A BIFURCATED CIRCULAR WAVEGUIDE PROBLEM
by

A.D. Rawlins
Department of Mathematics and Statistics
Brunel University
Uxbridge, Middlesex, UB8 3PH, England.

Abstract

A rigorous and exact solution is obtained for the problem of the radiation of
sound from a semi-infinite rigid duct inserted axially into a larger acoustically lined tube
of infinite length. The solution to this problem is obtained by the Wiener-Hopf
technique. The transmission and reflection coefficients, when the fundamental mode
propagates in the semi-infinite tube, are obtained.

The present results could be of use for exhaust design, and as a possible

instrument for impedance measurement.



1. Introduction

In our present industrial environmentsituations often arise where noise generated
by a particular source, propagates through ducts to produce unwanted noise in locations
removed from the source. It is necessary to try to eliminate this unwanted noise, for
example, in architectural acoustics (duct noise produced in heating and ventilation
systems); in experimental aerodynamics (noise propagation wind tunnels); aircraft
transport (noise from aircraft jets and turbo fan engines); and of major importance in
recentyears, road transportation noise (exhaust noise from internal combustion engines).
One method of reducing noise is to introduce expansion chambers to muffle the noise
as it travels along the duct. The introduction of acoustically absorbent lining into the
duct is another method that has proved useful in reducing unwanted noise, see Rawlins
(1978). The insertion of expansion chambers with acoustically lined walls is yet another
effective method of reducing sound radiated from duct terminations of motor cars and
lorries. We are interested in the effect of lining an exhaust chamber to reduce noise
exiting from an exhaust. To try to solve this problem theoretically *head-on' would be

extremely complicated. A typical exhaust chamber will look like figure 1.
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The theoretical or numerical analysis of the system shown in figure 1 would be extremely
complicated because of the large number of design parameters. An approach for
analysing the system shown in figure 1 is the so called "building block method’, see
Nilsson & Branders (1980). This assumes that the longitudinal lengths between the
Varioﬁs discontinuities is such that the canonical problem for each discontinuity can be
considered in isolation. When the various discontinuities, which make up the exhaust
system, have been separately analyzed, these separate field calculations can be combined
by an effective matching procedure to produce a composite result. Such an approach
has been successfully applied by Nilsson & Branders (1980/81) and Taylor et al., (1993).

In this work we shall obtain a solution to the discontinuity problem shown in

figure 2.
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An incident mode propagates in the smaller tube of radius ‘a' and this enters an infinite

duct of radius ‘b’ which is lined with acoustically absorbent material. This particular

problem may also be of some interest as a mathematical model for an instrument for the

measurement of the acoustic lining properties, from observation of the acoustic field

reflected into the semi-infinite tube. Problems of a similar nature have been considered
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by Bailin (1951) and Weinstein (1948) who assume all the surfaces are either rigid or
soft. The latter boundary condition has applications in electromagnetism. The present
work would have applications in electromagnetism when dealing with waveguides with
lossy walls.

The present problem is solved by means of a relatively standard Wiener-Hopf
approach and an exact expression obtained for the reflection coefficient. In section 2
we shall formulate the mathematical boundary value problem. In section 3 the problem
formulated in section 2 will be solved by means of the Wiener-Hopf technique. The
solution will be in the form of complex contour integrals. These integrals will be
evaluated in section 4 by an application of Cauchy’s residue theorem. This produces a
representation for the acoustic field in the various regions as an infinite series of modes.
In section 5 the fields in the various regions are obtained when only the fundamental
mode propagates in the semi-infinite duct. This will result in expressions for the
reflection and transmission coefficient of the dominant propagating mode.

Finally, various appendices occur at the end of the paper. These contain

analytical details required in the main body of the paper.

2. Formulation of the boundary value problem

We shall consider the acoustic diffraction of a plane wave mode propagating out
of the open end of a semi-infinite rigid cylindrical tube. This semi-infinite tube is
surrounded by an infinite cylindrical casing which is lined with an acoustically absorbing
material. The cylinder casing and its lining are located atr = b, -0 < z < o, and the
semi-infinite rigid cylinder assumed infinitely thin, is located atr = a < b,-0<z<0,
in cylindrical polar coordinates (r,8,z), as sh_gwn in figure 2. The sound source field,

which is located at z = z, (z, < 0), propagates cylindrically symmetric modes along the
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rigid tube. Therefore the source field may be represented as plane wave modes
independent of @. Such a situation arises, for example, when the source field is a point
source located at (0,0,z,). From the symmetry of the geometry of the problem and of
the incident field the acoustic field everywhere will be independent of 8. We shall
therefore introduce a scalar complex potential of the form y(r,z;t), which defines the
acoustic pressure and velocity by p = -p,d¢/ot, and u = grady respectively, where p, is
the density of the undisturbed medium. The acoustic impedance Z of the lining is
defined by the ratio Z = p/(u*n) (see Morse and Ingard, 1961) where the normal 1 is
directed into the lining. Thus in terms of the velocity potential function y the boundary
condition on the absorbent surface is given by (negrad + Ec'd/at) v = 0, where
E (= poc/Z) is the specific admittance and ¢ is the velocity of sound.

