

A GRID COMPUTING FRAMEWORK FOR
COMMERCIAL SIMULATION PACKAGES

A thesis submitted for the degree of Doctor of Philosophy

by

Navonil Mustafee

School of Information Systems, Computing and Mathematics
Brunel University

May 2007

Abstract, Contents and Acknowledgements ii

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

ABSTRACT

An increased need for collaborative research among different organizations, together with

continuing advances in communication technology and computer hardware, has facilitated the

development of distributed systems that can provide users non-trivial access to

geographically dispersed computing resources (processors, storage, applications, data,

instruments, etc.) that are administered in multiple computer domains. The term grid

computing or grids is popularly used to refer to such distributed systems. A broader definition

of grid computing includes the use of computing resources within an organization for running

organization-specific applications. This research is in the context of using grid computing

within an enterprise to maximize the use of available hardware and software resources for

processing enterprise applications.

Large scale scientific simulations have traditionally been the primary benefactor of grid

computing. The application of this technology to simulation in industry has, however, been

negligible. This research investigates how grid technology can be effectively exploited by

simulation practitioners using Windows-based commercially available simulation packages to

model simulations in industry. These packages are commonly referred to as Commercial Off-

The-Shelf (COTS) Simulation Packages (CSPs).

The study identifies several higher level grid services that could be potentially used to support

the practise of simulation in industry. It proposes a grid computing framework to investigate

these services in the context of CSP-based simulations. This framework is called the CSP-

Grid Computing (CSP-GC) Framework. Each identified higher level grid service in this

framework is referred to as a CSP-specific service. A total of six case studies are presented

to experimentally evaluate how grid computing technologies can be used together with

unmodified simulation packages to support some of the CSP-specific services.

The contribution of this thesis is the CSP-GC framework that identifies how simulation

practise in industry may benefit from the use of grid technology. A further contribution is the

recognition of specific grid computing software (grid middleware) that can possibly be used

together with existing CSPs to provide grid support. With its focus on end-users and end-user

tools, it is intended that this research will encourage wider adoption of grid computing in the

workplace and that simulation users will derive benefit from using this technology.

