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Abstract

Two main groups of filtering algorithms are characterised and developed. Their ap-
plicability is demonstrated using actuarial and financial time series data. The first
group of algorithms involved hidden Markov models (HMM), where the parameters
of an asset price model switch between regimes in accordance with the dynamics
of a Markov chain. We start with the known HMM filtering set-up and extend the
framework to the case where the drift and volatility have independent probabilistic
behaviour. In addition, a non-normal noise term is considered and recursive for-
mulae in the online re-estimation of model parameters are derived for the case of
students’ t-distributed noise. Change of reference probability is employed in the
construction of the filters. Both extensions are then tested on financial and actuar-
ial data. The second group of filtering algorithms deals with sigma point filtering
techniques. We propose a method to generate sigma points from symmetric multi-
variate distributions. The algorithm matches the first three moments exactly and
the fourth moment approximately; this minimises the worst case mismatch using
a semidefinite programming approach. The sigma point generation procedure is in
turn applied to construct algorithms in the latent state estimation of nonlinear time
series models; a numerical demonstration of the procedure’s effectiveness is given.
Finally, we propose a partially linearised sigma point filter, which is an alternative
technique for the optimal state estimation of a wide class of nonlinear time series
models. In particular, sigma points are employed for generating samples of possi-
ble state values and then a linear programming-based procedure is utilised in the
update step of the state simulation. The performance of the filtering technique is
then assessed on simulated, highly non-linear multivariate interest rate process and
is shown to perform significantly better than the extended Kalman filter in terms
of computational time.
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Ana Kneževič for her patience limitless support, that made the completion of this
thesis possible.

i



Comments on collaboration with
other researchers

This thesis is the result of research work carried out during my PhD studies. It
is partially based on publications in several refereed journals and technical reports
arising from collaborations with other researchers. These are detailed below.

Chapter 3 is an extended version of a publication in [93]. This research was mostly
carried out during a 3-month visit at the University of Western Ontario in 2006.
My supervisor, Dr Rogemar Mamon proposed and conceptualised the research plan
whilst I derived the filters and recursive expressions for parameter updates. In
addition, I implemented the filters and ran the numerical experiments.

Publication [73] is a modified version of chapter 6 and was developed together with
Dr Rogemar Mamon. He proposed the research direction and supervised the deriva-
tion of the pricing equations as well as the implementation. The actual development
of the valuation formulae and their implementation were my contributions.

Chapter 7 is a modified version of an article published in [37]. It is a joint work
with Drs Paresh Date and Rogemar Mamon who proposed the idea and developed
the sampling algorithm. My contributions in the article are the verification and
implementation of the algorithm as well as generating the results of the numerical
experiments.

Major parts of chapter 8 constitute a paper published in the journal Applied Math-
ematics and Computation [35]. This emerged from a joint venture with Drs Paresh
Date and Rogemar Mamon who proposed the research topic and developed major-
ity of the algorithms and numerical procedures. I was involved in the specification
of the algorithm as well as implementation of it and all numerical experiments.

Chapter 9 is based on the joint work with Drs Paresh Date and Rogemar Mamon
who outlined the research problem together with the preliminaries of the filtering
algorithm. I contributed to the final version of the algorithm as well as the imple-
mentation and numerical experiments. A modified version of this chapter has been
submitted for publication [36].

ii



Contents

Abstract i

Acknowledgements i

Comments on collaboration with other researchers ii

Nomenclature x

1 Introduction 1

I Contributions to filtering of hidden Markov models 7

2 Review of hidden Markov models 8

2.1 Markov chains in discrete time . . . . . . . . . . . . . . . . . . . . . 8

2.2 Hidden Markov models . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Change of reference probability technique . . . . . . . . . . . . . . . 11

2.4 The EM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Parameter estimation in a regime-switching model when the drift
and volatility are independent 19

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Optimal parameter estimates using the change of measure technique 21

3.2.1 Method of reference probability . . . . . . . . . . . . . . . . 22

3.2.2 Recursive filters for the state of the Markov chain and other
related quantities . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.3 Relating recursive filters for vector processes to scalar quantities 25

3.3 Extension to the case when the drift and volatility have independent
probabilistic behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 26

iii



3.4 Vector observations . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Numerical application of the filters . . . . . . . . . . . . . . . . . . 36

3.6 Some concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Parameter estimation in a regime-switching model with non-normal
noise terms 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Reference probability measure . . . . . . . . . . . . . . . . . . . . . 43

4.3 Recursive estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4.1 Student’s t-distributed noise term . . . . . . . . . . . . . . . 51

4.4.2 Extension to vector observations and independent drift and
volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.3 Numerical application of the filters . . . . . . . . . . . . . . 59

4.4.4 Application of the filters to observed market data . . . . . . 66

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 A stochastic mortality model with HMM filtering 70

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Modelling framework and affine processes . . . . . . . . . . . . . . . 74

5.3 Mortality model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.1 The Ornstein-Uhlenbeck process without jumps . . . . . . . 77

5.3.2 The Ornstein-Uhlenbeck process with jumps . . . . . . . . . 81

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Valuation of contingent claims with mortality and interest rate
risks 85

6.1 Modelling framework . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Integrating the interest and force of mortality models . . . . . . . . 90

6.2.1 Interest rate model . . . . . . . . . . . . . . . . . . . . . . . 90

6.2.2 Mortality model . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2.3 Independent case . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2.4 Dependent case . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.3 Example and illustration . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

iv



II Contributions to sigma point filtering 106

7 A new moment matching algorithm for sampling from partially
specified symmetric distributions 107

7.1 A short review of Kalman filter . . . . . . . . . . . . . . . . . . . . 107

7.1.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.1.2 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . 109

7.1.3 Unscented Kalman filter . . . . . . . . . . . . . . . . . . . . 110

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.3 The sampling algorithm . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.3.2 Algorithm for moment matching scenario generation . . . . . 115

7.3.3 Closed-form solution for the scalar case . . . . . . . . . . . . 120

7.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.5 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 A new algorithm for latent state estimation in nonlinear time se-
ries models 124

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.2 Linear Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.3 A sigma point filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4 Generation of sigma points . . . . . . . . . . . . . . . . . . . . . . . 133

8.4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.4.2 Algorithm for generating sigma points . . . . . . . . . . . . 134

8.5 What is new in our approach? . . . . . . . . . . . . . . . . . . . . . 136

8.6 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.6.1 CEV-type time series model . . . . . . . . . . . . . . . . . . 138

8.6.2 Univariate non-stationary growth model . . . . . . . . . . . 140

8.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9 A partially linearised sigma point filter for latent state estimation
in nonlinear time series models 144

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.2 A partially linearised sigma point filter . . . . . . . . . . . . . . . . 147

9.3 Generation of sigma points . . . . . . . . . . . . . . . . . . . . . . . 151

9.4 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

v



10 Conclusions and directions for future research 159

10.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . 159

10.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

A Additional plots for Chapter 4 163

B First hitting time density of an Ornstein-Uhlenbeck process with
constant parameters 166

vi



List of Figures

3.1 NASDAQ actual returns series and one-step ahead predictions: 3-
state drift and 3-state volatility . . . . . . . . . . . . . . . . . . . . 40

3.2 DOW JONES actual return series and one-step ahead predictions:
3-state drift and 3-state volatility . . . . . . . . . . . . . . . . . . . 40

4.1 Simulated data (blue) with the estimated values (green). . . . . . . 61

4.2 Simulated data (blue) with the estimated values (green). . . . . . . 63

4.3 Simulated data (blue) with the estimated values (green). . . . . . . 65

4.4 NASDAQ actual returns series (blue) and one-step ahead predictions
(green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 DOW JONES actual returns series (blue) and one-step ahead pre-
dictions (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Observed and one-step ahead predicted values for p(0, 1, 65), p(0, 10, 65)
and p(0, 20, 65) under an OU model without jumps. . . . . . . . . . 79

5.2 Observed and one-step ahead predicted values for p(0, 1, 65), p(0, 10, 65)
and p(0, 20, 65) under an OU model with jumps. . . . . . . . . . . . 83

6.1 Relative difference (BS(0, T, 1)/BSi
(0, T, 1)) with respect to maturity. 103

8.1 Plot of simulated sample paths and one step-ahead prediction for
univariate non-stationary growth model using MSPF. . . . . . . . . 142

8.2 Plot of simulated sample paths and one step-ahead prediction for
univariate non-stationary growth model using Ensemble filter. . . . 142

9.1 Prediction for Y1(k + 1), Y2(k + 1) and Y3(k + 1) using PLSPF. . . 157

A.1 NASDAQ actual series (blue) and one-step ahead predictions (green).163

A.2 NASDAQ returns (blue) and one-step ahead predictions (green). . . 164

A.3 DOW JONES actual series (blue) and one-step ahead predictions
(green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.4 DOW JONES returns (blue) and one-step ahead predictions (green). 165

vii



List of Tables

3.1 Summary statistics for the NASDAQ and DOW JONES logarithmic
returns for the period 28/02/2003–16/02/2007 . . . . . . . . . . . . 36

3.2 Initial parameter values for Π, Xk, α and β . . . . . . . . . . . . . . 38

3.3 Parameter values for Π, Xk, α and β after the 3rd pass . . . . . . . 38

3.4 Parameter values for Π, Xk, α and β after the final pass . . . . . . 39

3.5 Comparison of RMSEs and computational time (in secs) for the
DOW JONES returns data. . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Values of parameters (Π, α, β) used in the simulation for a two-state
Markov chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Initial values of parameters (α, β) used in filtering for a two-state
Markov chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Final values of parameters (Π, α, β) calculated from the simulated
data for a two-state Markov chain. . . . . . . . . . . . . . . . . . . 62

4.4 Errors of the estimated parameter values in the case of a two-state
Markov chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5 Values of parameters (Π, α, β) used to simulation for a three-state
Markov chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Initial values of parameters (α, β) used in filtering for a three-state
Markov chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Final values of parameters (Π, α, β) calculated from the simulated
data for a three-state Markov chain. . . . . . . . . . . . . . . . . . . 63

4.8 Errors of the estimated parameter values in the case of a three-state
Markov chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Values of parameters (Π, α, β) used in the simulation for a four-state
Markov chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.10 Initial values of parameters (α, β) used in filtering for a four-state
Markov chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.11 Final values of parameters (Π, α, β) calculated from the simulated
data for a four-state Markov chain. . . . . . . . . . . . . . . . . . . 65

viii



4.12 Errors of the estimated parameter values in the case of a four-state
Markov chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.13 Comparison of RMSEs and computational time in seconds for the
DOW JONES and NASDAQ data. . . . . . . . . . . . . . . . . . . 67

5.1 Error analysis for cohort mortality predicions. . . . . . . . . . . . . 80

5.2 Values of model parameters for OU-process without jumps using the
LS technique and inputs to the HMM filtering algorithm. . . . . . . 84

6.1 Actuarial fair prices of survival benefit for different times to maturity,
both for independent and dependent case. . . . . . . . . . . . . . . 102

7.1 Results of numerical experiments. . . . . . . . . . . . . . . . . . . . 123

8.1 Comparison of prediction errors using different filters for system in
(8.29) for a specific filter and a value of γ. . . . . . . . . . . . . . . 140

9.1 Parameters in the implementation of the system specified in (9.10)
– (9.11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

9.2 Average errors in predicting Yj(k + 1) with PLSPF for three mea-
surement, two-state case (average over 100 sample paths, with 250
time steps in each sample path). . . . . . . . . . . . . . . . . . . . . 157

9.3 Average errors in predicting Yj(k + 1) with PLSPF for four mea-
surement, three-state case (average over 100 samplepaths, with 250
time steps in each sample path). . . . . . . . . . . . . . . . . . . . . 157

9.4 Average errors in predicting Yj(k + 1) with EKF (average over 40
sample paths on which the filter did not diverge, with 250 time-steps
in each sample path). . . . . . . . . . . . . . . . . . . . . . . . . . . 158

ix



Nomenclature

The notation used throughout the discussion in the succeeding chapters is intro-
duced here.

A⊤ transpose of a vector or matrix A

Aij entry in the ith row and jth column of a matrix A

ei i-th basis vector in RN

Xk Markov chain

Vk+1 a martingale increment

SX state-space of the Markov chain

Π = {πij} transition probability matrix

(Ω,F , P ) probability space

F filtration generated by the Markov chain X

Y filtration generated by the observation process

H global filtration, H = F ∨ Y
M filtration generated by the evolution of mortality rate process

{yk} a sequence of observations

{zk} a sequence of IID standard normal variables

J rs
k number of jumps from state r to state s of a Markov chain X

Or
k occupation time in state r of a Markov chain X

T r
k (h) auxiliary process of an observation process for a function h

γ(Yk) unnormalised conditional expectation of Yk given Hk under a reference

probability measure, E[ΛkYk | Hk]

γ(Xk) estimator of the state of the Markov chain

α, α drift vector

β, β volatility vector

ν degrees of freedom for the student’s t-distribution

W standard Brownian motion

J pure jump process

µ(x, t) force of mortality for an individual aged x at time t

p(t, T, x) survival probability from t to T for an individual aged x+ t

S(t, x) survival function of a life aged x

m number of random variables

s number of scenarios

X discrete n-dimensional random variable

Φ target mean vector for X

x



R target covariance matrix for X
κi target marginal 4th central moment for the ith random variable Xi

W,V symmetric vector-valued random variables with bounded mean, variance

and marginal kurtosis

f , g, h given nonlinear, vector-valued functions

Pxx, Pxy, Pvv convariance matrices under single factor, single measurement system

ΣXZ , ΣY Y covariance matrices

G multivariate, discrete distribution

P(A) probability of an event A

E
[
Z
]

expected value of a random variable Z

xi



Chapter 1

Introduction

The problem of estimating the state of a dynamic system is practicably very im-

portant in many areas such as speech recognition, radar tracking, computer vision

and control theory to name just a few. Filtering algorithms, developed primarily

for engineering applications, have a broad range of usage and are increasingly pop-

ular in the analysis of economic time series. The main idea behind the filtering

problems in the context of finance and economics is that the latent state of the

system and other unobservable information about the system’s or models’s param-

eters can be estimated optimally from the observation process corrupted by noise.

The observation process itself could be a univariate or a multivariate time series.

One type of filtering algorithms considered in this thesis is driven by a hidden

Markov model (HMM). An HMM is a mathematical model where the system being

modelled is assumed to be governed by a hidden Markov process. As is generally the

case with filtering problems, the parameters of the model are unknown and must

be determined from a set of observable data. The HMM modelling has its roots

in speech recognition and signal processing, however it is becoming increasingly

popular in mathematical finance. Pioneering works in the applications of HMM to

financial time series were put forward by Hamilton in [64] and [65]. In the context

of HMM, the hidden information is in the form of a finite state Markov chain

in either discrete or continuous time which modulates the observation process.
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In the applications of HMMs to financial or actuarial time series the states of

the underlying Markov chain can be interpreted as the “states of the world”. In

the regime switching framework, the parameters of the model can take different

values depending on the underlying state and are therefore capable of adapting

to different stages of the business cycle, the current states of supply and demand,

amongst other economic factors. In the context of mortality modelling investigated

in the succeeding chapters, the states can correspond to different stages of medical

advances, for example, a development of new drugs or dietary trends or habits of

the target population, and in extreme cases, occurrences of natural disasters or

terrorist attacks.

Whilst HMM filtering applications in finance have been explored by various re-

searchers, we are not aware of papers examining its applications in mortality mod-

elling. In addition, this thesis proposes and develops further extensions of the

HMM framework based on the work of Elliot et al [43]. In particular, we relax

the requirements on the distribution of the noise term as well as examine the case

when the drift and volatility components of an HMM are independent. An asso-

ciated challenge that arises from the estimation and implementation of HMMs is

the calculation of optimal parameters. In this thesis, we contribute further to the

literature by refining the change of probability measure techniques from Elliot et

al [43] for the generalised case of noise distribution and the situation when depen-

dence between drift and volatility is relaxed. Using the Expectation-Maximisation

algorithm, the formulae for updating parameters of the models are derived for these

extensions. Proposed models in the succeeding chapters feature an online updating

of parameters, that is, parameters are updated as new information arrives, thus

making these models self-tuning.

Moving away from the specialised group of HMM based models, the state estimation

in general nonlinear models is considered and this can be numerically very chal-

lenging as well. Specifically, the optimal recursive solution to the state estimation

problem requires the propagation of a full probability density. In the specialised

case of linear Gaussian state-space models, a closed-form expressions exist for the
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conditional state density and these are given by the linear Kalman filter. The hid-

den Markov model and Kalman filter have a certain degree of parallelism as there is

a strong duality between the equations of the Kalman filter and those of the hidden

Markov model; see for example [1] and [103]. Kalman filter provides a closed-form

expressions in the filtering of linear processes, however there are no closed-form

expressions for filtering the general nonlinear models. The current practical ap-

proaches to address this type of filtering problems are the Extended Kalman filter

(EKF), Sequential Monte Carlo filtering and unscented filter. Under EKF the un-

derlying model is locally linearised resulting in a linear state space system on which

Kalman filter is utilised to obtain the conditional state density. Detailed discussion

of EKF as well as its implementation can be found in standard textbooks such as

[4]. However, EKF will only perform well when the system is indeed approximately

linear, an assumption which is often very hard to validate. Under sequential Monte

Carlo filtering the required density functions are obtained using a set of random

samples. These density functions and the corresponding probability weights are

in turn used to compute the needed conditional moment estimates. Monte Carlo

filtering can perform significantly better than EKF for highly nonlinear systems

and its result approaches the optimal Bayesian estimate as the number of samples

becomes large enough as shown in [85] and [81]. On the downside, due to the large

number of samples that need to be generated at each time step, this approach can

be computationally very expensive. A compromise between EKF and Monte Carlo

filtering is the unscented filter, which uses the closed form recursive expressions

based on a linear Kalman filter to propagate the moments of the state vector. A

small set of sample points or sigma points are propagated through the nonlinear

transformation in order to compute the conditional moment estimates. In contrast

to the Monte Carlo filter, the unscented filter uses a small number of sample points

chosen in a way that they match some of the moment properties exactly. These

filters have become popular especially in engineering, however they do suffer from

several shortcomings. Amongst the drawbacks are: (i) the probability weights cor-

responding to the sample points are not guaranteed to be positive; (ii) there is no

3



randomness in the filtering procedure; and (iii) the square root of the covariance

matrix has to be computed at each time step.

The main objective of this thesis is to elaborate and extend the filtering tech-

niques briefly described above as well as to apply them to the field of financial and

actuarial modelling. More specifically, we wish to (i) extend the existing HMM

filtering framework capable of handling non-normal noise term and the assumption

of independence between the dynamics of the drift and that of the volatility; (ii)

calculate optimal parameter estimates for the extended framework using the change

of probability measure techniques; (iii) investigate the performance of the extended

HMM framework on observable market data as well as develop and implement an

HMM-based mortality model; (iv) address the shortcomings of the existing sigma

point generation algorithms and propose a new technique that could match the

first four moments whilst guaranteeing the generated sample points always form a

valid distribution; and (v) test the sigma point generation algorithm along with the

development of a new unscented filter that is able to cope with highly nonlinear

models without the use of computationally intensive Monte Carlo methods.

In order to attain the above-mentioned objectives this thesis is organised as fol-

lows. The first chapter gives an overview of hidden Markov models and an intro-

duction to the change of measure technique. A brief description of the expectation-

maximisation procedure, both of which are used in the succeeding chapters, namely

chapters 3, 4, 5 and partially in chapter 6, is also presented. We assume the obser-

vation process has a drift and volatility as in the usual HMM set-up developed by

Elliot et al [43]; that is, both the drift and volatility are functions of the underlying

Markov chain. Unlike the standard setting, the drift and volatility have different

number of states in chapter 3. The recursive filters for the parameter updates are

developed for both the univariate and multivariate observation process. This mod-

elling approach is further tested on the DOW JONES and NASDAQ indices, where

we model logarithmic returns as a function of a Markov chain. The predictability

of the indices within the HMM framework is assessed for several number of states

for both drift and volatility and the errors are reported in terms of the root mean
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square error (RMSE). In chapter 4, the discussion of HMM filtering is continued

and we examine the case where the noise distribution is not normal. Assuming a

general distribution for the error term complicates the algebra considerably. Need-

less to say, not all formulae for the parameter estimates can be developed in the

general case. We outline the procedure to derive the expressions for the parameter

updates when the noise term follows a Student’s t-distribution. It is not possible

to obtain recursive updating expressions for all the parameters as in the normally

distributed noise case. Thus, one needs to resort to numerical methods during the

update stage. In this generalised case, we first consider a numerical implementation

on simulated data; the excellent performance of the algorithm is demonstrated on

a small data set. In addition, we examine the performance and computational time

requirements of the generalised algorithm on the same data set as in chapter 3,

namely on the observed values of the DOW JONES and NASDAQ indices.

Chapter 5 utilises HMM filtering methods and explores an application in mor-

tality modelling. Unlike the known mortality models, we introduce randomness

in the whole mortality surface instead of only investigating how cohort mortality

develops. In fact, we use the known and tested models for cohort mortality and

let their parameters vary through time as a function of the Markov chain. We

demonstrate through numerical examples that such a set-up can indeed capture

mortality developments. Motivated by chapter 5, we investigate the pricing of

common mortality-linked contracts in chapter 6. In particular, we examine the

case where the dynamics of economic and demographic variables are not assumed

independent. As noted by other researchers (see for example [24]), it is practical to

assume the independence between demographic and economic factors, however they

are not completely separate. It can be argued indeed that extreme events such as

natural disasters can have influence on the economic variables. We therefore drop

the assumption of independence and employ the change of measure technique and

Bayes rule to derive closed form expressions for pricing common claims contingent

on the survival or death of an individual.

We return to the main topic of filtering in chapter 7.1. Here, we briefly describe the
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Kalman filter and its known extensions as well as highlight the similarities between

Kalman filter and HMM filtering. As mentioned above, the two are quite analogues

of each other. In chapter 7, we present a novel technique for sigma point generation

which addresses the shortcomings of standard sample point generation procedures.

In particular, the sigma points and corresponding weights are guaranteed to form

a valid distribution as well as match its first four moments. Moreover, using the

approach presented in chapter 7 it is possible (although not necessary) to introduce

randomness to the filtering algorithm via sample point generation. In chapter 8,

we present the unscented filter based on the sample point generation from chapter

7 and assess its performance on a simulated data from a nonlinear model. Finally,

we give an alternative technique for the optimal state estimation of a nonlinear

time series models. The sigma points for generating the possible state values are

employed at the prediction step and then a linear programing-based procedure is

used during the update stage of the state estimation. The performance of the

algorithm is tested on simulated data generated from a multivariate and highly

nonlinear interest rate process.

The thesis concludes in chapter 10 with a summary of research contributions as

well as an outline of possible future research directions, which are motivated by the

analysis carried out in this work.

6



Part I

Contributions to filtering of

hidden Markov models

7



Chapter 2

Review of hidden Markov models

In this chapter, hidden Markov models are introduced together with a description of

their basic properties and features. For completeness Markov chains are defined in

discrete-time setting followed by the description of a general framework for HMMs.

In the suceeding sections the characteristics of HMMs are underlined followed by

a short overview of HMM filtering. We focus on the methodology used in deriving

recursive formulae for optimal parameter estimates developed by Elliot et al (see for

example, [41], [42], [43] and [45]). This methodology is in turn used and extended

in the next chapters.

2.1 Markov chains in discrete time

A Markov chain, named after Andrey Markov, is a stochastic process with Markov

property. Having a Markov property means that the process is without memory.

This means that the future states depend only on its current state and is therefore

conditionally independent of the past. Following the discussion in [97] we shall

assume that the Markov chain has a countable number of states.

Define a probability space (Ω,F , P ) and let {Xk}k∈N be a sequence of random

numbers in the finite state space SX = {s1, . . . , sN}.
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Definition 2.1

A Markov chain is a sequence of random variables X1, X2, . . . with the Markov

property

P(Xk+1 | Xk = xk, . . . , X0 = x0) = P(Xk+1 | Xk = xk) (2.1)

∀k ≥ 1 and x0, . . . , xk ∈ SX .

In addition, the Markov chain is characterised by its transition matrix Π. In par-

ticular, a specific element πij of a transition matrix Π denotes the probability of

Markov chain switching from state j to state i.

πij = P(Xk+1 = i | Xk = j) i, j ∈ SX (2.2)

The Markov chain is said to be time homogenous when the transition probabilities

πij = P(Xk+1 = i | Xk = j) and i, j ∈ SX do not depend on time k. Furthermore

the l-step ahead transition probabilities can therefore be calculated by multiplying

the transition matrix Π by itself l times. That is,

P(Xk = i | Xk−l = j) = π
(l)
ij , (2.3)

where π
(l)
ij = (Πl)ij is the (i, j) entry in the l-step transition probability matrix.

Any real function f(X) can be expressed as a linear functional f(X) = 〈s,X〉
where s = (s1, . . . , sN) and 〈s, ei〉 = si. Here, 〈·, ·〉 denotes the usual Euclidean

scalar product in RN . Therefore, remembering that the space SX is finite, it is

possible to represent the Markov chain by the canonical basis {e1, . . . , eN} of RN ,

where ei = (0, . . . , 0, 1, 0, . . . , 0)⊤ and ⊤ denotes the transpose of a vector. With

the original state space SX , when sk = i the Markov chain is represented by ei, the
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unit vector with the element 1 in the i-th row and zero, otherwise. The conditional

expectation of Xk is then given by the i-th column of the transition matrix Π, i.e.,

E
[
Xk | Xk−1 = ei

]
=




πi1

...

πiN




. (2.4)

Therefore, we have E
[
Xk | Xk−1

]
= ΠXk−1.

Considering the above, note that the Markov chain represented as unit vectors can

be expressed in the form

Xk+1 = ΠXk + Vk+1, (2.5)

where Vk is a martingale increment; see [43]. It is not possible to forecast Vk based

on the previous states. Since Vk is a martingale increment, it follows from (2.5)

that

E
[
Xk | Xk−l

]
= ΠlXk−l. (2.6)

2.2 Hidden Markov models

Under the hidden Markov model setting, a Markov chain is assumed to be em-

bedded in a stochastic process. In other words, we consider a stochastic process

assumed to be (partially) driven by a Markov chain. The Markov chain itself is not

observable directly, rather it is hidden in some observation process. The aim of the

filtering in the HMM framework is to estimate the underlying Markov chain, that

is, approximate in the best possible way the sequence {Xk} from the series of ob-

servations. Under the real world measure as well as under the reference probability

measure used in the succeeding chapters, the Markov chain follows the dynamics

Xk+1 = ΠXk + Vk+1, where Π is the transition probability matrix and Vk is a
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martingale increment. Additionally, we assume the Markov chain itself is homo-

geneous with finite state-space in discrete time. The observation process, denoted

by {yk}, can follow various types of dynamics. In this thesis, however, we focus on

the observation process of the form yk+1 = 〈α,Xk〉 + 〈β,Xk〉zk+1, where α and β

are real vectors of appropriate dimensions and {zk} is a sequence of independent,

identically distributed (IID) random variables.

Hidden Markov models were first introduced by Baum and Petrie [9] in 1966 and

were further developed by Baum and others in the following decade (see for exam-

ple, [7], [8] and [11]). Baum et al [10] also introduced the Baum-Welch algorithm

for parameter estimation within the framework of HMMs. Further details of the

development and applications of HMMs are given in Ephraim and Merhav [48] and

the references therein. The Baum-Welch algorithm is a particular instance of the

EM algorithm specialised to HMM. The Baum-Welch algorithm is also called a

forward-backward algorithm as it requires two passes through the data. Elliott et

al’s [43] approach, in particular, requires only one, forward, pass through the data

to achieve parameter updates.

More recently, Hamilton introduced the idea of regime switching in economics and

finance in [63], [64] and [65]. Due to the flexibility of HMM set-up as well as

apparent term structure in a range of observeable financial data, the HMMs have

become increasingly popular in the modelling of financial time series. More recent

developments and applications can be found for example in [45], [92] and [50],

amongst others.

2.3 Change of reference probability technique

In this section, we give a summary of the change of probability measure technique

employed in HMM filtering problem. The change of measure technique was intro-

duced to stochastic filtering by Zakai [114] and has since become widely used in

filtering applications. Such change of measure, based on a discrete time version
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of Girsanov’s theorem, is utilised in Elliott et al [43] to derive recursive optimal

filters. This technique enables us to perform calculations under a mathematically

more appropriate measure where the calculations are significantly simplified. Fol-

lowing Elliot et al [43], we shall name this new measure as a reference probability

measure. The reference probability measure is equivalent to the real world mea-

sure; and under the reference probability measure the observation process {yk}k∈N

are IID random variables. The dynamics of the underlying Markov chain do not

change under the new measure which brings a considerable simplification to the cal-

culations. This fact therefore enables us to employ Fubini-type results as opposed

to direct calculations which would require hard semi-martingale methods.

Let (Ω,F) be a measurable space. For the purpose of completeness, we start with

the definition of equivalence of two measures. The equivalence of two measures is

an important concept and a useful tool in the succeeding discussion together with

Cameron-Martin-Girsanov and Bayes’ theorems.

Definition 2.2

A probability measure P is absolutely continuous with respect to the probability

measure Q, written P ≪ Q, if for each A ∈ F , P (A) = 0 implies Q(A) = 0. The

two measures are said to be equivalent (denoted by P ≡ Q) if P ≪ Q and also

Q≪ P .

The theory underlying the change of measure relies on the equivalence of two prob-

ability measures defined on (Ω,F) linked via a Radon-Nikodŷm derivative. We

suppose P is a probability measure on F . To construct an equivalent measure Q

on F we invoke the following theorem.

Theorem 2.3

If a measure P is absolutely continuous with respect to a positive measure Q then

there exist a unique, nonegative function f such that for every E ∈ F

P (E) =

∫

E

f dQ.
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The function f is called the Radon-Nikodŷm derivative of P with respect to Q and

is usually denoted by dP
dQ

.

Proof

See pages 121–123 of Rudin [104].

�

The probability measure Q on (Ω,F) is thus defined via this Radon-Nikodŷm

derivative (for further discussion, see Elliot et al [43]). Another important tool in

the succeeding discussion is the well-known Cameron-Martin-Girsanov theorem.

Theorem 2.4 (Cameron-Martin-Girsanov theorem)

If Wt is a P -Brownian motion and γt is an F -adapted process satisfying the bound-

edness condition EP

[
exp(

1

2

∫ T

0

γ2
t dt)

]
< ∞, then there exists a measure Q such

that

1. Q is equivalent to P

2.
dQ

dP
= exp

(
−
∫ T

0

γtdWt− 1

2

∫ T

0

γ2
t dt

)

3. W̃t = Wt +

∫ t

0

γsds is a Q-Brownian motion.

In other words, Wt is a drifting Q-Brownian motion with drift −γt at time t.

Proof

See Girsanov [58].

�

Write

dQ

dP

∣∣∣
F

:= Λ.