The incident sound field which can propagate down the tube is taken to be
Y@zt = e 2 = Ao e ™ 't <a,~=<z <0) (2.1)

where A = ¢ % and , are the real roots of the equation

J(aa) = 0, 22)
with y = (k2..aﬁ)%, k = ofc, ¢y =0<a,<a, ... Having specified the incident field
we now set up the boundary value prob}ein for the potential field everywhere: ¥(1,z;t)
= ¢™'¢(r,z). The time factor ¢ will be dropped in future calculations.

Thus for such a primary field if ¢(r,z) = ¢y(1,2) + &)(r,z) is the total fieldin r <

a, and ¢(1,z) the total field in a < r < b then ¢(r,z) must satisfy the following:

V+kH)P@z) =0  (O<rs<a)

) 2] < .

V+kHd(z) =0 (asrsh)
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(i) 96 - QG =0 (<0
or or

3, oy _ O, -
—5;(a Z) = artb(a +Z)
(iii) (~o<z< )

(_a_—ika)(b(b‘,z) -0 Ref>0
or

(v) $@’2) = ¢@@'n), (z>0).

To the above conditions we add those radiation conditions at infinity which are relevant
to the nature of the propagating modes which the various duct regions can sustain.
From the appendix A it is shown that.

v) Forz—»-wv,0=rsa

$@.2) - &2 = Rye ™ + 0™

where x, = (k* - (3.832/a))%, x, = (K - a2)”, with Ji(@,a) = 0, n = 0,1,2,.... .

Forz—>-0,a<r=b

$@,2) = Ry@me " + 0™ .

Forz—»>0,0sr=<b

bz = TOe" ™ + 0™

where precise details about y,, 7, and £, n = 1,2,... are given in the appendix A.

Finally, we require the edge field behaviour at r = a, x — 0. Namely

i) $(az) = Gm’l?aa?"’(wl -0z ™%), as z-0.

The satisfaction of the conditions (i) to (vi) will result in a unique solution to the

| boundary value problem formulated.
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3. Solution of the boundary value problem
For analytic convenience we shall assume thatk = k, + ik; (k, > K, = 0). A
suitable representation for the total field ¢(r,z) in all space - <z < », 1 = b, which

satisfies (i) is given by

oo+it

o@2) = o,z + f CeVEAW(kdv , r<a; (3.1)
—o0+1T
&@,z) = f Mr_z eV B (x) + CHHP(x)}dv , a<r<b; (3.2)
—coHi T

where & = V(k*v?) and the branch cuts are from k to ic and from -k to -i=. The cut
sheet on which we shall work is defined by 0 < arge < 7. The quantities A(v), B(v) and
C(») are as yet unknown; however the edge condition (vi) requires thatas [v | — o
AW) = 0(|v| e, By + yme=Ptlcw) = o(lv|™ . (3.3)
N
We shall see later that the integrands of (3.1) and (3.2) have poles that produce
exponential wave modes propagating down the ducts. These wave modes, in the various
duct regions, must be of the form given in the radiation condition (v). This requires that
the integrands of (3.1) and (3.2) have pole singularities atv = -k and v = -, v = &,
respectively. Thus the real parameter 7 in (3.1) and (3.2) is restricted by requiring that
the asymptotic behaviour (v) is achieved. This necessitates that the contour of
integration lies in a strip such that |
max{*hnk,—ltﬁ:\,} <t <Im§,
It is shown in the appendix B that -Imk < 0, -Imn, < 0 and Imé; > 0 so such a strip
does exist. Thus we have from appendix B that the above field representations are such
that the integrands have no singularities in the strip - € < Imv < € (¢ > 0) so that the
field representaitons (3.1) and (3.2) will exist for - € < 7 < € (¢ > 0).
To determine A(v), B(») and C(») we substitute (3.1) and (3.2) into the remaining

boundary conditions (ii) - (iv) giving:



oo+iT 0+iT '
[ e™ AWK (a)dv = [ . e fB(v)Ty' (xa) + COVH] (xa)}dv =0(z<0) (3-4)
- 00+}E —oo+1T
o+t " co+iT
[ e {BOY, () COM > (a)ldv=] | ™AWy (ka)dv
—oo+iT ~ooHiT
. [ ~0<Z<>(3.5)
o417
f _ eM{BW)I(b,v) + CWHD,v)}dv = 0
~oo+iT

i . ei"z{_A"M + AT (ka) ~B(v)] (xa) -—C(v)H§”(tca)}dv -0 @0 (36)

—oo4{T 2wi(v *“xn)

where

J(b,v) = 1, (kb) - KEI(xb) ,

(3.7)
Hb,v) = xHP (xb) -~ ikEH (kD) .
A solution to the above system of equations can be written as:
AW)KT, (ka) = k{B(v)T,'(xa) + C(VHS "(xa)} = &°(v) (3.8)
B(W)I(b,v) + C(v)H(b,v) = 0 (39)

—‘3'1.1-"5-‘5—‘!3 + AW (xa) - BO)J,(xa) - COH (xa) = *(v) (3.10)
2zi(v-x,)

where ®*(v) are regular and analytic in Imv > -¢ and Imv < e respectively. By
eliminating A(v), B(v) and C(v) from the equations (3.8) to (3.10) we get the standard

Wiener-Hopf functional equation: .

