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Abstract. We shall consider the radiation of a cylindrical surface wave mode which
propagates towards the mouth of a semi-infinite cylindrical waveguide which sup-
ports surface waves. This semi-infinite cylindrical waveguide is symmetrically located
inside an infinite cylindrical waveguide whose surfaces are lined with an absorbent
material. The whole system constitutes a new bifurcated cylindrical waveguide
boundary value problem that has application in acoustics and electromagnetism.
The mathematical model results in a scalar Wiener-Hopf problem: which can be
rigorously solved to give 2 closed form sclution.
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1. Introduction

The bifurcated waveguide problem under consideration here is shown
in figure 1. A surface wave mode is assumed to propagate towards
the mouth of a Hned semi-infinite cylindrical waveguide. The bound-
ary valie problem which we are going to solve in this paper is of a
fairly general nature. The boundary conditions on all the cylindrical
surfaces are third type boundary condition of Robin type. There are
a number of practical physical situations where this waveguide gystem
with these boundary conditions can arise. For example, the present
scalar problem arises as a model for electromagnetic communication
in subterranean tunnels. An inductively loaded horn would be mod-
elled by the semi-infinite waveguide, ( Rulf and Hurd, 1978), (Daniele
et al, 1981). The semi-infinite waveguide producing a high efliciency
wave launcher into the tunnel, see (Barlow and Brown, 1962). A lossy
impedance boundary condition on the inside of the larger cylinder wall
models real tunnel conditions quite well, see {Mahmoud, 1991). By
various polarizations of the surface wave the present scalar problem
will arise as a suitable model for subsurface tunnel communication. The
present problem can also be used to model the propagation of waves
in fibre optic waveguides. The surface impedance boundary conditions
modelling a metal-dielectric cladding of a fibre-optic waveguide, (Hecht,
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Figure 1. Geometry of the cylindrical duct system.

1990), ( Snyder and Love, 1983). In acoustics the design of exhaust and
ventilation systems, that reduce unwanted noise use absorbent linings
along cylindrical ducts. The attenuation of unwanted sound in infinite
closed ducts by means of acoustically absorbing liners has been theoret-
ically analyzed extensively in the literature; see {Morse, 1939), (Cremer,
1953) and the review articles by (Nayfeh et al, 1975), (Lapin, 1975),
More recently the authors Bityiikaksoy, A. and A. Demir have published
a series of articles that bear on this subject area, see references.In
particular ( Biiylikaksoy and Demir, 2006), solved a related problem
*hy the modified Wiener-Hopf techique”. They considered the same
eylindrical geometry but with different absorbent cylindrical surfaces.
The solution of this quite general problem by the modified Wiener-Hopf
technigue resulted in an infinite system of algebraic equations, that
were solved numerically to give an approximate solution. The present
work could be used as 2 bench mark for a test on their approximate
numerical solutions.

Here to be specific, we shall couch the present paper in an acoustic
context. Thus an acoustic surface wave propagates towards the mouth
of the semni-infinite duct. The boundary conditions on the internal sur-
faces of the semi-infinite waveguide are such that this guide supports
surface waves. The infinite cylindrical duct in which the semi-infinite
guide is situated is such that the walls are acousticaily absorbent. Thus
this particular problem can be considered as a system where the surface
wave emitted from the semi-infinite region is unwanted noise and the
absorbent lining is used to reduce the noise down the duct far away
from the source of noise. Alternatively the semi-infinite guide can be
considered as a measuring probe that is placed inside a larger lined
duct to measure the reflection coefficient of the surface wave reflected
back into the semi-infinite duct. The reflection coefficient will depend
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Cylindrical Waveguide 3

on the impedance of the infinite duct lining. Such a device has practical
applications in large industrial chimneys where soot lines the chimney
surface and therefore changes the surface impedance, {Rienstra, 1992).
The reflection coefficient will give an indication of how clogged-up the
chimney is and whether it needs to be cleaned. A related situation
arises in blocked up arteries of the human body, and the present prob-
lem could be used to build an instrument to indicate the degree of
clogging of the blood vessels. Clearly the artery walls being modelled
by impedance boundary conditions and being cylindrically rigid is a
simplification of the real life sibuation. Bus it offers a first prototype
model for a more refined model.

In section 2 we shall formulate the mathematical problem that we
intend to solve. In section 3 we shall solve the problem formulated
in section 2 by means of the Wiener-Hopf technique. The solution
will be expressed as complex contour integrals. In section 4 we shall
analytically convert these integrals into infinite series of modes which
propagates in the waveguide region. Graphs will be given for the reflec-
tion coefficient which is a useful way of measuring power and also the
effect of the lining impedance of the infinite duct wall. At the end of
this work we shall have some appendices that derive analytical details
and calculations that are required in the main body of the paper.