Abstract, Contents and Acknowledgements iii

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

CONTENTS

ABSTRACT, CONTENTS AND ACKNOWLEDGEMENTS……………………ii

ABSTRACT………………………………………………………………………………………...…...ii

CONTENTS………………………………………………………………………………………...…..iii

LIST OF FIGURES…………………………………………………………………………………….vi

LIST OF TABLES……………………………………………………………………………….…….viii

LIST OF SCREENSHOTS …………………………………………………………………………....x

LIST OF GRAPHS……………………………………………………………………………………..xi

ACKNOWLEDGEMENTS……………………………………………………………………..……..xii

DECLARATION……………………………………………………………………………………… xiii

GLOSSARY………………………………………………………………………………………….......xv

1 INTRODUCTION ... 1

1.1 Rationale and motivation .. 2

1.2 Aim and objectives ... 3

1.3 Research methods ... 3

1.4 Audience, scope and limitation of this research ... 4

1.5 Thesis structure .. 5

1.6 Chapter summary ... 8

2 GRID COMPUTING AND SIMULATION PACKAGES 9

2.1 Introduction ... 9

2.2 Grid computing ... 10

2.3 Computer simulation ... 35

2.4 COTS Simulation Packages (CSPs) .. 36

2.5 Higher-level grid services for CSP-based simulation ... 40

2.6 Distributed simulation ... 54

2.7 Web-based simulation .. 63

2.8 Grid middleware and CSPs .. 71

2.9 Public-Resource Computing (PRC) middleware BOINC .. 73

2.10 Enterprise Desktop Grid Computing (EDGC) middleware Condor 77

2.11 Different approaches to using CSPs with desktop grids .. 87

2.12 Chapter summary ... 89

3 PROPOSING THE CSP-GC FRAMEWORK 91

3.1 Introduction ... 91

3.2 The CSP-GC Framework ... 91

3.3 Grid-facilitated CSP-specific services .. 93

3.4 Investigation of CSP-specific services using BOINC and Condor 101

3.5 Suitability of BOINC and Condor for CSP-specific services 105

Abstract, Contents and Acknowledgements iv

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

3.6 Suitability of BOINC and Condor for deployment in industry 106

3.7 Chapter summary ... 111

4 DEVELOPMENT OF DESKTOP GRIDS FOR WINDOWS 113

4.1 Introduction ... 113

4.2 WinGrid architecture ... 113

4.3 WinGrid-WS architecture .. 116

4.4 CSP-grid integration technology ... 117

4.5 Investigation of CSP-specific services using WinGrid and WinGrid-WS 124

4.6 Suitability of WinGrid and WinGrid-WS for CSP-specific services 126

4.7 Chapter summary ... 127

5 CASE STUDIES .. 129

5.1 Introduction ... 129

5.2 Criteria for hypothesis evaluation ... 129

5.3 CSP-GC framework investigation scenarios .. 131

5.4 BOINC case study for evaluation of SMMD task farming service 135

5.5 Condor case study for evaluation of MMMD task farming service 143

5.6 Ford case study for evaluation of SMMD task farming service 151

5.7 IB case study for evaluation of workflow and SMMD task farming services 159

5.8 NBS case study for evaluation of distributed simulation service 172

5.9 Chapter summary ... 184

6 REVISITING THE CSP-GC FRAMEWORK 186

6.1 Introduction ... 186

6.2 Distributed simulation with SMMD and MMMD task farming service 186

6.3 MU case study for evaluation of distributed simulation with task farming service ... 191

6.4 CSP-GC framework revisited ... 197

6.5 Evaluation of CSPs based on CSP-GC framework defined services 204

6.6 Chapter summary ... 207

7 SUMMARY AND CONCLUSION .. 208

7.1 Introduction ... 208

7.2 Research summary .. 208

7.3 Aims and objectives revisited ... 210

7.4 Contribution of this research ... 212

7.5 Further research ... 213

Abstract, Contents and Acknowledgements v

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

REFERENCES AND APPENDICES ………………………………………..…214

REFERENCES………………………………………………………………………………………214

APPENDIX A: Vendor URLs…………………………………………………………………….....242
.

APPENDIX B: NBS case study - further discussion…………………………………….……….250

APPENDIX C: BOINC case study - experiments and results……….………..………………..…262

APPENDIX D: WinGrid user documentation (version 1.0)…………………………………….....264

Abstract, Contents and Acknowledgements vi

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

LIST OF FIGURES

Figure 1: Chapters and their purpose .. 7

Figure 2: Users’ view of grid computing .. 14

Figure 3: Interaction between resource broker and grid resources ... 16

Figure 4: Example of remote steering in RealityGrid (Brooke et al., 2003) 18

Figure 5: GT-4 container hosting user-defined web services (Foster, 2006) 20

Figure 6: GT-4 architecture showing the different components (Foster, 2006)....................... 23

Figure 7: Conceptual view of users and service providers (OMII, 2006b) 26

Figure 8: Different forms of grid computing ... 31

Figure 9: Parallel computing using multiple CPUs (Barney, 2006) ... 42

Figure 10: Shared-memory (A) and distributed-memory (B) multiprocessor machines 43

Figure 11: Parallel computing using a DES CSP .. 44

Figure 12: Workflow using a DES CSP and a visualization application 48

Figure 13: Frequency of model re-use and its underlying complexity (Pidd, 2002) 51

Figure 14: Execution of events in a distributed simulation (Fujimoto, 1990) 56

Figure 15: CSP-based distributed simulation using FAMAS (adapted from Boer, 2005) 61

Figure 16: Distributed simulation using Simul8 and CSPE-CMB middleware 62

Figure 17: Layered architecture of Internet Protocol (IP) stack ... 65

Figure 18: Communication between client and server programs .. 66

Figure 19: Remote S&A approach to web-based simulation using CSPs 67

Figure 20: Local S&A approach to web-based simulation using CSPs 68

Figure 21: Java data server approach to web-based simulation using CSPs 68

Figure 22: The ―pull‖ model of PRC projects ... 74

Figure 23: The BOINC system .. 74

Figure 24: Multiple BOINC projects in an organization ... 76

Figure 25: Condor resource management architecture ... 79

Figure 26: Communication between different Condor processes ... 79

Figure 27: Graphical representation of diamond DAG (Frey, 2002) 85

Figure 28: Processing job using Condor MW .. 86

Figure 29: The CSP-GC framework .. 92

Figure 30: Middleware integration approach to providing distributed simulation service 99

Figure 31: Application integration approach to providing distributed simulation service 100