Ado®) 216 | gy (3.11)
2ni(v-x,)  wxaD(ab,v)],’ (ka)

where

D(a,b,v) = (I, (xa)H(b,v) - Hy” (xa)I(b,v)) . (3.12)

Before we can go any further with the analysis of equation (3.11) we shall require the

following asymptotic growth estimates as v —» *o:



9
K ~ i]v]

Jo(ka) ~ const.J,'(xa) = 0(|v| ™2l
Hén(xa) ~ const.Hé”’(xa) = 0(|v|—‘ﬁe~alvi)

J(b,v) = O(|v|*%eb™), Heb,v) = O(|v[*e ")
D(b,v) = 0e®?) b>a.

These asymptotic estimates, together with (3.3), (3.8), (3.9) and (3.10) give,as | v | —»co:

3 (v) = 0(|v|™ Im(v) < €
(.13)
o*(v) = O(lv|™ In(v) > € .
By letting
K(v) = K,WEK.(v) = ——200) (3.14)

nx2aD(a,b,v)T, (xa)
we can rewrite equation (3.11) in the form:

‘AoJo(ocna) f K)o =20 Ao_le(ana) [1 1 ] @15
2mi(v -x K, (x,) K 2mi(v-x) KO K(x)
The detailed factorization of K(v) defined by (3.14) is carried out in detail in the

appendix C. In particular it is shown there that

K, =0(v[™ as |v|~o (3.16)
in their respective domain of analyticity.

By using the asymptotic estimates (3.13) and (3.16) it can be shown that the left-
hand side of the equation (3.15) is regular, analytic and asymptotic to 0( | v | 1) as
| v | = inIm(v) < e. Similarly, the right-hand side is regular, analytic and asymptotic
to0(|v| ™ as |v| —» e« in Im(v) > -e. Hence by Liouville’s theorem the function
which is the analytic continuation of both sides of (15) in the entire complex v-plane is

the constant zero. Hence from (15) we have

o) = D 3.17)
2mi(v ~x JK, (0K _(v)
which on substituting into (3.8) and (3.9) gives
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Aw) = 2O ~Aol(e,2) : (3.18)
xJ,'(xa)  2mixd (ka)(v —xn)K+(xn)K,(v)
By = HOM gy - AN - 5)
xD(a,b,v) 2wi(v -3 )xD(ab,v)K,(x )K_(v)
Cv) = -J(b,v) O(v) = X AOJ (b"’)Jo(“na) . (3.20)
xD(a,b,v) 2ni(v -y )xD(a,b,v)K (2 K _(v)

Thus, the acoustic field everywhere is now known and given by substituting (3.18) to

(3.20) into (3.1) and (3.2) giving:

¢,z) =AJ(« e

iz _ Addo(0,8) [ THE e Sy

2K (1)) —wtic WK (WMv-x) T (321)
(t<a);
o) = D I (H(b,v)J (0)-JOMHG (k)dy
271K (%) 7 ~oovit xD(a,b,v)K_(v)(v-1,) (3.22)
(a<r<b).

4, Model field representation

To get a physical realization of the acoustic field in the various regions of the ducts we
can convert the expressions (3.21) and (3.22) into series of propagating wave modes.
This is achieved by closing the path of integration by a suitable contour and applying
Cauchy’s residue theorem. In order to close the path of integration in (3.21) and (3.22)

by an infinite semi-circle in either Imy = 7 > -¢ or Imv < 7 < € we take cognizance of

the fact that if
T (e
H) = ﬂo:(m){é(j)(v %) D
and
o- BRI
" then

Fv) = o(v|™, Osrsa, (4.3)
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G(v) = 0(jv|™?, asr<b, (44)
as |v| —» ». We also note (see appendix C) that F(») and G(») have no branch point

singularities in the entire v-plane. Thus an application of Jordan’s lemma enables us to
close the contour of integration in (3.21) and (3.22) by an infinite semi-circle in ejther
Imv = 7 > -€ or Imv < 7 < ¢ (depending on the sign of z) without affecting the value
of the integral. The value of the appropriate integral can then be determined by
summing the residue contributions from the poles enclosed by the contour.

FIELDIN r<a,z<9

Thus by enclosing the contour of integration in (3.21) by an infinite semi-circle in Imv <
r < € and by summing residues from the only simple poles of F(v) enclosed, i.e. v = -,

n = 0,1,..., (see appendix C), we obtain

7 ]

gz, Ade(ed) & To(@gte
2) = Ag *
d@2) = Aglylatle ™ + aK (%) g}o XX+ X )T oK () (4.5)

O<rsa,-»<z<0).

FIELDIN r<a,z>0
If we close the contour of integration in (3.21) by an infinite semi-circle in Imv = 7 >
-¢, with z > 0, by using Jordans lemma; and rewrite the integrand by means of (3.14)

we have the equivalent representation for the equation (3.21):

-«

(...,;a) f &% (k)D(a,b,v)K ,(v)dv (4.6)
2i JJe. (v-x)I(b,v)