2. Formulation of the boundary value problem

We shall consider the acoustic diffraction of a wave mode propagating
towards the open end of a semi-infinite cylindrical tube, whose internal
surface is capable of supporting a surface wave mode. This semi-infinite
tube is surrounded by an infinite cylindrical casing which is lined with
an acoustically absorbing, or wave bearing material. The cylinder casing
and its lining are located at r = b, —00 < z < 00, and the semi-infinite
cylinder, assumed $o be infinitely thin, is located at r = @, —00 < 2 < 0,
in cylindrical polar coordinates (r, 8, z), as shown in figurel. The sound
source propagates cylindrically symmetric modes, from z = ~oo0, along
the inside(or outside) of the semi-infinite tube fowards the open end
at z == 0. Therefore the source field may be represented as a sum of
symmetric wave modes independent of 8. Such a situation arises, for
example, when the source field is a point(or ring) source located at
{0,0,zp){or (¢,80,20)),a < ¢ < b,0 < < 2m), zo < 0. From the
geometrical symmetry of the problem in relation to the incident field,
the total acoustic field everywhere will be independent of §. We shall
therefore introduce a scalar potential function 4({r, 2,t) which defines
the acoustic pressure and velocity for an ideal compressible irrotational
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4 Anthony Rawlins

fluid by p = ——"pg%%, and u = V1 respectively, where pg is the density of
the undisturbed medium. The incident sound fieid is assumed to have
a time harmonic variation and therefore the field everywhere can be
represented by 9(r, z;t) = Rie !¢ (r, z)]. We shall not show the time
variation e~ ™" in the rest of the paper and only work with the complex
potential function ¢(r, z). For a surface which absorbs acoustic energy
it is necessary to describe mathematically how the acoustic energy is
transmitted into the boundary surface. In many practical situations the
so called locally reacting surface proves to be a good model for porous
shsorbing surfaces, see {Morse and Ingard, 1961), and {Rienstra and
Hirschberg, 2002). The normal acoustic impedance Z, of the surface of
such an absorbent lining is defined by the ratio Z, = p/(u-n) where
the unit normal n is directed into the absorbent lining. Thus in terms
of the complex velocity potential ¢, the boundary condition on the
absorbent surface is given by

o ik

where ((= Z,/(poc)) is the complex specific impedance, with positive
real part, ¢ is the speed of sound, and k = w/c is the wave number.
Wave bearing corrugated surfaces which do not absorb energy can be
described by a similar type of boundary condition, see {Brekhovskikh,
1980). In this situation the complex specific surface impedance { = x —
i¢ has a zero resistive component x = 0, and a purely negative reactance
£ < 0. The quantity £ depends on the geometry of the corrugated
surface. Thus the boundary value problem satisfied by ¢(z, z) is given
by:

(V24+ k) d(z,2) =0, (0<r<a)Ule<r<b) {(2)

2 @a) 4 Eelat ) = )+ el =0, (2 <0 ()
%’?(a*,z) + -]gqb(a+,z) = %i—){a",z) + gqb(a",z), (~co < 2 < o0); (4)
(52 = 07,9 =0, (-00< 2 < o0); ©

$la”,2) = dlaT,2), (2> 0); (6}
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Cylindrical Waveguide 5

where it is assumed b > a, and RC > 0 and £ < 0. ! To the above
conditions we add the incident field and those conditions at infinity
which are relevant to the nature of the propagating modes that the
various duct regions can sustain. It is not difficult to show, by using the
method of separation of variables (Rawlins, 1995) that the appropriate
modal expansions in the various duct regions at infinity are:

For z— —0,0<r<a

$(r. 2) = Io(por)e™ + Rlg(uor)e™ % + 202 RuJo{amr)e™ ™%, (7)

where the first and second ierm correspond to the domirant inci-
dent and reflected surface wave respectively; with ug the positive real
solution of the equation

k
£
and xo = 1/k? + u§ with 0 < k < ko where ko is the smallest positive
root of the equation £Jj(koa) + Jo(kpa) = 0. The remaining terms cor-

respond to the reflected modes where o, = /k? — X2, (n=1,2,3,...),
are the real positive roots of the equation

pol1(poa) + wIo{uoa) =0, &£ <0, (8)

el (oma) -+ -g.fg(ana) =0, 9)

with 0 < Sx1 < Sxa < Sxa < ..., and Ryn 2 0, xn = i1/0% — k2, and
k< oy < ay < ag < .... The proofs that only one surface wave mode
xo can propagate for 0 < k < ko, and that the equation (9} has an
infinite number of real roots is given in the appendix A.

For z — 00,0 <r <b

B(r, 2) = T2 Tndo(Bur)e™, (10)
where B, = /k% ~ £2(n = 1,2,3,...) are the roots of the equation

m@@m+%%@mm& (11)

It is shown in the appendix B that 0 < B < §& < $3 < ..., 0 < RE,,

and R3,55, < 0.
For z — —oo,a <r <bh

! The condition R¢ > 0 corresponds to a situation where the internal surface of
the infinite waveguide has an absorbent lining. The condition £ < 0 corresponds to
the situation where the internal surface of the semi-infinite wavegulde has a lning
which supports surface waves.

JENGPr.tex; 19/03/2007; 11:35; p.5



6 Anthony Rawlins

¢‘(T‘, z) = 2?=1Tn{(5nﬂéi)l(§n&) -+ %H[gl)(éﬂar))JO(énT)— (12)
{5nJ6(5na) oA %jo(gna))ﬂ((]l)(5?2?)]8—1?7”3’

where 6, = k2 — ny(n=1,2,3,...), are the roots of the equation

(B S (5n0) + BHS (620)) (6nJj(00b) —~ EJo(Bab))—  (13)
(B Th(6n0) + £T0(600) ) (0 HS V' (31) — S HGD (5:8)) = 0,

with 0 < S < S92 < Sm3..., and 0 < RNy, RNpQnn > 0, see the
appendices A and B.