It then follows that

Q(E) =

∫

E

ΛdP, ∀E ∈ F .
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In order to derive the filtering equations for the Markov chain process, it is im-

perative that we consider the conditional expectations that relate two equivalent

measures, see Elliott et al [43]). The conditional Bayes’ theorem stated below is a

fundamental tool in obtaining many results related to hidden Markov models.

Theorem 2.5 (Conditional Bayes’ theorem)

Let (Ω,F , P ) be a probability space, G ⊂ F a sub-σ-algebra and suppose H is any

G-measurable function. Assume further that Q is a probability measure equivalent

to P and defined via the Radon-Nikodŷm derivative

dQ

dP
= Λ.

Then

EQ[H | G] =
EP [ΛH | G]

EP [Λ | G]
.

Proof

To prove that the above equation holds, we need to show that

∫

A

EQ[H | G] dQ =

∫

A

EP [ΛH | G]

EP [Λ | G]
dQ, ∀A ∈ G .

We proceed by defining a measurable function ψ

ψ =





EP [ΛH | G] if EP [Λ | G] > 0,

0 otherwise.

(2.7)

Now we have to distinguish between two subsets of G. Suppose G = {ω : EP [Λ |

G] = 0} and Gc = {ω : EP [Λ | G] > 0}. Therefore, Λ = 0 a.s. on G. For any set

A ∈ G we can write B = A∩Gc and C = A∩G. Since G and Gc are disjoint, i.e.,

G ∩Gc = ∅, it follows that A = B ∪ C.
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With this distinction we have

∫

A

EQ[H | G] dQ =

∫

A

H dQ

=

∫

A

HΛ dP =

∫

B

HΛ dP +

∫

C

HΛ dP

︸ ︷︷ ︸
=0

. (2.8)

From the first integral in (2.8) we get

∫

B

ΛH dP = EP [IBHΛ] . (2.9)

Now using (2.7)

∫

B

ψ dQ =

∫

B

EP [ΛH | G]

EP [Λ | G]
dQ

= EQ

[
IB

EP [ΛH | G]

EP [Λ | G]

]
= EP

[
IBΛ

EP [ΛH | G]

EP [Λ | G]

]
. (2.10)

We apply the tower property to (2.10) and obtain

EP

[
IBΛ

EP [ΛH | G]

EP [Λ | G]

]
= EP

[
EP
[
IBΛ

EP [ΛH | G]

EP [Λ | G]
| G
]]

= EP

[
IBEP [Λ | G]

EP [ΛH | G]

EP [Λ | G]

]

= EP [IBΛH ] . (2.11)

Hence from equation (2.9) and (2.11), we have

∫

B

ΛH dP =

∫

B

ψ dQ . Using (2.8),

we therefore see that

∫

A

ΛH dP =

∫

C

ΛH dP +

∫

B

ΛH dP

=

∫

A

EQ[H | G] dQ =

∫

A

ψ dQ .
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So, we finally get

EQ[H | G] =
EP [ΛH | G]

EP [Λ | G]
.

�

2.4 The EM algorithm

In this section, we shall briefly describe the Expectation-Maximisation (EM) algo-

rithm. It is an important technique in estimating the parameters of a probabilistic

model, where the model depends on the unobserved latent variables. EM is an

iterative method which first performs the expectation step (E); this step computes

an expectation of the log-likelihood with respect to the current estimate of the dis-

tribution of latent variables. The expectation step is followed by the maximisation

step (M), which computes the parameters that maximise the expected log-likelihood

found in the E-step. These are in turn used to determine the distribution of the

latent variable in the next E-step.

The EM algorithm was first developed by Dempster, Laird and Rubin [38] and has

been widely used in engineering, computing and economics. It is an alternative

procedure to finding maximum likelihood estimates (MLEs) in incomplete data

problems, where it is difficult to compute the MLEs due to missing values or where

maximisation of the likelihood function is analytically untractable (see for example,

McLachlan [94]).

Let θ be a set of parameters in the parameter space Θ and let {P θ, θ ∈ Θ} be a

family of absolutely continuous measures with respect to a fixed probability measure

P 0 on a measurable space (Ω,F). In addition, assume that there is a filtration

Y ⊂ F .

Our goal is to calculate an optimal estimate of the set of parameters θ. The

likelihood function for the calculation of θ based on the information contained in
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Y is therefore given by

F (θ) = E0

[
dP θ

dP 0

∣∣∣ Y
]
,

whilst the maximum likelihood estimate for θ is defined by

θ̂ = arg max
θ∈Θ

F (θ).

The MLE above is, however, not straightforward to compute; therefore, we rely

on the EM algorithm which tackles the problem indirectly with an iterative ap-

proximation method as discussed below. For a detailed review, see Elliott and

Krishnamurthy [46].

First set n = 0 and choose θ̂0. Each iteration of the EM algorithm consists of

two steps as mentioned above: the expectation step (E) and the maximisation step

(M).

1. Expectation step: Determine the function Ml(θ, θ̂n)

Ml(θ, θ̂n) = Eθ̂n

[
dP θ

dP θ̂n

∣∣∣ Y
]
.

2. Maximisation step: Find a value of θ ∈ Θ such that it maximises Ml(θ, θ̂n),

that is

θ̂n+1 = arg max
θ∈Θ

Ml(θ, θ̂n).

Now replace n by n + 1 and repeat steps 1 (E-step) and 2 (M-step) until some

stopping criteria is met, such as |θ̂n+1 − θ̂n| < ǫ, for some specified ǫ.

It was shown in Wu [113] that the sequence {θ̂n} yields a non-decreasing values of

the likelihood function. It was shown as well that the sequence converges to the local

maximum of the afore-mentioned likelihood function. The particular instance of

the EM algorithm specialised for HMMs is the well-known Baum-Welch algorithm
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[10]. It is a forward-backward algorithm that calculates the forward and backward

probabilities for each state of the HMM and in turn uses these to compute the

MLEs of the parameters. For further details of the Baum-Welch algorithm, see

[26].

In the succeeding chapters, the EM algorithm will play a crucial role in the estima-

tion of the parameters of the HMM models. Parameter estimation is optimised via

an application of the EM algorithm to the log dP θ

dP θ̂
with the previously calculated θ̂

as explained above.
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Chapter 3

Parameter estimation in a

regime-switching model when the

drift and volatility are

independent

3.1 Preliminaries

In the last few years, there has been a surge in the use of regime-switching models

in capturing the dynamics of variables in the financial markets. Such modelling of

financial or economic variables is necessary when pricing and hedging derivatives,

which are becoming increasingly sophisticated nowadays. Under a regime-switching

modelling framework, the shift from one regime to another is usually modulated

by a Markov chain either in discrete or continuous time. In order to be more

realistic, we assume that the Markov chain is unobservable and thus we suppose

that the switching evolves in accordance with an HMM. In finance, the observables

are financial time series of asset prices, interest rates, exchange rates, etc. We aim

to “filter” the noise out of these observations in the best possible way in order to

come up with the best estimates of the Markov chain and parameters of the model.
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Hamilton [64] popularised the use of regime-switching by mixing normal distri-

butions in an attempt to describe the state of an economy at any given time;

see a more detailed and accessible presentation in [66]. From the perspective of

economic modelling, regime-switching models are inspired by structural changes

brought about by some uncertain events, institutional policies or intervention of

monetary authories; see, for example the case of Mexico in [102]. Evidence that

abounds in empirical finance and economics provide support that regime-switching

models are capable of capturing the dynamics of financial primitives that are being

modelled. Regime shifts occur in many types of financial markets and hence regime-

switching models have been employed by various authors in order to accomplish

more impact in certain financial modelling endeavours. See, for instance, Elliott,

Hunter & Jamieson [45], and Bansal and Zhou [6], amongst others, in modelling the

term structure of interest rates; Bollen, Gray and Whaley [15] in pricing derivatives

linked to foreign-exchange; Boyle and Draviam [20] for valuation of exotic options;

Chang and Tsai [29] in initiating tax reforms; Chu, Santoni and Liu [30] in the

analysis of the stock market; and Haldrup and Nielsen [62] in modelling electricity

prices. More recent developments in the use of regime-switching models in finance

and economics driven by HMM can be found in Mamon and Elliott [91].

We note, however, that in these previous papers and many prior applications the

switching of regimes for both the drift and volatility is governed by only one Markov

chain. In this chapter, we investigate if given a dataset there is evidence to suggest

that the number of regimes for the drift is different from that for the volatility.

To attain this objective, we proceed in the following manner. In section 3.2, we

describe the modelling framework of the HMM in discrete time. Then, we briefly

revisit the Bayes rule and the change of probability measure which are central in

the parameter estimation. The filters will be derived for the optimal state of the

Markov chain and other related quantities. The EM algorithm will be employed in

linking the adaptive filters to the optimal estimates of the model parameters. In

section 3.3, we shall develop an extension that handles the case when the drift’s and

volatility’s probabilistic behaviour are independent. Furthermore, we extend the
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idea of independent drift and volatility to the case where the observation process is

multivariate in section 3.4. The dynamics of the NASDAQ and DOW JONES in-

dices are then examined using the filtering techniques under the proposed extended

set-up. We generate one-step ahead forecasts and assess the quality of these fore-

casts via their root-mean-square errors (RMSEs). A summary and some concluding

comments are given in section 3.6.

3.2 Optimal parameter estimates using the change

of measure technique

Suppose (Ω,F , P ) denotes a probability space under which Xk is a discrete-time

(k = 1, 2, . . .) homogenous Markov chain with finite state space. Without loss of

generality, we can assume the state space of Xk is associated with the canonical

basis {e1, . . . , eN} ∈ RN and ei = (0, . . . , 0, 1, 0, . . . , 0)⊤ where ⊤ denotes the trans-

pose of a vector (see section 2.1). In addition, the initial distribution of X0 is

known and Π = (πij) is the transition probability matrix with πij = P (Xk+1 = ei |

Xk = ej). It is an established result that Xk has a semimartingale representation:

Xk+1 = ΠXk + Vk+1. We may view Xk as representing the “conceivable” states of

an economy and as argued in section 3.1 may not be directly observable.

Now, let Sk be a series of asset prices. Then, we could observe the logarithmic

increments

yk+1 = lnSk+1 − lnSk = ln
Sk+1

Sk
or Sk+1 = Skexp{yk+1}. (3.1)

We propose that

yk+1 = ln
Sk+1

Sk
= f(Xk, zk+1) (3.2)

for some function f and zk’s are IID random variables and independent of X. More
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specifically,

yk+1 = f(Xk, zk+1) = α(Xk) + β(Xk)zk+1 = 〈α,Xk〉 + 〈β,Xk〉zk+1. (3.3)

To formalise the setting of the model further, we consider histories or filtrations Fk

as the complete filtration generated by X0, X1, . . . , Xk; Yk as the complete filtration

generated by y0, y1, . . . , yk and Hk := Fk ∨ Yk.

3.2.1 Method of reference probability

It should be clear that the signal model with real-valued y-process on (Ω,F , P ) has

the form

yk+1 = α(Xk) + β(Xk)zk+1,

where

Xk+1 = ΠXk + Vk+1

and zk’s are IID standard normals. Define a new probability measure Q via the

Radon-Nikodŷm derivative Λk by

dQ

dP

∣∣∣∣
Hk

= Λk =
k∏

l=1

λl

with

Λ0 = 1 and λl =
〈β,Xl−1〉φ(yl)

φ(zl)
,

where φ(z) is the pdf of a standard normal.

Lemma 3.1

Under the probability measure Q, the yk’s are N(0,1) IID random variables.
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Proof

See [43].

�

We wish as well to construct the measure P from Q. That is, conversely, suppose

we start with Q on (Ω,F) such that

(i) Xk+1 = ΠXk + Vk+1, EQ[Vk+1 | Fk] = 0

(ii) yk is a sequence of N(0,1) IID.

We reiterate that the aim here is to construct a probability measure P from Q such

that under P , zk is a sequence of standard normals. That is, under P we have the

required model yk+1 = α(Xk) + β(Xk)zk+1 with zk, N(0,1) and IID. Introduce the

inverses of λl and Λk. Write

λ−1
l := λ̃ =

φ(zl)

〈σ,Xl−1〉φ(yl)
,

with

Λ̃0 = 1 and Λ̃k =

k∏

l=1

λ̃l for k ≥ 1.

Define P by putting dP
dQ

∣∣∣
Hk

= Λ̃k.

Lemma 3.2

Under P , {zk} is a sequence of standard normal IID random variables.

Proof

See [43].

�

Remark 3.3

We shall work under measure Q. However, it is under P that yk+1 = α(Xk) +

β(Xk)zk+1, with zk being N(0,1) and IID.
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3.2.2 Recursive filters for the state of the Markov chain

and other related quantities

For any Hk-adapted process {Yk}, define

γ(Yk) := EQ[Λ̃kYk|Hk].

From Bayes’ rule, it follows that

E[Yk|Hk] =
EQ[Λ̃kYk|Hk]

EQ[Λ̃k|Hk]
=
γ(Yk)

γ(1)
. (3.4)

Write

Γi(yk) :=
φ
(

yk−αi

βi

)

βiφ(yk)
. (3.5)

Furthermore, define the following:

1. J rs
k =

∑k
l=1〈Xl−1, er〉〈Xl, es〉 as the number of jumps from er to es in time k,

2. Or
k =

∑k
l=1〈Xl−1, er〉 as the occupation time in er and

3. T r
k (h) =

∑k
l=1〈Xl−1, er〉h(yl) as an auxiliary, where h(y) = y or y2.

Theorem 3.4

If Γi(yk) is defined as in (3.5) then the recursive relations for γ(Jrs
k Xk), γ(O

r
kXk)

and γ(T r
k (h)Xk) are given by

γ(J rs
k Xk) =

k∑

l=1

〈γ(J rs
l−1Xl−1), ei〉Γi(yk)Πei + 〈γ(Xk−1), er〉πsrΓ

r(yk)es

γ(Or
kXk) =

N∑

i=1

〈γ(Or
k−1Xk−1), ei〉Γi(yk)Πei + Γr(yk)〈γ(yk−1), er〉Πer

γ(T r
k (h)Xk) =

N∑

i=1

〈γ(T r
k−1(h)Xk−1), ei〉Γi(yk)Πei + Γr(yk)〈γ(Xk−1), er〉h(yl)Πer.
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Proof

See Elliot et al [43].

�

3.2.3 Relating recursive filters for vector processes to scalar

quantities

Consider again equation (3.4), whose numerator and denominator are both scalars.

So far, the recursions given in Theorem 3.4 only hold for vector processes. However,

one can observe that for any process Yk,

σ(Yk) = γ(Yk〈Xk, 1〉) = 〈γ(YkXk), 1〉 where 1 = (1, 1, . . . , 1)⊤. (3.6)

Here, Y = J ,O and T . So, we have estimates for the quantities required in

equation (3.4). In addition,

γ(1) = EQ[Λ̃k | Hk] = 〈γ(Xk), 1〉. (3.7)

Finally, in order to obtain optimal estimates of model parameters, the EM-algorithm

adopted from Dempster, Laird & Rubin [38] is applied. In our case, we have the set

θ̂ for the optimal parameter estimates given by θ̂ =
{

(π̂ji) , α̂i, β̂i, 1 ≤ i, j ≤ N
}

,

which determines the proposed model. We suppose that we are given a family of

probability measures
{
P θ, θ ∈ Θ

}
on some measurable space (Ω,G) and Y ∈ G.

Our aim is to calculate the parameter θ.

1. Set n = 0 and choose θ̂0.

2. Set θ∗ = θ̂n and determine L(θ, θ∗) = Eθ∗
[
log

dP θ

dP θ∗

∣∣∣∣Y
]
; this is called the

E-step.

3. Find θ̂n+1 ∈ argmax
θ∈Θ

L(θ, θ∗); this is called the M-step.
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4. Replace n by n+1 and repeat procedures (E and M steps) until some stopping

criterion is satisfied.

As mentioned earlier, it was shown in Wu [113] that the sequence
{
θ̂n

}
produces

non-decreasing likelihood values which converge to a local maximum of the likeli-

hood function.

The recursive expressions above can be employed to estimate the parameters of the

model. Application of the EM algorithm gives the following result:

Theorem 3.5

If a sequence of observations y1, . . . , yk are available at time k and the set of pa-

rameters {π̂rs, α̂r, β̂r} determines the model then the EM filter estimates for these

parameters are given by

π̂rs(k) =
γ(J rs

k )

γ(Or
k)

(3.8)

α̂r(k) =
γ(T r

k (y))

γ(Or
k)

(3.9)

β̂r(k) =

√
γ(T r

k (y2)) − 2α̂rγ(T r
k (y)) + α̂2

rγ(Or
k)

γ(Or
k)

. (3.10)

Proof

Formula for the re-estimation of the transition probabilities (3.8) follows as a special

case of the result presented in Theorem 4.5. Alternative proof for (3.8) as well as

proofs for (3.9) and (3.10) can be found in Elliott et al [43].

�

3.3 Extension to the case when the drift and volatil-

ity have independent probabilistic behaviour

Suppose αk takes values in a finite set Cα = {α1, α2, . . . , αn} and βk takes values

in Cβ = {β1, β2, . . . , βm}. Then, there are bijections cα and cβ of Cα and Cβ,
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respectively with the set of finite vectors Dα = {e1, e2, . . . , en} ∈ Rn and Dβ =

{e1, e2, . . . , em} ∈ Rm. That is,

cα : Cα −→ Dα and

cβ : Cβ −→ Dβ.

Write Xα
k = cα(αk) ∈ Rn and Xβ

k = cβ(βk) ∈ Rm. Suppose X l
k is a Markov chain on

its state space Cl with transition matrix Πl where l ∈ {α, β}. We essentially assume

our observation process is driven by two independent Markov chains, possibly with

unequal number of states for the drift and volatility. The observation process yk

follows the form

yk+1 = 〈α,Xα
k 〉 + 〈β,Xβ

k 〉zk+1, (3.11)

where α = (α1, α2, . . . , αn)
⊤ ∈ Rn, β = (β1, β2, . . . , βm) ∈ Rm, zk are standard

normal IID’s. Both Xα
k and Xβ

k are Markov chains of appropriate dimensions with

respective dynamics

Xα
k+1 = ΠαX

α
k + V α

k+1

Xβ
k+1 = ΠβX

β
k + V β

k+1.
(3.12)

Here, Πα and Πβ are the corresponding transition matrices, and V α
k and V β

k are

the corresponding martingale increments.

Remark 3.6

Recall that if A is an m × n matrix and B is a p × q matrix, then the Kronecker

product is the mp× nq block matrix
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A⊗ B =




a11B a12B . . . a1nB

a21B a22B . . . a2nB

...
...

. . .
...

am1B a22B . . . amnB




. (3.13)

Define Xk = Xα
k ⊗ Xβ

k , where ⊗ denotes the tensor or Kronecker product. Then,

we can identify Xk with a unit vector in Rnm. From (3.12),

Xk+1 = ΠXk + Vk+1, (3.14)

where Π = Πα ⊗ Πβ and

Vk+1 = ΠαX
α
k ⊗ V β

k + V α
k ⊗ ΠβX

β
k + V α

k ⊗ V β
k . (3.15)

Therefore E
[
Vk | Gk−1

]
= 0.

Example 3.7

Assume the situation where we have a 3-state drift and 2-state volatility. That

is, α = (α1, α2, α3)
⊤ and β = (β1, β2)

⊤. In this case, re-formulate α and β as

α = (α1, α1, α2, α2, α3, α3)
⊤ and β = (β1, β2, β1, β2, β1, β2)

⊤, respectively. Then, e1

picks up α1 & β1; e2 picks up α1 & β2; e3 picks up α2 & β1; e4 picks up α2 & β2;

e5 picks up α3 & β1; and e6 picks up α3 & β2.

Although this idea was mentioned in [44], no further development, examples and

details of numerical implementation to datasets were given by the authors.

By encapsulating the two Markov chains with unequal states driving the drift and

volatility into one Markov chain, we should in principle be able to use the results

given in section 3.2. However, by identifying both Xα
k and Xβ

k as Xk = Xα
k ⊗Xβ

k ,
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which is a unit vector in Rnm, we lose part of the information about the different

states for the drift and volatility of the original model (3.11)-(3.12). In the general

re-estimation of parameter values using Theorem 3.5, there would be nm distinct

values for both α and β.

We note that some modification to the algebra, however, would allow the results

presented in section 3.2 to be applied for the case where the drift and volatility

have independent probabilistic behaviour. That will lead us to the recursive filters

for Xk, Π, α and β. In order to do so, we shall first define the quantities used and

introduce the notation. Write

α = α⊗ 1(n) =




α1

...

α1

...

αn

...

αn




, β = 1(m) ⊗ β =




β1

...

βm

...

β1

...

βm




, (3.16)

where 1(k) is a vector of ones of length k. If the probabilistic behaviour of the drift

α and volatility β are independent, (3.11) can be re-written as

yk+1 = 〈α,Xk〉 + 〈β,Xk〉zk+1. (3.17)

Filtering algorithms for the process in (3.17) are known, however as argued above

they do not take into account the additional information derived from the construc-
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tion. In other words, there is only n different elements in vector α, each repeated

m times and the same is true for vector β. As in section 3.2, define

O r
k+1 =

k+1∑

i=1

〈Xi, er〉

J rs
k+1 =

k+1∑

i=1

〈Xi, er〉〈Xi, es〉

T r
k+1(f) =

k+1∑

i=1

〈Xi, er〉h(yi).

(3.18)

In addition to (3.18), we need the occupation time and number of jumps for the

processes Xα
k and Xβ

k as well. Write

αO r
k :=

k∑

i=1

〈Xα
i , er〉 =

k∑

i=1

m∑

j=1

〈Xi, ej+(r−1)m〉

=

m∑

j=1

Oj+(r−1)m
k , ∀r ∈ {1, . . . , n}

(3.19)

and

αJ rs
k :=

k∑

i=1

〈Xα
i , er〉〈Xα

i , es〉 =
k∑

i=1

m∑

j=1

m∑

l=1

〈Xi, e(r−1)m+j〉〈Xi, e(s−1)m+l〉

=

m∑

j=1

m∑

l=1

J (r−1)m+j,(s−1)m+l
k , ∀r, s ∈ {1, . . . , n}.

(3.20)

In order to derive the expressions in equations (3.19) and (3.20) we use only the

definition of occupation times coupled with the structure of the model in (3.11). In

the same way, we can derive expressions for occupation time and number of jumps

for the Markov chain Xβ
k by considering

βO r
k =

n∑

j=1

Or+(j−1)m
k , ∀r ∈ {1, . . . , m}

βJ rs
k =

n∑

j=1

n∑

l=1

J r+(j−1)m,s+(l−1)m
k , ∀r, s ∈ {1, . . . , m}.

(3.21)
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We can now derive the recursive filters for the parameters of the model, i.e., equa-

tions to re-estimate the transition matrix Π and vectors α and β.

Theorem 3.8

If a sequence of observations y1, . . . , yk are available at time k and the set of pa-

rameters {Π̂, α̂r, β̂r} determines the model (3.11) then the EM filter estimates for

these parameters are given by

Π̂ = Π̂α ⊗ Π̂β where

απ̂rs =

∑m
j=1

∑m
l=1 γ

(
J (r−1)m+j,(s−1)m+l

k

)
∑m

j=1 γ
(
Oj+(r−1)m

k

)

and βπ̂rs =

∑n
j=1

∑n
l=1 γ

(
J r+(j−1)m,s+(l−1)m

k

)
∑n

j=1 γ
(
Or+(j−1)m

k

)

α̂r =

∑m
j=1 γ

(
T j+(r−1)m

k (y)
)

∑m
j=1 γ

(
Oj+(r−1)m

k

)

β̂r =

∑n
l=1

(
γ
(
T r+(l−1)m

k

)
(y2) − 2γ

(
T r+(l−1)m

k

)
(y)αl + γ

(
Or+(l−1)m

k

)
α2

l

)

γ
(

β
Or

k

)

(3.22)

Proof

By Theorem 3.5, we have

απ̂rs =
γ
(

α
J rs

k

)

γ
(

α
Or

k

) =

∑m
j=1 γ

(
J j+(r−1)m

k

)
∑m

j=1 γ
(
Oj+(r−1)m

k

) (3.23)

and

βπ̂rs =
γ
(

β
J rs

k

)

γ
(

β
Or

k

) =

∑n
j=1

∑n
l=1 γ

(
J r+(j−1)m,s+(l−1)m

k

)
∑n

j=1 γ
(
Or+(j−1)m

k

) . (3.24)

From (3.23) and (3.24), the transition matrix Π can be derived readily as Π =

Πα ⊗ Πβ .

To derive expressions in estimating elements of vector α, we need to consider the
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expression

log Λk =
k∑

i=1

nm∑

r=1

〈Xi−1, er〉
(
2yiαr − α2

r

)

2β
r

=
k∑

i=1

n∑

r=1

2αr

∑m
j=1〈Xi−1, e(r−1)m+j〉yi − α2

r

∑m
j=1〈Xi−1, e(r−1)m+j〉

2
∑m

j=1 βj

=
n∑

r=1

2αT r
k(y)αr − αOr

kα
2
r

2
∑m

j=1 βj
.

(3.25)

Hence,

E
[
log Λk | Hk

]
=

n∑

r=1

2γ
(

α
T r

k
(y)
)
αr − γ

(
α
Or

k

)
α2

r

2
∑m

j=1 βj

. (3.26)

Differentiating (3.26) with respect to αr and equating the derivative to zero, we

find the optimal choice for αr given the observation up to time k and this is

αr =
γ
(

α
T r

k
(y)
)

γ
(

α
Or

k

) =

∑m
j=1 γ

(
T j+(r−1)m

k

)
∑m

j=1 γ
(
Oj+(r−1)m

k

) . (3.27)

Similarly, in order to derive the recursive expressions for the elements of vector β,

one needs to consider

log Λk = −1

2

(
k∑

i=1

nm∑

r=1

〈Xi−1, er〉 log β
r
+

〈Xi−1, er〉
β

r

(
y2

i + 2αryi + α2
r

)
)

= −1

2

(
k∑

i=1

m∑

j=1

log βj

n∑

l=1

〈Xi−1, ej+(l−1)m〉

+
k∑

i=1

m∑

j=1

1

βj

n∑

l=1

〈Xi−1, ej+(l−1)m〉
(
y2

i − 2αlyi + α2
l

)
)

= −1

2

m∑

j=1

(
log βj βOj

k

+
1

βj

n∑

l=1

(
T j+(l−1)m

k (y2) − 2T j+(l−1)m
k (y)αl + Oj+(l−1)m

k α2
l

)
)
.

(3.28)

Taking the expected value of (3.28) conditioned on the available observations, dif-

ferentiating it with respect to βj and equating the derivative to zero, we see that
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the optimal choice for βj given the observations, is

βj =

∑n
l=1

(
γ
(
T j+(l−1)m

k (y2)
)
− 2γ

(
T j+(l−1)m

k (y)
)
αl + γ

(
Oj+(l−1)m

k

)
α2

l

)

γ
(∑n

l=1 O
r+(l−1)m
k

) . (3.29)

�

Theorem 3.8 provides recursive expressions for the re-estimation of model parame-

ters when the drift and volatility are driven by two independent Markov chains, αXk

and βXk. The recursive expressions as given in Theorem 3.8 do not differ much

from the known case when the drift and volatility are both driven by the same

Markov chain in a sense that they are functions of the “supplementary” processes

defined in (3.18). The natural question that arises is whether we could recover the

known formulae (as specified in Theorem 3.5) if αXk and βXk are the same.

In order to confirm that start with a model as in (3.17)

yk+1 = 〈α,Xk〉 + 〈β,Xk〉zk+1,

where Xk is a Markov chain with a state space SX = {e1, e2, . . . , enn} and transition

probability matrix Π ∈ Rnn, whilst zk is a sequence of IID standard normals. In

addition, assume that there exists a Markov chain Xα
k with transition probability

matrix αΠ ∈ Rn such that

Xk = Xα
k ⊗Xα

k ,

as well as vectors α, β ∈ Rn such that α = α⊗ 1(n) and β = 1(n)⊗ β as in (3.16).

Consequently, our model (3.17) collapses to

yk+1 = 〈α,Xα
k 〉 + 〈β,Xα

k 〉zk+1.

Using the relationship between the supplementary processes (number of jumps

J , occupation time O and auxiliary process T ) for Xk and Xα
k as specified in

equations (3.19) – (3.21) and plugging them in Theorem 3.8, one recovers the
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recursive expressions given in Theorem 3.5.

We can therefore consider the case where the drift and volatility are driven by

the same Markov chain as a special case of the general model where the drift and

volatility are allowed to be independent. The extension to the independent drift

and volatility is further investigated in the next section where we explore how to

estimate the parameters when the observation process is not just a scalar process

but assumed to be multi-dimensional.

3.4 Vector observations

As in the previous section, suppose we have a Markov chain with state space SX =

{e1, e2, . . . , enm} and Xk+1 = ΠXk + Vk+1. In addition, suppose there exist two

independent Markov chains, Xα
k with state space SXα = {e1, e2, . . . , en} and Xβ

k

with state space SXβ = {e1, e2, . . . , em} with dynamics

Xα
k+1 = ΠαX

α
k + V α

k+1

Xβ
k+1 = ΠβX

β
k + V β

k+1,

such that Xk = Xα
k ⊗Xβ

k and Π = Πα⊗Πβ hold. Suppose now that the observation

process is a d-dimenstional vector process with components

y1
k+1 = 〈α1, Xα

k 〉 + 〈β1, Xβ
k 〉z1

k+1

y2
k+1 = 〈α2, Xα

k 〉 + 〈β2, Xβ
k 〉z2

k+1

...

yd
k+1 = 〈αd, Xα

k 〉 + 〈βd, Xβ
k 〉zd

k+1.

(3.30)

Here αi = (αi
1, α

i
2, . . . , α

i
n)

⊤ ∈ Rn, βi = (βi
1, β

i
2, . . . , β

i
m)⊤ ∈ Rm and zi

k are IID

standard normal random variables for i ∈ {1, 2, . . . , d}.

For i ∈ {1, 2, . . . , nm} write
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Γi(y
k+1

) = Γi(y1
k+1, y

2
k+1, . . . , y

d
k+1) =

d∏

j=1

φ

(
yj

k+1−αj
i

βj

i

)

βj

i
φ
(
yj

k+1

) (3.31)

where α and β are defined in (3.16). We can then prove an equivalent result to

that in Theorem 3.8 for vector observations.

Lemma 3.9

If a sequence of observations y
1
, . . . , y

k
are available at time k and the set of pa-

rameters {Π̂, α̂r, β̂r} determines the model (3.30) then the EM filter estimates for

these parameters are given by

Π̂ = Π̂α ⊗ Π̂β, where

αârs =

∑m
j=1

∑m
l=1 γ

(
J (r−1)m+j,(s−1)m+l

k

)
∑m

j=1 γ
(
Oj+(r−1)m

k

)

and βârs =

∑n
j=1

∑n
l=1 γ

(
J r+(j−1)m,s+(l−1)m

k

)
∑n

j=1 γ
(
Or+(j−1)m

k

)

α̂j
r =

∑m
i=1 γ

(
T i+(r−1)m

k (yj)
)

∑m
i=1 γ

(
Oi+(r−1)m

k

)

β̂j
r =

∑n
l=1

(
γ
(
T r+(l−1)m

k

)
((yj)2) − 2γ

(
T r+(l−1)m

k

)
(yj)αj

l + γ
(
Or+(l−1)m

k

)
(αj

l )
2
)

γ
(

β
Or

k

) .