AT,
2=iK (x)

b2 = AJ e e -

where C, is the infinite semi-circle {z = x + ir, -0 <x < 0}U{z = x + iy, |z| =R,
y = 7, R = »}. The only poles enclosed by C, are v = x, and the roots of J(b¥) = 0,

ie.v =&, m= 12,.. (see appendix C). The residue contribution from the pole » =

.y, exactly cancels the incident wave mode, and the contribution from the remaining poles

gives the field:
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$@.z) =

-in (a) AJf@) - ez B2I(B DT, (B HHDBE K (E)
b

2 \b) K md Bl BL-KENGBH (D)
Osrsa, 0<z<ow,
where v = &_ are the roots of J(by) = £J,'(kb) - ikEJ,(kb) = 0. and B, = (K>-£2)%,
m = 1,2,... . The location of these roots is analysed in appendix D.
FIELIDIN a<r<b,z<90
In the expression (3.22) in the region Imv =< 7 < ¢, K.(¥) and (v-x,) do not vanish and
so the only singularities in this region are the poles corresponding to the zeros of
xD(a,by) = 0. If we close the contour of integration in (3.22) by an infinite semi-circle

in Imv < 7 < ¢, with z < 0, we get on summing the residue contributions:

o) - “( “1"‘2“{) A%Jo(ana) = e (H(8,8)1(8,0)-Hi (3,015 (8,2)
Q) 8 K (1,00, 1,1+ KB 8200, (8,20, -n )H(*8)
(a<r<b, z<0),

where ¥ = -, m = 1,2,... are the zeros of D(a,b,y) = (J,'(xa)H(b,») - Hi'(ka)J (b))
= 0 that lie in Imw < -e. 8, = (k*n2)", and J(b,-n,) = 8.3,'(8,b) - ikETy(8,b). The
disposition and nature of the poles 7,, and 8, are analysed in the appendix D.
FIELDIN a<r<b,z>10
If we close the contour of integration in (3.22) by an infinite semi-circle in Imy = 7 >
-€, with z > 0 by applying Jordan’s lemma; and rewrite the integrand by means of (3.14)

we have the equivalent representaﬁon for¢(riz),a<r<b,z>0

$(r,z) =

~Agy(e,) (ifca f e“zK,,(V)(H(b,\’)Jo(Kr)-J(b,V)Hén(m))KIO'(xa)dv
2K (x) \ 2 ) c. J(b,v)(v-x)

where C, is the closed semi-circular contour {z = x + ir(r > -€), - < x <o} U
{z = x+iy, | z| = Ry = 7 > -€,r - «}. There is no residue contribution from the

apparent pole v = ¥, because this pole is cancelled by the zero v = yx,, of J;'(ka) = 0.
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Thus the only residue contributions arise from the zeros of J(b,y) = 0, i.e. v = &, see

appendix D. Thus

$(r,2) =

-AJo(u,,a)(im) = 'K (E JH(D,E (B, DB, (B
20K G\ 20 Jal B (B, 1) (B KPEDI(B,b) 49)

(asrs<hb 0<z<o,
It is refreshing to notice that this last expression (4.9) is identical in form to that of (4.7),
as we should expect it to be.

The physical interpretation of (4.5), (4.7), (4.8) and (4.9) can now be made.

5, Propagation of only the fundamental mode

If we restrict the dimensions of the semi-infinite tube such that 0 < ka < 3.832
..., then only the fundamental mode propagates along the semi-infinite cylinder. In this
case, with (@, = 0, . = k, A, = 1) the incident wave is given by ¢(r,2) = €', then the

total field ¢(r,z) in the various regions is given from (4.5), (4.7), (4.8) and (4.9) by:

o0 *ixnz
iz, L To(euDe
6D =" B D 1o O K )

0<r<a~-»<z<0),;

d(r.2) = "(i) 1 g KEHOEIB0P (Bat)e™
4)K®ad g (¢ -K(PL-KENI(B, D)

O<rc<hb 0<z<ow;

o2) = "(“i) | g Ba G0 HOG By
K0t K (n)n,on )1 +G2E-30)0, G, 2/0,-1,)?)

2
(a<t<b -»<z<0).

The dominant behaviour of the field in the various regions is given by:
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b(,z) = e’ + {m}e"‘“ + 0e™ Y ,

O<rsga -~o<z<0):

o2 - ..[1) K‘(eI)H(b,zo:rozwlr)ailo'w,a)e“*’ 0
) B (& -RBTKPEDI(B,b)

0<sr<h 0<z< )

+ 0(e -i“zz)

e - - (115 ) 8 [HY (6,27, 0-H G ), 3 @ ™™
2 ) K, (0K ()0, (0, +R(1+EK2E2-5DF, (8,2)/3(b,-1,))%)
(asrshb -»<z<0).
From these last results it is easy to obtain the reflection and transmission coefficients in
the various regions, for the dominant mode propagation. In particular the reflection

coefficient R, back into the duct 0 < r < a, -« < z < 0 is given by the coefficient of

| ie.

1

- s e
2ak* (K, ()}

1
Low frequency results for the reflection coefficient, & — 0, ka << I, kb << 1

The value of this reflection coefficient will depend on E and its evaluation could
offer a means of the measurement of . Also the value of R, will decide the amount
of sound that is reflected back into the duct of radius a. We shall now carry out some
low frequency asymptotics to give an expression for the ratio of the reflection coefficient
with and without an impedance lining on the duct wall at 1 = b. Thus from the last

expression for R, we have

Rylzw _ (K050 :(Ki*(k))z | (K,,,ac)]2
Rilzo (K0Pl (Ksl® K.,

E+0

since from appendix C K, (k) is independent of E. We now use the asymptotic
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approximations of appendix D which gives

R,lg-0 2 -a*)
S 1. .!E(p.!?.) + 0()
kb R

Rylz.0 N ig 2 iga -
= {(1 + mf{ﬁ +0((EY) 1 (1 +W “"0((-1)2))

where E = srab is the area of an ellipse of minor axis a and major axis b, and
R = m(b*- a?) is the area of annulus of inner radius a and outer radius b. It is
interesting to note that if the geometry of the ducts is chosen so that E = A then the
effect of the lining, to first order, vanishes. This corresponds to the situation where the
ratio b/a = (1 + V5 )/2 = 1.6180 .. is the Golden Ratio! This would seem to show that
by choosing the duct dimensions, the effect of the lining can be reduced, at least at low
frequency. It would be of some moment if this phenomenon was replicated for higher

frequency ranges.
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Conclusion

We have obtained an exact solution to a cylindrical bifurcation problem. This
solution will contribute to the analysis of exhaust systems. It can be considered as a first
approximation to a finite absorbent cowel at the exit of a duct, see fig. 3.