Finally, we require ¢ to have finite energy density on z = 0,7 = @,
and thus ¢ must be finite and |V¢| must have an integrable singularity.
This results in the edge field behavior at r = a,z — &

o
s =0w, 2o ooph, 20 ay

The satisfaction of the above conditions (2} to (14) will result in a

unique solution to the boundary value problem formulated.

3. Solution of the boundary value problem

A suitable representation for the total field ¢(r, 2z} in all space —co <
z < 00,7 < b which satisfies {2} is given by

b 2) = Io{uor)e™* + [ T v A oer)dy, (r<a);  (15)

00

o
$(r ) = / eV (B(1)Jo(kr) + COH (sr)ldv, (a <7 < b); (16)
J—co

where k = vk? — 2. The branch cuts are from & to ico and from —&
to —ioo. The cut Riemann sheet on which we shall work is defined by
0 < argx < 7. The contour of integration is indented below the point
—k and above the point k. 2 The quantities A{v), B(v),and C(v) are

% A posteriort, branch cuts singularities should not arise because of physical rea-
sons. We are dealing with a closed duct system and only pole singularities can occur
in the integrands, giving rise to modes of propagation.
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as vet unknown, however, the edge condition (14) requires that as
o} — o0

eaiui
7

A() = Ol e, B(v) + e ¥I0Ww) = O(lw|™), (A7)

see appendix C. We shall see later that the integrands of (15) and
(16) only have pole singularities that produce exponential wave modes
propagating down the ducts. These wave modes, in the various duct
regions, must be of the form given in the mode conditions at infinity
given by the expressions (7), (10), and (12}. It is shown in the
appendices A and B that none of these poles lie on a suitably indented
contour of integrasion in (15) and (16). To simplify the future resulting
equations we shall use the following formulaic abbreviations:

Ja, B, v) = I (k) + kBJo{ra), (18)
Hia,8,v) = sH" (k) + KBH (xc2). (19)
Thus to determine A{v), B{v) and C(v), we substitute (15) and (16)

into the remaining boundary conditions {2) to (6), giving the following
expressions:

2, eV [ Blw)J (a,1/&,v) + C(v)H (a, 1/€, v)]dv (20)
w (O e A(r)J{a,1/€,v)dv =0,

for {z < 0};

12, e B(v)J(a,1/&,v) + C(v)H{a, 1 /€, v)]dv (21)
= f_?ooo eiVZA(V)J(Qw 1-/53 I/)d?/,

for {~oo < z < co);

| [ o; BN (b i/, v) + COVE D, —i/C)ldy =0,  (22)

for (—oo < z < c0);

./_O:o 6in[%ﬂfi@)""B(V))Jo(m)—c(b’)fféz)(m)]dv = 23)
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for(z > 0). The smile on xp denoting that the contour of integration
is indented below the point ¥ = xo. A solution of the above system of
equations can be written as

A()J(a,1/¢,v) = B(v)J(a,1/€,vy+C(v)H(a, 1/¢,v) = &7(v), (24)

B(V}J(b,~’i/€,?/} ”*"C(V)H(b:'—'i/CaV) = 0: (25)

Io(poa) (1) N

- — = 26
Smily — xo) + (A(v) ~ B(»))Jo(ka) — C{v)Hy ' (ka) = 87 (v), (26}
where &t (v)}(®~ () is holomorphic in Sv > 0{Sv < 0,» # xo) respec-
tively. By eliminating A(v), B(v), and C(v} from the equations (24)
to (26) we get the scalar Wiener-Hopf equation:

To{poa) ™ =
sl i) () = 9 0), )
where i) 2 . J(b, i/, v) 28
V) = (%)J(a’: 1/€,v)D{v)’ -
with

D(v) = J(a, 1/, v)H (b, —i/¢,v) = J(b,~i/(, V) Hia, 1/E,v).  (29)

In order to be able to solve the Wiener-Hopf equation (27) we shall
require the following asymptotic growth estimates as v — Zoo.

k=i, Jolsa) = 0w~y Jj(ra) = O(ui e,
H (ka) = Ol 3~ M), B (ka) = O(lv|"2e72M),
J(b,=i/¢,v) = O(wf3et),  J(a,1/6,v) = O(lv|7e™),

H{b,—i/¢,v) = O(vlie™™),  H(a,1/¢,v) = O(vize®),

K(v) = 0(u[™), D)= O(ule’= M,

These asymptotic estimates together with (17) and (24) to (26) give,
as v — $00,

O (v) = O(M“é}, for Sv<0, {30)

o) =O(lv[™), for Sw>0. (31}
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Cylindrical Waveguide 9
By carrying out the factorization
K(v) = K+ ()K-(v), (32)

where the subscripts & denote the regions where the factors are holo-
morphic, we can rewrite equation (27) in the form

%K;l(}m )+ K. {v)@“(u) (33)

=&+ (v ) — santtet (K2 (v) — K2 (x0)),

which is valid along the real indented line S» = 0. The detailed fac-
torization of K(v), defined by (28) and (32}, is carried out in the
appendix D. In particular it is shown there that as |v] — oo,

Ky(v) = O(|"3), for Svz0. (34)