(3.32)

Proof

We note that the recursive relations for γ(Jrs
k Xk), γ(O

r
kXk) and γ(T r

k (h)Xk) stated

in Theorem 3.4 hold for the vector observation case provided one defines Γi(y
k+1

)

as in (3.31). The proof then reduces to the proof of Theorem 3.8 and therefore, it

will not be repeated.

�

Hence, we have shown that the recursive filters for the parameters of the Markov

35



chain can be derived for the case where the drift and volatilty have independent

probabilistic behaviour. Indeed, even for the vector observation case the recursive

equations for estimation of model parameters are readily available as shown in

Lemma 3.9. In the next section, we shall apply these filters to observed market

data and demonstrate how these filters perform in practice.

3.5 Numerical application of the filters

The recursive filters from the previous section are implemented to the observed data

for the two well-known indices, namely the NASDAQ and DOW JONES indices.

The recursive filters ere applied to both the NASDAQ and DOW JONES datasets

covering an approximately 4-year period from 28 February 2003 to 16 February

2007. The summary statistics for the returns of these datasets are given in Table

3.1.

Statistic NASDAQ data DOW JONES data

Mean 3.998 × 10−4 4.819 × 10−4

Median −4.834 × 10−4 4.585 × 10−4

Standard deviation 0.008 0.007

Skewness 0.446 0.124

Kurtosis 4.532 4.881

Range 0.063 0.072

Minimum -0.026 -0.036

Maximum 0.036 0.035

Count 1000 1000

Table 3.1: Summary statistics for the NASDAQ and DOW JONES logarithmic
returns for the period 28/02/2003–16/02/2007

Suppose we choose n and m as the dimension of state spaces of the Markov chains

Xα
k and Xβ

k respectively. For any price process Sk, k ∈ Z+, the steps to undertake

in implementing the filtering under the extended framework are as follows:
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1. Calculate yk+1 = ln
Sk+1

Sk
.

2. Initialise the set of values {(αi, βj), i = 1, 2, . . . , n and j = 1, 2, . . . , m}.

3. Initialise the elements of the matrix Π = (πij), 1 ≤ i, j ≤ N,
∑N

i=1 πij =

1, πij ≥ 0.

4. After k values of y have been observed, compute new estimates for πij , α and β

using the recursive filters for X,J ,O and T .

5. Use the values after further observations to re-estimate (πij), α and β. This

yields a self-tuning model.

We also obtain one-step ahead forecasts with the aid of the formulae as in [92].

These are

E[yk+1 | y1, y2, . . . , yk] = 〈α̂, Π̂X̂k〉 and

V ar[yk+1 | y1, y2, . . . , yk] = α̂⊤diagΠ̂X̂kα + β⊤diagΠ̂X̂kβ − 〈α̂, Π̂X̂k〉2.

The data were processed in batches of ten data points. A batch of data being

processed constitutes one pass in the algorithm and each pass produces a different

set of new parameter estimates.

The initial parameter values for Π, α and β are displayed in Table 3.2 (page 38).

After 3 passes, we have the re-estimated values of the parameters exhibited in Table

3.3 (page 38).

Table 3.4 (page 39) depicts the values of the parameters in the final pass. In Table

3.5 (page 39), we show the RMSEs and the computational time (in seconds) it

takes to complete all the necessary calculations under different drift and volatility

settings. The calculations were performed on a 1.83GHz dual core procesor using

Matlab.

It can be seen from Table 3.5 (page 39) that the error is decreasing with increasing

number of states driving both drift and volatility. In addition, a naive, no change

model E[yk+1 | yk] = yk has a RMSE value of 7.2682 × 10−3 for the DOW JONES
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Π =




0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111




Xk = [0.8100 0.0450 0.0450 0.0450 0.0025 0.0025 0.0450 0.0025 0.0025]⊤

α = [−0.0100 − 0.0100 − 0.0100 0.0000 0.0000 0.0000 0.0110 0.0110 0.0110]⊤

β = [0.0050 0.0600 0.0100 0.0050 0.0600 0.0100 0.0050 0.0600 0.0100]⊤

Table 3.2: Initial parameter values for Π, Xk, α and β

Π =




0.2709 0.1229 0.1229 0.1267 0.0575 0.0575 0.1267 0.0575 0.0575

0.1641 0.1884 0.1641 0.0768 0.0882 0.0768 0.0768 0.0882 0.0768

0.1649 0.1649 0.1868 0.0771 0.0771 0.0874 0.0771 0.0771 0.0874

0.1595 0.0723 0.0723 0.2054 0.0932 0.0932 0.1595 0.0723 0.0723

0.0966 0.1109 0.0966 0.1244 0.1429 0.1244 0.0966 0.1109 0.0966

0.0971 0.0971 0.1100 0.1250 0.1250 0.1417 0.0971 0.0971 0.1100

0.1713 0.0777 0.0777 0.1713 0.0777 0.0777 0.1817 0.0824 0.0824

0.1038 0.1192 0.1038 0.1038 0.1192 0.1038 0.1101 0.1264 0.1101

0.1043 0.1043 0.1182 0.1043 0.1043 0.1182 0.1106 0.1106 0.1253




X̂k = [0.1142 0.1067 0.1068 0.1191 0.1104 0.1105 0.1161 0.1081 0.1082]⊤

α̂ = [−0.0099 − 0.0099 − 0.0099 0.0000 0.0000 0.0000 0.0110 0.0110 0.0110]⊤

β̂ = [0.0105 0.0180 0.0182 0.0105 0.0181 0.0182 0.0105 0.0181 0.0182]⊤

Table 3.3: Parameter values for Π, Xk, α and β after the 3rd pass

data set. The RMSEs reported in Table 3.5 are considerably lower as soon as the

number of states driving the drift is two or more.

The plots of the actual values versus the one-step ahead forecasts are displayed in
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Π =




0.2761 0.1225 0.1225 0.1269 0.0563 0.0563 0.1269 0.0563 0.0563

0.1642 0.1927 0.1642 0.0754 0.0886 0.0754 0.0754 0.0886 0.0754

0.1650 0.1650 0.1911 0.0758 0.0758 0.0878 0.0758 0.0758 0.0878

0.1593 0.0707 0.0707 0.2112 0.0937 0.0937 0.1593 0.0707 0.0707

0.0947 0.1112 0.0947 0.1256 0.1475 0.1256 0.0947 0.1112 0.0947

0.0952 0.0952 0.1103 0.1262 0.1262 0.1462 0.0952 0.0952 0.1103

0.1718 0.0762 0.0762 0.1718 0.0762 0.0762 0.1863 0.0827 0.0827

0.1021 0.1199 0.1021 0.1021 0.1199 0.1021 0.1108 0.1301 0.1108

0.1026 0.1026 0.1189 0.1026 0.1026 0.1189 0.1113 0.1113 0.1290




X̂k = [0.1139 0.1065 0.1066 0.1192 0.1105 0.1106 0.1162 0.1083 0.1083]⊤

α̂ = [−0.0099 − 0.0099 − 0.0099 0.0000 0.0000 0.0000 0.0110 0.0110 0.0110]⊤

β̂ = [0.0114 0.0184 0.0185 0.0114 0.0184 0.0185 0.0114 0.0184 0.0185]⊤

Table 3.4: Parameter values for Π, Xk, α and β after the final pass

Drift Volatility RMSE Computational time

1-state 1-state 1.0414 × 10−2 0.421

1-state 2-state 1.6499 × 10−2 0.686

2-state 1-state 4.2686 × 10−3 0.671

2-state 2-state 2.5714 × 10−3 1.763

2-state 3-state 1.7258 × 10−3 3.931

3-state 1-state 2.9231 × 10−3 1.139

3-state 2-state 1.6745 × 10−3 3.947

3-state 3-state 1.6140 × 10−3 9.578

Table 3.5: Comparison of RMSEs and computational time (in secs) for the DOW
JONES returns data.

Figures 3.1 and 3.2 for the NASDAQ and DOW JONES, respectively.

3.6 Some concluding remarks

In this chapter, a model for the evolution of a risky asset or a financial variable,

in which a derivative contract may depend upon, is considered. The increment of

39



05/05/2004 19/07/2004 28/09/2004 08/12/2004 18/02/2005 03/05/2005
−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

N
A

S
D

A
Q

 r
et

ur
ns

Observed returns
One step ahead prediction

Figure 3.1: NASDAQ actual returns series and one-step ahead predictions: 3-state
drift and 3-state volatility
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Figure 3.2: DOW JONES actual return series and one-step ahead predictions:
3-state drift and 3-state volatility
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the logarithm of the price involves a Gaussian noise and parameters are governed

by a finite state Markov chain. We revisited the estimation techniques from HMM

theory and applied these not only to obtain the best estimate of the Markov chain

and transition probability matrix but also to re-estimate all model parameters. The

EM-based estimation procedure ensures that the model parameter estimates im-

prove with each iteration. An extension of the estimation was formulated to handle

the case when the drift and volatility are driven by independent Markov chains.

The extended estimation procedures were tested on NASDAQ and DOW JONES

data sets. Several combinations were considered, wherein the number of states for

the drift and volatility parameters are unequal. On the basis of the RMSE calcu-

lated by comparing the actual values and the one-step ahead predictions, we found

that there is evidence to support that the drift and volatility have different number

of states at a given period. In addition, we have derived the recursive formulae

for estimation of the parameters in the case of multivariate observations. In the

next chapter we take the idea further and explore how HMM filtering performs

when the noise term is not normally distributed. We study the filtering of vector

observations as well as the case of independent drift and volatility considered in

this chapter, however the noise term has a non-normal distribution.
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Chapter 4

Parameter estimation in a

regime-switching model with

non-normal noise terms

4.1 Introduction

In the previous chapter, we considered a discrete-time, finite state Markov chain

which is observed through a real-valued function whose values are corrupted by

noise. Furthermore, we assumed the noise are IID normals.

It is however an accepted fact that many of the observable processes do not follow

the normality assumption. In financial time series modelling assumptions of normal

IID noise term results in tails thinner than observed on the market. There have

been many attempts to move away from normality assumption in the literature,

however non-normal noise complicates the algebra considerably.

In this chapter, we relax the assumption on the noise term and allow it to have a

general distribution, potentially dependent on the state of the underlying Markov

chain. With the relaxation of this assumption, it is in general not possible to come

up with all the recursive formulae for the parameter re-estimation as in chapter 3.

Without regard to the distribution of the noise, it is, nonetheless, possible to derive
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the recursive formulae for estimating the transition probabilities. However, it is

necessary to rely on numerical methods to approximate the remaining parameters,

namely, the drift (vector α) and volatility (vector β) specified in equation (4.1).

All processes will be defined on a complete probability space (Ω,F , P ). Suppose

Xk is a homogenous Markov chain with a finite state space on Ω. Without loss

of generality, we can assume that the state space of Xk is associated with the

canonical basis {e1, . . . , eN} ∈ RN and ei = (0, . . . , 0, 1, 0, . . . , 0)⊤, where ⊤ denotes

the transpose of a vector as in the previous chapter. Further, assume X0 is given,

or its distribution is known and Π = (πij) is the transition probability matrix with

πij = P (Xk+1 = ei | Xk = ej). Additionally, Xk+1 = ΠXk + Vk+1 is not observed

directly, rather there is an observation process

yk+1 = 〈α,Xk〉 + 〈β,Xk〉zk+1(Xk), (4.1)

where {zk+1(Xk)} is a sequence of independent random variables with a distribution

function φXk
(·), possibly dependent on the state of the Markov chain.

Consider further the filtrations or histories Fk as the complete filtration generated

by X0, X1, . . . , Xk; Yk as the complete filtration generated by y0, y1, . . . , yk and

Hk := Fk ∨ Yk.

4.2 Reference probability measure

It is under a real world measure P that the signal model with the real valued

y-process on (Ω,F , P ) has the dynamics

Xk+1 = ΠXk + Vk+1

yk+1 = 〈α,Xk〉 + 〈β,Xk〉zk+1(Xk).
(4.2)
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We wish to introduce a new probability measure Q via a Radon-Nikodŷm derivative

dP
dQ

, such that under Q the random variable yk+1 has density φXk
(·). Write

λl =
N∑

i=1

〈Xl−1, ei〉
φXi

(
yl−αi

βi

)

βiφXi
(yl)

,

Λk =
k∏

l=1

λl, Λ0 = 1.

(4.3)

Consider Λk in (4.3) as the Radon-Nikodŷm derivative of P with respect to Q.

That is,

dP

dQ

∣∣∣
Hk

= Λk, (4.4)

where, as noted above, Hk is the joint filtration generated by both X and y.

Lemma 4.1

Write ΦX(·) =
∑N

i=1〈Xk, ei〉φXi
(·). Under Q, the yk are IID random variables

distributed as a mixture of distributions φXi
(·), ΦX(·).

Proof

From Bayes’ Theorem,

Q(yk+1 ≤ t | Hk) = EQ
[
I(yk+1 ≤ t) | Hk

]

=
Λk

Λk
· E
[
λ−1

k+1I(yk+1 ≤ t) | Hk

]

E
[
λ−1

k+1 | Hk

] .
(4.5)

Now

E
[
λk+1 | Hk

]
=

∫ ∞

−∞

〈β,Xk〉ΦX(yk+1)

ΦX(zk+1)
ΦX(zk+1)dzk+1 = 1. (4.6)
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Therefore we can write

Q(yk+1 ≤ t | Hk) = EQ
[
I(yk+1 ≤ t) | Hk

]

=

∫ ∞

−∞

〈β,Xk〉ΦX(yk+1)

ΦX(zk+1)
ΦX(zk+1)I(yk+1 ≤ t)dzk+1

=

∫ t

−∞

ΦX(yk+1)dyk+1 = Q(yk+1 ≤ t).

(4.7)

The result follows.

�

Remark 4.2

The inverse of Lemma 4.1 can be proven similarly. That is, if we start with a

probability measure Q on (Ω,F), such that under Q Xk is a Markov chain with

dynamics Xk+1 = ΠXk + Vk+1, where Vk is the martingale increment, {yk} is a

sequence of random IID variables with a distribution function ΦX(·) then under P

zk is a sequence of IID random variables following distribution ΦX(·) on (Ω,F).

Our aim is to estimate X given the observation under P , the real world probability.

The calculations however will be performed under Q due to the convenience brought

about by the introduction of the measure Q. For example, under the real world

probability P even the recursive formulae for Xk are not linear in Xk, which leads

to complications of the algebra (see [43] for more details).

Write ξk := EQ
[
ΛkXk | Yk

]
and observing that

∑N
i=1〈Xk, ei〉 = 1, we have

N∑

i=1

EQ
[
〈ΛkXk, ei〉

]
=

N∑

i=1

〈EQ[ΛkXk | Yk], ei〉 =
N∑

i=1

〈ξk, ei〉. (4.8)

In addition, let

p̃i
k = P(Xk = ei | Yk) and p̃k = (p̃1

k, . . . , p̃
N
k ) (4.9)

so that we get an explicit form for the conditional distribution of Xk under P given
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Yk given by

p̃k =
ξk∑N

i=1〈ξk, ei〉
. (4.10)

4.3 Recursive estimation

In this section, we shall briefly present a recursive filter for vector process ξk as well

as derive the recursive relations and formulae which will in turn be used in model

parameter estimation. Write D for a diagonal matrix whose i-th element on the

diagonal is

φXi

(
yl−αi

βi

)

βiφXi
(yl)

. (4.11)

Lemma 4.3

If ξk := EQ
[
ΛkXk | Yk

]
, D is a matrix with diagonal elements of the form (4.11)

and Π a transition matrix corresponding to the Markov chain Xk then

ξk+1 = ΠDξk (4.12)

Proof

From the definition of ξk, we have

ξk+1 := EQ
[
Λk+1Xk+1 | Yk+1

]
(4.13)

and therefore

ξk+1 = EQ
[
Λk+1Xk+1 | Yk+1

]
= EQ

[
Λkλk+1

(
ΠXk + Vk+1

)
| Yk+1

]

= EQ

[
Λk

( N∑

i=1

〈Xk, ei〉
φXi

(yk+1−αi

βi

)

βiφXi
(yk+1)

)
ΠXk | Yk+1

]

=

N∑

i=1

EQ
[
Λk〈Xk, ei〉 | Yk+1

]φXi

(yk+1−αi

βi

)

βiφXi
(yk+1)

Πei = ΠDξk

(4.14)
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�

Our objective is to estimate the parameters of the model given in (4.1), i.e., estimate

the transition matrix Π and vectors α and β. To do this, we define (as in chapter

3) the processes representing the respective occupation time, number of jumps of

the Markov chain, and the auxiliary process below.

Or
k+1 =

k+1∑

i=1

〈Xi, er〉

J rs
k+1 =

k+1∑

i=1

〈Xi, er〉〈Xi, es〉

T r
k+1(g) =

k+1∑

i=1

〈Xi, er〉g(yi).

(4.15)

Notation: For any Y-adapted process C we shall use the notation γ(C)k :=

EQ[ΛkCk | Yk].

Theorem 4.4

IfD is the diagonal matrix as defined in (4.11), the recursive relations for γ(J srX)k,

γ(OrX)k and γ(T rX)k are

γ(J srX)k = ΠD(yk)γ(J srX)k−1 + 〈ξk−1, er〉
φXr

(
yk−αr

βr

)

βrφXr
(yk)

πsres

γ(OrX)k = ΠD(yk)γ(OrX)k−1 + 〈ξk−1, er〉
φXr

(
yk−αr

βr

)

βrφXr
(yk)

Πer

γ(T r(g)X)k = ΠD(yk)γ(T r(g)X)k−1 + 〈ξk−1, er〉
φXr

(
yk−αr

βr

)

βrφXr
(yk)

g(yk)Πer.

(4.16)
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Proof

γ(J srX)k = EQ
[
ΛkJ sr

k Xk | Yk

]

= EQ
[
Λk−1λk(J sr

k−1 + 〈Xk−1, er〉〈Xk, es〉)Xk | Yk

]

=

N∑

i=1

EQ
[
Λk−1〈Xk−1, ei〉J sr

k−1 | Yk

][ N∑

i=1

〈Xk−1, ei〉
φXi

(yk − αi)

φXi
(yk)

]

+ EQ
[
Λk−1〈Xk−1, er〉 | Yk

]φXr
(yk − αr)

φXr
(yk)

πsres

= ΠD(yk)γ(J srX)k−1 + 〈ξk, er〉
φXr

(yk − αr)

φXr

πsres

(4.17)

The proofs of the other two recursive formulae, namely γ(OrX)k and γ(T rX)k

follow almost exactly the same arguments and are thus omitted.

�

4.4 Parameter estimation

In order to estimate the parameters of the model the EM algorithm is employed to

determine the optimal approximation for each parameter in the set θ. Initial values

for the EM algorithm are assumed to be given. Starting from the initial values,

the updated parameter approximations are carried out based on the maximisation

of the conditional expected log-likelihoods. Filters for the occupation time pro-

cess, jump process and the auxiliary process given in Theorem 4.4 are required to

calculate the optimal parameter estimates.

The EM algorithm requires the change of measure from P θ to P θ̃. Under P θ, X is

a Markov chain with transition matrix Π. Under P θ̃, X is still a Markov chain with

transition matrix Π̃ and as explained in section 2.4, the set of optimal parameters

is obtained by maximising Eθ
[

dP θ̃

dP θ

∣∣∣ Y
]

with respect to the set of parameters θ̃.

Theorem 4.5

If at time k a sequence y1, . . . , yk is available and the set of parameters {πsr, αr, βr}
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determines the model then the EM estimates for transition probabilities are

πsr =
γ(J srX)k

γ(OrX)k
. (4.18)

Proof

Using the Radon-Nikodŷm derivative of P θ̃ with respect to P θ we have

log
dP θ̃

dP θ
=

k∑

l=1

log

(
N∑

s,r=1

(
π̃sr

πsr

)〈Xl,es〉〈Xl−1,er〉
)

=

k∑

l=1

N∑

s,r=1

(log π̃sr − log πsr)〈Xl, es〉〈Xl−1, er〉

=

N∑

s,r=1

J sr
k log π̃sr +R(πsr) (4.19)

where the R(πsr) does not involve π̃sr. Observe that
∑N

s=1 J sr
k = Or

k, hence

N∑

s=1

J̃ sr
k = Õr

k. (4.20)

The π̃ji’s optimal estimate is the value that maximises the log-likelihood (4.19)

subject to the constraint
∑N

s=1 π̃sr = 1.

Introducing the Lagrange multiplier δ, we consider the function

L(π̃, δ) =
N∑

r,s=1

J̃ sr
k log π̃sr + δ

(
N∑

s=1

π̃sr − 1

)
+R(πsr). (4.21)

Differentiating (4.21) with respect to π̃sr and δ and equating the derivatives to 0,

we have

1

π̃sr
J̃ sr

k + δ = 0. (4.22)
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Equation (4.22), however, can be re-written as

π̃sr =
J̃sr

k

−δ . (4.23)

Therefore,

N∑

j=1

π̃sr =

∑N
s=1 J̃ sr

k

−δ . (4.24)

Considering
∑N

s=1 π̃sr = 1 together with (4.20), equation (4.24) simplifies to

δ = −Õr
k.

Hence, from equation (4.23), the optimal estimate for π̃sr is

π̃sr =
J̃ sr

k

Õr
k

=
γk(J sr

k )

γk(Or
k)
,

which concludes the proof.

�

In the completely general case, i.e., making no assumptions concerning the distribu-

tion of the noise term, it is not possible to derive the formulae for the re-estimation

of the model parameters. Indeed, in order to use the EM algorithm one needs

to change the measure from P θ to P θ̃ which depends on the specific distribution

function of the noise.

Furthermore, it is not possible to get “neater” recursive formulae for the parameters

apart from the transition probabilities in the general case. One needs to resort

to numerical methods to find the maximum likelihood. Nevertheless, as will be

shown in the next section for the case of noise distributed as student t-distribution,

it is possible to reduce the estimation problem to finding a zero of a function.

In conjunction with the result in Theorem 4.5, we illustrate that the estimation

problem becomes a relatively simple numerical problem which can be solved quickly

using modern computers.
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4.4.1 Student’s t-distributed noise term

In this section, we shall analyse the model as in (4.2), where the noise term follows

a student’s t-distribution with ν degrees of freedom. Observe that the degrees of

freedom in the noise term can in general depend on the state of the underlying

Markov chain. Write ν = (ν1, . . . , νn)⊤ for a vector representing the degrees of

freedom and

yk+1 = 〈α,Xk〉 + 〈β,Xk〉zk+1(〈ν,Xk〉), (4.25)

where {zk(νi)} is a sequence of independent random variables distributed as a

student’s t-distribution with νi degrees of freedom.

Theorem 4.6

Let y1, . . . , yk be sequence of observations available at time k and let the set of

parameters {πsr, αr, βr} determine the model. The EM estimates for vectors α and

β, i.e., {α̂r, β̂r} then solve the equations

(νi + 1)γ(T (i)(gα̂i
)X)k = 0,

where gα̂i
: x 7−→ α̂i − x

βiνi + (α̂i − x)2
, and

(νi + 1)

(
γ(T (i)(hβ̂i

)X)k −
γ(O(i)X)k

β̂i

)
= 0,

where hβ̂i
: x 7−→ β̂iνi

β̂iνi + (x− αi)2
.

Proof

Consider the parameters αi, i ∈ {1, 2, . . . , N}. To get the updates of parameters
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α̂i from αi we need to look at the factors

λk+1

(
Xk, yk+1

)

=
φ〈Xk,ν〉

(yk+1−〈Xk,α̂〉

〈Xk ,β〉

)

φ〈Xk,ν〉

(yk+1−〈Xk,α〉

〈Xk ,β〉

)

=

(
1 + (yk+1−〈Xk,α̂〉)2

〈Xk ,β〉2〈Xk,ν〉

)− 〈Xk,ν〉+1

2

(
1 + (yk+1−〈Xk,α〉)2

〈Xk ,β〉2〈Xk,ν〉

)− 〈Xk,ν〉+1

2

=

(〈Xk, β〉2〈Xk, ν〉 + y2
k+1 − 2yk+1〈Xk, α̂〉 + 〈Xk, α̂〉2

〈Xk, β〉2〈Xk, ν〉 + y2
k+1 − 2yk+1〈Xk, α〉 + 〈Xk, α〉2

)−
〈Xk,ν〉+1

2

.

(4.26)

Write Λk+1

(
Xk, yk+1

)
=
∏k

l=1 λl+1

(
Xl, yl+1

)
and consider a new measure P ∗ defined

by

dP ∗

dP

∣∣∣
Gk

= Λk+1

(
Xk, yk+1

)
. (4.27)

Now

log Λk+1 = −
k∑

l=1

〈Xl, ν〉 + 1

2
log

( 〈Xk, β〉2〈Xl, ν〉 + y2
l+1 − 2yl+1〈Xl, α̂〉 + 〈Xl, α̂〉2

〈Xk, β〉2〈Xl, ν〉 + y2
k+1 − 2yl+1〈Xl, α〉 + 〈Xl, α〉2

)

= −
k∑

l=1

n∑

i=1

〈Xl, ei〉
νi + 1

2
log
(
βiνi + y2

l+1 − 2yl+1α̂i + α̂2
i

)
+R(α).

(4.28)

We wish to find the maximum of

E

[
dP ∗

dP

∣∣∣ Yk

]
(4.29)

at α̂. To do this, we differentiate the expected value in (4.29) with respect to α̂i

and equate the resulting derivative to 0. We have

∂

∂α̂i
E
[
log(Λk) | Yk

]
= E

[ ∂

∂α̂i
log(Λk)

∣∣∣ Yk

]

= E

[
(νi + 1)

k∑

l=1

〈Xl−1, ei〉
α̂i − yl

βiνi + (α̂i − yl)2

∣∣∣ Yk

]
.

(4.30)
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It can be seen from (4.30) that in order to maximise (4.29) one needs to find α̂i

which makes the weighted sum of the differences yl − α̂i (with weights roughly

the square distance between yl and α̂i) equal to 0. There is no useful recursive

expression for α̂i, however. We find

∂

∂α̂i

E
[
log(Λk) | Yk

]
= (νi + 1)E

[ k∑

l=1

〈Xl−1, ei〉
α̂i − yl

βiνi + (α̂i − yl)2

∣∣∣ Yk

]

= (νi + 1)γ(T (i)(gα̂i
)X)k

where gα̂i
: x 7−→ α̂i − x

βiνi + (α̂i − x)2
,

(4.31)

which finishes the proof of the first part.

Remark 4.7

Suppose we re-write (4.30) as

∂

∂α̂i
E
[
log(Λk) | Yk

]

= E

[
(νi + 1)

∑k
l=1〈Xl−1, ei〉(α̂i − yl)

∏k
j=1,j 6=l

(
βiνi + (α̂i − yj)

2
)

∏k
l=1

(
βiνi + (α̂i − yl)2

)
∣∣∣∣ Yk

]

= E

[∑k
l=1〈Xl−1, ei〉(α̂i − yl)(νi + 1)

∏k
j=1,j 6=l

(
βiνi + (α̂i − yj)

2
)

∏k
l=1

(
βiνi + (α̂i − yl)2

)
∣∣∣∣ Yk

]

= E

[∑k
l=1〈Xl−1, ei〉(α̂i − yl)

(
βiν

k
i + O(νk−1

i )
)

βiνk
i + O(νk−1

i )

∣∣∣∣ Yk

]
.

(4.32)

It can quickly be seen that we recover known recursive formulae for the case of

normally distributed noise terms for αi as νi → ∞; see Theorem 3.5. In addition,

considering that α̂i−yl has a student’s t-distribution, one should be able to recover

the same formulae for αi when k → ∞.
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In order to get the updated parameter β̃i from βi, we need to consider the factors

λk+1

(
Xk, yk+1

)

=
φ〈Xk ,ν〉

(yk+1−〈Xk,α〉

〈Xk ,β̂〉

)

φ〈Xk ,ν〉

(yk+1−〈Xk,α〉

〈Xk ,β〉

)

=

(
1 +

(yk+1−〈Xk ,α〉)2

〈Xk ,β̂〉2〈Xk ,ν〉

)− 〈Xk,ν〉+1

2

(
1 + (yk+1−〈Xk ,α〉)2

〈Xk ,β〉2〈Xk ,ν〉

)− 〈Xk,ν〉+1

2

=

(
〈Xk, β〉2〈Xk, ν〉〈Xk, β̂〉2 + 〈Xk, β〉2

(
yk+1 − 〈Xk, α〉

)2

〈Xk, β〉2〈Xk, ν〉〈Xk, β̂〉2 + 〈Xk, β̂〉2
(
yk+1 − 〈Xk, α〉

)2

)−
〈Xk,ν〉+1

2

.

(4.33)

Write Λk+1

(
Xk, yk+1

)
=
∏k

l=1 λl+1

(
Xl, yl+1

)
and consider a new measure P ∗ defined

via

dP ∗

dP

∣∣∣
Gk

= Λk+1

(
Xk, yk+1

)
. (4.34)

Now,

log Λk+1 = −
k∑

l=1

〈Xl, ν〉 + 1

2

(
log
(
〈Xk, β〉2〈Xk, ν〉〈Xk, β̂〉2

+ 〈Xk, β〉2
(
yk+1 − 〈Xk, α〉

)2)

− log
(
〈Xk, β〉2〈Xk, ν〉〈Xk, β̂〉2 + 〈Xk, β̂〉2

(
yk+1 − 〈Xk, α〉

)2)
)
.

(4.35)

Similar to the situation of calculating the EM estimates for α̂i, it is not possible to

derive a recursive formula for β̂i unless a standard normal noise term is assumed.

However, it is still possible to re-estimate β̂i numerically.

Following similar arguments as in equation (4.30), we need to differentiate (4.35)

with respect to β̂i and equate the resulting derivative to zero. Doing this, we have
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∂

∂β̂i

E
[
log(Λk) | Yk

]
= E

[ ∂

∂β̂i

log(Λk)
∣∣∣ Yk

]

=
νi + 1

2
E

[ k∑

l=1

〈Xl−1, ei〉
(

2β̂iνiβ
2
i

β̂2
i νiβ2

i + β2
i (yl − αi)2

+
2β̂iνiβ

2
i + 2β̂i(yl − αi)

2

β̂2
i νiβ

2
i + β̂2

i (yl − αi)2

) ∣∣∣ Yk

]

=
νi + 1

2
E

[ k∑

l=1

〈Xl−1, ei〉
(

2β̂iνi

β̂iνi + (yl − αi)2

− 1

β̂i

2β2
i νi + 2(yl − αi)

2

β2
i νi + (yl − αi)2

) ∣∣∣ Yk

]

=
(
νi + 1

)
E

[ k∑

l=1

〈Xl−1, ei〉
(

β̂iνi

β̂iνi + (yl − αi)2
− 1

β̂i

) ∣∣∣ Yk

]

= (νi + 1)

(
γ(T (i)(hβ̂i

)X)k −
γ(O(i)X)k

β̂i

)

where hβ̂i
: x 7−→ β̂iνi

β̂iνi + (x− αi)2
.