In carrying out some low frequency asymptotic approximations it was revealed
that the effect of the acoustic lining can be reduced by choosing suitable dimensions for
the cylindrical ducts. It would be of some significance if this phenomenon was still valid

for a greater frequency range.
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fig. 3

We note that by letting a — b we also obfain the solution to another problem of an
infinite cylindrical waveguide of radius ’a’ with an impedance mismatch at z = 0. We
could include the effect of exhaust gas flows without substantially changing the
mathematical method to obtain an exact solution. This would mean the medium
0 < r < a moves with a velocity greater than thatin a < r < b. One would need to
incorporate a wake along r = a, x > 0. It is hoped to consider this problem in the

future.
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Appendix A

In this appendix we shall derive the permissible normal wave modes that can
propagate in the various duct regions. For this purpose we need only consider infinite
region - < z < . We shall also éssume here that k is real and positive.

Normal modesin0 = r = a

Here we have to solve the boundary value problem

VP+kHy =0, Osrs<sa, -w<z<w;

g
ar L]

r=a, —n < Z < 00

By separation of variables it is not difficult to show that the only permissible modes are
given by

Y2 = eI (&2-xD%) , n =0,L,. 1)
where Ji(a,a) = 0, n = 0,12,..., a, =0, a;, = 3.832/a, a, = 7.016/a, etc., ¥, = k,
1 = (K-(3.832/2)%% x, = (kz-(7.016/a)2)etc. In the expression (1), when ¥, is real and
positive the upper sign represents an outgoing wave at z = o, whereas the lower sign
represents an outgoing wave at z = -co. From the way the square root has been defined
. can only be real positive or purely imaginary positive. In the situation where y, is
purely imaginary and positive, the upper (lowers) sign in (1) represents bounded
evanescent waves at z = oo(-),
Normal modesin0 =r =b

Here we have to solve the boundary value problem

V+kHy = 0, 0<rc<b, —0 < 7 < 0}

%r‘i’-—ikr-s.q:zo, r=b, -w<z<w, ReE >0.

By applying the usual method of the separation of variables we obtain
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V@2 = eI, n = 12,. )
where B8, = (k*-£2)” and B, are the roots of the equation
B J,(Bb) + ikEI(Bb) =0, n=12,.. 3)
If B, is a solution of (3) then [—3',, is a solution of
BJ,(B,b) - ikEI (BB =0, n =12,.. 4

If we now substitute (3) and (4) into the right-hand side of the well known expression,

Watson (p.134(8) or P482)

(o en,God - 284D = HON@
0 zz - z2
We get
ReE |1,(8,0) 2
[inppora - - 5 TB'”I f’;;' Rep)AmB,) -

Now for consistency we must have that the roots of (3) satisfy
Rep ImB, < 0. )

From the way the square root has been defined 0 < arg§, < =

£ = &K2-pD* = (k*-(Rep,)*+Im(p,)* - 2iRep Imp )*

and hence from (5)

Ref, >0, and ImE, >0. (6)

Thus the upper(lower) sign of (2) corresponds to outgoing bounded waves at z = ®(-).
Normal modesina = r<sb

Here we have to solve the boundary value problem

(B+kHY =0, asrsb, -»<z<x;
-0 < F < o,

By an application of separation of variables the possible modes are given by
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V2) = e ™E,6 0HY(3,2) - B 01(6,2) , n = 12, 7

where 8, = (k*n?)* and 7, are the roots of the equation
D(a,b,n,) = J,'(8,2H(b.n) - H(6,2Ibn,) = 0 Q)

where H(b,7,) and J(b,n,) are defined by (3.7). Thus we can write (8) out fully as,
8.1, (8, 0HY (6, b)-HE (5,2)7,' (8,b) HKE (T, (8 bYHS " (8,2) ¥,/ (8 2)H (5 ) =0.0)

In order to locate the disposition of the roots of (9) we make the more convenient

change of variable 8,2 = z,, b/a = t > 0, giving

2,0,z H @) - B @), (z,0) +ikaBQ zHH ) -1y @ )H ) = 0 . (10)

Now let Cy(z,t) = Jy(z)HY (z,) - T (z)H(z,1), then Cy(u) is a cylinder function

Jg?éu Hence from Watson (1944) (p134(8))

t z.C(z HC,Z 1 -z,CzHC,(z L
[ 0G0 - 2EICED BAEIGED (1)
1 zZ, - 7
where
aC
m.étﬂ(znt) = 23/ @O @) - 2], @) H " Y
= -2 0,¢HH"E) - LE)H D) = -7,0,@E,D -
Thus we can write (10) as
z.C (z0) + ikaBCy(zt) = 0 . (12)
If z, is a root of (12) then z_ is a root of
ZC,GEY - kaBCED =0 . (13)