By using the asymptotic expressions (31), (32) and (34) it can be
shown that the left-hand side of the equation (33) is holomorphic and
asymptotic to O(jv]™}) as |v| — oo, in S < 0. Slmllarly, the right-
hand side is holomorphic and asymptotic to O(lr/]"i) as v} —+ 00, In
S > 0. Hence, by an application of Liouville’s theorem, the function
which is the analytic continuation, from the real indented line, of both
sides of (33) into the entire complex v-plane is the constant zero. Hence
from (33) we have

_ —I(poa)
®7l) = 2WZ(V~X0)K+(XG)K—(7") (#)

which on substituting into (24} and (25) gives,

AQ) = —Io(poa)

= Il = e Kl K@ 180 (36)
Y = ~ Iy (,(,L[)&)H(b, —'i/g} V)
B0) = 5mito - K4 o) K (VD) 37)
C(I/) _ IO(.“‘OG)J(b? —i/gz V) (38)

= 20y — xo) K G0 K- () D)
Thus the acoustic field is given everywhere in the duct system by
substituting (36) to (38) into (15) and (16), yielding

Tolpoa) [ e* Jo(sr)

fr, ) = Ip{uor)e ixor_ K 1 (x0) J o0 (7 — X0 VB - () (ay 1/E, V)
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for (r < a);

r,2) = 5ooae) /oo &[T (6, =i/, ) ) = H(b,—3/¢ ) ols)] )

T 21K {X0) oo (v = xo ) K- (1) D)
(40)
for (a < r < b), where the contour of integration is indented below
V= X0-

4. Modal field representation

We can convert the integral representations for the acoustic field, given
by (39) and (40) into a series of propagating wave modes. This
is achieved by closing the path of integration by a suitable contour
and applying Cauchy’s residue theorem. We can close the path of
integration in {39) or and (40) by an infinite semi-circle in either
& > 0 or § < 0 (depending on the sign of 2) since both integrands are
bounded by O(e*’zu“%) as |v| — oo in these regions. We also note that
the integrands are even functions of « and hence there are no branch
point singularities in the entire v~plane. Thus an application of Jordan’s
lemma, enables us to close the contour of integration in (39) and (40)
by an infinite semi-circle in either S > 0 or Qv > 0 {depending on
the sign of z ) without affecting the value of the integral. The value
of the appropriate integral can then be found as an infinite series of
wave modes by summing the residue contributions from the poles of
the integrand enclosed by the contour.

Field in r < a,2 < 0. Enclosing the contour of integration in (39)
by an infinite semi-circle in Sv < 0 and summing residues from the
only simple poles of the integrand enclosed, that is the simple zeros of
Jla,1/&,v) = 0, which are given by v = xa(n =0,1,2,...), we obtain

= iX0Z __ IO(}LLOG.) oo JO (amr)e”'ixmz
o(r, z) = Dp(uor)e K+(X0)Em=ﬂ o T X Kor o) Tl LG, mé’i”)y

where J'(a, 1/£, —xm) = %%[gﬂlam—xm-

Field in r < g,z > 0. If we close the contour of integration in
(39) by an infinite semi-circle in v > 0, with # > 0, by using Jordan’s
lemma,; and rewrite the integrand of (39) by means of (29), we obtain
the equivalent representation for the expression (39) as

Ilpa)a 2K (v) Jo(rr)D(v)

P(r, z) = Lo{por)e™0* — 3K+ (x0) Jo,. (0= Xo )T (B, —/C, )

duv, (42)
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where O is the closed contour, consisting of the contour of integration
in (39) and the infinite circular arc v > 0,|v| = R — oc. The only
poles enclosed by C are v = xp and the roots of J(b, ~i/(,v) = 0,
they are, v = &n(m = 1,2,3,...). The residue contribution from the
pole v = yp ezactly cancels the first term on the left hand side of the
equality sign in (42), that is the incident wave mode.The contribution
from the remaining poles gives

~ﬂ'ia,fg(,u,0a) 00 K+(5m)*jﬂ(ﬁmf')p{§m)ei§mz
2K (x0) T (& — x0) (b, =1/ Em)

where J'(b, =1/, ém) = %%Mh,zgm, and where v = £, are the
zeros of J{b,—i/(,v) = 0, and Bm = k2 — €&, (m =1,2,3...).

Field in ¢ < r < b,z < 0. In the expression (40} the functions
K_(v) and (v — xo0} do not vanish in the region Sv < O,v % xo,
and thus the only singularities of the integrand in this region are the
poles corresponding to the zeros of D(v) = 0, that is v = —gp(m =
1,2,3,...). If we close the contour of integration in (40) by an infinite
semi-circular arc in Sv < 0, with z < 0, we get, on summing the residue
contributions

¢(r,z) =

(43)

__Jo(uoa)
Qb(f"', Z) - K-i—(XO) (44)
00 {J(bv —i/g, "ﬂm)H{gl){fsm?") - H{b: mé/C: —??m)JG(5m'-'")] eminmz
et (N + X0) K4 () D' (=) ’

where D'{~nn}) = a-%{;'ﬂim_nm and where 6, = /k* — 2, are the
zeros of (13).