(4.36)

This completes the proof.

�

4.4.2 Extension to vector observations and independent drift

and volatility

Similar to the previous chapter, it is possible to extend the result presented in

Theorem 4.6 for vector observations as well as the case where the drift and volatility

are independent. For brevity, we shall only present the general case here as all the

specific cases follow immediately.

Formally, assume we have two independent Markov chains Xα
k and Xβ

k with dy-

namics

Xα
k+1 = ΠαX

α
k + V α

k+1

Xβ
k+1 = ΠβX

β
k + V β

k+1,
(4.37)
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and state space SXα = {e1, e2, . . . , en} and SXβ = {e1, e2, . . . , em}, respectively.

Again, define Xk = Xα
k ⊗Xβ

k and Π = Πα ⊗ Πβ.

Write νj = (νj
1, . . . , ν

j
n)⊤, j ∈ {1, 2, . . . , d} for a set of vectors representing the

degrees of freedom and assume the observation process is a d-dimensional vector

process with components

y1
k+1 = 〈α1, Xα

k 〉 + 〈β1, Xβ
k 〉z1

k+1(〈ν1, Xk〉)

y2
k+1 = 〈α2, Xα

k 〉 + 〈β2, Xβ
k 〉z2

k+1(〈ν2, Xk〉)
...

yd
k+1 = 〈αd, Xα

k 〉 + 〈βd, Xβ
k 〉zd

k+1(〈νd, Xk〉).

(4.38)

Here, zj
k+1(〈ν,Xk〉) are independent random variables following a student’s t-distribution

with ν degrees of freedom for each j ∈ {1, 2, . . . , d}. Moreover, define y
k

:=

(y1
k, y

2
k, . . . , y

d
k)

⊤ and write D for a diagonal matrix whose i-th (1 ≤ i ≤ nm)

element on the diagonal is

d∏

j=1

φXi

(
yj

l
−αj

i

βj
i

)

βj
i φXi

(yj
l )

. (4.39)

Let ξk be the unnormalised estimate of the state Xk. As in Lemma 4.3, it can be

shown that

ξk+1 = ΠDξk.

We would like to estimate the parameters of the model in (4.38). In other words, we

wish to find the formulae for calculating the transition probabilities of the Markov

chain Π and the drift vectors αj and βj for j ∈ {1, 2, . . . , d}. As we have seen

in the preceding discussion, the recursive expressions for occupation time, number

of jumps and the observation process play a crucial role in deriving re-estimating

formulae. We have the following result.
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Theorem 4.8

IfD is the diagonal matrix as defined in (4.39), the recursive relations for γ(J srX)k,

γ(OrX)k and γ(T rX)k are

γ(J srX)k = ΠD(y
k
)γ(J srX)k−1 + 〈ξk−1, er〉

d∏

j=1

φXr

(
yj

k
−αj

r

βj
r

)

βj
rφXr

(yj
k)

πsres

γ(OrX)k = ΠD(y
k
)γ(OrX)k−1 + 〈ξk−1, er〉

d∏

j=1

φXr

(
yj

k
−αj

r

βj
r

)

βj
rφXr

(yj
k)

Πer

γ(T r(g)X)k = ΠD(y
k
)γ(T r(g)X)k−1 + 〈ξk−1, er〉

d∏

j=1

φXr

(
yj

k
−αj

r

βj
r

)

βj
rφXr

(yj
k)

g(yj
k)Πer.

(4.40)

Proof

The proof is similar to that of Theorem 4.4 and is omitted.

�

As previously noted, the transition probabilities for the Markov chain do not depend

on the specific distribution of the noise term (see Theorem 4.5 and its proof). Cou-

pled with the result in Lemma 3.9, we state the following whose proof is straight-

forward.

Lemma 4.9

If a sequence of observations y
1
, y

2
, . . . , y

k
are available at time k then the EM filter

estimates for the transition matrix are given by

Π̂ = Π̂α ⊗ Π̂β, where

απ̂rs =

∑m
j=1

∑m
l=1 γ

(
J (r−1)m+j,(s−1)m+l

k

)
∑m

j=1 γ
(
Oj+(r−1)m

k

)

and βπ̂rs =

∑n
j=1

∑n
l=1 γ

(
J r+(j−1)m,s+(l−1)m

k

)
∑n

j=1 γ
(
Or+(j−1)m

k

) .

(4.41)

All that is left to calculate are the expressions to re-estimate the elements of the

vectors α and β in the multivariate observation model in (4.38). These are given

in the next theorem.
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Theorem 4.10

Let y1, . . . , yk be sequence of observations available at time k and let the set of

parameters {πsr, αr, βr} determine the model (4.38). The EM estimates for vectors

αp and βp, i.e., {α̂p
r , β̂

p
r} solve the equations

m∑

j=1

(νp
j + 1)γ(αT (r)(gα̂p

r,j
(yp))X)k = 0

where gα̂p
r,j

: x 7−→ α̂p
r − x

βp
j ν

p
j + (α̂p

r − x)2
, and

n∑

i=1

(νp
r + 1)

(
γ(βT (r)(hβ̂p

r,i
(yp))X)k −

γ(βO(r)X)k

β̂p
r

)
= 0

where hβ̂p
r,i

: x 7−→ β̂p
rν

p
r

β̂p
rν

p
r + (x− αp

i )
2
.

Proof

We start the proof with the univariate observation case. Assume the observation

process follows the specification

yk+1 = 〈α,Xα
k 〉 + 〈β,Xβ

k 〉zk+1(〈ν,Xk〉). (4.42)

Note that the model in (4.42) can be represented with α = α ⊗ 1(m) and β =

β ⊗ 1(n) as in (3.16). We keep in mind the structure of α and β and note that for

any function f(·, ·)

mn∑

i=1

〈Xk, ei〉f(αi, βi
) =

n∑

i=1

m∑

j=1

〈Xα
k , ei〉〈Xβ

k , ej〉f(αi, βj).

Consequently, the EM estimates for α and β in the univariate case can be deter-

mined by solving the equations

m∑

j=1

(νj + 1)γ(αT (r)(gα̂r,j
(y))X)k = 0 and

n∑

i=1

(νr + 1)

(
γ(βT (r)(hβ̂r,i

(y))X)k −
γ(βO(r)X)k

β̂r

)
= 0.

This follows from the proof of Theorem 4.6. Here, the functions g and h are defined
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in the Theorem 4.6.

The formulae for the multivariate case, which we need to prove, now follow using

the same arguments as in the proof of Lemma 3.9.

�

4.4.3 Numerical application of the filters

In this section, we provide a numerical implementation of the results presented in

the previous section; this concerns the applications of Theorems 4.6 and 4.4. We

intend to investigate the performance of the filtering on a simulated data.

The filtering algorithm is tested on three sets of simulated data generated from a

Markov chain process with two, three and four states. In each of the three examles

presented below, 200 data points were generated by simulation using the reported

initial values in Tables 4.1, 4.5 and 4.9 using the model

yk+1 = 〈α,Xk〉 + 〈β,Xk〉zk+1(〈ν,Xk〉), (4.43)

where {zk(νi)} is a sequence of independent random variables following a student’s

t-distribution with νi = 3 degrees of freedom. The filtering procedure is applied to

the simulated data for three different numbers of states of the underlying Markov

chain, with the re-estimation period containing 50 data points. In other words,

the parameters were re-estimated once 50 new data points were processed. All

calculations were performed in Matlab, on a 1.83Ghz dual core processor.

The results of the filtering algorithm with the calculation times for the three ex-

amples are reported. We also present the graphs of the simulated data versus the

estimated values. In all the graphs, the estimated value vi is calculated as α⊤ · ξi,

where ξi is the filtered state vector after i-th data point is processed. In each exam-

ple, we state the errors of the estimated parameters, calculated as the second norm

of the difference between the filtered parameters and the ones used to simulate the
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data.

||α− α̂||2 =
√

(α1 − α̂1)2 + . . .+ (αN − α̂N)2,

||β − β̂||2 =

√
(β1 − β̂1)2 + . . .+ (βN − β̂N )2,

||Π − Π̂||2 =

√
eigmax

(
(Π − Π̂)⊤(Π − Π̂)

)
,

where eigmax denotes the largest eigenvalue of a matrix.

The error is calculated after each re-estimation of the parameter values and de-

creasing errors depict the improvement in filtering as more data is processed. Due

to the nature of the EM algorithm behind the parameter re-estimation procedure,

a good guess of initial values in filtering is required. This is elaborated in [43]. In

all three examples presented below however, we are able to set initial values for

the transition matrix Π in a random manner with some structure. That is, the

elements of the matrix are drawn from a uniform distribution on (0, 1) and then

normalised to ensure the columns of Π sum up to one.

Here, we are not interested in trying to calculate the one-step (or more) ahead

predictions; we are simply examining the performance of the filtering itself. Ap-

plications of the filtering algorithm to observed data are presented in the next

chapter.

Example 4.11

The values used to simulate the data for the case of a two-state Markov chain are

reported in Table 4.1 and the initial values for α and β used in filtering are reported

in Table 4.2. The transition matrix Π used as an initial guess for filtering was ran-

dom, i.e., its elements were drawn from the uniformly distributed random numbers

on interval (0, 1). The calculated final values of the parameters are reported in

Table 4.3 and the errors on the parameter estimates are displayed in Table 4.4.

The graph of the simulated data (blue) together with the estimated value is shown

in Figure 4.1 and the total calculation time is 24.8 seconds.

Example 4.12

For the three-state Markov chain, the initial values for the data simulation are
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Π =


 0.8 0.3

0.2 0.7


 , α =


 1

−1


 and β =


 0.09

0.1


 .

Table 4.1: Values of parameters (Π, α, β) used in the simulation for a two-state
Markov chain.

α =


 0.9

−0.9


 and β =


 0.1

0.09


 .

Table 4.2: Initial values of parameters (α, β) used in filtering for a two-state Markov
chain.

0 50 100 150 200
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.1: Simulated data (blue) with the estimated values (green).
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Π̂ =


 0.7590 0.2924

0.2421 0.7091


 , α̂ =


 1.0205

−1.0046


 and β̂ =


 0.1073

0.1281


 .

.

Table 4.3: Final values of parameters (Π, α, β) calculated from the simulated data
for a two-state Markov chain.

re-estimation errors

number α β Π

1 0.0556 0.0396 0.1367

2 0.0375 0.0329 0.0763

3 0.0247 0.0330 0.0645

4 0.0210 0.0330 0.0599

Table 4.4: Errors of the estimated parameter values in the case of a two-state
Markov chain.

reported in Table 4.5. The values for α and β used as initial guesses in the filtering

process can be found in Table 4.6 whilst the initial guesses for the transition matrix

are random, its elements were drawn from uniformly distributed random numbers

on interval (0, 1). The outputs of the filtering algorithm are reported in Table 4.7

with the errors reported in Table 4.8. The graph of the simulated data (blue) versus

the estimated values is shown in Figure 4.2. Finally, the entire calculation took

56.3 seconds.

Π =




0.8 0.2 0.05

0.1 0.7 0.15

0.1 0.1 0.8


 , α =




0

1

−1


 and β =




0.08

0.09

0.1


 .

Table 4.5: Values of parameters (Π, α, β) used to simulation for a three-state
Markov chain.

Example 4.13

Finally, we report the results for the case of a four-state Markov chain driving the

observation process. The values used for data simulation are reported in Table 4.9

and the initial guesses for the filtering algorithm in Table 4.10 with the transition

matrix being random as in the previous two examples. The calculation time for the
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α =




0.01

0.9

−0.9


 and β =




0.1

0.1

0.1


 .

Table 4.6: Initial values of parameters (α, β) used in filtering for a three-state
Markov chain.

Π̂ =




0.8157 0.1641 0.0465

0.0982 0.7238 0.0618

0.0944 0.1168 0.8937


 , α̂ =




0.01335

1.0156

−1.0063


 and β̂ =




0.1471

0.0855

0.0957


 .

Table 4.7: Final values of parameters (Π, α, β) calculated from the simulated data
for a three-state Markov chain.

0 50 100 150 200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.2: Simulated data (blue) with the estimated values (green).
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re-estimation errors

number α β Π

1 0.0607 0.0191 0.6159

2 0.0212 0.0574 0.2058

3 0.0192 0.0711 0.1066

4 0.0215 0.0674 0.1288

Table 4.8: Errors of the estimated parameter values in the case of a three-state
Markov chain.

implementation under the four-state Markov chain is 120.1 seconds. The estimated

parameter values for the vectors α and β can be found in Table 4.11 whilst the

graph of the simulated data and the estimated values is displayed in Figure 4.3.

The errors of the parameters for each re-estimation are given in Table 4.12.

Π =




0.8 0.15 0.05 0.05

0.1 0.7 0.05 0.05

0.05 0.1 0.8 0.1

0.05 0.05 0.1 0.8



, α =




0

0.5

−0.5

−1




and β =




0.06

0.07

0.08

0.09



.

Table 4.9: Values of parameters (Π, α, β) used in the simulation for a four-state
Markov chain.

α =




0.01

0.4

−0.4

−1.2




and β =




0.1

0.1

0.1

0.1



.

Table 4.10: Initial values of parameters (α, β) used in filtering for a four-state
Markov chain.

It is clear from the examples above that despite the departure from the normally

distributed noise term, we can still filter the model parameters from the observed

data. The calculations are, however, more demanding due to the fact there are

no recursive formulae available and one needs to resort to numerical methods. As
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Π̂ =




0.8184 0.1043 0.1299 0.0478

0.0995 0.7379 0.0898 0.1168

0.0441 0.0338 0.7745 0.0545

0.0442 0.1298 0.0151 0.7869



, α̂ =




−0.0115

0.5479

−0.4837

−1.0201




and β̂ =




0.0935

0.0563

0.0762

0.0974



.

Table 4.11: Final values of parameters (Π, α, β) calculated from the simulated data
for a four-state Markov chain.

0 50 100 150 200
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 4.3: Simulated data (blue) with the estimated values (green).
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re-estimation errors

number α β Π

1 0.0901 0.0435 0.5193

2 0.0594 0.0473 0.1752

3 0.0462 0.0461 0.1575

4 0.0389 0.0371 0.1976

Table 4.12: Errors of the estimated parameter values in the case of a four-state
Markov chain.

mentioned above, there is no maximisation involved, but it is necessary to find a

zero of a function; refer to Theorem 4.6 for the calculation of the model parameters.

Hence, the computation times are longer. Nevertheless, we feel that given the

recursive formulae for re-estimating the transition probabilities, it is still worth

going through the procedure of changing the measure to calculate the formulae to

re-estimate the remaining model parameters.

It is also evident from Figures 4.1 to 4.3 that the estimated values follow very closely

the state of the underlying Markov chain after the first parameter re-estimation.

Parameters were re-estimated after processing 50 data points, however there is

no notable difference in the goodness of fit after the second and third parameter

update. Therefore, assuming the dynamics of the observation data does not change

much, there is no need to increase the frequency of re-estimations, i.e., shorten the

data length processed in each pass. A pass in this case comprises of 50 data points.

4.4.4 Application of the filters to observed market data

In the previous section, we have seen that the derived filters can be successfully

used to estimate the parameters of the model on a simulated data set. In this

section, we shall show that the filters can be sucessfully applied on the larger data

set of observed market data. As in section 3.5, we use both the NASDAQ and

DOW JONES datasets for the period 28 February 2003 – 16 February 2007.

Suppose Sk is a sequence of asset prices. Then we can observe the logarithmic
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increments

yk = lnSk − lnSk−1 = ln
Sk

Sk−1

or

Sk = Sk−1 exp(yk−1).

As in chapter 3, we assume the logarithmic increments are driven by a function f of

the underlying Markov chain and some noise term, that is yk = f(Xk, zk+1). Here,

{zk} is a sequence of IID random variables following a student’s t-distribution with

3 degrees of freedom.

Data set Number of MC states RMSE Computational time (s)

2 3.2258 ×10−3 86.3

NASDAQ 3 3.1522 × 10−3 166.4

4 3.1163 × 10−3 303.3

2 1.1243 ×10−3 81.0

DOW JONES 3 1.0983 × 10−3 153.9

4 1.0859 × 10−3 252.06

Table 4.13: Comparison of RMSEs and computational time in seconds for the DOW
JONES and NASDAQ data.

The filters from the previous section are applied to both data sets whose summary

statistics are given in Table 3.1. The data was processed in batches of 50 data

points and after each batch was processed the parameters were re-estimated using

the results of Theorem 4.6. Table 4.13 depicts the fitting errors (RMSEs) and

the computational time in seconds needed to complete the calculations under the

assumption of student’s t-distributed noise term. Compared with the naive, no

change model E[yk+1 | yk] = yk, which has the RMSEs of 7.2682 × 10−3 and

8.3338 × 10−3 for DOW JONES and NADAQ data sets respectively, the HMM

based filters perform very well. In Figures 4.4 and 4.5, we present the plots of

returns of the actual data in blue and the one step-ahead predictions in green for
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a period 5 May 2004 to 18 February 2005. The plots of the returns as well as the

actual observations together with one step ahead prediction for the whole period

under consideration can be found in Appendix A. These figures are generated

using a three-state Markov chain with the filtering procedure outlined earlier in

the chapter. All computations were performed on a 1.83GHz dual core processor

using Matlab.
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Figure 4.4: NASDAQ actual returns series (blue) and one-step ahead predictions
(green).

4.5 Conclusions

In this chapter we revisited the estimation techniques from HMM filtering theory

and extended it to include non-normal noise term distribution. Recursive formulae

were obtained for re-estimation of transition probabilities of the underlying Markov

chain for general noise term distribution. In addition we provided a general way

to derive the re-estimation expressions for any noise term distribution; student’s

t-distribution is considered in particular for which all the re-estimation expressions
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Figure 4.5: DOW JONES actual returns series (blue) and one-step ahead predic-
tions (green).

are derived as well as implemented and tested on simulated and observed data

sets. The estimation technique are not used only to obtain the best estimate of the

Markov chain but also to re-estimate all the model parameters. We also explored

the filtering of vector observations as well as the case of independent drift and

volatility from previous chapter.
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Chapter 5

A stochastic mortality model with

HMM filtering

5.1 Introduction

Human mortality has improved significantly over the last few decades as docu-

mented in many actuarial, medical and scientific publications (see for example

Macdonald et al [90], Currie, Durban and Eilers [33], and Renshaw and Haber-

man [101], [100]). Although this is a positive development it brought considerable

stress in pension and health care support for the elderly. Furthermore, contrary to

traditional and deterministic approaches to mortality modelling, mortality is now

widely accepted to be evolving in a stochastic fashion. As mortality is by their very

nature a primary source of risk for a large number of products in life insurance,

pensions and some other recently issued financial instruments it is imperative to

understand its dynamics better. In particular, recent mortality trends have proved

particularly challenging for the pricing and reserving of long-term mortality-linked

contracts, such as contracts providing living benefits.

Mortality will certainly continue to improve in the future with the advances made in

the health sciences and medicine. This realisation, however, was not incorporated

in mortality modelling even in the late 1970’s. As noted in Bolton et al [16] and
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Boyle and Hardy [21] amongst others, actuaries still then used out-of-date mortality

tables without explicit allowance for future mortality improvements when pricing

and reserving for mortality-based contracts.

Additionally, it is well-known that insurance companies are also exposed to financial

risks, and since their investments are predominantly on fixed income investments

it means they are also heavily exposed to interest rate risk. However, there is still

a considerable gap in the tools available for modelling these two types of risk. As

pointed out in Cairns, Blake and Dowd [24], stochastic modelling of interest rate is

very well developed whilst the theory of stochastic mortality risk modelling is still

at its infancy.

It can be observed that there are important similarities between mortality and

interest rate modelling. Specifically, if we assume that the mortality process is

driven by a force of mortality similar to the short rate in interest rate modelling,

we can quickly deduce that they are both positive processes, have term structures

and are fundamentally stochastic in nature. These similarities were exploited by

Milevsky and Promislow [95], Cairns, Blake and Dowd [24], Biffis [13], Dahl [34] or

Schrager [106]) to model force of mortality using tools and techniques developed

for interest rate modelling.

Although we have been drawing parallels between the pricing of financial and

mortality-linked instruments, there are some important differences and specific

problems with mortality risk modelling. Eventhough it is an accepted fact that

interest rates are mean-reverting, this is not the case with mortality rates. In par-

ticular, long-term stochastic improvements in mortality rates should not be mean

reverting to some deterministic projection. Otherwise, the inclusion of mean rever-

sion implies that if mortality improvements have been faster than what have been

expected in the past then the potential for further mortality improvements will be

significantly reduced in the future (see Cairns, Blake and Dowd [24]).

There are a number of recent studies that have sought to model mortality as a

random process. The first milestone in stochastic mortality modelling was marked
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by the work of Lee and Carter [84] that introduced a model for central mortality

rates involving both age and time dependent terms. The model was applied to

US population data where the time dependency was modelled using a univariate

ARIMA time series. Their idea was later extended and improved by several authors

including Renshaw and Haberman [101] and Brouhns, Denuit and Vermunt [23].

Another approach that also models mortality as a stochastic variable in discrete

time was proposed by Lee [83]. Lee took a deterministic projection of spot mortal-

ity rates as given, and then apply an adjustment that evolves stochastically over

time. Similar approach was later used in the work of Cairns, Blake and Dowd [25].

These models were developed in discrete time, but certain models were proposed

to describe the dynamics of the force of mortality in continuous time. One of these,

inspired by a previous work of Carriere [28], is contained in the study of Milevsky

and Promislow [95] and assumed that the force of mortality µ(x, t) has a Gompertz

form µ(x, t) = ζ0 exp(ζ1x+σYt). In this Gompertz form, x refers to a life aged x and

Yt is an Ornstein-Uhlenbeck process satisfying the stochastic differential equation

(SDE)

dYt = −bYtdt+ dWt. (5.1)

In (5.1) Wt denotes a standard Wiener process. The process in (5.1) is expected

to grow exponentially but exhibits a mean reversion. Dahl [34] further improved

Milevsky and Promislow’s approach and sought to model mortality intensity by a

fairly general process that includes the mean-reverting Brownian Gompertz model.

In [34], a class of processes is developed by supposing that the force of mortality

for every fixed x > 0 is governed by the SDE

dµ(t, x+ t) = α
(
t, x, µ(t, x+ t)

)
dt+ σµ

(
t, x, µ(t, x+ t)

)
dWt.

It is shown that if the drift α
(
t, x, µ(t, x+t)

)
and volatility σµ

(
t, x, µ(t, x+t)

)
satisfy

certain regularity conditions, the mortality model possesses an affine structure.

That is, the survival probability p(t, T, x) from time t to T t < T for a person aged
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x+ t given the information up to time t can be expressed as

p(t, T, x) = E

[
exp

(
−
∫ T

t

µ(u, x+ u)du
)∣∣∣Mt

]

= exp
(
A(t, T, x) +B(t, T, x)µ(t, x+ t)

)
,

(5.2)

where the deterministic functions A(t, T, x) and B(t, T, x) for a fixed x satisfy a

system of ordinary differential equations (ODEs) involving α and σµ. The filtration

Mt is a sequence of non-decreasing sigma-fields generated by the process µ. Since

the ODEs associated with (5.2) are generalised Riccati equations (see Biffis [13])

they can be solved using standard numerical methods when explicit solutions are

not available.

Recent work on affine mortality model was carried out by Luciano and Vigna [87].

The authors fitted different affine models to observed mortality data and compared

their performance. The models considered in [87] are of the affine form, where

the force of mortality follows either a CIR-like process or an Ornstein-Uhlenbeck

(OU) process. It is established that the best fit is achieved when the force of

mortality follows a non-mean reverting OU process, which confirms the theoretical

requirement for the mortality models to be non-mean reverting.

In this chapter, we employ affine processes in modelling the stochastic evolution of

mortality rates. Affine processes have been widely used in financial modelling and

recently such processes have also been applied in describing mortality development.

Our proposed model is based on a non-mean-reverting affine process, which was

deemed suitable for modelling cohort mortality in previous studies. Within this

framework, we include an analysis of trends in mortality behaviour via the HMM

filtering techniques of the previous chapters. Optimal estimates of the model pa-

rameters are then obtained. Rather than modelling cohorts’ survival one at a time,

we demonstrate that our approach is able to generate directly the entire mortality

surface.
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5.2 Modelling framework and affine processes

In this section, the basic components of a stochastic mortality model and notation

are introduced. Consider the force of mortality µ(t, x) for an individual aged x

at time t. Traditional mortality models implicitly assume the force of mortality is

independent of age (see for example, Bowers et al [18]), that is, µ(t, x) ≡ µ(x) for

all x and t. However, it is now widely recognised that over time mortality evolves

in a stochastic manner. This is our motivation to model the force of mortality as

a stochastic process in order to capture its time dependency and uncertainty of

future developments.

Write

S(t, x) := exp

(
−
∫ t

0

µ(u, x+ u)du

)
(5.3)

for the survival function of a life aged x. Note that if the force of mortality µ(t, x)

is deterministic then the survival function S(t, x) is simply the probability that an

individual aged x at time zero will survive until a later time t. Furthermore, if we

assume that the force of mortality is time independent, i.e., µ(t, x+ t) = µ(x+ t),

expression (5.3) and results of any further analysis will simply reduce to those given

in Bowers et al [18]. For example, under the assumption of deterministic and time

independent force of mortality, formula (5.3) becomes

S(t, x) = exp

(
−
∫ x+t

x

µ(y)dy

)
.

However, we intend to make the force of mortality stochastic in this current discus-

sion. Certainly, the survival function S(t, x) is a random variable. Note that S(t, x)

is a survival probability whose value can only be observed at time t rather than at

the current time 0. In general, under a stochastic framework survival probabilities

can be obtained by taking the expected value of the random variable S(t, x).

Let (Ω,M, P ) be a probability space equipped with the filtration Mt generated
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by the evolution of mortality µ(t, x) up to time t. In other words, Mt provides

a full information of mortality development up to and including time t, but no

information about how mortality rates will progress after time t.

On (Ω,M,P) define the real-world or true survival probabilities measured at time

t as follows. Let p(t, T, x) be the real-world probability for an individual aged x at

time 0 who is still alive at the current time t and survives until later time T . Then

p(t, T, x) = E

[
S(T, x)

S(t, x)

∣∣∣∣Mt

]
. (5.4)

We note that p(t, T, x) corresponds to T−tpx+t in standard actuarial notation as

defined for instance in Bowers et al [18]. Let τ(x) be a random residual lifetime

of an individual aged x. In other words, τ(x) represents a future lifetime of an

individual aged x. Similar to standard actuarial results (see chapter 3 of Bowers et

al [18])

P
(
τ(x) > T

)
= E

[
S(T, x)

]
. (5.5)

Moreover, the Mt-conditional density ft(.) of a random residual lifetime τ(x) of an

individual aged x at time 0 on the set {τ(x) > t} is given by

ft(s) = E

[
µ(s, x+ s)e−

∫ s

t
µ(u,x+u)du

∣∣∣Mt

]
. (5.6)

See Biffis [13] for further details concerning equation (5.6).

The financial literature on interest rate modelling is full of examples involving

affine processes. One can draw similarities between interest rate and mortality

modelling, however there are important differences as noted in Cairns, Blake and

Dowd [24]. Whilst mean reverting processes turned out to be most appropriate for

interest rate modelling, the force of mortality should not be mean reverting as was

practicly confirmed in Luciano and Vigna [87].

It turns out that it is convenient to specify the force of mortality µ(t, x) via the
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SDE

dµ(t, x) = f(µ(t, x))dt+ g(µ(t, x))dWt + dJt, (5.7)

where J is a pure jump process. Also, the drift f(µ(x, t)), jump measure associ-

ated with J and covariance matrix g(µ(x, t))g(µ(x, t))⊤ have affine dependence on

µ(t, x). Such processes are called affine processes; a thorough analysis of which can

be found in Duffie, Filipovič and Schachermayer [39].

Affine processes prove to be very analytically tractable since under technical con-

ditions provided in Duffie and Singleton [40]

E

[
e
∫ T

t
Λ(s,µ(s,x))ds+aµ(T,x)

∣∣∣Mt

]
= eα(t,T )+β(t,T )µ(t,x), (5.8)

where a ∈ R, Λ(t, x) is an affine function in x and α(.) and β(.) are functions

solving uniquely a set of ODEs. These ODEs can be solved at least numerically

and in some cases even analytically. Therefore the problem of finding the survival

function in equation (5.5) becomes tractable when affine processes are used.

5.3 Mortality model

In an attempt to model mortality surface one needs to specify how mortality de-

velops with time and age of the life in question. In other words, the behaviour of

the force of mortality µ(t, x) in the time parameter t and age variable x needs to

be analysed. Based on the previous work of Dahl [34] and Luciano and Vigna [87],

we propose to model the cohort mortality rates via a non-mean-reverting affine

process of the form (5.7), whilst the improvements in mortality rates for fixed age

follow a function of Markov chain. In particular, we assume the Markov chain is

independent from the Brownian motion driving the cohort mortality development.

We fitted two models to the observed cohort mortality data for the England and

Wales male population born from 1841 to 1903. The first model assumes the cohort
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mortality follows an Ornstein-Uhlenbeck (OU) process; section 5.3.1. The second

model assumes the cohort mortality follows an OU process with jumps, see section

5.3.2. The mortality data is taken from the Human Mortality Database compiled

by the University of California, Berkeley (USA) and Max Planck Institute for De-

mographic Research (Germany). The data is also available at www.mortality.org

or www.humanmortality.de. The mortality data set used in this thesis was down-

loaded on 10 September 2006.

5.3.1 The Ornstein-Uhlenbeck process without jumps

We assume that the cohort force of mortality follows a simple diffusion given by

the equation

dµt = aµtdt+ cdWt, (5.9)

as considered in Luciano and Vigna [87]. It can than be shown that the survival

probability (5.4) can be expressed as

p(0, t, x) = eα(t)+β(t)µ(0,x), (5.10)

where the functions α and β solve the system of ODEs

β ′(t) = −1 + aβ(t)

α′(t) =
1

2
c2β2(t)

(5.11)

with boundary conditions β(0) = 0 and α(0) = 0. By solving the system in (5.11),

we find α and β given by

α(t) =
c2

2a2
t− c2

a3
eat +

c2

4a3
e2at +

3c2

4a3

β(t) =
1

a

(
1 − eat

)
.