If we now eliminate C,(Z,t) and C(z,t) from the right hand side of (11) by using (12)

and (13) we get

t 8kaReE [C.(z O [?
f t|CyzHldr = - - | _°§ ol Rez Imz, .
1 Izn - Zmlz
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For consistency the roots of the equation (10) must satisfy Rez,Imz, < 0 and hence the

roots of equation (9) must satisfy

Red Imd, <0, n=12,... (14

From the way the square root has been defined

0sargn, s %, n, = (K2-8)* = (k?~(Red )’ +(Im8,)* - 2iReb Jms )*
and hence from (14)

Ren, >0, and Imn, > 0. (15)

Thus the upper (lower) sign of (7) corresponds to outgoing bounded waves at

Z = owo(-®),
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Appendix B

Here we shall determine the strip of regularity. In the appendix A we have shown that
for Imk = 0 then Rey Imy, > 0, Re£ Im&, > 0 and Rey,Imn, > 0. If we introduce a
small imaginary part to k, so that Rek > Imk = O then we shall show that the
disposition of x,, £, and 7, does not substantially change.
%, for Imk = 0

Since y, = (kK*-a2)* where a, are the real roots of J,(aa,) = 0 then we can write

%X, = (Rek)* - (Imk)? - «? +2iRekImk)* .
From the way we have defined the cut sheet then

Reyx, >0 and Imy > 0.
Since in cut sheet Re( )”* > 0 and sgnlm( )* = sgn(RekImk) > 0.
We now make use of the result that

"If (k>0?)" = p + iq then | q| = Imk, | p| < Rek where k = Rek + ilmk, with
Rek, Imk > 0, o real. Also for Rek > 0 and Imk > 0 then pq > 0." The proof of
which is as follows:

(k-0 =p®+2ipq -q°

(Rek)? - 02 ~ (Imk)? +2iRelmk = p? +2ipq -q*

so that
(Rek)? - (Amky:- o* = p? - ¢* M

Rekimk = pq . 2
If | q] < Imk then from (2) Rekimk = |pq| < |p|Imk=Rek= |p| orp’=

(Rek)? and hence from (1) (Rek)? - p?) - (Imk)* - o* + ¢* = 0 or @’ - (Imk)’ - 0* = ¢’ -
(Imk)* = 0 or ¢ = (Imk)* or |q| > Imk, contrary to our assumption. Thus
| q| = Imk.

Since | q| = Imk then (2) gives Reklmk = Imk | p| orRek = |p]|.
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The result pq > 0 follows directly from (2). This means that (k>-¢”)” can only lie in the
1st and 3rd quadrant.

Thus we have the result for all i = 0,1,... Im(y,) = Imk, and

Rey, >0, Imy,>0. 3

{
E, forImk = 0
The roots of the equation
B.J,(B.D) + ikEI(B,b) = O

satisfy ReB,ImpB, < 0 for Imk = 0, ReE > 0. If we introduce a small imaginary part to
k such that Re(kE) > 0, then the proof of appendix A follows through to give again

Rep ImB, < 0.

Now the corresponding value of the propagation constant

E, = ‘/k"—B;m ((Rek)zw(Imk)z-c-(Im[}m.)z-—(ReE mgzq-zicaeknnk—kegmxm))"*

and since RekImk - ReB,ImB,;, > 0 then

Ret >0 and Imf > 0. “4)
7, for Imk = 0
The roots of the equation
8,0, (5, HP(5,) ~-HI (8 ,2)] (8,b) HKE (8 bYHS(8,2)-1,'(8,8)H; "(5,b)) = 0
satisfy Red,Imd, < 0 for Imk = 0, ReE > 0. If we introduce a small imaginary part to
k such that Re(kZ) > O then the p_rbof of dppendix A follows through to | give

Red Imd < 0.

Now the corresponding value of the propagation constant

N = {k?-82 = ((Rek)*-(mk)? +(Em3 )*~(Res )’ +2i(Rekimk -Red, Jmd,))"

and since RekImk - Res,Im3, > 0 then
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Ren, >0 and Imy, > 0. &)

From (3), (4) and (5) it can be seen that a real positive quantity € can be found such

that min{Imyg,Imé,Imn,} = € > 0.
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Appendix C

In this appendix we shall carry out the factorization K(¥) = K, (»)K.(¥) =

K. (»)K,(») where from (3.14), (3.12) and (3.7)

K,(v)

K(v) = 1
v) KK (1)
where

1 . KB J(D) 2
K@) = 1+ = D) )
_ imax?|Jy(xa) AR 3
Ky(v) = - 5 [Jl (Kb)](J,(Ka)Hl (xb) -H; " (xa)J(xb)) 3

ik [ 1, (xa)Hg(xb) - J,(b)H] (xa)
Kyv) = 1 + XE| 1 o O]

k| 7,ca)H{ (xb) - H{(xa)J, (xb)