Tield in a <7 < b,z > 0. If we close the contour of integration in
(40) by an infinite semi-circular arc in Qv > 0, by applying Jordan’s
lemma, and rewriting the integrand by means of (13), we have the
equivalent representation for {40) given by

_alp(ua) ev? J(a,1/&, YK (1)
607 = o o T Tt
(b, /¢, ) HP (sr) — H(b, ~i/C, v) Jo(sr)]dv,

{45)

where C is the same closed contour as that in (42). There is no residue
contribution from the apparent pole v = Yo because this is a removable
singularity, cancelled by the zero v = xp of J(a, 1/€,v) = 0. Thus the
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only residue contribution arises from the zeros of J(b,—i/¢, v} = 0,
that is, v = &n(m = 1,2,3,...). Thus

(r, z) e —W (46}
oo (8, 1/€, ) K4 (Em) H (b, =4/, &m) Jo(Bmr )e5m*
m=t (ém — x0)J' (b, ~1/C, &m) ’

which is the same as (43), since D(ém) = J(a, 1/&, ém}H (b, —i/C, &m),
and this is what we would expect from the physics of the problem.

5. Dominant behaviour of fleld

For the propagation of the dominant surface wave mode the resultant
dominant behaviour of the acoustic field in the various regions is given
by

(r, z) = I(uor)e™®* + (47)

Tolpar)e= it )+ 0(e)
T e - K )P ’

for (0<r <a,—o0<2z<0).

__ mialy(poa)
P02 = R (o)

BECK L (8)T (0, 1/€ E)H (b, —i/¢, &1) Jo(Bar )t
&1(&1 — xo) (k2 ~ B7C?)Jo(Bab)

for (0 <7 <5,0 <2< 00).

(48)

+0(e?),

_ Ip(poa)
102 = K )

{J(f}! —i/C='"n1)H[(}1}(51T) — H{ba "’i/C,m??i)Jﬂ(éz?“)] —in3 & T
1 + x0) K+ () D' (=71 e+ Oe™™),

for (a<r<b—o0<z<l),
where

Dl(y) = Jl(a"n i/éa U)H(ba _'7:/Ca V) + J(aa 1/&1 V)Hf{bw M'i/C': y)——-
J,(bs “"':/C= I/)H({i’., 1/&7 V) - J(b, ""i/C» V)Hr(a': 1/6? V):

(49)
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with
Je, B,v) = av(so(ka) — kBJy{ra))/k,

H'{a, B,v) = av(kH" (ka) — kBHY (ka))/s.

From the results (47) to (49) it is an easy matter to obtain the
reflection and transmission coefficients for the dominant surface wave
mode propagating in the various regions. In particular the reflection co-
efficient R{=incident surface wave mode/reflected surface wave mode)
calculated at z = 0 of the incident wave reflected back into the duct
(0<r <a,—o0 <z <), is given by

k) = g = ~|Rje¥". (50)
2ax3 (ude? — kYK +{x0))?

Hence the modulus of the reflection coefficient is given by using the
results of appendix D by the compact expression

2y, o argH{1
2ap | B

(R(K)] = |5 To(uoa) H (@, 1/€, o) e 2, (L)
where the P in front of the integral sign denotes the principal value of
the integral, and H(t) = (t* — x£) K (t). The last expression for|R{k)| is
used to produce the graphs shown in figures 2 and 3 below. The value
of |R] can be calculated for & = 0 by using the static method often
used in acoustic waveguide theory . This assumes that the fundamental
mode propagates in all the duct regions with all duct surfaces being
rigid. This calculation gives R = (a® ~ b%)/b%, which for g == 1,b= 1.5
gives R = (.555556. This does not agree numerically with the above
expression (51) when k is put equal to zero i.e. [R(0)] = 1.0. However
the limit is not uniform at £ = 0. It will be noticed from the graphs
that it is not the same as limy.o| R(k)|. It will also be noticed that the
variation of [R(k)| with ( is significant enough to detect variations in
the impedance lining,.
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|2 (k)|
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0.5 ~l_ 1.8 2 2.5 3 k

Figure 2 Graph of the modulus of the refiection coefficient |R(k)|, as a function of
kfora=1bm=15¢&==1,{=10+¢|R{0)] = 1.0, ko = 3.1128.

Figure 3. Graph of the modulus of the reflection coefficient | R(k)], as a function of
Efora=1b=1.5¢8=~1,¢=1+0|R0)] =10k = 3.1128,

6. Conclusions

We have solved exactly a new boundary value problem involving surface-
wave propagation in a lined cylindrical duct. We have been able to
numerically evaluate the reflection coefficient for the dominant surface
wave mode, which is of practical importance in applications, and which
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Cylindrical Waveguide 15

