an odd 1nteger 5 Examlnatlon of the behavzour of

the Rij near ¢ = =k g1ves that there w111 be no polesqat o= -k provided
that both m =2 1 and n 2 1'} As Iai -+ @ ye have b
. -~”%n_% §n+% ’ f
ugq = O(a Y, Upy = O(a ) g
b3 fm+k . i
up, = Ola* ), uzz = 0(a?  *), %
\
1 Lm—
By = 0@, Ry, = 0@, %
R — E
221 = 0(@23 4)’ 222 - O(aim 4y, :

,
Thus, if we restrict Uy to be 0(1) and u;, to be o(0%) as [a| = o, n =1

and m = 2.
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Therefore more general solutions of equations (9) to (12) aré given by

(k+cx)’lln"% [(:Zk)é + (k-t-o&)%}_%

Yip T

Yo1 © (~1)n(k+oc)%n E(Zk)% + (k+a)%1% s
u, = () ™% [ (2m)t 4 (ko) ¥77E
wy, = CD™ar B Lt 4 aoaytat

(Two separate integers m and n have been introduced as the pairs of
equations (9) and (10), (11) and (12) are independent and the values
of the integer in equations (2) and (21) which is appropriate for

solving the pair (9) and (10) need not be the same as that suitable

for solving (11) and (12).)

The matrix A is non-singular and hence U being non-singular
will ensure that L™' is also non—-singular. Direct evaluation of the
determinant of U then gives m~n to be an odd integer. Direct
evaluation of the determinant of L gives that mtn=3, Examination
of the behaviour of the gij near 0=~k gives that there will be no
poles at 0=~k provided that both m21 and n21, Thus the only
possible values of mand n are m=1, n=2 or m=2, n=1. Either of
these sets of values can be used because the matrices will be

unique to within an arbitrary constant matrix, and the ?rnducj' L}Lﬂh

will equal A,