Figure 32: The ―push‖ model implemented by WinGrid ... 114

Figure 33: WinGrid architecture ... 115

Figure 34: Architecture of WinGrid-WS ... 116

Figure 35: Interaction between WTC-WAadapter-CSP ... 118

Figure 36: Interaction between WJD-MAadapter-Excel .. 119

Figure 37: UML sequence diagram showing the interaction between WinGrid components 123

Figure 38: Execution of RAS application using BOINC ... 140

Abstract, Contents and Acknowledgements vii

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Figure 39: BOINC test network .. 142

Figure 40: Execution of RAS and AO applications on a Condor pool 145

Figure 41: Condor test pool ... 151

Figure 42: Integration architecture of WinGrid and First ... 156

Figure 43: Integration architecture of WinGrid and IRS-RBF application 164

Figure 44: IRS-RBF application workflow .. 166

Figure 45: Simplified model of the NBS supply chain with NBS PTI (left) and one hospital . 175

Figure 46: Conventional simulation approach with NBS PTI and four hospitals 175

Figure 47: NBS distributed simulation with NBS PTI and four hospitals 177

Figure 48: CSP Controller Middleware (CCM) architecture .. 180

Figure 49: Distributed simulation with SMMD task farming ... 187

Figure 50: Distributed simulation with MMMD task farming .. 187

Figure 51: Integration architecture of WinGrid and DPL ... 194

Figure 52: CSP-GC framework (modified)... 200

Figure 53: Chapters that meet the different objectives outlined in this thesis 211

Figure 54: CSP Controller Middleware (CCM) architecture .. 251

Figure 55: CCM-Next Event Request (NER) protocol ... 251

Figure 56: CCM-Time Advance Request (TAR) protocol .. 252

Figure 57: Time Management States of a Federate (adapted from Kuhl et al., 1999) 258

Abstract, Contents and Acknowledgements viii

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

LIST OF TABLES

Table 1: e-Science projects that use grid computing .. 11

Table 2: Examples of production grids .. 27

Table 3: Example of organizations that use grid computing middleware 29

Table 4: Comparing different forms of grid computing .. 32

Table 5: Survey of CSPs (extended from Swain’s OR/MS survey of simulation tools) 36

Table 6: CSPs that support parallel computation .. 45

Table 7: CSPs that provide support for task farming ... 46

Table 8: Potential applications of simulation in a networked environment (Robinson, 2005b) 46

Table 9: CSPs that support data source access ... 48

Table 10: CSPs that expose package functionality ... 49

Table 11: CSPs that support creation of reusable model components 52

Table 12: CSPs that facilitate model sharing .. 53

Table 13: Application areas of parallel and distributed simulation .. 55

Table 14: CSPs and distributed simulation support .. 63

Table 15: CSPs that provide support for web-based simulation ... 68

Table 16: Interaction between different Condor processes ... 80

Table 17: CSP-GC framework defined services and their descriptions 92

Table 18: Michael Flynn’s classification of computer architectures .. 95

Table 19: Possible task farming scenarios with CSPs and desktop grids 96

Table 20: BOINC and Condor support for CSP-specific services ... 105

Table 21: BOINC, Condor and middleware deployment considerations 107

Table 22: Ideal middleware implementation for CSP-based simulation 111

Table 23: Interfaces used for communication between WTC and WA adapter 118

Table 24: Interfaces used for communication between WJD and MA adapter 119

Table 25: Interfaces used for communication between MA and MA adapter........................ 120

Table 26: Interfaces used for communication between WA and WA adapter 121

Table 27: WinGrid and WinGrid-WS support for CSP-specific services 126

Table 28: Middleware support for CSP-specific services .. 126

Table 29: Criteria for hypothesis evaluation .. 131

Table 30: CSP-specific services that can be potentially implemented 132

Table 31: Case studies .. 133

Table 32: BOINC case study ... 135

Table 33: Condor case study ... 143

Table 34: Ford case study ... 152

Table 35: Investment bank case study .. 159

Table 36: Execution time for different products using the original IRS-RBF application 162

Table 37: Workunits to be processed by IRS and RBF simulations 168

Table 38: Configuration of WinGrid nodes .. 168

Abstract, Contents and Acknowledgements ix

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Table 39: NBS case study ... 173

Table 40: Grid middleware support for distributed simulation with task farming service 191

Table 41: Manufacturing unit case study ... 191

Table 42: Modified CSP-GC framework defined services and their descriptions 201

Table 43: Custom CSP support and grid middleware support for CSP-specific services 205