(5.12)
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We observe that the force of mortality µt modelled as a stochastic process in (5.9)

can take negative values with positive probability. As a consequence we observe

that for strictly positive values of c, the survival probability for sufficiently large

t becomes an increasing function of age. In addition, the probability of surviving

forever tends to infinity. This unrealistic and undesirable feature implies that the

Ornstein-Uhlenbeck process might be considered inapropriate to describe the force

of mortality.

However, it can be seen that in the applications this model performs very well.

Calibration of the model to different mortality tables gives surprisingly good results,

leading to very good fits of the survival probabilities p(0, t, x). The reason for its

successful application is that the values of a and c resulting from the calibration

process are large and small, respectively. This fact is enough to make the probability

of negative values of the force of mortality negligible; see further Appendix B and

chapter 6. Furthermore, the period under consideration in applications is limited

to a few decades during which the survival probability is a decreasing function of

age and so, the explosion of the survival probability is avoided in the model. The

above was also observed by Luciano and Vigna [87].

For each year with available data for cohort mortality, we fitted the model in (5.9)

to the observed data using the least squares (LS) method, considering the spreads

between different observed and model survival probabilities. In other words, (5.10)

and (5.12) are fitted to the observed data using the LS technique. The initial value

for µ(65, 0) has been chosen equal to − ln
(
p(65)

)
in the calibration of the mortality

model as well as in all subsequent calculations.

For each year of the available data, the model in (5.10) was fitted and optimal

parameter values were calculated. The calculated values of the parameters can be

found in Table 5.2 (page 84).

Luciano and Vigna [87] showed that the chosen model fits the observed cohort

mortality data well, however it does not explain the observed changes over time. As

can be seen from Table 5.2 (page 84) the values of optimal parameters are varying
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Figure 5.1: Observed and one-step ahead predicted values for p(0, 1, 65), p(0, 10, 65)
and p(0, 20, 65) under an OU model without jumps.

erratically over time. This means that not only the cohort mortality develops

stochastically, but it also unpredictably varies from one cohort to another as was

observed by Cairns, Blake and Dowd [25], [24], Biffis [13] and others.

In equation (5.9) and (5.10) the parameters a and c are assumend constant and

positive. Nevertheless, the parameters can be varied through time as long as they

are constant for each cohort.

We assume that both parameters of the model in (5.9) are driven by the same

discrete-time Markov chain. We model the logarithmic increments of the parameter

values simultaneously and employ HMM filtering techniques as proposed in chapter

3 to obtain optimal estimates of the logarithmic increments. These are in turn

used to model future mortality rates. We use the observed cohort mortality data

for males born from 1841 to 1903 so that we have mortality data for 62 years. We

utilise the LS-estimated model parameters (a and c) as input values for the HMM

filtering algorithm. In short, we filter the sequence of vector observations (ak, ck)
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and assume they follow the dynamics

ak+1 = 〈αa, Xk〉 + 〈βa, Xk〉za
k+1

ck+1 = 〈αc, Xk〉 + 〈βc, Xk〉zc
k+1,

where Xk is a three-state Markov chain, αa, αc, βa and βc are real vectors of

appropriate dimensions, whilst za
k and zc

k are sequences of IID standard normal

random variables.

Due to the small number of available observations, which is one of the problems

in mortality modelling (see for example, [25] and [24]), we use half of the data set

for “training” the model. After the first 30 data points are processed, one-step

ahead predictions for parameters is performed and the predicted values are used to

estimate future survival probabilities.

Error measure OU without jumps OU with jumps

p(0, 1, 65):

SSE 1.542 × 10−4 9.717 × 10−5

MSE 2.528 × 10−6 1.593 × 10−6

p(0, 10, 65):

SSE 1.105 × 10−2 8.455 × 10−4

MSE 1.812 × 10−4 1.386 × 10−5

p(0, 20, 65):

SSE 4.235 × 10−3 4.939 × 10−4

MSE 6.944 × 10−5 8.098 × 10−6

Table 5.1: Error analysis for cohort mortality predicions.

Figure 5.1 displays the predicted and observed values of survival probabilities

p(0, 1, 65), p(0, 10, 65) and p(0, 20, 65). The errors in terms of sum of squared

error (SSE) and mean squared error (MSE) for the predicted survival probabilities

in comparison to the observed data are reported in Table 5.1. It is clear from Table

5.1 that the errors are increasing with the time horizon of the survival probabilities,

which is to be expected. The longer the time horizon, the bigger the uncertainity
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and the quality of prediction reflects that. Further, it is apparent from Figure 5.1

that the HMM combined with an affine process can model the evolution of cohort

mortality; the trend in mortality is closely matched by the model. It is obvious

from Figure 5.1 (bottom most plot) that the 20-year survival probabilities increase

with time and the trend is matched by the 1-year ahead prediction.

5.3.2 The Ornstein-Uhlenbeck process with jumps

We consider a model where we add a jump component to the stochastic part of the

mortality process. Therefore, the model for the force of mortality has the SDE

dµ(t, x) = aµ(t, x)dt+ cµ(t, x)dWt + dJt, (5.13)

where J is a pure compound Poisson jump process with arrival times of intensity

d > 0 and exponentialy distributed jump sizes with mean λ < 0. We also assume

independence between the Brownian motion Wt and the Poisson process, as well

as between the jump sizes. The choice of negative jump size is motivated by

the expectation of sudden improvements in the force of mortality. Jumps should

correspond to discontinuity of force of mortality that can be related to medical

advancements, for instance. Theoretically, it is possible that the negative jumps

in the intensity process could lead to negative intensity. This inconvenience is also

observed by Luciano and Vigna [87], however in practical applications the sizes of

jumps and jump frequency tend to be relatively small; therefore, the probability of

negative values can be considered negligible.

Assuming equation (5.13) models the force of mortality, survival probabilities can

be readily computed as in the previous section. This is given by

p(0, t, x) = eα(t)+β(t)µ(0,x), (5.14)
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where

α(t) =
( c2

2a2
+

da

a− λ

)
t− c2

a3
eat +

c2

4a3
e2at +

3c2

4a3
+

d

a− λ
ln
(
1 − λ

a
+
λ

a
eat
)

β(t) =
1

a

(
1 − eat

)
.

(5.15)

As in the previous chapter, the parameters of the model (a, c, d, λ) are estimated for

each year with the available data using the LS method. Those are in turn modelled

as a vector process and we apply the HMM filtering techniques from the previous

chapters. Formally, we have a sequence of vector observations (ak, ck, dk, λk) which

are assumed to follow the specifications

ak+1 = 〈αa, Xk〉 + 〈βa, Xk〉za
k+1

ck+1 = 〈αc, Xk〉 + 〈βc, Xk〉zc
k+1

dk+1 = 〈αd, Xk〉 + 〈βd, Xk〉zd
k+1

λk+1 = 〈αλ, Xk〉 + 〈βλ, Xk〉zλ
k+1,

where as in the previous section Xk is a three-state Markov chain, αk and βk

are vectors of appropriate dimensions and zj
k, j ∈ {a, c, d, λ} is a sequence of IID

standard normal random variables. The error analysis (SSE and MSE) for this case

is reported in Table 5.1 and a graph of the one-step ahead predictions is shown in

Figure 5.2.

5.4 Conclusions

In this chapter, a model for the evolution of mortality, on which a financial contract

may depend upon, is considered. The proposed model introduces the stochasticity

in the evolution of cohort mortality in two directions. First, and in the literature

the usual randomness, affects cohort mortality development with age. The observed

data however suggests that cohort mortality is also developing in a stochastic fash-

ion through time, which we attempted to model using hidden Markov filtering, thus

in effect being able to model the whole mortality surface. We demonstrated with
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Figure 5.2: Observed and one-step ahead predicted values for p(0, 1, 65), p(0, 10, 65)
and p(0, 20, 65) under an OU model with jumps.

numerical examples that such a model can capture mortality developments rea-

sonably well. In the next chapter, we extend the idea and examine how mortality

developments coupled with known financial models impact the pricing of common

mortality linked derivatives.
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year a c year a c

1841 0.09344 0.00505 1873 0.09019 0.00216

1842 0.08383 0.00189 1874 0.08854 0.00220

1843 0.08648 0.00376 1875 0.08985 0.00225

1844 0.08177 0.00186 1875 0.08985 0.00225

1845 0.08268 0.00216 1876 0.09098 0.00211

1846 0.08333 0.00189 1877 0.09135 0.00213

1847 0.08410 0.00193 1878 0.09085 0.00213

1848 0.08208 0.00188 1879 0.08863 0.00211

1849 0.08171 0.00192 1880 0.08966 0.00222

1850 0.08367 0.00208 1881 0.09707 0.00432

1851 0.08794 0.00189 1882 0.09418 0.00412

1852 0.09019 0.00221 1883 0.08499 0.00204

1853 0.09454 0.00361 1884 0.08400 0.00222

1854 0.08994 0.00186 1885 0.08317 0.00228

1855 0.09015 0.00218 1886 0.08232 0.00208

1856 0.09696 0.00420 1887 0.08332 0.00209

1857 0.09608 0.00435 1888 0.08351 0.00208

1858 0.09514 0.00427 1889 0.08285 0.00209

1859 0.09478 0.00451 1890 0.08258 0.00208

1860 0.09639 0.00505 1891 0.08324 0.00209

1861 0.09865 0.00469 1892 0.08391 0.00228

1862 0.09356 0.00426 1893 0.08259 0.00209

1863 0.08665 0.00220 1894 0.08638 0.00362

1864 0.08538 0.00221 1895 0.08120 0.00211

1865 0.08582 0.00216 1896 0.08572 0.00382

1866 0.08607 0.00220 1897 0.08113 0.00214

1867 0.08749 0.00220 1898 0.07977 0.00216

1868 0.08785 0.00219 1899 0.07962 0.00217

1869 0.08714 0.00218 1900 0.07828 0.00227

1870 0.08793 0.00216 1901 0.07771 0.00235

1871 0.09063 0.00220 1902 0.07843 0.00234

1872 0.09084 0.00207 1904 0.07752 0.00217

Table 5.2: Values of model parameters for OU-process without jumps using the LS
technique and inputs to the HMM filtering algorithm.

84



Chapter 6

Valuation of contingent claims

with mortality and interest rate

risks

We consider the pricing of life insurance contracts under stochastic mortality and

interest rates assumed not independent of each other. As in the previous chapters,

we strongly rely on the method of change of measure together with the Bayes’ rule

for conditional expectations to obtain solution expressions for the value of common

contracts. A demonstration of how to apply our proposed stochastic modelling

approach to value survival and death benefits is provided.

In this chapter, we model mortality dynamics and asset prices using affine diffusion

processes. We are then able to fully exploit analytical tractability of affine processes

and derive pricing expressions for common life insurance contracts. We shall assume

the parameters of the models are known and focus on the pricing expressions. In

order to filter the parameters for the models, one can fall back on the discussion of

filtering in the previous as well as succeeding chapters. We focus on the case where

the assumption of independence between financial and mortality risk is dropped.

The approach makes use of change of probability measure technique and application

of Bayes theorem for conditional expectations, which are also the fundamental
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methods employed to obtain the results in HMM filtering in the previous chapters.

This chapter is organised as follows. In section 6.1, we sketch the modelling frame-

work. Section 6.2 provides general pricing formulae using forward and auxiliary

measures for a large class of indexed life insurance contracts where both the de-

velopment of mortality and interest rate dynamics are modelled stochastically. In

section 6.3, we present an affine type specification for both interest and mortality

rates and examine the corresponding implications in valuation. Section 6.4 presents

a numerical implementation of our approach and section 6.5 concludes.

6.1 Modelling framework

In chapter 5, the rudiments of mortality modelling, which is a central concern in

pricing pension and insurance contracts, were presented. We now focus our atten-

tion to the problem of valuing survival benefits (e.g., pension and life annuities)

and death benefits (e.g., life and endowment insurance). To simplify the discussion,

we consider generic survival and death contingent claims.

In valuing various products in the financial markets the risk-neutral valuation will

be our starting point. In what follows we shall assume that there exists a risk-

neutral measure Q, absolutely continuous with respect to the real world measure P

when pricing contracts linked to mortality dynamics. Examples of these contracts

include endowments, insurance policies, pensions, guaranteed annuity options and

mortality-linked bonds. The corresponding survival probability under the risk-

neutral measure Q is given by

pQ(t, T, x) = EQ

[
S(T, x)

S(t, x)

∣∣∣∣Mt

]
. (6.1)

The pricing of these contracts is conveniently simpler when certain assumptions in

the underlying stochastic processes driving the financial and mortality variables are

imposed. For a certain class of processes such as those which belong to the affine

class, we can attain simplified and compact results.
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Affine processes belong to a class of Markov processes with conditional characteris-

tic function of the exponential affine form. This kind of processes will be utilised in

the specification of mortality and interest rate dynamics in the succeeding sections.

A thorough and comprehensive study and review of such processes are provided in

Duffie et al [39] and Filipovič [55]. However, we adopt a more common approach

in financial applications based on the definition of stochastic processes in terms of

the solutions to specific SDEs in a given filtered probability space. An important

result that we shall need later on processes with an affine structure is summarised

in the following Theorem.

Theorem 6.1

Let (Ω,F , P ) be a probability space equipped with a filtration Ft, large enough to

support a standard d-dimensional Brownian motionWt and suppose α(t, x) : [0,∞]×

R → R has an affine dependency on the second argument. In other words, let

α(t, x) = γ(t) + δ(t)x. Assume further that β(t) is an F -previsible d-dimensional

vector process which satisfies the growth condition

EP

[
exp

(1
2

∫ T

0

|β(u)|2du
)]
<∞. (6.2)

(i). If xt is a stochastic process admitting the dynamics

dxt = α(t, xt)dt+ β(t)⊤ · dWt, (6.3)

it follows that conditional characteristic function has the exponential affine

form

X(t, T ) = E

[
e−

∫ T
t

xudu
∣∣∣ Ft

]
= eA(t,T )xt+B(t,T ), (6.4)

where A(t, T ) and B(t, T ) are deterministic functions and ⊤ denotes the

transpose of a vector.
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(ii). If we define an equivalent measure Q on Ω via a Radon-Nikodym derivative

ΛT :=
dQ

dP

∣∣∣
FT

=
exp(−

∫ T

0
xudu)

X(0, T )
,

then

WQ
t = W P

t −
∫ t

0

A(u, T )β(u)du

is a standard n-dimensional Brownian motion under measure Q.

Proof

The first part of the theorem is a known fact; a proof for which can be found in

various sources. We refer to Biffis [13] and the references therein; specifically, Duffie

et al [39] and Filipovič [55] provide a thorough treatment of affine processes.

To prove (ii) consider the Radon-Nikodŷm process

Λt = E[ΛT | Ft] = E

[dQ
dP

∣∣∣ Ft

]
=

exp
(
−
∫ t

0
xudu

)
X(t, T )

X(0, T )
. (6.5)

Therefore for every s < t < T

Λs,t =
exp

(
−
∫ t

s
xudu

)
X(t, T )

X(s, T )
.

A straightforward calculation shows that Λs,t conditioned on Fs satisfies

dΛt

Λt
=
dX(t, T )

X(t, T )
− xtdt. (6.6)

Now we calculate dX(t,T )
X(t,T )

. Applying Itô formula to the representation in (6.4), we
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have

dX(t, T )

X(t, T )
=
(
At(t, T )xt +Bt(t, T )

)
dt+ A(t, T )dxt +

1

2
A(t, T )2〈dxt, dxt〉 =

=
(
At(t, T )xt +Bt(t, T )

)
dt+ A(t, T )

(
α(t, xt)dt+ β(t)⊤ · dWt

)

+
1

2
A(t, T )2β(t)⊤ · β(t)dt

=
(
At(t, T )xt +Bt(t, T ) + A(t, T )α(t, xt)

+
1

2
A(t, T )2β(t)⊤ · β(t)

)
dt+ A(t, T )β(t)⊤ · dWt.

(6.7)

Taking into account equations (6.9) and (6.10), it may be verified that

(
At(t, T )xt +Bt(t, T ) + A(t, T )α(t, xt) +

1

2
A(t, T )2β(t)⊤ · β(t)

)
dt = xtdt.

Consequently,

dΛt

Λt

=
dX(t, T )

X(t, T )
− xtdt = xtdt+ A(t, T )β(t)⊤ · dWt − xtdt

= A(t, T )β(t)⊤ · dWt.

(6.8)

Using a Cameron-Martin-Girsanov theorem (see Theorem 2.4), the result follows.

�

Remark 6.2

The deterministic functions A(t, T ) and B(t, T ) satisfy the system of ODEs

At(t, T ) = 1 − δ(t)A(t, T ) (6.9)

Bt(t, T ) = −γ(t)A(t, T ) − 1

2
β(t)∗ · β(t)A(t, T )2, (6.10)

where

A(T, T ) = B(T, T ) = 0.

Another approach to prove Theorem 6.1 (i), which solely relies on the method of

stochastic flows and forward measure and does not involve the solution of the above
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Ricatti equation can be found in Elliot and van der Hoek [47].

6.2 Integrating the interest and force of mortal-

ity models

In this section, we introduce the general setup of a combined modelling framework

integrating both mortality and interest rate processes. We consider a filtered prob-

ability space (Ω,G, {Gt}, P ), large enough to support a process r representing the

evolution of interest rates and a process µ representing the evolution of mortality.

The filtration {Gt} represents the information available up to time t revealed by

the processes r and µ.

Write Mt ⊂ Gt for the filtration generated by the evolution of mortality up to time

t as in section 6.1. Similarly let Ft ⊂ Gt be the filtration generated by the evolution

of the short rate process r up to time t. Then we can express the filtration Gt as

the smallest sigma-algebra generated by Mt and Ft. Formally, we write

Gt := Mt ∨ Ft,

where Mt ∨ Ft is the filtration generated by σ(Mt ∪ Ft).

6.2.1 Interest rate model

We fix the stochastic basis (Ω,F , {Ft}, P ) and take as given an adapted short

rate process rt such that it satisfies the technical condition

∫ t

0

r(s)ds < ∞ for all

t > 0. The process rt represents the continuously compounded rate of interest

of a riskless security. Consider a riskless money market account Bt. The amount

of money available at time t from investing one unit at time 0 is given by Bt =

exp
(∫ t

0

r(s)ds
)
. We suppose that an equivalent martingale measure Q exists,

under which the gain from holding a risky security is a martingale after discounting

by the money market account. From now on, we assume that the dynamics of all
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security processes are specified under a risk-neutral measure Q unless otherwise

stated. We note that the zero-coupon bond price B(0, T ) is given by

B(0, T ) = EQ

[
exp

(
−
∫ T

0

r(s)ds
)]
. (6.11)

6.2.2 Mortality model

When we assume that the force of mortality is governed by an affine process, closed-

form solutions for the survival probabilities are explicitly obtained (Biffis [13] and

Dahl [34]). This is also the implication of Theorem 6.1. Schrager [106] proposed to

model the force of mortality µ(x, t) according to the specification

µ(x, t) = g0(x) +

M∑

i=1

Xi(t)gi(x),

where gi : R → R is some deterministic function and Xi(t) is an affine process. Such

set-up encapsulates traditional mortality models of Gompertz, Makeham or Thiele

where the parameters are assumed to follow certain stochastic processes. Biffis

[13], and Luciano and Vigna [87] also studied the force of mortality as a stochastic

process of the form originally suggested by Dahl [34], which is

dµ(x, t) = a
(
x, t, µ(x, t)

)
dt+ σ

(
x, t, µ(x, t)

)
dWt, (6.12)

where a(.) and σ(.) are deterministic functions, and Wt is a standard Brownian

motion. Although Biffis [13], and Luciano and Vigna [87] studied simplified versions

of the model (6.12) they did not include age dependency in the drift and volatility

functions of equation (6.12).

Needless to say, the force of mortality hugely depends on the age of the observed

population. Therefore, the model would be more realistic if it includes this de-

pendency. In addition, observed data suggest that the volatility of the force of

mortality is highly age-dependent. In fact, there is evidence that it appears to be

an exponential function of the age. In contrast to the approach of Schrager [106]
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and Biffis [13], we make use of a model for mortality that is not mean-reverting to

a pre-determined target level in this chapter.

Consider a general multivariate model for the force of mortality. Specifically, let

process µ(x, t) be a non-mean-reverting and age dependent with affine functional

form

dµ(x, t) = α
(
x, t, µ(x, t)

)
dt+ σ

(
x, t, µ(x, t)

)⊤ · dWt, (6.13)

where Wt is a standard d-dimensional Brownian motion. Here, α and σ are deter-

ministic maps.

Special cases of the general model stated in (6.13) are two well-known processes.

The first one is the simple Itô process with time and age dependent parameters

which follows the SDE

dµ(x, t) = α
(
x, t
)
dt+ σµ

(
x, t
)⊤ · dWt, (6.14)

and the second one is the Ornstein-Uhlenbeck type process

dµ(x, t) = α
(
x, t
)
µ(x, t)dt+ σµ

(
x, t
)⊤ · dWt. (6.15)

The processes in (6.14) and (6.15) are affine (Björk [14]). Hence, the survival

probabilities can be expressed as

p(t, T, x) = E

[
e−

∫ T
t

µ(x+s,s)ds
]

= eA(t,T,x)µ(x,t)+B(t,T,x), (6.16)

where A(t, T, x) and B(t, T, x) are deterministic functions. Under certain technical

conditions stated in Nielsen [96], it is possible to derive explicit expressions for

A(t, T, x) and B(t, T, x) in equation (6.16). When the force of mortality follows an
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Itô process, then

A(t, T, x) = −
∫ T

t

∫ u

t

α(x+ s, s)ds du+
d∑

i=1

∫ T

t

σµ
i (x+ s, s)(T − s)2ds

B(t, T, x) = −(T − t).

(6.17)

On the other hand, when the force of mortality is driven by an OU-like process in

(6.15), we have

A(t, T, x) = −
∫ T

t

e−K(x,u)

∫ u

t

eK(x,s)α(x+ s, s)ds du

+
d∑

i=1

∫ T

t

σµ
i (x+ s, s)B(s, T, x)ds

B(t, T, x) = −eK(x,t)

∫ T

t

e−K(x,u)du,

(6.18)

where K(x, t) =
∫ t

0
α(x, u)du. For the derivation of equation (6.18), we refer to

Nielsen [96].

6.2.3 Independent case

In this subsection, we develop the fair valuation of two basic actuarial benefits

involved in standard insurance contracts. The payoffs are contingent on survival

or death of an individual over a pre-specified period of time and may be linked to

other security prices. So far, no references were made to any specific model for

interest rate dynamics; we only specified that the force of mortality is driven by an

affine process.

We simply suppose as well that the dynamics of financial parameters are indepen-

dent of the mortality development as assumed in previous investigations, such as

in Cairns et al [24] and [25], Ballotta and Haberman [5] or Biffis [13]. The assump-

tion that the short rate rt and the force of mortality µ(x, t) are independent will

significantly reduce the complexity of the pricing equations. It allows the separate

pricing of mortality risk from the pricing of financial risks. This is reasonable for
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a relatively short time horizon. We are aware though that in the long-run interest

rates can be influenced by the relative size of population, which in turn, is influ-

enced by mortality development (as well as fertility). Also in the short term, we

recognise that a catastrophe event that seriously affects the size of population, such

as major natural disasters or a nuclear war, can also affect interest rates.

Survival Benefit

Let C be a bounded G-adapted process. The fair value BS(t, T, CT ) at time t of a

survival benefit CT to be paid out at time T (t < T ) for an individual aged x at

time 0 can be written as

BS(t, T, CT ) = E

[
e−

∫ T

t
r(s)ds1{τ>T}CT

∣∣∣ Gt

]

= 1{τ>t}E

[
e−

∫ T

t
(r(s)+µ(s,x+s))dsCT

∣∣∣ Gt

]
,

(6.19)

where τ = τ(x) is the residual lifetime of a life aged x as defined in (5.5). When

the dynamics of the interest rates are independent of the dynamics of mortality,

then

BS(t, T, CT ) = 1{τ>t}E

[
e−

∫ T
t

r(s)dsCT

∣∣∣ Ft

]
E

[
e−

∫ T
t

µ(s,x+s)ds
∣∣∣Mt

]
. (6.20)

Death Benefit

Assume again that C is a bounded G-adapted process. The fair value at time t of

a death benefit BD(t, T, Cτ ) of amount Cτ payable at the time of death in case the

insured aged x at time 0 dies before time T , with 0 ≤ t ≤ T can be expressed as

BD(t, T, Cτ ) = E

[
e−

∫ τ
t

r(s)ds1{t<τ≤T}Cτ

∣∣∣ Gt

]

= 1{τ>t}

∫ T

t

E

[
e−

∫ u

t
(r(s)+µ(s,x+s))dsµ(u, x+ u)Cu

∣∣∣ Gt

]
du.

(6.21)

The result in (6.21) is a direct consequence of expression (5.6). Again, if we assume
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independence of interest rate and mortality dynamics, we have

BD(t, T, Cτ ) = 1{τ>t}

∫ T

t

E

[
e−

∫ u

t
r(s)dsCu

∣∣∣ Ft

]

× E

[
e−

∫ u

t
µ(s,x+s)dsµ(u, x+ u)

∣∣∣Mt

]
du.

(6.22)

6.2.4 Dependent case

In subsection 6.2.3, we made the assumption that the dynamics of interest rates and

mortality are independent. This assumption permits us to separate the evaluation

of mortality risks from financial risks, thus enabling us to derive general pricing

formulae for a generic class of life insurance contracts.

We drop this assumption in this section. We consider stochastic processes rt and

µ(x, t) to be dependent. We use a change of measure technique to derive pricing

equations for the survival benefit BS(t, T, CT ) and death benefit BD(t, T, Cτ ). Once

we obtain BS(t, T, CT ) and BD(t, T, Cτ), it is straightforward to derive expressions

for the values of life insurance contracts, such as endowments annuities and various

types of insurance.

We shall be working under the forward measure P T defined on a filtration Gt

by setting the Radon-Nikodŷm derivative of P T with respect to the risk-neutral

measure Q as

dP T

dQ

∣∣∣∣
Gt

= Λ0,T =
exp

(
−
∫ T

0
r(s)ds

)

B(0, T )
, (6.23)

where B(0, T ) is defined as in (6.11). Let ET denote the expectation under the

forward measure P T . From Bayes’ rule

ET [H | Gt] =
E[Λ0,TH | Gt]

E[Λ0,T | Gt]
, (6.24)

for a contingent claim H . Equation (6.24) together with equation (6.23) implies
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that

ET [H | Gt] =
E

[
exp

(
−
∫ T

t
r(s)ds

)
H
∣∣∣ Gt

]

B(t, T )
,

or

E

[
e−

∫ T

t
r(s)dsH

∣∣∣ Gt

]
= B(t, T )ET [H | Gt]. (6.25)

Equation (6.25) can provide an alternative formula for bothBS(t, T, CT ) andBD(t, T, Cτ).

Taking H = exp
(
−
∫ T

t
µ(s, x+ s)ds

)
CT in equation (6.25) and plugging this into

equation (6.19), we obtain

BS(t, T, CT ) = 1{τ>t}B(t, T )ET
[
e−

∫ T
t

µ(s,x+s)dsCT

∣∣ Gt

]
. (6.26)

The goal is to separate the calculation of expectations of interest rate dynamics,

mortality and the benefit process under the forward measure.

To explicitly solve (6.26), we define an auxiliary measure P̃ T that is absolutely con-

tinuous with respect to the forward measure P T via the Radon-Nikodŷm derivative

dP̃ T

dP T

∣∣∣∣
Gt

= Λ̃0,T =
exp

(
−
∫ T

0
µ(s, x+ s)ds

)

p̃(0, T, x)
, (6.27)

where p̃(0, T, x) = ET
[
exp(−

∫ T

0
µ(s, x+ s)ds)

]
.

Let ẼT denote the expectation under the auxiliary measure P̃ T . Then invoking

equations (6.25) and (6.26) the survival benefit value BS(t, T, CT ) can be written

as

BS(t, T, CT ) = 1{τ>t}B(t, T )p̃(t, T, x)ẼT
[
CT

∣∣ Gt

]
. (6.28)

The main advantage of working with the forward measure is that the valuation

is simpler when dealing with stochastic interest rates and force of mortality even

without the independence assumption. In particular, we succeeded in splitting the
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expectation of a product (equation (6.19)) into a product of expectations, where

the expectation of the second term must be taken under the auxiliary measure.

Since we started with the assumption that both the short rate process and force

of mortality follow affine processes, an explicit expression can be derived for the

dynamics of the benefit process C under an auxiliary measure P̃ T given its dynamics

under risk-neutral measure. This is made possible with the aid of Theorem 6.1.

In a similar manner, using a forward measure P T we can also derive valuation

expression for the death benefit value BD(t, T, Cτ ). Under the measure P T , the

expression for the value of death benefit in (6.21) is

BD(t, T, Cτ ) = 1{τ>t}

∫ T

t

B(t, u)ET
[
e−

∫ u
t

µ(s,x+s)dsµ(u, x+ u)Cu

∣∣∣ Gt

]
du.

In order to separate the dynamics of mortality from the dynamics of the benefit

process, we define another auxiliary measure P
u

via the Radon-Nikodŷm derivative

dP
u

dP T

∣∣∣∣
Gt

= Λ0,u =
µ(u, x+ u) exp

(
−
∫ u

0
µ(s, x+ s)ds

)

f t(u)
, (6.29)

where t ≤ u ≤ T and f t(u) is the Gt-conditional density of a random residual

lifetime τ(x) (see expression (5.6)) taken under the forward measure P T . Applying

the Bayes rule (6.24) and changing measure to the auxiliary measure P
u

the value

of death benefit is given by

BD(t, T, Cτ ) = 1{τ>t}

∫ T

t

B(t, u)f t(u)E
u
[
Cu

∣∣∣ Gt

]
du, (6.30)

where E
u

denotes the expectation taken under the new auxiliary measure P
u
.

6.3 Example and illustration

An example depicting the applicability as well as demonstrating the flexibility of

the proposed pricing approach within the context of affine models is provided in
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this section. Suppose that both the short rate rt and the force of mortality µ(t)

follow stochastic processes of an affine type in its drift and volatility specification.

Assume, for example, that the short rate follows a Vasiček model [110]with constant

parameters, i.e., its dynamics is given by the SDE

drt = (ar − br rt)dt+ cr dW r
t . (6.31)

Assume further that the force of mortality follows a relatively simple diffusion given

by the equation

dµt = aµµtdt+ cµdW µ
t , (6.32)

as considered in Luciano and Vigna [87]. In contrast to other developments of

mortality modelling using affine processes and other attempts to price mortality-

linked contracts, we do not assume the dynamics of the short rate and mortality

development to be independent. Instead, we use the change of measure approach

developed in subsection 6.2.4 to find explicit solutions for valuing basic mortality-

linked instruments.