involves complicated split functions {that arise from the Wiener-Hopf
technique ). This is achieved by numerically evaluating the split func-
tions defined in terms of suitable Cauchy integrals rather than the
usual method of infinite products, see the references cited in (Rawlins,
1995). The numerical evaluation of the infinite product would normally
be a non-trivial matter because of the infinite number of complex fac-
tors. However the use of Mathematica to numerically evaluate suitable
Cauchy integrals very effectively overcomes this problem. The sim-
plistic static approximation used by engineers to calculate reflection
and by association the transmission coefficients does not seem to be
accurate enough when dealing with lined ducts. The significant vaxi-
ation of the reflection coefficient for changes in the impedance lining
does offer an instrument for the detection of a change in the proper-
ties of the wall lining. The numerical evaluation of the transmission
coefficients in the other duct regions offers no great analytical diffi-
culties, and can be achieved by the methods used here in evaluating
the reflection coefficient. A full numerical evaluation of the fields in
the various regions of the duct system and their dependance on the
large number of physical parameters needs to be considered in a future
publication. Although we have assumed that ¢ > 0 the same method
used here can mutatis — mutandis, be used to solve the situation where
R¢ = 0,¢ # 0. In this case we would have a surface wave transformer,
which would convert a surface wave generated in z < 0 to a new surface
wave in z > 0. In principle no substantial difficulties would prevent
us from obtaining exact closed form solutions for other incident wave
mode situations with this waveguide system. For example, by reversing
the sign of £ we could consider the incident wave mode in the annular
region a < r < b,z < 0. We have also extended the usual Sturm-
Liouville method in the appendices to give useful information on the
disposition of the poles and zeros of the complicated special function
eigenvalue equations that arise from third-type boundary conditions
with complex coefficients. We note that by letting £ — oo we obtain
the solution to the problem of the radiation from a rigid semi-infinite
duct into an infinite lined duct that was given by (Rawlins, 1995).
Finally we intend to deal with the important extensions of this work
for the electromagnetic communication in subsurface tunnels in a future
publication.
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16 Anthony Rawlins
Appendix
A. Normal modes in infinite duct regions

Here we shall derive the permissible normal wave modes 9¥(r, z) that
can propagate in the various duct regions. For this purpose we need
only consider solutions of the wave equation (V2 + k%)% = 0, in the
infinite region—oo < z < oo for various ranges of r. We shall also
assume here that k and £ are real, whereas ( can be complex.

Normal modes in 0 < r < a. Here we have to satisfy the boundary
condition:

%%%—%/):O, (r =a,~o0 < 2z < 00).

By separation of variables, it is not difficult to show that the only
permissible modes are given by

W(r, 2) = e Jolar), (n=0,1,2,..), (52)

where xn = (k% — ai)% and o, are the real roots of the equation
OnJy(cma) + (/&) Jy(ena) = 0. In the expression (52),when Xy is real
and positive, the upper sign represents an outgoing wave as z ~» 00,
whereas the lower sign represents an outgoing wave at z — —oo. From
the way the square root has been defined, x, can only be real posi-
tive or purely imaginary positive. In the situation where x, is purely
positive imaginary, the upper(lower) sign in (52) represents bounded
evanescent waves ag z - co(-o00). It should be noticed that in carrying
out the separation of variables the differential equation and houndary
conditions for the r variable problem reduces to a classical Sturm-
Liouville boundary problem. We can use this theory to assert that
there are an infinite number of real eigenvalues an, such that there
exists a finite lower bound of . That is we can order the eigenvalues
af < of < of < o < .. where o may be negative, and hence
ag purely imaginary. The incident fleld g(r, z) will be assumed to
correspond to the lowest possible mode propagating as a surface wave
towards z — oo. That is

Po(r, 2) = Jo(aor)e™?,
where ¢y, is the solution of the equation
o Jg(cvoa) + (k/€)Jo(cra) = 0,

such that «f is the smallest value of all solutions of the equation
anJh(ona) + {k/€) Jo{ama) =0, (n=0,1,2,3..}.
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Cylindrical Waveguide 17

We now investigate the roots of the equation agJi {ena)~(k/€) Jo(ana) =
0, corresponding to the dominant propagating surface wave mode in the
semi-infinite region 0 < r < a,z < 0. For propagating modes we must
have xn = k% — a2 > 0, which means that these modes can only
oceur :

(i)when ay, is purely positive imaginary, say n = ijln, fin > 0, so
that xn = /K2 + 12 and the propagating mode becomes Jo(ittnr)e X0 =
To{pmr)e™n*, This corresponds to a surface wave whose amplitude de-
cays from Io(pna) > 1 at r = a to unity at r = 0.

{ii)when o, real with—k < oy, < k 50 that xn = VEZ = aZ > 0.
We shall only consider the case (i), that is o purely positive imag-
inary which corresponds to a surface wave propagating. Thus with
a = ip, 4 > 0, the modal equation (8) can be written as,

pli(pa) K
Io(pa) 13
We also have the representation:

I1(ua) 2 1
L R 0 S
To(ua) W= 2aE o)

> 0. (53)

>0,

for p >0
And hence

d ( } = ')’u,{]}z

dp W To(pa) w1 (g2 +2,)2

> 0.

Thus p “ %) is a monotonic increasing function of u with lim, ool —
BT, g “ w0 Tolua) —

0. Thus the equation (8) only has one root for w&« > 0. We shall now
prove that the equation F(z) = AzJ§(z) + BJo(z) = 0 has an infinite
number of real roots for real finite A and B. For A= B =0 the result
is obvious. If B = 0,A # 0 then F(z) = 0 has an infinite number
of real zeros corresponding to the roots of zJj(z) = 0. Similarly for
B s 0,A = 0,F(z) = 0, has an infinite number of real zeros corre-
sponding to Jo(z) = 0. We need now only consider A and B finite.
Here we let 0 < j; < 1 < j2 < ja < ... be the zeros of Jy(2z). Then
since Jy(z) is positive in the interval {0, j;), negative in the interval
{41, j2}, positive in (j2,f3), ete..., we have

Toli1) < 0, Jgldz) > 0, Jg(js) < 0, Jglja) > 0, Jo(d5) < O-..