Table 44: Vendor URLs – support for parallel computing ... 242

Table 45: Vendor URLs – task farming support in CSPs .. 243

Table 46: Vendor URLs – data source access support in CSPs ... 244

Table 47: Vendor URLs – CSPs that expose package functionality 245

Table 48: Vendor URLs – reusable model components support in CSPs 246

Table 49: Vendor URLs – support for sharing models in CSPs .. 247

Table 50: Vendor URLs - distributed simulation support in CSPs ... 248

Table 51: Vendor URLs – support for web-based simulation .. 249

Table 52: Percentage performance increase of TAR over NER ... 254

Abstract, Contents and Acknowledgements x

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

LIST OF SCREENSHOTS

Screenshot 1: Group-based collaboration using Access Grid ... 20

Screenshot 2: Job submission web page for the NGS portal .. 70

Screenshot 3: Workflow editor in P-GRADE portal (adapted from Kiss, 2007)....................... 70

Screenshot 4: JVM related information output using Condor command ―condor_status‖ 82

Screenshot 5: Web front-end to WinGrid-WS (Alstad, 2006) .. 125

Screenshot 6: Range Accrual Swap (RAS) application ... 137

Screenshot 7: Setting user preference using menu provided by BOINC core client 138

Screenshot 8: Setting user preference using web interface .. 138

Screenshot 9: BOINC core client attached to multiple projects .. 139

Screenshot 10: Asian Options (AO) application .. 145

Screenshot 11: Job submit file for AO application ... 146

Screenshot 12: Job submit file for RAS application .. 147

Screenshot 13: Results from the simulation experiments ... 148

Screenshot 14: Condor jobs getting executed in temporary execution directory 148

Screenshot 15: AO and RAS applications execution over Condor pool 149

Screenshot 16: Status of job queue displayed using Condor command ―condor_q‖ 150

Screenshot 17: Jobs removed from the queue using Condor command ―condor_rm‖ 150

Screenshot 18: FIRST application main menu .. 153

Screenshot 19: Graph generated by FIRST using data returned by Witness 153

Screenshot 20: FIRST experimentation tool showing a list of experiments 155

Screenshot 21: MCS CSP Analytics Desktop application ... 160

Screenshot 22: WJD Application Specific Parameter (APS) tool for IRS-RBF application ... 163

Screenshot 23: WinGrid WJD console showing execution of workflow in phases 1 to 3 167

Screenshot 24: Condor queue after submission of multiple instances of job-A and job-B ... 189

Screenshot 25: DES CSP Simul8 model ―sourceA‖ (DPL application) 192

Screenshot 26: DES CSP Simul8 model ―sourceB‖ (DPL application) 192

Screenshot 27: DES CSP Simul8 model ―destC‖ (DPL application) 193

Screenshot 28: Excel-based Distributed Production Line-Experimentation Tool (DPL-ET) . 194

Screenshot 29: WinGrid console showing execution of distributed simulation federations . 195

Screenshot 30: HLA-RTI executive process executing federations EXP1 and EXP2 196

Abstract, Contents and Acknowledgements xi

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

LIST OF GRAPHS

Graph 1: Time taken to execute FIRST application using different workloads 157

Graph 2: Time taken to execute the IRS-RBF application using different workloads 169

Graph 3: Total job assignments for IRS-RBF simulation ... 171

Graph 4: Job assignments for different phases of IRS-RBF simulation (4 nodes) 171

Graph 5: Job assignments for different phases of IRS-RBF simulation (8 nodes) 172

Graph 6: Execution time of NBS distributed simulation and NBS standalone simulation 181

Graph 7: Monthly execution time of NBS distributed and standalone simulations 182

Graph 8: RAS application results .. 262

Abstract, Contents and Acknowledgements xii

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

ACKNOWLEDGEMENTS

It would not have been possible for me to complete this research without the help, support,

advice and encouragement that I have received from my family, friends, teachers and my

colleagues. Looking back, I would like to thank my mom (Sabita Mustafee) and dad (Dr. Tulsi

Pada Mustafee) for their sacrifice which allowed me to get a good education in life; my brother

(Indronil Mustafee) who persuaded me to do to a career shift from hospitality to computing

and for teaching me the art of programming in C and C++ languages; my teachers from

yesteryear who have instructed me; my friends in India for being there for me.