As shown in subsection 6.2.4, see equation (6.28), the price of survival benefit can

be expressed as

BS(t, T, CT ) = 1τ>tB(t, T )p̃(t, T, x)ẼT
[
CT

∣∣ Gt

]
. (6.33)

Assuming further that the policy holder has survived to current time t (τ > t)

equation (6.33) simplifies to

BS(t, T, CT ) = B(t, T )p̃(t, T, x)ẼT
[
CT

∣∣ Gt

]
. (6.34)

If rt has Vasiček dynamics then B(t, T ) has the explicit solution

B(t, T ) = eAr(t,T )rt+Br(t,T ), (6.35)
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where Ar(t, T ) and Br(t, T ) are deterministic functions. The second factor p̃(t, T, x)

is quite complex to evaluate. The difficulty comes from the fact that the expectation

in

p̃(t, T, x) = ET

[
exp

(
−
∫ T

t

µ(s, x+ s)ds

)∣∣∣∣Gt

]
(6.36)

is taken under the T -forward measure P T ; see equations (6.23) to (6.26). In order

to analytically derive the expression for p̃(t, T, x), we need the dynamics of the force

of mortality under the measure P T . By Theorem 6.1, the evolution of µt under the

T -forward measure follows the SDE

dµt = (cµcrAr(t, T ) + aµµt)dt+ cµdW P T

t , (6.37)

where W P T

t is a standard Brownian motion under a measure P T . Since the function

Ar(t, T ) is deterministic, the dynamics of the force of mortality under a T -forward

measure P T admits an affine form. Therefore p̃(t, T, x) can be expressed as

p̃(t, T, x) = eAµ(t,T )µt+Bµ(t,T ). (6.38)

Plugging (6.35) and (6.38) into equation (6.34), the value of survival benefit can

be written as

BS(t, T, CT ) = eAr(t,T )rt+Br(t,T )+Aµ(t,T )µt+Bµ(t,T )ẼT
[
CT

∣∣ Gt

]
. (6.39)

From Theorem 6.1, given the dynamics of the benefit process Ct under a risk-neutral

measure we can also derive the dynamics of the Ct under the auxiliary measure P̃ T .

Consequently, given the dynamics of the actual benefit Ct, the survival benefit can

be priced in an analytically tractable way without assuming the independence of

the dynamics of the short rate from the dynamics of mortality development.

Suppose the benefit consists of a fixed unit amount plus a variable amount equal

99



to a percentage λ of the level of the short rate at the policy date. In other words

Ct = 1 + λrt. (6.40)

In equation (6.39), we need to derive the dynamics of the short rate rt under an

auxiliary measure P̃ T . However, we know that under a risk-neutral measure Q,

the dynamics of the short rate is given by equation (6.31). Furthermore, it follows

from Theorem 6.1 that

W P T

t = WQ
t −

∫ t

0

Ar(u, T )crdu (6.41)

is a standard Brownian motion under the T -forward measure P T . A similar line of

reasoning shows that

W P̃ T

t = W P T

t −
∫ t

0

Aµ(u, T )cµdu (6.42)

is a standard Brownian motion under the auxiliary measure P̃ T . Combining (6.41)

and (6.42) we can write down the dynamics of the short rate process rt under the

auxiliary measure P̃ T as

drt = (ar + (cr)2Ar(t, T ) + cµcrAµ(t, T ) − br rt)dt+ cr dW P̃ T

t .

Given the dynamics of rt under an auxiliary measure, it is straightforward to cal-

culate the expectation in equation (6.39). Therefore, the value of survival benefit

can be fully determined given a chosen functional form for the benefit process as

in (6.40).

In a similar manner, one can also use the change of measure technique to derive

an explicit expression for the price of death benefit in (6.30). With the same

assumptions regarding the dynamics of the short rate and the force of mortality

processes we get similar expression for the price of the death benefit BD(t, T, Cτ ).

The only factor in the product under the integral in equation (6.30) that we need to
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consider is f t(u). Employing Theorem 6.1 and the fact that the force of mortality

is an affine process, the Mt-conditional density under the T -forward measure of a

random residual lifetime in (5.6), can be written as

f t(T ) = eAf (t,T )µ(t)+Bf (t,T )
(
Cf(t, T )µ(t) +Df(t, T )

)
(6.43)

following Duffie et al [39]. Therefore the death benefit in (6.30) has a fair value of

BD(t, T, Cτ ) =

∫ T

t

eAr(t,u)rt+Br(t,u)eAf (t,u)µ(t)+Bf (t,u)

(
Cf (t, u)µ(t) +Df(t, u)

)
E

u[
Cu

∣∣ Gt

]
du.

(6.44)

6.4 Implementation

In order to calculate the prices of basic mortality-linked instruments we need to cal-

ibrate the mortality and interest rate models first. The parameters estimated from

fitting the models to observed data can then be readily used to value instruments

in both dependent and independent case. We choose a well-known Vasiček model

(6.31) as a representation of interest rates. For the mortality model an Ornstein-

Uhlenbeck (OU) process (5.9) is used; the OU process was found to generate the

best fit to observed data amongst all tested affine processes without jumps in the

study of Luciano and Vigna [87].

The mortality table selected for calibration is the observed UK generation tables

for males born 1900. The observed mortality table is taken from the Human Mor-

tality Database compiled by the University of California, Berkeley (USA) and Max

Planck Institute for Demographic Research (Germany). The data is also available

at www.mortality.org or www.humanmortality.de. The mortality data set used in

this implementation was downloaded on 10 September 2006. In fitting the data, we

adopt the least squares method, considering the spreads between different observed

and model survival probabilities. The initial value for µ(65, 0) is set to −ln
(
p(65)

)

in the calibration of the mortality model as well as in all subsequent calculations.
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T (years) independent case BSi
(0, T, 1) dependent case BS(0, T, 1)

1 0.9221 0.9347

2 0.8457 0.8736

3 0.7714 0.8163

4 0.6997 0.7624

5 0.6310 0.7119

6 0.5655 0.6645

7 0.5036 0.6200

8 0.4456 0.5783

9 0.3915 0.5391

10 0.3414 0.5024

11 0.2955 0.4679

12 0.2537 0.4356

13 0.2160 0.4053

14 0.1822 0.3770

15 0.1522 0.3505

16 0.1259 0.3257

17 0.1030 0.3025

18 0.0833 0.2808

19 0.0665 0.2605

20 0.0524 0.2416

Table 6.1: Actuarial fair prices of survival benefit for different times to maturity,
both for independent and dependent case.

For the estimation of interest rate model parameters we use a different technique.

A model was fitted to 1-month UK inter-bank loan data for the year 2003. The

method selected in calibrating the interest rate model to LIBOR data is the Maxi-

mum Likelihood Method (see James and Webber [74]). We note that the data used

for calibration of mortality and interest rate model are not consistent. However, as

mentioned before, our intention here is to show how the fitted parameters can be

used to calculate the prices of insurance products.

Once we calibrated the parameters of the interest rate and mortality models we

can proceed to calculate the values of the contracts. For the data considered in this
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chapter, the parameters for the interest rate model with specification in equation

(6.31) are ar = 0.004089, br = 0.045398 and cr = 0.003789, whilst the parameters

for the mortality model with specification (6.32) are aµ = 0.078282 and cµ =

0.002271. Table 6.1 displays the calculated prices of survival benefit with time

to maturity between 1 and 20 years which pays 1 contingent on the survival to

time T of an individual aged 65 (at current time 0). In the second column we

present the actuarial fair values of survival benefit calculated under the assumption

of independence between financial and demographic factors as in equation (6.20).

The prices calculated without the assumption of independence between interest and

mortality rates are depicted in the third column. In order to calculate values of

the survival benefit BS(0, T, 1), the expression in (6.39) needs to be implemented.

In our fairly simple case we assume the survival benefit to be deterministic, which

simplifies the calculation of expected value under the auxiliary measure in (6.39).

We note that working with random payoffs is straightforward provided we can

express their dynamics under a risk neutral measure, as explained in section 6.3.

0 2 4 6 8 10 12 14 16 18 20
1

1.5

2

2.5

3
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4.5
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Figure 6.1: Relative difference (BS(0, T, 1)/BSi
(0, T, 1)) with respect to maturity.

From Table 6.1, it is apparent that the calculated survival benefit values differ

considerably between the dependent and independent case. It can also be seen

that the value of the survival benefit is noticeably higher when the independent

assumption is dropped. The latter is somewhat expected since the independence

assumption is relatively strong and disregards any correlation between demographic
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and financial factors. Furthermore, it is evident from Table 6.1 that the relative

difference between the prices calculated with and without an independence assump-

tion is increasing. Indeed, the relative difference increases exponentially with time

to maturity as shown in Figure 6.1.

The assumption of independence between mortality development and financial fac-

tors leads to a considerable lower prices of mortality-linked contracts compared to

the prices generated under the dependence case. Therefore, based on the evidence

suggested by our empirical work one cannot ignore the dependence between interest

and mortality risks in pricing instruments with long term maturities.

For the calculation of the values of death benefit in (6.44), the expected value

under an auxiliary measure needs to be evaluated numerically. Nonetheless, since

the Radon-Nikodŷm derivative dP
u

dP u can readily be expressed (see equation (6.29)),

the calculation of the expected value of the benefit itself under an auxiliary measure

is achievable; of course, this is assuming its dynamics under a risk-neutral measure

Q is explicitly given.

We stress that the analytical solutions for pricing survival and death benefits might

not be available when more complicated mortality and interest rate models are

assumed. However, as long as both interest and mortality rate models are of affine

type, analytical tractability can still be achieved. Equations (6.39) and (6.43)

are essentially linked to generalised Ricatti equations, which can be solved using

standard numerical methods as noted in Biffis [13].

6.5 Conclusions

In this chapter we extended previous works on stochastic mortality modelling. Inde-

pendence between financial and demographic risk factors is not assumed. By using

change of probability measures technique and employing affine diffusion processes

in the description of both the evolution of mortality and interest rates, we showed

that the framework developed could lead to analytical expressions for the pricing
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problem for a number of life insurance contracts, either traditional, unit-linked

or indexed. We presented numerical examples that demonstrate the applicability

of our results and theoretical contributions. Numerical results clearly suggest that

the dependence between mortality and financial factors should not be ignored when

pricing and reserving for the instruments with long term maturities.
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Part II

Contributions to sigma point

filtering
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Chapter 7

A new moment matching

algorithm for sampling from

partially specified symmetric

distributions

In this chapter, we start with a brief review of Kalman filter and it best known

extensions to aid the succeeding discussion. The main topic of this chapter how-

ever, is a development of a new algorithm for generating scenarios from a partially

specified symmetric multivariate distribution. In particular, the algorithm gener-

ates samples which match the first two moments exactly and match the marginal

fourth moment approximately, using a semidefinite programming procedure. The

performance of the algorithm is also illustrated by a numerical example.

7.1 A short review of Kalman filter

Chapters 7 to 9 of this thesis will focus on sigma point filtering. We make theoret-

ical and practical contributions to sample point generation and filtering heuristics.

The fundamental background in this research endeavour is Kalman filtering and its
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extensions, which are briefly reviewed in this chapter for a self contained presenta-

tion. We give a short account of the Kalman filter, its extension to cover nonlinear

processes and this is being referred to as the extended Kalman filter (EKF), and

the unscented or sigma point filter. This will motivate and aid the discussions in

the succeeding chapters.

7.1.1 Kalman filter

The Kalman filter is an efficient recursive filter which estimates the state of a linear

Gaussian state space system from a series of noisy observations. It is employed in

a wide variety of engineering applications ranging from radar navigation, computer

vision, climatology to financial modelling. It has also practical relevance to control

theory and control systems engineering.

Kalman filters are linear dynamical systems discretised in the time domain and

are modelled on a Markov chain built on linear operators perturbed by a Gaussian

noise. At each time increment, a linear operator is applied to the state in order to

generate a new state corrupted by noise, then another linear operator is applied to

the generated state corrupted by noise to produce the observable outputs from the

hidden state.

In particular, the Kalman filter model assumes the state at time k evolves from the

state at time k − 1 according to

X (k) = FkX (k − 1) +BkU(k) +GkW(k),

where Fk is the state transition matrix, Bk is the control input matrix applied to

the control vector U(k) and Gk is the covariance matrix applied to multivariate

standard normal process noise W(k).

At time k, the observation Y(k) of the true state X (k) is obtained according to
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Y(k) = HkX (k) +QkV(k),

where Hk is the observation model matrix mapping the true state into the ob-

served space and Qk is the covariance matrix for the standard normal multivariate

Gaussian noise process V(k).

For additional details on filtering and update equations for standard Kalman filters,

refer to [4] for instance.

Remark 7.1

It is worth noting that Kalman filter can be regarded as analogous to HMM that

was analysed in the previous chapters. The key difference is that the hidden state

variables in Kalman filtering take values in a continuous state as opposed to the

discrete state space in HMM filtering considered in this thesis. It is nevertheless

possible to extend the HMM framework to the continuous state space (see [43]) pro-

viding a greater interlink between the two approaches. It is therefore not surprising

that there exists a strong duality between the equations of the Kalman filter and

those of the HMM. This fact is duly emphasised in [1] whilst the review of Linear

Gaussian and other models can be found in [103].

7.1.2 Extended Kalman filter

The standard Kalman filter is limited by its linearity assumption. We know that

many non-trivial systems are nonlinear. The nonlinearity in the system can be

associated with either the observation model, the process model or in the worst

case with both.

The extended Kalman filter is able to deal with nonlinearities in both the process

and observation models and allows them to be nonlinear. The differentiability of

the models, is however, required for EKF. The filter model takes the form
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X (k) = f(X (k − 1),U(k)) + W(k)

Y(k) = h(X (k)) + V(k),
(7.1)

where f and h are differentiable functions and W(k), V(k) are the process and

observation noises both assumed to be zero mean multivariate Gaussian processes.

At each time the Jacobian, a matrix of all first-order partial derivatives of a vector-

valued function, is used with the current predicted states and these matrices can

be used in Kalman filter equations. EKF then essentially linearises the nonlinear

functions around the current estimate. The actual filtering and updating equations

can be found in [4] and will not be elaborated here.

EKF can give reasonable performance and is very popular in the filtering of non-

linear processes. It does have its drawbacks though. Unlike the standard Kalman

filter, EKF is not an optimal estimator because the mean and covariance are prop-

agated through linearisation of the underlying nonlinear model. In addition, owing

to its linearisation, the filter can diverge quickly if the initial estimate of the state

is wrong or if the process is not modelled correctly.

7.1.3 Unscented Kalman filter

When the state transition and observation models, that is the predict and update

functions f and h in the equation (7.1) are highly nonlinear, the EKF can pro-

duce poor results. Attempts to improve the performance of EKF thus give rise to

the development of unscented Kalman filter (UKF), also a nonlinear filter. The

poor performance of EKF is a consequence of propagating the mean and variance

through the linearisation of the underlying nonlinear model. Under the UKF ap-

proach, a deterministic sampling technique is used to pick a minimal set of sample

points (also called sigma points) around the mean. These are then propagated

through the nonlinear functions from which the mean and covariance of the esti-

mate can be recovered. This results to a filter that is able to capture the true mean

110



and covariance more accurately. Another benefit of the UKF over EKF is that it

removes the requirement to explicitly calculate the Jacobian; for complex functions

its calculation can be a difficult task on its own. The actual filtering formulae as

well as the generation of sigma points needed in UKF can be found for example in

[4], [76] and [54].

The UKF performs better than the EKF for highly nonlinear processes. Unfor-

tunately, it still has drawbacks related to sigma point generation as well as the

filtering heuristics when the noise term is not normally distributed. These draw-

backs and problems are specified in detail and addressed in the succeeding chapters.

7.2 Introduction

Sampling from a partially specified multivariate distribution is a problem that

arises in many different areas. Research work in this chapter was inspired by

stochastic programming-based optimisation models in operations research, in which

the key computational challenge is to generate scenarios from a distribution of

the underlying random variables. For a large number of random variables, the

scenario generation can be computationally very challenging. The distribution

to be sampled from may not be available in closed-form and it may instead be

characterised by moments obtained from empirical data. Even if the distribution

is available in closed-form, it may be very difficult to sample and an approximation

may be necessary. To deal with generation of scenarios under partially specified

distributions one has a choice of several heuristic methods. Due to the burgeoning

amount of literature on sampling from such probability distributions, we restrict our

attention to the approaches used in operational research and finance only. These

approaches can be divided roughly into two main classifications:

1. Under the first approach, the statistical properties of the joint distribution

are specified in terms of moments, usually including the covariance matrix.
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In [71], cubic transformation of univariate, standard normal random variables

and Cholesky factorisation of covariance matrix are used to produce a mul-

tivariate distribution which approximately matches a given set of marginal

central moments and the covariance matrix. Similar moment matching ap-

proach is employed to generate probability weights and support points using

non-convex optimisation in [61]. In [107], entropy maximisation method is

used to generate a discrete approximation to a given continuous distribution.

2. In the second approach, specified (parametric) marginal distributions are

sampled independently and the samples are then used along with Cholesky

factorisation of the covariance matrix to generate the necessary multivariate

distribution. An iterative procedure of this type is described in [89].

Other approaches to scenario generation with specific emphasis on operations re-

search applications include principal component analysis based simulation [109] and

stochastic approximation based on transportation metrics ([98], [68]). A detailed

survey of different scenario generation methods also appears in [79].

The approaches described above do have a considerable success in the practical

applications of stochastic optimisation. Nevertheless, the procedures involved in the

approaches of drawing samples from a partially specified multivariate distribution

when it is specified in terms of moments have several limitations as detailed below:

1. All the moment-matching procedures in the above mentioned papers use non-

convex optimisation to generate scenarios which match a specified set of sta-

tistical properties, in addition to a needed factorisation of the covariance

matrix. Given a univariate random variable with known first 12 central mo-

ments, the approach used in [71] and [72] finds a cubic polynomial function of

this random variable which has the required four central moments. This re-

quires a non-convex optimisation in terms of the coefficients of the polynomial.

The procedure has to be repeated iteratively for each marginal distribution.

Similarly, the algorithm in [89] requires a non-convex optimisation over the

space of lower triangular matrices.
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2. The achieved moments of the generated samples match the target moments

only approximately. There are two sources of error in these moment match-

ing methods: one is due to the fact that only the local optima are found for

the non-convex optimisation problem and the other is the inexact starting

moments of samples of univariate random variables. Since these procedures

employ samples from a known, “simple” univariate distribution, the achieved

moments usually depend on the sample moments of univariate random vari-

ables used.

The primary objective of this chapter is to develop an algorithm based on convex

optimisation which matches exactly the mean, covariance matrix and marginal

(zero) skewness of a symmetric distribution and also matches the marginal fourth

moments approximately (by minimising the worst case error between the achieved

and the target marginal fourth moments). An analytic solution to this optimisation

is known in the scalar case, as illustrated in subsection 7.3.3.

This algorithm may be used as a scenario generator on its own or its scalar version

may be adopted to produce an initial guess for the optimisation routines proposed

by other authors. Being able to match a small set of statistical properties exactly,

possibly with a very small set of scenarios, may be preferable to generating a very

large number of scenarios to model the entire distribution. This is especially true

when the scenarios are to be used in stochastic optimisation procedures.

The rest of this chapter is organised as follows. In the next section, we introduce

the notation, develop the main sampling algorithm of this chapter and provide a

discussion of its properties. Section 7.4 presents a numerical study demonstrating

the utility and effciency of the algorithm. Finally, section 7.5 concludes and outlines

certain directions of further research.
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7.3 The sampling algorithm

7.3.1 Notation

The following notation will be used in the development of the sampling algorithm.

m number of random variables,

s number of scenarios,

X discrete m-dimensional random variable,

Xi ith random variable,

Φ target mean vector for X ,

R target covariance matrix for X ,

κi target marginal 4th central moment for the ith random variable Xi,

Lij entry in the ith row and jth column of a matrix L,

P(A) probability of an event A,

E
[
Y
]

expected value of a random variable Y.

Furthermore, let 1s denote s-dimensional vector with all entries 1, diag(xi) denote

a diagonal matrix with x1, x2, . . . , xs on the diagonal. For a symmetric matrix M ,

we write M ≥ 0 to indicate that the matrix is positive semi-definite, i.e. it has all

non-negative eigenvalues.

To reiterate our objective, we aim to generate samples from a symmetric distribu-

tion with a specified mean vector Φ and a specified (positive definite) covariance

matrix R. These target moments will usually be obtained from the data. If the co-

variance matrix obtained from the data is not positive definite, an adjustment may

be necessary, such as the one suggested in [89]. In addition, we wish to minimise

the worst case mismatch between the achieved marginal fourth moments and the

target marginal fourth moments. We shall describe the algorithm from an optimi-
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sation point of view first and then provide the closed-form solution in the scalar

case. The rationale behind the key steps in the algorithm will become clear from

the proofs of subsequent results and accompanying discussion.

7.3.2 Algorithm for moment matching scenario generation

The algorithm for generation of moment matching scenarios can be summarised in

4 steps given below.

1. Find a symmetric positive definite matrix L such that R = LL⊤. For a

symmetric positive definite matrix R, matrix L is unique. If in addition

matrix R has distinct eigenvalues, this may be found using singular value

decomposition; see for example [69] and the references therein for methods

of finding L. This matrix L is usually referred to as the square root of the

matrix R.

2. Solve the following optimisation problem:

min
ǫ,q1,q2,...,qs

ǫ (7.2)

subject to



ǫ ψi

ψi ǫ


 ≥ 0, i ∈ {1, 2, . . . , n}, (7.3)

diag(qk) ≥ 0, (7.4)



1 1⊤
s

1s
1

2m
diag(qk)


 ≥ 0, (7.5)

where

ψi =
1

2s2

m∑

j=1

L4
ij

s∑

k=1

qk − κi for i ∈ {1, 2, . . . , m}.
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Note that the above is a convex optimisation problem with a linear objective

function and affine matrix inequality (AMI) constraints. These problems can

be solved in polynomial time using interior point methods and extensive soft-

ware packages are available to implement interior point methods for solving

convex problems of this type (which are also called semidefinite programming

problems); see for example [19], [56] and [112]. Let q̂k; k = 1, 2, . . . , s and ǫ̂2

be the arguments which solve the above problem within a specified degree of

accuracy.

3. Set pi = 1
q̂i

, i = 1, 2, . . . , s and ps+1 = 1 − 2m
∑s

i=1 pi.

4. Define a discrete m-dimensional random variable X over a support of 2ms+1

points as follows:

P

(
X = Φ ± 1√

2spi

Lj

)
= pi,

j = 1, 2, . . . , m and i = 1, 2, . . . , s,

P(X = Φ) = ps+1.

(7.6)

where Lj denotes the jth column of matrix L.

Steps 1 – 4 constitute the entire set of procedures needed to construct the required

samples. Before we prove that it has the required moment properties, we need to

show that pi : i ∈ {1, 2, . . . , s + 1} defines a probability measure over the chosen

2ms + 1 support points. Since q̂i satisfies (7.4), it is immediate that pi = 1
q̂i

≥

0, ∀ i ∈ {1, 2, . . . , s}. It only remains to show that ps+1 = 1 − 2m
∑s

i=1 pi is

non-negative. This is demonstrated in the following lemma.

Lemma 7.2

For q̂i as defined above (see step 2 of the moment matching scenario generation

algorithm),

2m
s∑

i=1

pi = 2m
s∑

i=1

1

q̂i
≤ 1.
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Proof

The proof of Lemma 7.2 relies on the well-known property of the positive definite

block matrices; namely,

M :=



A B

C D


 ≥ 0 and D ≥ 0 ⇐⇒ A−BD−1C ≥ 0.

The block matrix A− BD−1C is called the Schur complement of D in M ; see for

example [19] for more details. In the present case, write

Q =
1

2m
diag(qk).

Since by construction, for i ∈ {1, 2, . . . , s} qi satisfies (7.4) and (7.5), we can write




1 1⊤
s

1s Q


 ≥ 0 and diag(qk) ≥ 0

⇐⇒ 1 − 1⊤
s Q

−11s ≥ 0,

from which the result follows directly.

�

Next, we shall establish a relationship between the optimal argument ǫ̂ (which is

also equal to the optimal cost in step 2 of the moment matching scenario generation

algorithm) and the target fourth marginal moments κi.

Lemma 7.3

For a discrete m-dimensional random variable X as defined in step 4 of the algo-

rithm,

max
i

∣∣κi − E(Xi − Φi)
4
∣∣ ≤ ǫ̂i. (7.7)
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Proof

From the construction of sample points of a random variable X , it follows that

E(Xi − Φi)
4 =

s∑

k=1

pk
1

2p2
ks

2

m∑

j=1

L4
ij =

(
s∑

k=1

q̂k

)
1

2s2

(
m∑

j=1

L4
ij

)
.

Write

ψ̂i =
1

2s2

m∑

j=1

L4
ij

s∑

k=1

q̂k − κi.

By observing that q̂k and ǫ̂ satisfy the constraint specified in (7.3) and




ǫ̂ ψ̂i

ψ̂i ǫ̂


 ≥ 0 ⇐⇒ ǫ̂2 − ψ̂2

i ≥ 0,

the result follows.

At this point, we collect all the moment matching properties of a random variable

X as constructed by the algorithm in the following result.

Theorem 7.4

The distribution defined in (7.6) satisfies the following properties:

E
[
X
]

= Φ (7.8)

E
[
(X − Φ)(X − Φ)⊤

]
= R (7.9)

E
[
(Xi − Φi)

3
]

= 0 (7.10)

max
i

∣∣κi − E[(Xi − Φi)
4]
∣∣ ≤ ǫ̂. (7.11)

Proof

Equations (7.8) and (7.10) follow immediately from the fact that the support points

are symetrical around the mean vector Φ and (7.11) was proven in Lemma 7.3. We
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therefore only need to prove (7.3) which follows by noting that

E
[
(X − Φ)(X − Φ)⊤

]
= 2

s∑

i=1

pi

2spi

(
m∑

j=1

LjL
⊤
j

)
=

m∑

j=1

LjL
⊤
j = R.

�

There are several remarks that we would like to make concerning the above results.

(a) Note that the optimisation problem (7.3) – (7.5) finds the smallest ǫ̂ and

the corresponding q̂k such that (7.11) holds. In other words, the algorithm

minimises an upper bound on the worst case error in matching the fourth

marginal moment. A small value of ǫ̂ thus indicates that the fourth moment

is approximately matched (with the maximum approximation error being ǫ̂

itself). This upper bound can be made zero in the scalar case, as will be seen

in the next subsection.

(b) Even if the chosen q̂k are not optimal, equations (7.8) – (7.11) will still hold

provided q̂k’s satisfy the condition in Lemma 7.2 to define a probability mea-

sure. If we are not concerned with matching the fourth marginal moment, we

may choose not to solve the optimisation problem and choose any q̂k such that

the condition in Lemma 7.3 holds, e.g., we can choose q̂k > 2ms, ∀k which

automatically satisfy the required condition. The actual choice of q̂k subject

to the lower bound 2ms can be made using any deterministic or stochastic

algorithm. This provides s additional degrees of freedom, which may, in prin-

ciple, be used to match other statistical properties (e.g., certain quantiles of

interest). We have restricted our attention to matching fourth marginal mo-

ment only since matching these moments is relevant from a practical point of

view and the associated optimisation, being convex, is numerically tractable.

(c) The downside, of course is that the algorithm is limited to symmetric distri-

butions. However, even in cases when the underlying distribution is known

to be asymmetric, the proposed algorithm may still have a useful role to play.
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In the computation or optimisation of risk of a financial portfolio, the lep-

tokurtic behavior of the loss distribution is often far more important than the

asymmetry and a symmetric approximation which captures the tail behavior

of loss distribution correctly may be admissible.

(d) In a somewhat unrelated field, similar sample point generation methods are

also employed in the development of sigma point filters (also called unscented

filters) widely adopted in engineering; see [76] and the references therein.

These methods have become quite popular as a computationally cheaper al-

ternative to particle filters for state estimation problems in nonlinear systems.

However, the sampling methods in the existing sigma point filtering tech-

niques do not guarantee that the weights assigned to each sample point will

always be nonnegative. Our proposed algorithm for sampling distributions

avoids this problem and its application in sigma point filtering has now been

reported in [35] and is also explored in the remaining chapters (8 and 9) of

this thesis.

7.3.3 Closed-form solution for the scalar case

We have demonstrated that finding positive qk satisfying 2m
∑s

k=1 q
−1
k < 1 and

minimising the worst case error in matching the fourth marginal moment is a

convex optimisation problem. A natural question to ask is whether it is possible

to find a closed-form solution to this problem in specific instances. As mentioned

earlier, choosing qk > 2ms, ∀k will automatically satisfy the necessary constraint

on the sum of q−1
k . At this stage, it still remains to be seen whether we can choose

qk > 2ms which will also satisfy the condition for matching the fourth moment,

i.e., whether we can choose qk such that κi = E(X − Φ)4 holds. In the scalar case,

i.e., when m = 1, the answer is affirmative as shown in the following Lemma.

Lemma 7.5

Suppose that m = 1 and that κ1

L4
11

> 1. In addition, let q̂i ∈ [2ms, ψ], i ∈
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{1, 2, . . . , s− 1} be s− 1 real numbers, let the constant ψ be given by

ψ =
2s2κ1

(s− 1)L4
11

− 2s

s− 1
,

and let

q̂s =
2s2κ1

L4
11

−
s−1∑

i=1

q̂i. (7.12)

Finally, let X be as in (7.6) with m = 1. Then the random variable X satisfies the

properties given in (7.8) – (7.10) of Theorem 7.4. In addition,

κ1 = E
[
(X − Φ)4

]
.

Proof

Verifying that the random variable X satisfies properties (7.8) – (7.10) is straight-

forward. In fact, one can prove this using exactly the same arguments as in the

proof of Theorem 7.4. To verify that κ1 = E
[
(X −Φ)4

]
holds, first note that q̂i ≤ ψ

for i ∈ {1, 2, . . . , s−1} from the set-up of Lemma 7.5, which ensures that q̂s > 2ms.

Therefore,

E
[
(X − Φ)4

]
=

s∑

k=1

pkL
4
11

2p2
ks

2
=

(
s∑

k=1

q̂k

)
L4

11

2s2
.

Plugging in the definition of q̂s from (7.12) one gets

E
[
(X − Φ)4

]
=

(
s−1∑

k=1

q̂k +
2s2κ1

L4
11

−
s−1∑

i=1

q̂i

)
L4

11

2s2
= κi,

which completes the proof.

�

Remark 7.6

Note that the condition κ1

L4
11
> 1 is not particularly restrictive, and is in fact satisfied

by all elliptic distributions including Gaussian distribution and t-distribution; see
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[12].

The above result gives an optimisation-free methodology of matching the first four

moments of a symmetric scalar random variable. This fact is quite important in

itself and our algorithm as proposed above can be used as an efficient alternative

to cubic transformation-based approaches for generating random samples which

match a given set of four central moments. Furthermore, there is a lot of extra

freedom in the choice of qi which may be utilised to match further higher moments.

Alternatively, qi may be generated using any random number generator or using

an appropriate deterministic algorithm.