It is not difficult to see that K,(v), K,(v) and K;(») are even functions of . Thus we
have that K(v) = K(-v). It can also be shown that K,(v), K;(¥) and K,(v) are even
functions of k. Thus we have the result that K,(¥), K,(v) and K;(v) are free of branch
points. Consequently K(v) is also free of branch point singularities. The only
singularities of K;(v), K,(¥) and K;(») and consequently of K(v) are zeros and poles.
K,(v) only has simple zeros and poles, whereas K,(v) and Ky(v) could have multiple zeros
and simple poles depending upon the parameter E. For analytic convenience we shall
assume E is such that only simple _zéros occur for K (v) and Ky(»). We could, with an
increase in complexity of formula, deal with the multiple zero situation without difficulty
by the present method. The functions K,(v) and Ky(») are analytic functions of = so that
the zeros will also be analytic functions of E and vary continuously with Z. The way (1)
has been written is particularly useful for the situation where kZ = 0, i.e. nearly rigid
. duct wall, for then K(») reduces to {K,(»)}"{1+0(kE)} where K,(») has been explicitly

factorized for the rigid duct situation, Bailin (1951).
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We could write (1) in a form suitable for when kE — o, i.e. nearly soft duct wall,

by
L.(v)

K(V) = el 5
™ Lonm ®)

where

J,(xb)

= PRTRY 6
L) =1+ s ©)
= i’fﬁ E.!Sf_a_). Y _ ) 7
Lo = (2 )x’ o DL -1 o
L) =1+ <4 ;(Ka)H,fl)(ub) "an(ua)ll(xb)) ®

ikE 0, (c)HO(b) - LD HEO (k)

Again it is not difficult to show that L,(»), L,(»), L;(v) are even functions of ¥ and a so
that they only have poles and zeros.

- The factorization of K(v) thus depends on the factorization of K,(v), K,(»), K;(»)
for kE = 0 and L,(»), L,(v), Ly(») for k¥ = «. This procedure is now fairly standard,
see Noble (1958), Morse and Feshbach (1953), so we quote the results for the situation
kE = 0. For the expression (1) we have

K.(v) = K(-v) = K (WK, ()K;. (W)} )
with
Kl(\’) = Klﬁ(v)Klu(V) ’

K,.(v) = K, (-v) (10)

(1)

z o % o “\’IE,,

Jl(kb) n=l «a +VIE;O;)3 "'Vﬁ:
where £, are the roots of V(K-E)J (V(K*-EDb) + ikET(V(K*-E)b) = 0, n = 1,2,... and &}

T I - oy . . - - 0
are the roots of the same equation with E = 0. The exponential factors ¢ " o~/ are
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inserted to ensure the absolute convergence of the product. €7 is included to ensure the
factor has algebraic growth at infinity. T is determined explicitly by using the result:
Given

n=1 zn

P@) =[] (1 + E.)e"”- (12)
with z, = na + b + ¢/n + O(n") where a, b and ¢ are complex constants then
z_b_1

P(z) =Ae E(lﬁﬂ(ﬁ)—; K 5{1 + 0(-}5?-)
a z

where y = 0.577215..., A a constant, see B. Nilsson and O. Brander (1951). Thus an

as |z| -~ . (13)

application of (12) and (13) to (11) together with the asymptotic estimates

in

i im oo
£, s +0(@m™) i~
) ] asn - o,
¢ _Ix In -1
&n b + b + 0(n™)
gives T = 0. Thus
+iE % =
K,.(v) = [Il(kb) 1 ]e(kb)) A+viE) (15)
J,(kb) acl (1+vfED)
and also
K, ,(v) =K, (¥) =0()as |v| ~ «. (16)

Similarly it is not difficult to show that

K,(v) = K, MK, (V) , K,.(v) = K, (-V)

_ ina) Jika)
K2+(v) - (k+V)(( a‘/,&/ }l(kb)

v
( &
1+ v -vIEn(l - v )e—vlyu
2 Yo

o |
o ol
* 1+le ™
b
Xa

%
a, )H,m(kb)—H;m(ka)Il(kb)))
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where
2 b4
Y2 =, @k - 1) = 0, Y2 -V -22) = 0, n = 12,.
and v, are the roots of

1 (a/(k? - Y)HO Y2 ~v)) - P @YU - v,y -y)) = 0, n = 12,....

It is not difficult to show that
a inm in .,1) b _ inm in ..1)

Yo = 2E . 0@ as B, (17)
b-a i
and consequently
= Libinb - alna - b-a)in(b-2)] . (18)
1:
Thus

J,(ka)
J,(kb)

Ty vy
a1 (1+vfxD)

. %
K, (v) = (kw)([—‘-gﬁ) 0, (a)HO(kb) ~H§"a<a)11<kb»] o'

(19)

and
K, (v) = 0v¥) as |v| - . (20)
Finally
Kyv) = K3, (K, (v) , Ky, (v) = K;.(-v)

@, (ea)H O (kb) -1, (kBYHP (ka) 18 (3 (k) HE (kb) - T (kb H (ka)) 5

K, (v) =
? 1, (k) HO(kb) - T, (kbYHO(ka)

w0 ""’Qn
o [T L

n=t a+ Vlng)e -v/ng
where 7, are the roots of &, (¥, (x,2)H,®(x,b) - I (x,b)H,V(k,a)) + ikEJTo(x,2)HP(k,b) -

T, 2)H, Ok a) = 0 with &, = (K-1%)* n = 12,... and 5 = y, are the roots of the same

equation with & = 0. By using the fact that

inxw

(b-a)

n.,~~q§~ +0m™Y as n -
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and (12) and (13) gives T = 0. Thus