I would like to thank my supervisor Dr. Simon Taylor for his guidance and constructive

criticisms throughout the course of my MSc. and PhD. studies. I gratefully acknowledge the

motivation and the inspiration that I have received from him, time and time again. Thanks are

due to my friends and colleagues Carole Bromley, Carolyn Bailey, Jon Saville, Meeta

Talwalkar, Neela Rungien and Saptarshi Ghosh. They have unreservedly extended their

personal support at very difficult times. Without their encouragement and help this research

would have taken longer. Special thanks to Carolyn Bailey for her help with proofreading this

thesis.

In the course of this study I have collaborated with fellow researchers and people in industry,

and I would like to express my gratitude to Anders Alstad, Bjørn Larsen, Dr. David Bell, Prof.

Eduardo Saliby, Jingri Zhang, John Ladbrook, Jonathan Berryman, Dr. Korina Katsaliaki, Dr.

Mark Elder, Rahul Talwalkar, Robert Watson, Dr. Sally Brailsford and Dr. Steve Turner. They

have contributed to this research in various ways.

I am obliged to Prof. Ray Paul for securing the funding that has allowed me to do this

research in the first place. His unrelenting advice and teachings, on matters not limited to

research alone, has facilitated my personal development in many ways. Thank you Professor,

I hope that in future I will be worthy of the education you have imparted.

Declaration and Glossary xiii

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

DECLARATION

Research from this thesis that has been published or is presently under review is given below.

Refereed journal publications

 Taylor, S. J. E., Turner, S. J., Mustafee, N., Ahlander, H. and Ayani, R. (2005). COTS

distributed simulation: a comparison of CMB and HLA interoperability approaches to type

I interoperability reference model problems. SIMULATION: Transactions of the Society of

Modelling and Simulation International. Volume 81(1): 33-43.

Journal papers under review

 Katsaliaki, K., Mustafee, N., Taylor, S. J. E. and Brailsford, S. Comparing conventional

and distributed approaches to simulation in complex supply-chain health systems.

Journal of the Operational Research Society.

Refereed conference papers

 Zhang, J., Mustafee, N., Saville, J. and Taylor, S. J. E. Integrating BOINC with Microsoft

Excel: a case study. . In Proceedings of the 29th Information Technology Interfaces

Conference (accepted).

 Mustafee, N., Taylor, S. J. E., Katsaliaki, K. and Brailsford, S. (2007). Using CSPI

distributed simulation standards for the analysis of a health supply chain. In Proceedings

of Simulation and Visualization 2007, Schulze, T., Preim, B. and Schumann, H. (eds.), pp.

155-168. The Society for Modelling and Simulation International, SCS European

Publishing House, Germany.

 Mustafee, N., Taylor, S. J. E., Katsaliaki, K. and Brailsford, S. (2006). Distributed

simulation with COTS simulation packages: a case study in health care supply chain

simulation. In Proceedings of the 37th Winter Simulation Conference, Perrone, L. F.,

Wieland, F. P., Liu, J., Lawson, B. G., Nicol, D. M. and Fujimoto, R. M. (eds.), pp. 1136-

1142. Winter Simulation Conference, USA.

 Mustafee, N., Alstad, A., Larsen, B., Taylor, S. J. E. and Ladbrook, J. (2006). Grid-

enabling FIRST: Speeding up simulation applications using WinGrid. In Proceedings of

the 10th International Symposium on Distributed Simulation and Real-Time Applications

(DSRT 2006), Alba, E., Turner, S. J., Roberts, D. and Taylor, S. J. E. (eds.), pp. 157-164.

IEEE Computer Society, Washington, DC, USA.

 Bell, D., Mustafee, N., Taylor, S. J. E., de Cesare, S. and Lycett, M. (2006). A web

services component discovery and deployment architecture for simulation model reuse. In

Proceedings of the 2006 European Simulation Interoperability Workshop (EURO SIW).

06E-SIW-047. Simulation Interoperability Standards Organization, Orlando, Florida, USA.

 Mustafee, N. and Taylor, S. J. E. (2006). Using a desktop grid to support simulation

modelling. In Proceedings of the 28th Information Technology Interfaces Conference (ITI

Declaration and Glossary xiv

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

2006), Stiffler, V.L. and Dobric, V. H. (eds.), pp. 557-562. IEEE Computer Society,

Washington, DC, USA.