7.4 Numerical experiments

To test the computational efficiency of the optimisation procedure, we use LMI

toolbox of MATLAB (version 6.5), running on a desktop with a 3 GHz Pentium

processor. To derive a covariance matrix and marginal kurtosis, which is guaran-

teed to correspond to a feasible distribution, we use MATLAB’s random number

generator for t-distribution with 10 degrees of freedom. The sample covariance

matrix of the resulting random samples was used as a target covariance matrix and

the sample marginal kurtosis values were used as the target kurtosis in our opti-

misation. We ran the numerical experiments for various combinations of number

of variables (m), scenarios (2ms + 1) and kurtosis values. Some of the results are

reported in Table 7.1 with ǫ̂ defined in Theorem 7.4. We report only the mean tar-

get kurtosis, rather than the individual kurtosis values, for brevity. Note that the

mean vector, the covariance matrix and the zero skewness are exactly matched in

all cases. The specific choice of these first three moments has very little impact on

the matching of the fourth marginal moment. It can be seen that it took less than

15 seconds to generate 7201 samples for 60 random variables. The worst kurtosis

matching error over the scenarios and dimensions under consideration was around

15%. The average error between the target and the achieved kurtosis values over m
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dimensions was significantly smaller and was under 5% in all cases. The computa-

tion times can easily be improved by employing a higher specification machine and

a purpose-written optimisation code, i.e., one that exploits the sparsity in (7.5).

m s
1

m

m∑

i=1

κi ǫ̂ time in seconds

2 20 5.6118 0.3037 0.16

4 5 6.1847 0.4875 0.03

10 2 6.3868 0.6344 0.04

50 50 6.0837 0.8347 8.01

60 60 6.2017 0.7547 14.21

Table 7.1: Results of numerical experiments.

7.5 Future research

Our proposed method deals only with single stage scenarios. An extension of this

algorithm to generation of scenario trees for multi-stage decision problems and an

implementation of a large scale stochastic programming model demonstrating the

use of this method in financial optimisation are topics of ongoing research. From

a theoretical point of view, the relationship between the proposed optimisation

procedure and the semi-definite optimisation procedures to determine whether a

given vector of moments would be feasible (e.g., as discussed in chapter 16 of [112])

is worth investigating.
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Chapter 8

A new algorithm for latent state

estimation in nonlinear time series

models

In this chapter, we consider the problem of optimal state estimation for a wide class

of nonlinear time series models. A modified sigma point filter is proposed, which

uses a new procedure for generating sigma points as detailed in chapter 7. Unlike

the existing sigma point generation methodologies in engineering where negative

probability weights may occur, we develop an algorithm capable of generating sam-

ple points that always form a valid probability distribution whilst still allowing the

user to sample using a random number generator. The effectiveness of the new

filtering procedure is in turn assessed through simulation examples.

8.1 Introduction

We consider the problem of latent state estimation in discrete, nonlinear time series.

The modelling of financial and economic variables is an important consideration in

the pricing, hedging and optimisation of a portfolio of financial contracts. Many

of the financial models that have been put forward in the finance literature and
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successfully applied in the industry can be encapsulated within the generalised

specification given below. We consider a general class of systems having the state

space form:

X (k + 1) = f (X (k)) + g (X (k))W(k + 1), (8.1)

Y(k) = h (Y(k)) + V(k), (8.2)

where X (k) is the state vector at time tk, Y(k) is the measurement vector at time

tk, f, g,h are given nonlinear (vector-valued) functions and V(k),W(k) are sym-

metric vector-valued random variables with bounded mean, variance and marginal

kurtosis. We assume that tk − tk−1 is constant for all k. At each time tk, the noisy

measurement vector Y(k) is assumed to be available and an estimate of the random

vector X (k) based on information up to (and including) time tk is desired.

Examples, which are special cases of the specification in (8.1), include the constant

elasticity of variance (CEV) model in stock option pricing described in Cox [31]

and several exponential affine term structure models including the Cox, Ingersoll

and Ross model [32] and the mean-reverting Vasicek model [110] amongst others.

The state estimation problems for these nonlinear models are practically impor-

tant and occur in a wide spectrum of research areas such as radar navigation,

climatology, geosciences and financial modeling, amongst others. These problems

can be quite challenging numerically since the optimal recursive solution to the

state estimation problem requires the propagation of full probability density; see

for example, [82], for an approximate solution to a more general nonlinear filtering

problem. In the special case of linear Gaussian state space models, a closed-form

expression exists for the conditional state density and is given by the linear Kalman

filter.

In practice, the current approaches addressing the nonlinear filtering type problems

make use of one of the following ways of approximation:

• One may use the EKF, which utilises local linearisation of equation (8.1). This
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leads to the derivation of a linear state space system and then a Kalman filter

is employed to derive the conditional state density of X (k). This approach

has been used in engineering for more than three decades [75] and has been

extensively discussed in [4], which provides an example of the use of extended

Kalman filtering. EKF works well if the system is, indeed, approximately

linear. This assumption is often extremely difficult to verify. A successful

implementation of EKF for a nonlinear interest rate model is given in [88].

• Another approach for nonlinear filtering is sequential Monte Carlo filtering

(also called particle filtering), where the required density functions are rep-

resented by a set of random samples (or particles) with discrete probability

weights and these samples are then used to compute the necessary conditional

moment estimates. As the number of samples becomes large, the estimate

approaches the optimal Bayesian estimate under fairly general conditions; see

[81], [85], [108] and the references therein for more details on this technique.

Whilst this method can perform significantly better than EKF for highly non-

linear systems, it is computationally quite expensive since a large number of

samples need to be generated at each time tk. Some computational saving is

possible if the system contains a linear substructure which can be dealt with

linear Kalman updates. These marginalised filters, which are the combina-

tion of standard particle fitler by Gordon et al [59] and the Kalman filter by

Kalman [77], have found some applications in engineering; see [78] and the

references therein.

• A modification of EKF in terms of unscented filter or sigma point filter has

become popular in recent years. In [76], a survey of several applications of

sigma point filters in engineering is provided, specifically in communication,

tracking and navigation (also see [54]). Other reported applications of this

filtering technique include the modelling of population dynamics [111] and

state estimation in electrochemical cells for battery management [99]. Ap-

proximate methods to deal with multiplicative uncertainty in the observation
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equation under sigma point filtering framework are discussed in [67]. This

type of filters may be seen as a compromise between an EKF and a particle

filter.

Similar to the propagation equations in EKF, the sigma point filters use

closed-form recursive formulae based on the linear Kalman filter to propagate

the mean and the covariance of state vector. However, the system equations

are not linearised in this case. Instead, a small set of sample points (or sigma

points) is generated and propagated through the nonlinear transformation to

compute the conditional moment estimates. Instead of using a large number

of points and matching the distributions asymptotically (as in a particle fil-

ter), the sigma point filter uses a small set of points which are chosen such

that some of the moment properties of the a priori distribution are matched

exactly. The main problem with this type of filters is that the sample points

do not necessarily define a valid distribution since the weights corresponding

to probability masses are not guaranteed to be non-negative. Furthermore,

the algorithms for generating samples are purely deterministic and do not

allow for a source of randomness in the filtering procedure.

A sigma point filter requires computing the square root of the state covari-

ance matrix at each time step. This may not be computationally feasible if

the number of states is very large, which is the case for most problems in

geosciences. A variant of sigma point filter, usually called the ensemble filter,

is used in geosciences where the state is not sampled at all and only the noise

distributions are sampled using traditional Monte Carlo sampling techniques.

This technique was introduced in [52] and has also been employed in [70]. The

method we propose is closer in spirit to ensemble filters. We discuss the simi-

larities and differences between the two filtering methods, i.e., ensemble filter

vis-a-vis our proposed new method later in section 8.5.

The purpose of this chapter is to propose a new filtering algorithm for state estima-

tion in nonlinear time series which addresses the above-mentioned deficiencies of
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sigma point filters and to assess the performance of this algorithm through numer-

ical examples. The sigma point generation step in this algorithm is adopted from

a recently proposed method for generating samples from a discrete distribution

with specified moment properties [37] which was also presented in chapter 7. The

rest of the chapter is organised as follows. The next section outlines the recursive

equations for a linear Kalman filter, which are then used in the development of

subsequent sections. Section 8.3 outlines the use of the proposed sigma point filter

whilst section 8.4 outlines the underlying algorithm for sigma point generation.

The operation of the algorithm is demonstrated through two examples in section

8.6. Finally, section 8.7 concludes and outlines some directions for future research.

8.2 Linear Kalman filter

For a linear state space system of the form

X (k + 1) = AX (k) +B + UwW(k + 1), (8.3)

Y(k) = CX (k) +D + UvV(k), (8.4)

where A,B,C,D, Uv and Uw are constant matrices, assume that the conditional

expectation X̂ (k | k) and its covariance matrix Pxx(k | k) at time tk (derived after

measuring Y(k)) are known. The Kalman filtering algorithm for finding conditional

moments at the next time tk+1 proceeds as follows.

X̂ (k + 1 | k) = AX̂ (k | k) +B, (8.5)

Pxx(k + 1 | k) = APxx(k | k)A⊤ + UwU
⊤
w , (8.6)

V̂(k + 1) = Y(k + 1) − CX̂ (k + 1 | k) −D, (8.7)

Pxv(k + 1 | k) = APxx(k + 1 | k)C⊤, (8.8)

Pvv(k + 1 | k) = CPxx(k + 1 | k)C⊤ + UvU
⊤
v , (8.9)

128



X̂ (k + 1 | k + 1) = X̂ (k + 1 | k)

+ Pxv(k + 1 | k)P−1
vv (k + 1 | k)V̂(k + 1), (8.10)

Pxx(k + 1 | k + 1) = Pxx(k + 1 | k)

− Pxv(k + 1 | k)Pvv(k + 1 | k)−1Pxv(k + 1 | k)⊤, (8.11)

where X̂ (k + 1 | k) denotes the optimal estimate of X at time k + 1 given the

measurements and other available values up to time k. The terms Pxx, Pxv and Pvv

are covariance matrices under this single factor, single measurement system.

Equation (8.10) is an optimal linear filter in the sense that it yields the minimum

variance over all linear filters even when V(k), W(k) are not Gaussian. When V(k),

W(k) are Gaussian, X̂ (k + 1 | k) is the conditional mean estimator for X (k + 1),

given Y(k). In fact, equation (8.10) may be derived using a standard conditional

mean relationship for two Gaussian variables X ,Z [60]:

E (X | Z) = E (Z) + ΣXZΣ−1
Y Y ,

(
Z − E(Z)

)
, (8.12)

where ΣY Y and ΣXZ are covariance matrices.

The main idea of sigma point filters as well as ensemble filters is to derive approx-

imations to the quantities on the right hand side of (8.10) through sampling the

distributions of V(k) and W(k) and then use the same, closed-form update formula

(8.10), which is known to be optimal for the linear Gaussian case. As mentioned

earlier, the number of generated samples is kept small for computational reasons in-

stead of matching the distributional properties asymptotically with a large number

of samples.

In sigma point filters, certain moment properties of the prior distribution are

matched exactly using determinstic sigma point generation. In ensemble filters on

the other hand, pseudo-random number generators are used to sample the known

distributions of the noise terms.

The next section details the sigma point filtering algorithm outlined above. In
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the meantime, we set aside the question of which statistical properties to match

and assume that a method for generating samples matching appropriate statistical

properties is available. We shall consider the problem of generating samples in

section 8.4.

8.3 A sigma point filter

At time tk+1, assume that sample points (or sigma points)

[

W(i)(k + 1)⊤ V(i)(k + 1)⊤

]⊤
, i = 1, 2, . . . 2ms + 1

are available for the discrete time state space system (8.1) – (8.2), along with the

associated joint probability weights pi, i = 1, 2, . . . s. Here, m is the dimension of

the composite vector

[
W(i)(k + 1)⊤ V(i)(k + 1)⊤

]⊤
.

As will be seen in the next section, some of the probability weights are common

to two or more support points and the set of s probability weights determine the

2ms + 1 support points above. Further, the sample points of the updated state

estimate X (i)(k | k) are available.

Remark 8.1

Note that X (i)(k | k) is not sampled and therefore the joint probability pi for
[

W(i)(k + 1)⊤ V(i)(k + 1)⊤

]⊤
at each i is effectively assigned as the joint proba-

bility of occurrence of

[

W(i)(k + 1)⊤ V(i)(k + 1)⊤X (i)(k | k)⊤
]⊤

. In this respect

the procedure is similar to an ensemble filter.

To initialise the procedure, we assume that X (0) is a random vector with a known

mean, known covariance matrix and zero marginal skewness. The sample points
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X (i)(0 | 0) can be generated from this prior knowledge about the moments of X (0)

using the procedure outlined in section 8.4. For k ≥ 0, the steps involved in the

computation of sigma points at time tk+1 once the measurement Y(k+ 1) becomes

available are as follows:

X (i)(k + 1 | k) = f
(
X (i)(k | k)

)
+ g

(
X (i)(k | k)

)
W(i)(k + 1), (8.13)

Z(i)(k + 1 | k) = h
(
X (i)(k + 1 | k)

)
+ V(i)(k + 1), (8.14)

V̂(i)
Y (k + 1 | k) = Z(i)(k + 1 | k) − Y(k + 1), (8.15)

X̂ (k + 1 | k) =

2ms+1∑

i=1

piX (i)(k + 1 | k), (8.16)

V̂(i)
X (k + 1 | k) = X (i)(k + 1 | k) − X̂ (k + 1 | k), (8.17)

Pxx(k + 1 | k) =
2ms+1∑

i=1

pi

(
V̂(i)
X (k + 1 | k)

)(
V̂(i)
X (k + 1 | k)

)⊤
, (8.18)

Pxv(k + 1 | k) =
2ms+1∑

i=1

pi

(
V̂(i)
X (k + 1 | k)

)(
V̂(i)
Y (k + 1 | k)

)⊤
, (8.19)

Pvv(k + 1 | k) =

2ms+1∑

i=1

pi

(
V̂(i)
Y (k + 1 | k)

)(
V̂(i)
Y (k + 1 | k)

)⊤
, (8.20)

X (i)(k + 1 | k + 1) = X̂ (k + 1 | k)

+ Pxv(k + 1 | k)P−1
vv (k + 1 | k)V̂(i)

Y (k + 1 | k). (8.21)

Note the similarity between equations (8.10) and (8.21). Implementing the above

algorithm yields the sigma points X (i)(k + 1 | k + 1), i = 1, 2, . . . , 2ms + 1. Note

that the heuristics we use to generate the samples for the measurement innovations

V̂(i)
Y (k + 1 | k) is different from the more common approach in the literature on

sigma point filtering, which replaces (8.15) and (8.21) by

V̂(i)
Y (k + 1 | k) = Z(i)(k + 1 | k) − Ẑ(k + 1 | k) (8.22)
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and

X (i)(k + 1 | k + 1) = X̂ (k + 1 | k)

+ Pxv(k + 1 | k)P−1
vv (k + 1 | k)(Z(i)(k + 1 | k) − Y(k + 1))

(8.23)

respectively. In equation (8.22),

Ẑ(k + 1 | k) =
2ms+1∑

i=1

piZ(i)(k + 1 | k).

However, we found that using the heuristics (8.15) and (8.21) in lieu of equations

(8.22) and (8.23) improves the state estimation performance significantly. Intu-

itively, our choice may be justified by the fact that Ẑ(k + 1 | k) is simply an

estimate of Y(k+1) and it makes sense to use the actual measurement value when

it is available rather than using its estimate.

To reiterate the point of this exercise, we can preserve the nonlinearity in the

system dynamics whilst generating the state estimate and can do better than linear

filters without having to resort to the computationally expensive sequential Monte

Carlo-based estimation. In particular, instead of asymptotically generating entire

distributions which requires a large number of samples, we use only a small number

of samples but reproduce some statistical properties exactly.

In the above algorithm, we assume that a procedure to generate a set of sigma

points

[

W(i)(k + 1)⊤ V(i)(k + 1)⊤

]⊤
, i = 1, 2, . . . 2ms+ 1

with the desired mean vector, covariance matrix and zero marginal skewness is

available, and where possible, the desired sum of marginal kurtosis. The next

section outlines such a procedure to generate a symmetric discrete distribution

to match a given mean vector and covariance matrix exactly and also match the
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sum of marginal kurtosis exactly in some cases, without requiring an additional

optimisation.

8.4 Generation of sigma points

8.4.1 Notation

For completeness and to facilitate the discussion, we list the notation used in our

development of the sigma point generation algorithm.

m number of random variables (or dimension of a random vector),

s number of samples,

Φ target mean vector,

R target covariance matrix,

κi target marginal 4th central moment for the ith random variable,

Lij entry in the ith row and jth column of a matrix L,

We aim to generate samples from a symmetric distribution with a specified mean

vector and a specified (positive definite) covariance matrix. In the case of sigma

point filtering algorithm described in the last section, the purpose is to generate

G :=

[

W(i)(k + 1)⊤ V(i)(k + 1)⊤

]⊤
, i = 1, 2, . . . 2ms+ 1,

which match a given mean vector Φ, a given covariance matrix R and have sym-

metric marginal distribution.
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8.4.2 Algorithm for generating sigma points

The algorithm described below is adopted from the scenario generation algorithm

from chapter 7.

(i) Find a symmetric positive definite matrix L such that R = LL⊤. For a

symmetric positive definite R, L is unique. If R has distinct eigenvalues, this

may be found using singular value decomposition.

(ii) If

∑m
i=1 κi∑m

i,j=1(L
4
ij)

> m, generate s− 1 numbers qi ∈ [2ms, ψ], i = 1, 2, . . . , s− 1,

where the constant ψ is given by

ψ =
2s2
∑m

i=1 κi

(s− 1)
∑m

i,j=1(L
4
ij)

− 2ms

s− 1
,

and set qs =
2s2
∑m

i=1 κi∑m
i,j=1(L

4
ij)

−
s−1∑

i=1

qi. It can be easily shown that if

∑m
i=1 κi∑m

i,j=1(L
4
ij)

>

m, it is always possible to choose s such that ψ > 2ms. Further, due to the

definition of the upper bound on qi, it can be shown that qs > 2ms holds. For

a scalar random variable, the constraint
κ1

(L4
11)

> 1 implies that the kurtosis

is greater than unity, which is always true for elliptic distributions [12].

If the condition above is not satisfied, i.e., if ψ ≤ 2ms, generate s numbers

qi ∈ [2ms,∞], i = 1, 2, . . . , s−1. Given its lower bound and (possibly) upper

bound in either case, qi may be generated using any deterministic algorithm

or using a random number generator.

(iii) Set pi =
1

qi
, i = 1, 2, . . . , s and ps+1 = 1 − 2m

s∑

i=1

pi.

(iv) Define a multivariate discrete distribution G over a support of 2ms+1 points

as follows:

P

(
G = Φ +

1√
2spi

Lj

)
= P

(
G = Φ − 1√

2spi

Lj

)
= pi,

j = 1, 2, . . . , m, i = 1, 2, . . . , s,

P (G = Φ) = ps+1,

(8.24)
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where Lj denotes the jth column of a matrix L.

Steps (i)-(iv) constitute the entire set of procedures needed to construct the required

samples. Step (i) need not be repeated in a sequential procedure, if the covariance

matrix is to remain the same through multiple time steps. This is practically

important since noise covariance matrices are usually assumed to be constant and

they need not be factorised at each time step during the filtering.

The following result collects together the distributional properties of these samples.

Theorem 8.2

(i). For pi defined as above, pi ≥ 0, i = 1, 2, . . . , s and 2m
∑s

i=1 pi + ps+1 = 1.

(ii). For G defined as above,

E[G] = Φ, (8.25)

E
[
(G − Φ)(G − Φ)⊤

]
= R, (8.26)

E
[
(Gi − Φi)

3
]

= 0. (8.27)

Furthermore, if ψ > 2ms holds,

m∑

i=1

|κi − E (Gi − Φi)
4 | =

m∑

i=1

κi. (8.28)

Proof

Since qi ≥ 2ms, i = 1, 2 . . . , s, and ps+1 = 1 − 2n

s∑

i=1

pi by definition, we need to

show that ps+1 ≥ 0 for part (i) to hold. This follows by noting that

ps+1 ≥ 1 − 2ms
1

mini qi
≥ 0.

As far as part (ii) of Theorem 8.2 is concerned, equations (8.25) and (8.27) are

immediate due to the symmetry of the support points around the target mean
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vector Φ. Equation (8.26) follows by noting that

E
[
(G − Φ)(G − Φ)⊤

]
= 2

s∑

i=1

pi
1

2spi

(
m∑

j=1

LjL
⊤
j

)
=

m∑

j=1

LjL
⊤
j = R.

Finally,

E
[
(Gi − Φi)

4
]

=
s∑

k=1

pk
1

2p2
ks

2

m∑

j=1

L4
ij =

(
s∑

k=1

qk

)
1

2s2

(
m∑

j=1

L4
ij

)
,

so that, when ψ > 2ms holds,

m∑

i=1

E
[
(Gi − Φi)

4
]

=
m∑

i=1

κi,

where the last equality follows from the definition of qs in step (ii) of the algorithm.

�

Theorem 8.2 and its proof above demonstrate one of the main advantages of our

method: provided that the weights pi form a valid probability measure, their exact

values have no impact on the exact matching of Φ and R. In particular, pi’s get

cancelled in forming the covariance matrix from the support points and the asso-

ciated probability weights of G. If G(k) itself represents a discrete time stochastic

process, this crucial fact allows us to choose random probability weights {pi} within

the specified bounds,

(
1

2ms
,
1

ψ

)
or

(
1

2ms
,

)
, at each time k, thereby generating

a different realization of G(k) at each time k. Of course, we may choose to use

deterministic pi’s instead if desired.

8.5 What is new in our approach?

The filtering algorithm described in section 8.3 is similar to various sigma point and

ensemble filtering algorithms described elsewhere. However, the sampling approach

involved in our method differs radically from those of others as described in section

8.4. The main differences between sample generation methods in traditional sigma
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point filters and the filter using the proposed sampling method, which we shall

henceforth refer to as modified sigma point filter (MSPF) are as follows.

• In the existing methods, the sigma points or samples generated do not neces-

sarily form a valid probability distribution, as some of the probability weights

can be negative. This puts the probabilistic interpretation of the whole pro-

cedure into question. This problem does not arise in MSPF as can be seen

from part (ii) of the Theorem 8.2.

• The existing sigma point generation algorithms are deterministic, with no

way of incorporating random behaviour. The randomness may be desirable

to reflect the real dynamics of the system, especially when the system is

assumed to have explicit sources of randomness. This is especially true when

modelling econometric or financial time series. As mentioned earlier, we

have the flexibility of using either a deterministic or probabilistic sigma point

generation in our algorithm since qi may be generated in either way.

• We can also match the sum of fourth marginal central moments in cases

when the condition ψ > 2ms holds, as detailed in section 8.2. This criterion

will often hold for a system with a single measurement and a single state.

In case it does not hold, it is possible to minimise the worst case error in

matching the marginal fourth central moments of the components of G using

a convex optimisation procedure. The details of this procedure were described

in chapter 7 and hence are omitted here.

• Similar to ensemble filters, we do not sample the state X (k | k). This makes

intuitive sense since we are sampling all the exogenous sources of randomness

and X (k | k) is simply a function of these exogenous random processes. This

has also a very significant computational advantage over traditional sigma

point filters in terms of not having to compute a new matrix square root

of a covariance matrix at each time step (which would be the case if we

were sampling X (k | k)). The ensemble filters, however, use random number
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generators with the specified distributional properties to generate samples for

[

W(i)(k + 1)⊤ V(i)(k + 1)⊤

]⊤

and then use the corresponding sample mean and the sample covariances in

(8.21). However, sampling from an underlying distribution with a very small

number of samples and then using the sample moments may yield misleading

results and it may be better to match a few moments exactly instead, which

is what the MSPF is designed to do.

MSPF integrates the numerical simplicity of the ensemble filter with the exact

moment matching of the traditional sigma point filter. Additionally, it extends the

moment matching method in traditional sigma point filters beyond matching the

mean vector and the covariance matrix. In MSPF, the third marginal moment is

matched exactly in all cases and the sum of the fourth marginal moments can also

be matched exactly in some cases. Achieving even approximate matching of these

higher moments in the case of existing sigma point generation algorithms requires

non-convex optimisation.

8.6 Numerical examples

We consider two different examples to illustrate the proposed filtering method.

8.6.1 CEV-type time series model

The first numerical example is a nonlinear, non-Gaussian time series given by

x(k + 1) = ax(k) + b+ σw

{
(x(k))2

} γ
2 w(k + 1),

y(k + 1) = cx(k) + d+ σvv(k + 1). (8.29)
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Examples of the specification in (8.29) include the constant elasticity of variance

(CEV) model in stock option pricing described in Cox [31] and several exponential

affine term structure models including the Cox, Ingersoll and Ross model [32]. We

consider a univariate example for simplicity. The parameters of the model are

a = 0.9, b = 0.1, σw = 0.01, c = 1, d = 0.1, σv = 0.01. The noise terms w(k + 1)

and v(k+1) are IID with standard normal distribution. We consider three different

values for γ: γ = 0.125, 0.25, 0.375. Sample paths of the state x and observation

y are generated by sampling w(k) and v(k). Based on the observation sample

path, we wish to see whether we can predict x(k+1|k) accurately using the MSPF

method proposed here and we also would like to compare its predictive ability with

that of the EKF and the ensemble filter. As a measure of performance of a filter,

we consider the average of root mean squared error (AvRMSE) in one-step ahead

predictions. The root mean squared error (RMSE) for a filter and for a particular

sample path i is given by

RMSE(i) =

√√√√ 1

T

T∑

k=1

(x(i)(k + 1) − x̂(i)(k + 1|k))2
,

where the superscript i denotes the ith sample path and T is the time horizon.

AvRMSE, as the sample mean 1
S

∑S
i=1RMSE(i), and VarRMSE as the correspond-

ing sample variance,

VarRMSE =
1

S − 1

S∑

i=1

(
RMSE(i) − AvRMSE

)2
,

are computed over S = 100 sample paths with each path consisting of T = 100 time

steps. At each time step, only 10 samples or sigma points are generated. Table

8.1 illustrates the results of this error analysis. We see that the MSPF yields the

lowest AvRMSE and the lowest VarRMSE amongst the three filtering methods,

for all values of γ. Moreover, the VarRMSE is the lowest for MSPF. Whilst the

difference in the performance of ensemble filter and MSPF as measured by AvRMSE

is small, MSPF has far more predictable MSE, as indicated by significantly lower
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VarRMSE.

Filtering method γ

0.125 0.25 0.375

EKF AvRMSE 2.9563 × 10−2 2.9584 × 10−2 2.9606 × 10−2

VarRMSE 8.8845 × 10−5 8.9478 × 10−5 9.0154 × 10−5

Ensemble filter AvRMSE 2.6251 × 10−2 2.6258 × 10−2 2.6267 × 10−2

VarRMSE 3.9879 × 10−5 3.9882 × 10−5 3.9916 × 10−5

MSPF AvRMSE 2.4960 × 10−2 2.4967 × 10−2 2.4974 × 10−2

VarRMSE 2.7946 × 10−5 2.7888 × 10−5 2.7859 × 10−5

Table 8.1: Comparison of prediction errors using different filters for system in (8.29)
for a specific filter and a value of γ.

8.6.2 Univariate non-stationary growth model

The second numerical example is a univariate non-stationary growth model given

by

x(k) = αx(k − 1) + β
x(k − 1)

1 + x2(k − 1)
+ γ cos(1.2(k − 1)) + σww(k), (8.30)

y(k) =
x2(k)

20
+ σvv(k), (8.31)

where v(k) are IID N(0, 1) random variables and w(k) are IID random variables

with a zero mean and unit variance following a t-distribution having 10 degrees

of freedom. A nonlinear model of this type was discussed in [27] and [80], where

amongst other things, it was shown to exhibit a long memory property.

We use the parameters α = 0.5, β = 28, γ = 8, σw = 0.1, σv = 0.1. In this case,

we compare the performance of the ensemble filter and MSPF for one-step ahead

predictions, using AvRMSE and VarRMSE as defined in the previous example.

As in the previous case, AvRMSE is computed over 100 sample paths; each path

consisting of 100 time steps, and 10 sigma points are generated at each time step.

The AvRMSE for MSPF is 0.61172 whilst that for the ensemble filter is 0.61558.
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The VarRMSE for MSPF is 0.00028 whilst that for the ensemble filter is 0.00107.

As in the previous example, it is seen that the proposed method outperforms the

ensemble filter, with a lower AvRMSE and a lower VarRMSE.

Whilst VarRMSE reflects variation of RMSE across different sample paths, it is

also worthwhile to comment on the variation in one-step ahead prediction errors

across different time steps along the same sample path. Even though both the

filtering methods, viz. ensemble filter and MSPF use a small number of randomly

generated samples for computing moments, the samples in MSPF are likely to yield

locally closer predictions due to moment matching constraints. To illustrate this

point, a plot of a simulated sample path (denoted by a blue solid line) and the plot

corresponding to the one step-ahead predictions, using MSPF (denoted by green

dashed line) are depicted in Figure 8.1, whilst the same sample path and one-

step ahead predictions using ensemble filter are plotted in Figure 8.2. Indeed, this

intuition is confirmed by comparing Figures 8.1 and 8.2 and observing the contrast

between the behaviours of the two predictions occurring most notably within the

first 20 time steps.

We do not compare the methods with a linearised filter in this example since the

system is too nonlinear for a local linearisation procedure to be effective.

8.7 Concluding remarks

We have developed a modified sigma point filtering algorithm for nonlinear and

non-Gaussian systems. This algorithm combines the numerical simplicity of the

ensemble filter (in the sense that the state covariance matrix need not be factorised)

along with the exact moment matching properties of the traditional sigma point

filter. Furthermore, whilst the traditional sigma point filtering methods match

only the first two moments, the exact moment matching is extended to three and

in some cases four moments in the MSPF. The use of the algorithm is demonstrated

through numerical examples.
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Figure 8.1: Plot of simulated sample paths and one step-ahead prediction for uni-
variate non-stationary growth model using MSPF.
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Figure 8.2: Plot of simulated sample paths and one step-ahead prediction for uni-
variate non-stationary growth model using Ensemble filter.
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To the best of our knowledge, sigma point filters have not been adopted widely by

researchers in fields such as econometrics, finance and actuarial science. We feel that

with the methodology we develop in this paper that addresses some of the major

shortcomings of sigma point filters, the method of sigma point filtering will be more

attractive and useful to researchers and practitioners alike in these fields of research.

The proposed method further provides a very useful alternative to traditional sigma

point filters in engineering and ensemble filters in geosciences. In both of these fields

of research, speed of computation for nonlinear filtering is crucial. In engineering,

the time steps can be too small to allow intensive computation in filtering, whilst in

geosciences, the typical number of states is too large to carry out a Monte-Carlo-

based filtering. The proposed algorithm fills in the gap left by sigma point and

Monte-Carlo-based filtering.
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Chapter 9

A partially linearised sigma point

filter for latent state estimation in

nonlinear time series models

We propose an alternative technique for the optimal state estimation of a wide class

of nonlinear time series models. In particular, we develop a partially linearised

sigma point filter in which sigma points for generating samples of possible state

values are employed at the prediction step and then a linear programming-based

procedure is used in the update step of the state estimation. The effectiveness of

the new filtering procedure is assessed via a simulation example that deals with a

highly nonlinear, multivariate interest rate process.