Hence F(#) alternates in sign at the points ji, j2, J3, j4, ... and therefore
vanishes somewhere between each of them. To ensure that only the
surface wave propagates in the semi-infinite cylinder r < @,z < 0 and
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18 Anthony Rawlins

no waves of type (i) we shall require of > k%. The appropriate range
for k can be found from the smallest positive solution of the equation
aJb(ac)+-k/ € Jo{ac) = 0 when o = k. Thus we solve £ Jg(ka)+Jo(ka) =
0 for the smallest & > 0. Let us denote this root by kg. It is not difficult
t0 show that for all £ < (,then 2.4048 < kpa < 5.5200.

Normal modes in § < r < b. Here we have to satisfy the boundary
condition:

%%_EC]EU):G’ {r="b,—00 < z < 00).

The only permissible modes of propagation are given by the method of
separation of variables as:

Wlr, z) = eEF Lo (Bor), (n=1,2,3,..), (54)

where 8, = (k* — £2)7 and (3, are the complex roots of the equation

ﬁnjl(ﬁnb) + (%k/C)JG(ﬁnb) = (), (’I’L =1,2,3, )

T4 is shown in the appendix B that for ¢ > 0

RESEn > 0.

Thus the upper(lower) sign of the expression ({54) represent outgoing
bounded waves as z — oo(—c0).

Normal modes in a < r < b, Here we have to satisfy the two
boundary conditions

oy ok

.a_r_}_gq]b_—_o, (r:a,woo<z<00),
&y ik _ o
_8?”"61/)_0, (r=b,—00 <z < 00).

By an application of separation of variables, the possible modes are
given by assuming a solution of the wave equation of the form

ir,2) = e (AT (6ur) + BHL (5ar)),

where where 8, = (k% — n2). On substituting the above expression
into the boundary condition at r = ¢ we have

A(Gn Tt (Sna) + gjo(éna)) + BHD (Goa) + gffé”(éna)) -0
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A solution of the above equation is given by choosing

— (H (6,0) + -’g-ffé”(ana))c,

B = —(50J}(600) + %Je(ana))c.
Thus

(r, 2) = O HY (6pa) + -’gﬂé”(anawo{anr)

(6 T (Ena) + %Jo(éﬂa))ﬂél)(dﬁf)].

Substituting the latter expression into the boundary condition on 7 = b
will give non zero values of C, and hence non trivial solutions of the
boundary value problem if

(0u S (8p0) + 5H §7 (800)) (5n T (3b) — Jo@nb))

(o (80 + G (615 (80) ~ %Jo (6n0)) =0
It is shown in the appendix B that for real £ and R{ > 0 then

S I, > 0.

B. Location of the Complex Eigenvalues

Position of complex wavenumbers x,, and &,. Here we shall
extend the Sturm-Liouville method to give information on the nature
of the real and imaginary parts of complex eigenvalues as a function
of a complex parameter Z that appears in the third type boundary
conditions for a cylindrical region. When applying the method of sep-
aration of variables to the wave equation in cylindrical coordinates
(r, 2}, (V2 + k20 = 0, the substitution of 1(r, z) = $(r)e* results in
the radial eigenvalue value problem:

6%(?‘)

( ¢'(r)) ~ —Er(r), (0<r<b)

¢'(b) ~ ikZp(b) =0, lime—od(r) = 4, limeood'(r) =0,
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20 Anthony Rawlins

where Z is complex, and A is a bounded constant. The boundary condi-
tion is appropriate for a bounded solution that satisfies the absorbing
boundary condition on the duct wall. If we conjugate the last two
equations we get the equivalent eigenvalue equations for the conjugate
function @

m2__.
L7 () - 22 =~

B b) + kZE®) =0, limrop(0) = A, limr.of (r) = 0.

Now multiply the first differential equation problem for ¢ across by @
and the second differential equation problem for ¢ by ¢. This gives the
set of problems:

JE— 2 2
TV (et ()~ 2T~ gy

r

p 2
#1272 OE — g

b

By subtracting the last two differential equations one from the other
we get

800 - T r ) - @ -2 o,

or equivalently
2
L@ r)60r) -7 ) = @ - )L

Integrating both sides of the last expression with respects to 7 from
r - 07 to r = b gives

2 — -
@ - [ PO 0= @ )60) - 5018 (e

From the boundary conditions we have

ir(@ (")o(r) — (r)d (r)lo+ =0,

and » _
(@ (r)g(r) — Slr)d (P = ik(Z + Z) | (D),
80 that
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@ - [ B0 iz 4 20"

or

b p(r)? r>i2 = ~2iERZIG(b)|?.

2%%[
For consistency of sign on both sides of the last expression, if RZ > 0,
we must have

RETE > 0.

Note that if #Z = 0 then REIE = 0 so that the eigenvalues £ must lie
on the real or imaginary axes; this is the situation for the modes X,
that propagate in the cylindrical region 0 <r < a.