0, &) HOkb) -1, (bYHD (ka)) + B, (ka)HP (kb) - T,(kb)HP (ka)) *
T, (kayH{ P (kb) - J,(kb)H " (ka)
Ty v
wl (L+v/ng)

K;(v) =

21)

and
K, (v) =01) as |v| -~ . (22)

Combining the results (15), (19) and (21) into (9) we have carried out the explicit

factorization of (1). We also have from (9), (16), (20) and (22)

K(W) =K(-v) =0(v™% as |v] ~=. (23)
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Appendix D

In this appendix we shall obtain some approximations for the split function K, (v)
as kE — 0. In particular for the reflection coefficient of the low frequency fundamental
mode reflected back into the duct 0 < r < a, -» < z < 0, we require K,(k), and this
quantity will be asymptotically approximated for k= — 0, ka << 1. The expression for
K, (k), for kE unrestricted, is given in appendix C, but it is a complicated product
expression. Rather than try to derive an asymptotic expression from the infinite product
representation for k& = 0 we shall use a simpler more direct method. The expression
for K, (v) is given by (1) - (4) of appendix C as

K, = K 0/ (K 00K, 0] -

The lining parameter E only occurs in K (v) amd K,, (). Thus we shall derive

approximate expressions for K, (k), and K,.(»).

Approximation for K, (k), k& — 0, kb ~» 0

_ 1 xb)

K = I ikbu .
e eSS

By taking logarithms, and provided v is not near +k, we can expand for kbE — 0 since

[T,(kb)/xb] (xkb) | < = .

Thus
K. (v) = ikbE 2, O(@bEP) = InK, (v) + 1K, (v)
! " kbl (xb) - e -4 1)
By considering the integral
i Jo(z)dz

2ni Je (z-0)z), (2
where C is a sufficiently large square contour, and applying Cauchy’s residue theorem,

and then letting the contour expand to infinity it is possible to express J(z)/zJ(z) in its

partial fraction form. Thus one obtains
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W 2,5 1
KBIOb) b)) e (- )
where y, are the roots of J,(y,) = 0, n = 1,2,... . We can now write the last expression
as:
W 114 L
L) kbAk+v)  b2ET VR2-(y b)) (V RE-(r D)D) +v)
1 1 v 1 @
e = .
kbik-v) b2 aid VEE-(y /0D ¢ &P - (1, b)) -V)

Comparing (1) and (2) we have

| 1 1 .
K, (v) = exp|ikbE (——— - —
' kbi(k+v) b2 Z; V& -( D) V&2 -(v, b)) +v)

L

| -

K, () =K, (-v).

Although we have carried out the additive factorization it is not unique. We could add
a polynomial to In K, (¥) and subtract the same polynomial from In K, (v). However the

above choice is the unique factorization that ensures In K, (¥} -~ 0 as v —» .

Forv = k, kb — 0, & — 0 we have

| 1 o 1 s
K, (k) = exp|ikb& ( -~
! 2(kb)? (kb>2§ V({1 - (v Jkb)2) (V (1 - (y,Jkb)?) +1)

K,.®

i& -
L+ o * 0005 . 3)

A more direct and even simpler method of obtaining the result (3) is as follows.

Since

_ _ , ikE J,(xb)
K,(v) =K (v)K, (v) = 1 1,65 °

k = (k%v?)%, then forv — k, & — 0 and
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Joxb) = 1 - Q‘;)ﬁ + O((xb)" ; J,(xb) = -‘522 - Q;_bé_)j + 0((xb)") .

Thus

K,(v)=1+3;~3‘§~515§§+0((xb)2)-

Now although kE -» 0, 1/x* — » so we cannot ignore the second term in comparison

to 1. Thus

)~ (< +2ikE/b -ikbEK*4) _ v2-k2-2ikE/b O(kbE)

K
v 2 " (vi-k?)

where we have ignored the term x*(-ikbZ/4) - 0 asE — 0,v = k

K (v) « oK +20B/kb)%) (v +k(L+2AEKD)D) | gapmy
v~k v+k

The factorization is now obvious, giving

K

w) = QBRI | oghm) = K, (-v),v < k,E = 0.

1+ v+k

Now for k= — 0 we have

"57% 1%
(1+2‘k“] 1+ B L uEy.

k% kb
Thus
lim _ (v+k+iB/b) I - R
v-'kKl*(v) = ——‘"\“’““_l“_“i“"” + O(kbE) = 1 + "2"""“ + o(E)
which agrees with (3).

We shall use this simplified approach to factorize Ky(»).

Approximate factorization for K, (k), E = 0, kb — 0, ka — 0

. Here
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= K, (WK, (v) .

K(v) =1+ ikE [Il(“a)HéD(Kb) on(xb)Hfl)(xa)]

® | 1, HP(b) - HP(xa)T (xb)

Now asv -+ k, £ — 0 and

HOb) = - %(3-) - -iﬂ‘i‘ilm(%) + 0(xb)

kb s K
HOb) = - ?-ixn[m%.] + 0(1) .
x \xb
Thus we get
K,(v) = (v -k(1 +2iBa/k(b®-a?)") (v +k(1 +2iBa/k(b®-a%)") | o®)

v -B (v +K)

Ky (W) _ (v +k+iBa/(b?-a2)k) 0(kabE) = 1 ifa -
Fiv -k v+k * OabE) = 1 2kb-a?) o=

so that

K0 = 1+ —22 4+ o(8) .
: 2k(b?-a?)