9.1 Introduction

This chapter is concerned with the problem of latent state estimation for a nonlinear

time series in discrete time. As in chapter 8, our analysis will focus on the general
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class of systems with the state space form:

X (k + 1) = f (X (k)) + g (X (k))W(k + 1), (9.1)

Y(k) = h (Y(k)) + V(k), (9.2)

where X (k) and Y(k) are the respective state vector and measurement vector at

time tk; f, g and h are given nonlinear (vector-valued) functions, and both V(k) and

W(k) are symmetric vector-valued random variables. The time increment tk − tk−1

is assumed constant for all k. Moreover, we assume the noisy measurement vector

Y(k) is available for every tk. We wish to find an estimate of the random vector

X (k) based on information up to (and including) time tk.

Current approaches in practice designed to address the nonlinear filtering type

problems usually fall under one of the following approximation methods:

• Extended Kalman filter (EKF),

• Sequential Monte Carlo filtering,

• Unscented filter.

More details and a brief description of the above listed approximation methods

were provided in chapter 8, specifically in section 8.1.

The sigma point filters use closed-form recursive formulae based on the linear

Kalman filter to propagate the mean and the covariance of state vector; this is

essentially similar to the propagation equations in EKF. The system equations,

nonetheless, are not linearised in this case. A small set of sample points (or sigma

points) is generated and propagated through the nonlinear transformation to com-

pute the conditional moment estimates. In lieu of using a large number of points

and matching the distributions asymptotically (as in a particle filter), the sigma

point filter uses a small set of points which are chosen such that some of the mo-

ment properties of the a priori distribution are matched exactly. Whilst these filters
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have prevailed in engineering, they suffer from several shortcomings as elaborated

below:

1. The weights corresponding to probability masses are not guaranteed to be

non-negative. Thus, the sample points generated in these filters do not nec-

essarily define a valid distribution.

2. There is no source of randomness in the filtering procedure because the algo-

rithms for generating samples are purely deterministic.

3. The computation of a square root of the state covariance matrix at each time-

step is required in a sigma point filter. If the number of states is very large,

this would present a hurdle in its computational feasibility. This is usually the

case for most problems in geosciences. The ensemble filter, a variant of sigma

point filter, is commonly used in geosciences under which the state is often

not sampled but only the noise distributions are sampled via the traditional

Monte Carlo sampling techniques. This technique was developed in [52] and

could also be found in [70]. A review of ensemble filtering techniques appears

in [53]. However, as indicated in chapter 8, using a small number of samples

(typically around 10) as a discrete proxy for a continuous distribution may

lead to misleading results.

4. Lastly, Kalman filter has a very clear interpretation only in the linear case.

For linear Gaussian systems, Kalman filter is a conditional mean estimator. It

is worth recalling that even when V(k) and W(k) are not Gaussian, Kalman

filter is an optimal linear filter, in the sense that it yields the minimum vari-

ance over all linear filters. However, neither of these properties are relevant

if the system is nonlinear. As well, the motivation of using Kalman filtering

state estimator equations based on (8.12) is not always clear.

The first three shortcomings listed above were addressed in chapter 8, where a new

sigma point generation procedure was employed to match the first three moments

exactly (as in the case of sigma point filters) at the same time using randomly
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generated samples (as in the case of ensemble filters). However, in the previous

chapter we were still using a formula based on (8.12) for the update step in filter-

ing. The purpose of this chapter is to present an alternative heuristic for the state

estimation of a nonlinear time series which does not use (8.12) in state estimation

at all and and seeks a state estimate which best matches the observations in an

appropriate deterministic sense. The algorithm uses linearised measurement equa-

tion but preserves the nonlinearity of the state evolution equation. Hence, we shall

refer to this new filter as partially linearised sigma point filter (PLSPF).

In PLSPF, we generate samples of exogenous noise in the state evolution equation

(9.1) using the exact moment-matching procedure from chapter 7. These noise

samples are used to obtain samples of state prediction. The measurement equation

is linearised (similar to EKF) and a set of linear programming problems is solved

to obtain samples of the updated state which best match the observations.

This chapter is organised as follows. Section 9.2 sets out the algorithm in imple-

menting the partially linearised sigma point filter whilst section 9.3 outlines briefly

the underlying algorithm for sigma point generation. We include a demonstration

of the algorithm’s operation through a numerical example in section 9.4. More

specifically, we illustrate the filtering procedure with a multivariate, nonlinear time

series. Finally, some concluding remarks and certain directions for future research

are given in section 9.5.

9.2 A partially linearised sigma point filter

Suppose at time tk+1, the sample points (or sigma points)

W(i)(k + 1), i ∈ {1, 2, . . . , 2ms+ 1}

are available for the discrete time state space system (9.1) – (9.2) together with

their associated probability weights pi, i ∈ {1, 2, . . . , 2ms + 1}. Here, m is the

dimension of the vector W(k) (or in other words, the dimension of the state space
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in (9.1)). We assume that the collection of samples W(i)(k + 1) matches a given

mean vector, covariance matrix and zero marginal skewness. The discussion of how

to generate W(i)(k + 1) is postponed until the next section.

A set of s probability weights determines the 2ms+1 support points above; details

are given in the next section. In addition, the sample points of the updated state

estimate X (i)(k | k) are assumed to be available at time tk+1.

Remark 9.1

Note that similar to the procedure described in the previous chapter X (i)(k | k) is

not sampled. The joint probability for
[
W(i)(k + 1)⊤ V(i)(k + 1)⊤

]⊤
is at each i

effectively assigned as the joint probability of occurence of
[
W(i)(k + 1)⊤ V(i)(k +

1)⊤ X (i)(k | k)
]⊤

. In this respect our algorithm is similar to an ensemble filter.

We assume that X (0) is a random vector with a known mean, known covariance

matrix and zero marginal skewness in the initialisation stage of the procedure.

Section 9.3 describes a procedure that can be employed to generate the sample

points X (i)(0 | 0) from a prior knowledge about the moments of X (0). For k ≥ 0

and whenever the measurement Y(k + 1) becomes available, we present the steps

in the computation of sigma points at time tk+1:

X (i)(k + 1 | k) = f
(
X (i)(k | k)

)
+ g

(
X (i)(k | k)

)
W(i)(k + 1) (9.3)

V̂(i)
Y (k + 1 | k) = Y(k + 1) − h

(
X (i)(k + 1 | k)

)
(9.4)

X̂ (k + 1 | k) =
2ms+1∑

i=1

piX (i)(k + 1 | k) (9.5)

δ̂(i)(k + 1 | k + 1) =

arg min
δ(i)(k+1|k+1)

||V̂(i)
Y (k + 1 | k) −H(i)(k + 1 | k)δ(i)(k + 1 | k + 1)||1 (9.6)

X (i)(k + 1 | k + 1) = X (i)(k + 1 | k) + δ̂(i)(k + 1 | k + 1) (9.7)

X̂ (k + 1 | k + 1) =
2ms+1∑

i=1

piX (i)(k + 1 | k + 1), (9.8)

where the gradient matrix H(i)(k + 1 | k) for the vector valued function h at time
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tk+1 is defined by

[
H(i)(k + 1 | k)

]
jl

=
∂hj

Xl

∣∣∣∣
X (i)(k+1|k)

and || · ||1 denotes the 1-norm of a vector (which equals the summation of absolute

values of all elements).

Implementing the above algorithm yields the sigma points X (i)(k + 1 | k + 1),

i ∈ {1, 2, . . . , 2ms + 1}, along with the expected values of the predicted and the

updated state estimate, i.e., X̂ (k + 1 | k) and X̂ (k + 1 | k + 1), respectively. Note

that the 1-norm minimisation in (9.6) can be achieved by linear programming (LP).

If ǫ̂(i) is the minimum cost and if δ̂(i)(k+ 1 | k+ 1) are the decision variables which

achieve this minimum, it is easy to see that there exists V(i)(k + 1) such that

Y(k + 1) = h
(
X (i)(k + 1 | k)

)
+H(i)(k + 1 | k)δ(i)(k + 1 | k + 1) + V(i)(k + 1)

holds and

||V(i)(k + 1)||1 ≤ ǫ̂(i).

In other words, corresponding to each X (i)(k + 1 | k), the procedure finds (vector-

valued) measurement noise which causes the smallest error as measured by the

1-norm between the linearised prediction of h(·) around X (i)(k + 1 | k) and the

actual observation Y(k + 1).

We re-emphasise that the main idea of this exercise is to preserve some of the

nonlinearity in the system dynamics whilst generating the state estimate and can

(possibly) do better than the EKF without having to resort to the computationally

expensive sequential Monte Carlo-based estimation. Note that solving a small

number of LP-based optimisation problems withm decision variables will usually be

cheaper than doing a Monte Carlo simulation with m correlated random variables.

LP problems can be solved extremely effciently (theoretically, in polynomial time)
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and several good LP solvers are commercially available; see [105] for more details

on linear programming algorithms. Solving an LP problem with several hundred

variables and constraints in a few seconds on an ordinary desktop is a reasonable

expectation given today’s technological advancement in computing. Furthermore,

this procedure eliminates the need of knowing the information about the parametric

form of distribution of the measurement noise, which is not always available.

Finally, the special case when h is linear is worth mentioning. When h is linear,

H is a constant matrix and the measurement equation can be written as

Y(k + 1) = HX (k + 1) + V(k + 1).

In this case, the 1-norm minimisation problem

min
X (k+1|k+1)

||Y(k + 1) −HX (k + 1 | k + 1)||1

has a unique solution. One simply needs to solve this single linear programming

problem and need not use the samples X (i)(k+1 | k) in computing X (k+1 | k+1).

Moreover,

X (i)(k + 1 | k + 1) = X (j)(k + 1 | k + 1) =: X̂ (k + 1 | k + 1)

holds. The sampling procedure is still required for W(i)(k + 1) if the expected

value of prediction, X̂ (k + 1 | k), in (9.5) needs to be predicted. Time series

models with nonlinear f and g in (9.1), but a linear h in (9.2) commonly occur in

financial economics and econometrics. The most prominent class of models with

this structure includes the Cox-Ingersoll-Ross (CIR) model, which is employed to

model interest rates. This popular class of models has been widely discussed in

the literature; see [32] and [57], amongst others. The instantaneously compounded

interest rate in these types of models is unobservable and has to be inferred from

observed interest rates using a nonlinear filter; see [57] for the use of EKF in CIR-

type interest rate models. Clearly, the algorithm proposed here can provide an
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intuitively attractive and computationally affordable alternative to EKF, which

does not rely on linearisation of the state evolution equation.

In the above algorithm, we assume that a procedure to generate a set of sigma

points W(i)(k+1) for i ∈ {1, 2, . . . , 2ms+1} with the desired statistical properties

is available. The next section outlines such a procedure in generating a symmet-

ric discrete distribution that matches a given mean vector and covariance matrix

exactly without requiring an additional optimisation. This procedure was first sug-

gested in chapter 7 and was used in nonlinear filtering context in chapter 8. A very

brief summary of this procedure is provided here for a self-contained presentation

of our proposed method in latent state estimation.

9.3 Generation of sigma points

Our aim is to generate samples from a symmetric distribution with a specified

mean vector and a specified (positive definite) covariance matrix. The sigma point

generation algorithm given in the next subsection forms a part of the filtering

procedure described in section 9.2, as it is used to generate G := W(i)(k + 1), for

i ∈ {1, 2, . . . , 2ms + 1} which match a given mean vector Φ, a given covariance

matrix R and have a symmetric marginal distribution.

As mentioned before, a brief outline of sigma point generation will be provided

here for a complete presentation. A more thorough elaboration of the algorithm

together with the notation is given in section 8.4. All notation used here correspond

to the ones already defined in the previous chapter.

Below is a short and general description of the algorithm for sigma point generation.

1. Decompose a matrix R as R = LL⊤ where L is a symmetric positive definite

matrix. For a symmetric positive definite R, L is unique.

2. Generate an s number of qi ∈ [2ms, 1] for i ∈ {1, 2, . . . , s− 1}. The qi’s may

be generated using any deterministic algorithm or using a random number

generator.
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3. Write pi := 1
qi

for i ∈ {1, 2, . . . , s} and ps+1 := 1 − 2m
∑s

i=1 pi.

4. Define a multivariate discrete distribution G over a support of 2ms+1 points

as follows:

P

(
G = Φ +

1√
2spi

Lj

)
= P

(
G = Φ − 1√

2spi

Lj

)
= pi,

j = 1, 2, . . . , m, i = 1, 2, . . . , s,

P (G = Φ) = ps+1.

(9.9)

where Lj denotes the jth column of a matrix L.

Steps 1 – 4 comprise of the procedure to generate sigma points having Φ as the mean

vector, R as the covariance matrix and zero marginal skewness. In sequential state

estimation, step 1 is not necessary to be repeated when the covariance matrix has

to remain the same throughout multiple time steps. In various important practical

applications, the noise covariance matrices are usually assumed to be constant.

Hence, they need not be factorised at each time step in the filtering process.

The distributional properties of these samples are summarised in Theorem 8.2. In

particular, Theorem 8.2 demonstrates one of the main advantages of our method.

In particular, provided that the weights pi form a valid probability measure, their

exact values have no impact on the exact matching of Φ and R. Note that pi’s

get cancelled in forming the covariance matrix from the support points and the

associated probability weights of G. A notable fact to mention is that in situations

where G(k) itself represents a discrete time stochastic process, we could choose

random probability weights {pi} within the specified bounds (0, 1
2ns

) at each time

k, thereby generating a different realization of G(k) at each time k. Of course, we

may choose to use deterministic pi’s instead if desired.
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9.4 Numerical example

We consider an Euler-discretised version of a 2-factor, square root affine interest

rate model as described in [57] to demonstrate the implementation of the new

filtering method. This model is a generalisation of the CIR model first proposed in

[32]. In this model, the two unobservable states X1(k) and X2(k) are assumed to

evolve according to the equation

Xj(k + 1) = κjθj∆ + (1 − κj∆)Xj(k)

+ σj

√
Xj(k)∆Wj(k + 1), for j ∈ {1, 2},

(9.10)

where W1(k) and W2(k) are independent standard normal random variables at

each time tk and ∆ := tk − tk−1. The time period between two successive samples

∆ = 1/250 is assumed to be constant. The measurement functions of these states,

Yi(k), are given by

Yi(k) =

2∏

j=1

Ai,j exp

(
−

2∑

j=1

Bi,jXj(k)

)
+ Vi(k), (9.11)

where

Ai,j =

(
2φj,1 exp

(
φj,2

Ti

2

)

φj,4

)φj,3

and Bi,j =
2
(
exp(φj,1Ti) − 1

)

φj,4
.

In addition,

φj,1 =
√

(κj + λj)2 + 2σ2
j

φj,2 = κj + λj + φj,1

φj,3 =
2κjθj

σ2
j

φj,4 = 2φj,1 + φj,2

(
exp(φj,1Ti) − 1

)
.

In these equations, κj , θj σj and λj are constants. Here, Ti is a non-negative num-
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ber which, in practice, represents the time to maturity of a pure discount bond and

Yi(k) is the corresponding price of the bond at time tk. Note that each Ti only

appears in the measurement equation for Yi(k). We assume that the bond prices

Y1(k), Y2(k), etc are observed in noise Vi(k) which is assumed to be bounded and

have a mean of zero.

Remark 9.2

One may use − log(Yi(k)) as a measurement, which yields a linear measurement

equation in Xj(k). We shall use Yi(k) as a measurement to illustrate the perfor-

mance of the proposed filter wherein the state space system involves a nonlinear

unobservable dynamics as well as a nonlinear measurement equation.

The parameters used for this model are the same as those used in the numerical

demonstration in [57] and are presented in Table 9.1.

κ1 0.0718 σ1 0.2160

κ2 0.7830 σ1 1.2200

θ1 4.3000 λ1 -0.2130

θ2 1.6400 λ2 -0.9140

Table 9.1: Parameters in the implementation of the system specified in (9.10) –
(9.11).

We use T1 = 0.5, T2 = 1, T3 = 2 and employ the corresponding Y1(k), Y2(k)

and Y3(k) as the observations at each time tk. This gives a two-state, three-

measurement state space system. Based on a simulated observation sample path,

we wish to see whether we can predict Yi(k + 1 | k) at each tk accurately, where

Yi(k + 1 | k) =

4s+1∑

l=1

pl

2∏

j=1

Ai,j exp

(
−

2∑

j=1

Bi,jX (l)
j (k + 1 | k)

)

is the predicted bond price. Here, 4s + 1 is the total number of sigma points for

W(i)(k+1) (since m = 2) and pl’s are the corresponding 4s+1 probability weights.
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We would like to compare the predictive ability of the PLSPF proposed here to

that of the EKF. At time tk + 1, EKF uses linearised versions of equations (9.10)

– (9.11) around the updated state estimate X̂ (k | k) at time tk and then uses the

standard Kalman filter for state prediction and update. The formulae for the EKF

based on

E (X | Z) = E (X ) + ΣXZΣ−1
ZZ

(
Z − E(Z)

)

are not repeated here; they are provided in chapter 8.

To measure the performance of a filter, we consider the average of root mean

squared error (AvRMSE) as well as the average of mean relative absolute error

(AvMRAE) in one-step ahead predictions. The root mean squared error (RMSE)

for a measurement Yj and for a particular sample path i is given by

RMSE(i,j) =

√√√√ 1

T

T∑

k=1

((
Yj(k + 1)

)
i
−
(
Yj(k + 1 | k)

)
i

)2

,

where T is the time horizon. Here,
(
Yj(k + 1)

)
i

(respectively,
(
Yj(k + 1 | k)

)
i
)

denotes the noisy observation of bond price, Yj(k+ 1) (respectively, the prediction

of bond price, Yj(k + 1 | k)) for the i-th sample path. AvRMSEj is computed as

the sample mean of RMSE(i,j) over different sample paths i, that is,

AvRMSEj =
1

S

S∑

i=1

RMSE(i,j) for j ∈ {1, 2, 3}.

In a similar fashion, MRAE for measurement Yj and sample path i is defined by

MRAE(i,j) =
1

T

T∑

k=1

∣∣(Yj(k + 1)
)

i
−
(
Yj(k + 1 | k)

)
i

∣∣
(
Yj(k + 1)

)
i
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and AvMRAEj is computed as the sample mean of MRAE(i,j) over different sample

paths i, i.e.,

AvMRAEj =
1

S

S∑

i=1

MRAE(i,j) for j ∈ {1, 2, 3}.

Both these functions of prediction error, AvRMSEj and AvMRAEj , are computed

over S = 100 sample paths, with each path consisting of T = 250 time steps, for

each of the three measurements Y1(k), Y2(k) and Y3(k). At each time step only 13

samples or sigma points are generated, which corresponds to choosing s = 3 for the

algorithm in section 9.3. The results of this error analysis for PLSPF are reported in

Table 9.2. Figure 9.1, on the other hand, displays a graphical comparison between

the simulated Yi(k) (blue, solid line) and the predicted Yj(k + 1 | k) (green, solid

line) for one particular sample path. The mean computation time per sample path

for PLSPF is 65.88 seconds, with the maximum time per sample path being 71.03

seconds. In other words, the performance with PLSPF is achieved at the cost of

only around 0.27 seconds per time step. The experiments were also repeated for

four measurements and three states and the mean computation time per sample

path in this case is 117.15 seconds, with the maximum time per sample path at

129.32 seconds. The results of error analysis for the case of four measurements

and three states are reported in Table 9.3. This computation was carried out

on a desktop with Pentium IV core duo processor (2.4 Ghz), running MATLAB

version R2007b on Windows XP. The computation time can easily be improved by

employing a purpose-written optimisation code or a higher specification machine.

Clearly, this computation time is affordable even for real time processing involving

applications where the estimation of state dynamics is suffciently slow, such as

on-line estimation problems in many chemical processes.

The state estimation results with EKF in the present example are significantly

worse, with the filter diverging in 60 out of 100 sample paths and yielding extremely

large errors. The average errors over the remaining 40 sample paths are still high,

156



j = 1 j = 2 j = 3

AvMRAEj 0.000498 0.000589 0.000795

AvRMSEj 0.000525 0.000616 0.000764

Table 9.2: Average errors in predicting Yj(k + 1) with PLSPF for three measure-
ment, two-state case (average over 100 sample paths, with 250 time steps in each
sample path).

j = 1 j = 2 j = 3 j = 4

AvMRAEj 0.000690 0.000960 0.001941 0.002954

AvRMSEj 0.000468 0.000665 0.001394 0.002174

Table 9.3: Average errors in predicting Yj(k+1) with PLSPF for four measurement,
three-state case (average over 100 samplepaths, with 250 time steps in each sample
path).
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Figure 9.1: Prediction for Y1(k + 1), Y2(k + 1) and Y3(k + 1) using PLSPF.
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even with the lowest average error being over ten times the corresponding error

with the PLSPF, as can be seen from Table 9.4.

j = 1 j = 2 j = 3

AvMRAEj 0.006915 0.014729 0.034515

AvRMSEj 0.013974 0.030556 0.074106

Table 9.4: Average errors in predicting Yj(k+1) with EKF (average over 40 sample
paths on which the filter did not diverge, with 250 time-steps in each sample path).

These numerical experiments clearly indicate the superiority of the proposed algo-

rithm over the EKF for nonlinear systems of the form (9.1), in the case when the

measurement equation is sufficiently smooth.

9.5 Concluding remarks

In this chapter, we put forward new filtering heuristics for nonlinear and non-

Gaussian systems, which we refer to as PLSPF. This algorithm shares some of the

advantages of the modified sigma point filter proposed in chapter 8, in the sense that

the state covariance matrix need not be factorised at each step and the first three

moments are exactly matched. However, unlike conventional sigma point filters,

the state update step in PLSPF does not use closed-form formula based on the

Gaussianity assumption. Instead, a simple and intuitively appealing optimisation

is utilised where the measurement equation is linearised and the updated state

which best matches the given observations in an appropriate deterministic sense is

found. We demonstrated the implementation of the algorithm through a detailed

numerical example involving a nonlinear, multivariate time series. As shown, the

proposed method is a computationally simpler and attractive alternative to particle

filtering for nonlinear time series in econometrics. Furthermore, it also provides a

very useful alternative to traditional sigma point filters in engineering and ensemble

filters in geosciences.
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Chapter 10

Conclusions and directions for

future research

10.1 Summary of contributions

In this thesis, various filtering approaches were put forward and multiple extensions

as well as new methods proposed. The first part of this thesis focuses on the analysis

of models where the noisy observation process, which can either be univariate

or multivariate, is driven by a Markov chain. Such models, also called regime-

switching models, are extremely flexible allowing model parameters to take values

in accordance with the dynamic changes in different regimes or states of an economy.

The main area of focus here was on parameter estimation. Throughout the entire

process of estimating parameters, the change of probability measure technique in

conjunction with the application of Bayes’ theorem and the EM algorithm was

employed. We provided refined, extended and new HMM-based optimal parameter

estimation procedures via the development of adaptive filters both in the univariate

and multivariate cases. In particular, the parameter updating expressions were

given for the case where the drift and volatility have independent probabilistic

behaviour for both univariate and multivariate observation settings. In addition,

we explored how non-normal noise distributions affect the filtering process. More
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specifically the formulae for updating the parameters of the model were derived

when the noise term has a student’s t-distributed noise term. Numerical examples

were included to illustrate the applicability of the filters to financial and mortality

data.

The second part of this thesis moves away from Markov chain filtering and deals

with filtering methods for general nonlinear time series. It addresses problems em-

bedded in extended Kalman filtering and its modifications when these are applied

to highly nonlinear observations. Specifically, we examined unscented or sigma

point filtering which has become popular in the recent years. Chapter 7.1 outlines

the standard Kalman filter as well as its extensions, the extended Kalman filter and

unscented Kalman filter. In addition, the similarities between HMM filtering and

Kalman filtering are discussed. The two can be viewed as analogous algorithms util-

ising the same approaches and constructs to estimate optimally the unobservable

state, as well as in recursive parameter estimation (see for example [1]). In chapter

7, a new algorithm for generation of sigma points from partially specified sym-

metric multivariate distribution was developed. The sigma points generated using

such approach match the first two moments exactly, whilst the fourth moment is

matched approximately. Moreover, this algorithm rectifies the problem of negative

probability weights which arises in existing sigma point generation methodologies.

Chapter 8 contains a new sigma point filtering technique which utilises the sample

points generation algorithm developed in chapter 7 and is essentially still based

on the idea underlying the Kalman filtering. Finally, an alternative technique for

the optimal state estimation was proposed in chapter 9. It is based on a linear

programming-based procedure during the update step and hence, it considerably

departs from current methods based on Kalman filtering.

Each of the filtering techniques discussed and developed in this thesis was tested on

observed or simulated data sets. The various empirical investigations afforded us

with many important insights regarding the performance of the filtering methods

that were advanced in this research work.
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Additionally, this thesis made contributions to the field of actuarial science. In

chapter 5, an HMM-based estimation of a mortality model is developed and tested

on observed mortality data. Chapter 6, in turn, examined the valuation of contin-

gent claims taking into account the integration of mortality and interest rate risks.

Closed-form expressions for generic mortality-linked contingent claims were estab-

lished and these were accompanied by some numerical demonstrations. It has to

be noted that the valuation approach uses several changes of reference probability

along with the Bayes’ rule and therefore, the idea behind this approach is similar

in spirit to the approach that underpins the HMM filtering.

10.2 Future directions

From the results presented in this thesis and outlined in the previous section, several

research questions naturally arise. These questions lead to several directions that

could be studied in the future.

• In the study of HMMs presented in chapters 3 and 4, novel extensions to the

HMM filtering were developed. However, more empirical works are needed.

There have been numerous studies based on HMM filtering with the usual

assumption of equal number of states for the drift and volatility and standard

normal noise term (see for example, [45], [49], [50] and [51]) but without a

doubt, they could be improved further with the results presented in this

thesis. Applications, especially to econometrics data involving an HMM-

driven model with more general noise term, could spur more advancements

in the area of financial modelling.

• The mortality derivative pricing equations developed in chapter 6 produce

very considerable differences in prices obtained between two cases: namely

the cases of independent and dependent assumptions on interest rate and

mortality risks. It would be an interesting endeavour to determine the extent

of this difference with observed data.
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• If generation of scenario trees is needed for multi-stage decision problems,

then an extension of the sigma point generation algorithm presented in chap-

ter 7 is required. An implementation of a large scale stochastic programming

model demonstrating the use of this method in financial optimisation is an-

other possible research topic, which is a natural ramification of the moment

matching algorithm presented in this thesis.

• New sigma point filtering techniques were designed in chapters 8 and 9. Prob-

ing the performance of these filtering methods using observed data along with

the estimation of model parameters is definitely a new practical and impor-

tant research consideration.
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Appendix A

Additional plots for Chapter 4
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Figure A.1: NASDAQ actual series (blue) and one-step ahead predictions (green).
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Figure A.2: NASDAQ returns (blue) and one-step ahead predictions (green).
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Figure A.3: DOW JONES actual series (blue) and one-step ahead predictions
(green).
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Figure A.4: DOW JONES returns (blue) and one-step ahead predictions (green).
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Appendix B

First hitting time density of an

Ornstein-Uhlenbeck process with

constant parameters

Let Wt be a standard Brownian motion. The associated Ornstein-Uhlenbeck (OU)

process Ut with parameters µ ∈ R and σ ∈ R, is defined as the solution to the

stochastic differential equation

dUt = µUtdt+ σdWt, U0 ∈ R. (B.1)

Furthermore, the process Ut is a strong Markov process with infinitesimal generator,

denoted by A, given by

Af(x) = µx
∂f

∂x
+
σ2

2

∂2f

∂x2
, x ∈ R. (B.2)

When integrated, the stochastic differential equation (B.1) yields the realisation

Ut = eµt
(
U0 + σ

∫ t

0

e−µsdWs

)
(B.3)
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for t ≥ 0. By the Dambis, Dubins-Schwartz theorem, there exists a Brownian

motion W̃t, such that

∫ t

0

e−µsdWs = W̃τ(t),

for any t ≥ 0, where τ(t) =
(
2µ
)−1(

e2µt − 1
)
. Therefore, the representation

Ut = eµt
(
U0 + σW̃τ(t)

)

which is also known as Doob’s transform holds. For a fixed real number a, define

the stopping time

λa = inf
{
t > 0 | Ut = a

}
.

The law of λa, denoted by pµ
x→a(t) is absolutely continuous with respect to a

Lebesgue measure. We start with the assumption that µ is negative so that Ut

is a recurrent process and therefore λa is finite.

Finding the density of a first barrier hitting time of an OU-process is generally

a difficult problem. There are several approximation methods to calculate the

density, however they are fairly complicated. See for example, Alili et al [3], Alili

and Patie [2], Lo and Hui [86], amongst others.

For the special case a = 0 however, there is a simple expression for pµ
x→0(t). Set

λ̃a = inf
{
t > 0 | W̃t = a

√
1 − 2µt

}
. As noted in Breiman [22], Doob’s transform

implies the identity λa = λ̃a a.s. Therefore, we can deduce

pµ
x→0(t) = τ ′(t)p0

x→0

(
τ(t)

)
. (B.4)

Furthermore, by letting µ→ 0 we recover Ut as a Brownian motion rescaled by σ,

i.e., dUt = σdWt. Hence,

p0
x→a(t) =

|a− x|
σ
√

2πt3
exp

(
− (a− x)2

2 σ2t

)
. (B.5)
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It follows from equations (B.4) and (B.5) that

pµ
x→0(t) =

|x|
σ
√

2π

(
µ

sinh(µt)

)3/2

exp

(
− x2µeµt

2σ2 sinh(µt)
− µt

2

)
(B.6)

Recall that if µ is positive, the process Ut is transient and formula (B.6) no longer

applies. Nevertheless, one can still find fairly simple formulae for the density of the

first hitting time. Denote by P µ
x the law of Ut where x = U0 ∈ R. As before, letting

µ → 0 we retrieve the law P 0
x of a σWt started at x. Due to Girsanov’s Theorem

2.4, the absolute-continuity relationship

dP µ
x|Ft

= exp

(
− µ

2σ2

(
W 2

t − x2 − t
)
− µ2

2σ2

∫ t

0

W 2
s ds

)
dPx|Ft

(B.7)

holds for every t ≥ 0. From the chain rule and equation (B.7) we can deduce as in

[17] that

dP µ
x|Ft

= exp
(
µ(W 2

t − x2 − t)
)
dP−µ

x|Ft
(B.8)

for t > 0. The expression in (B.8) combined with the optional stopping theorem

yields

pµ
x→a(t) = exp

( µ
σ2

(
a2 − x2 − t

))
p−µ

x→a(t). (B.9)
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