 Mustafee, N. and Taylor, S.J.E. (2006). Investigating distributed simulation with COTS

simulation packages: experiences with Simul8 and the HLA. In Proceedings of the 2006

Operational Research Society Simulation Workshop (SW06), Garnett, J., Brailsford, S.,

Robinson, S. and Taylor, S. (eds.), pp. 33-42. Operational Research Society,

Birmingham, UK.

 Brailsford, S., Katsaliaki, K., Mustafee, N. and Taylor, S. J. E. (2006). Modelling very

large complex systems using distributed simulation: a pilot study in a healthcare setting.

In Proceedings of the 2006 Operational Research Society Simulation Workshop (SW06),

Garnett, J., Brailsford, S., Robinson, S. and Taylor, S. (eds.), pp. 257-262. Operational

Research Society, Birmingham, UK.

Declaration and Glossary xv

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

GLOSSARY

BOINC: Berkeley Open Infrastructure for Network Computing (BOINC) is a desktop grid

middleware that was primarily created for Public-Resource Computing (PRC).

BOINC application client: The user application that is executed by BOINC core client.

BOINC core client: The BOINC client side middleware that is installed on different grid

nodes. The BOINC core client executes different user-developed BOINC application clients.

BOINC-PAC: BOINC-Proxy Application Client (BOINC-PAC). BOINC application client that

has client side dependencies. For example, the BOINC application client may invoke

operations on Excel, Simul8, etc. that are installed on a local resource.

BOINC-RAC: BOINC-Runtime Application Client (BOINC-RAC). BOINC application client that

has no client-side dependencies. Only BOINC core client needs to be pre-installed on each

client computer.

Condor: Condor is a grid middleware that is supported on Windows platform. Condor is an

Enterprise Desktop Grid Computing (EDGC) middleware.

Condor DAGMan: Condor Directed Acyclic Graph Manager (DAGMan). A component of

Condor which supports execution of workflows.

Condor Java Execution Environment: Condor middleware can execute Java programs

through the Condor Java Execution Environment. Only PCs that have the Java Runtime

Environment (JRE) installed can be a part of this environment.

Condor MW: Condor Master Worker (MW). MW is a C++ library that can be used to create

task farming applications for execution over the Condor pool.

Condor Pool: A collection of computers that are installed with the Condor middleware and

that process Condor jobs.

COTS: Commercial, Off-The-Shelf (COTS). This term is used to refer to software applications

that can be purchased from software vendors.

CSP: COTS Simulation Package (CSP). In this thesis the term CSP is used to refer to

simulation packages for both Discrete-Event Simulation (DES) and Monte Carlo Simulation

(MCS).

Declaration and Glossary xvi

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

DES: Discrete-Event Simulation (DES).

EDGC: Enterprise Desktop Grid Computing (EDGC). It refers to a grid infrastructure that is

confined to an institutional boundary, where the spare processing capacities of an enterprise’s

desktop PCs are used to support the execution of the enterprise’s applications.

HLA: The High Level Architecture (HLA) is an IEEE standard for distributed simulation.

HLA-RTI: The High Level Architecture-Run Time Infrastructure (HLA-RTI) is distributed

simulation middleware that implements the interface specifications outlined by the HLA

standard.

Job-parallel application: An application that uses standard grid mechanisms to submit a

batch of jobs for processing. If a user submits multiple instances of the same job for

processing, then it is also referred to as job-parallel execution.

MA: Master Application (MA). In WinGrid terminology, a MA is an Excel-based application

that lists experiment parameters for batch simulations. It can also be used to display the

results of the different simulations.

Manager federate: In HLA-based distributed simulation, the HLA federate which co-ordinates

the other federates during the execution of a distributed simulation.

Master computer, Master process, Master: The master process in the master-worker

distributed computing architecture. The grid node over which the master process runs is

sometimes referred to as the master computer.

MCS: Monte Carlo Simulation (MCS).

Middleware: A software program that interfaces between two or more programs. The term is

also used to refer to software that enables communication between distributed computing

resources.

MMMD: Multiple Model Multiple Data (MMMD) is a form of task farming. It refers to the

concurrent execution of different CSP models using different experiment parameters over

multiple processors.

MPI: Message Passing Interface (MPI). Used in the context of parallel programming.

Declaration and Glossary xvii

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Node, Grid node: A computing resource that is a part of a grid infrastructure, e.g., desktop

PCs.

P2P: Peer-to-Peer (P2P). It refers to a non-centralized infrastructure for file sharing over the

Internet (such as, KaZaA).