Position of the complex wavenumbers 7,. Here we shall give
information on the nature of the real and imaginary parts of complex
eigenvalues as a function of a complex parameter ¢ and the real param-
eter £ that appear in the third type boundary conditions in an annular
cylindrical duct region 0 < @ < 7 < b. By applying the method of
separation of variables to the wave equation in cylindrical coordinates,
the substitution of ¥(r,z) = ¢(r)e"* results in the radial eigenvalue
value problem:

7 ¢(T)

(@b()) ~kPré(r), (o<t <b)

d k d ik
a;@b(‘l) + ‘5“75(@) =0, &“1:‘75(17) - ”&”?5{5) =0.
By conjugating the above boundary value problem we get

7 ¢(?‘)

( ¢ () - ~E*rd(r);

d - k- d— 1.
E@(G) + g—fﬁ(@) = {, E;@(b) + _Z_¢(b) =
Multiplying across the differential equation for ¢ by ¢,and the differ-

ential equation for ¢ by ¢ and subtracting the resulting equations one
from the other gives

2
80) (07 1) ~ B ) - (7 — ) 2L
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By integrating across this equation from r = a to r = b we get

2y [ = b3 r160) - 3006 )

From the boundary condition on r = a for ¢ and ¢ we have on
multiplying across by ¢ and ¢ respectively

- . d k d k
¢la)—-g(a) + "§|¢(a)12 =0, ¢la)=ola)+ EI(&’)(&N2 =0;
from which we get the resuit
) dla)} - ¢{a) =0

Again from the boundary condition on r = b for ¢ and ¢ we have on
multiplying across by ¢ and ¢ respectively

B0)-600) — TG0 =0, 40)530) + S0 =

from which we get the result

300 0t0) - 900230 = ZEL Do

By using these results in the last integral expression we get

b [ (r)]? ik(C
(7~ ) ] WT” dr = “’“(élﬁ i,
or
b 2 2
W‘\m./a M’(:” dr = kifélz)' RC.

If ¢ > 0 then necessarily RnSn > 0.

C. Edge condition

On substituting (15) into the exprcssmﬁa‘b + kqﬁ with r = g we obtain

%’ngqﬁ = f,uoI{}(/.Lg)+§Ig(uga)]ei’mz+f eV A( )[K;JO(ML)+ Jo{ra)ldv.

-0

Now podg(po) + %I@(uga) =0, so that
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99
or

but %‘?+%¢m0forz<()sothat

+ = ¢ f WZA(I/){HJG(H.CL)-{-g.f{)(ﬁ'a)]dl/,

AQ)lsd(sa) + FIo(ra)] = o-(v).

where the function ¢..(¢} is holomorphic in S < 0. Thus from the
edge condition (14) as z — 0,

[j: V% (Vv = O{z“%) + %O(i).

Hence by well known Fourier asymptotlcs a8 |v} ~+ 00 we have @_(v) =
O(|v|" %) so that A( )[O(IVI?@”E“} + ’“O(|u[ ey = (VW%), which
implies that
Aly) = 0w e™2), (v — o0)

By the same method we can also show that
cr,|z/[

7

BW) + vae MCw) = O™, (lv] - c0).

D. Explicit expression for K, (v) and |K.(xo)l

The function

_ (2 SO -Gy
K@) = (zwa)J(a,l/ﬁ,y)Dv)

is even in v and k. We now use the method, given in (Noble, 1958),
pl7. to express K (v} = K {v)K_(v} with

Kily) = (K*(U))%e,%g{”), K_(v)= (K (U})Eie“fa“g(”),
where K*(v) = 1 for Qv # 0, and K*(v) = K{v) for Sv = 0; and

it 16-+-00
o) = 2_3;;] o InK (t)dt + b / an(t)dt’

N Rl 2%t Jigwoo TV

_ ml__Pf‘” lﬂK(t)dt P[ (In] K (&) + targ{ K (t)))dt

i —0 t— v t—
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where the P in front of the integral sign denotes the principal value inte-
gral. The above representations for the functions K+ (v} are satisfactory
for analytic purposes. For example, see {Noble, 1958) p41-42, the fact
that |K{(v)] ~ 2jv|"! implies that |Ki(v}| ~ x/ﬁ]:/|“% as lv| — +oo.
However if zeros or poles of K{(v) lie on the path of integration the
numerical evaluation becomes delicate. Here for the numerical calcula-
tion of the reflection coefficient |R] we will need to calculate K. (xo)
and J{a, 1/&, x0) = 6. We shall therefore modify the method to obtain
a more suitable form for the numerical evaluation of K {x¢). To this
end we subtract out the poles of K(v) by defining a new function
H) = (b* ~ x3)K(v). Then H(v) is even in v and H{t) ~ 2t| as
t — 4-00.Then H(v} gives no problems so we can write

Hi(v) = (H) "), H_(v) = (H())te 300,

hy) = /m InH (t)dt

E7Y

The existence of the above principal-value integral is assured because
of the evenness of H{t) and the fact that InH(t) ~ Injt] as t — Foo.
Also H(t) s 0 along the contour of integration. Thus

Hy(v)
(v +x0)

- X0 s Inf(t mxg)K(t)}dr.
K’i (J/} + X K{V) 8211'1 — ER .

v)|F = v m(V—XO) )
KL ()] = 1K ( )(U+XO)6h I

In the Hmit as v — xo, & — iug i5 can be shown that

K+(V) =

Hence

_ J{b, —1/¢, Xo) o
000 = G D o e e
And since
D(xo) = —J(b,—i/¢, x0}H{a, 1 /€, x0),
and,

T, 1/€ x0) = S ((p0a)? ~ k)T (poa);

X0 (
e
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then we have the final resuls

2 2gh(>€0)
K (o)l = | Kot

TatxEH (a, 1/€, xo0)((t00)? — k2)Io(poa)

l.
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