PRC: Public-Resource Computing (PRC). This refers to the use of millions of volunteer

computers for scientific processing (such as, SETI@Home project).

PVM: Parallel Virtual Machine (PVM). Used in the context of parallel programming.

Rtiexec: rtiexec.exe is the HLA-RTI program.

SMMD: Single Model Multiple Data (SMMD) is a form of task farming. It refers to the

concurrent execution of one CSP model using different experiment parameters over multiple

processors.

Socket communication: A form of communication between two processes executing on

different computers.

Task-parallel application: An application in which one process acts as the master and is

responsible for directing and coordinating the computations being executed on the workers.

WA: Worker Application (WA). In WinGrid, the unmodified CSPs are referred to as WA.

WinGrid: WinGrid, or the desktop grid for Windows, is a desktop grid middleware that was

implemented by the author during the course of this study.

WJD: WinGrid Job Dispatcher (WJD). This is the WinGrid job scheduler that runs on only one

computer. It is responsible for allocating jobs to different WTCs.

WMS: Workflow Management System (WMS) (such as, Condor DAGMan).

Worker computer, Worker process, Worker: The worker process in the master-worker

distributed computing architecture. The grid node over which the worker process runs is

sometimes referred to as the worker computer.

WTC: WinGrid Thin Client (WTC). This refers to the WinGrid software component that is

installed on different WinGrid nodes. WTC runs a server socket to listen for job requests that

may be coming from the WJD.

Chapter 1: Introduction 1

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

1 INTRODUCTION

Grid computing has the potential to provide users on-demand access to computational

resources, just as power grids provide users with consistent, pervasive, dependable and

transparent access to electricity, irrespective of its source (Baker et al., 2002). Simulation

modelling is an Operational Research (OR) technique that can benefit from this, as computing

power can be a bottleneck to the development of simulation (Robinson, 2005a). Discrete-

Event simulation is arguably the most frequently used classical OR technique that is applied

across a range of industries like manufacturing, travel, finance and healthcare, among others

(Hollocks, 2006). Commercially available discrete-event simulation packages are generally

used to model such simulations (Taylor et al., 2005b). Monte Carlo simulation is yet another

OR technique that is extensively used in application areas like finance and insurance (Herzog

and Lord, 2002). Commercially available spreadsheet applications, spreadsheet add-ins and

Monte Carlo simulation packages are often used for modelling Monte Carlo simulations in

industry (Swain, 2007). The term Commercial Off-The-Shelf (COTS) Simulation Packages

(CSPs) is used in this thesis to refer to software used for modelling both Discrete-Event and

Monte Carlo simulations. Discrete-Event simulation and Monte Carlo simulation are

henceforth referred to as DES and MCS respectively. The focus of this research is on

investigating how simulation users in industry using such CSPs can benefit from grid

computing.

The hypothesis presented in this thesis is that grid computing will benefit CSP-based

simulation practice in industry. The hypothesis is considered important because it looks at

grid computing from the end-users’ perspective (and thus the focus on end-user simulation

software), wherein the end-users are not expected to be IT specialists. As will be seen from

the literature review, the end user adoption of grid computing technologies in the work place

has been extremely limited. This adds further significance to this hypothesis. As the scope of

this research is limited to the practice of simulation in industry, the end-users are simulation

practitioners and the tools used are CSPs. This research is arguably the first attempt to

undertake a study of CSPs in the context of grid computing.

This research proposes a grid computing framework to evaluate the hypothesis presented in

this thesis. This framework is called the COTS Simulation Package-Grid Computing (CSP-

GC) Framework and it provides a logical structure for evaluation of the hypothesis. CSP-GC

framework is built through a review of the field of grid computing. This review identifies some

of the higher level grid services that could possibly be used to support CSP-based simulation

in industry. This framework is then evaluated by developing case studies and through case

study experimentation. Finally, the hypothesis is either supported or rejected.

Chapter 1: Introduction 2

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

This research is considered as end-user oriented because, apart from proposing the CSP-GC

framework that identifies the possible uses of grid computing for CSP-based simulation in

industry, it also informs those engaged in such simulations of existing grid computing

middleware that they could possibly use. It is hoped that this would encourage the adoption of

grid computing among simulation practitioners in industry.

1.1 Rationale and motivation

The rationale of this thesis is based on the recognition that the development in simulation has

been closely allied to the advances in the field of computing (Robinson, 2005a). It can

therefore be expected that simulation software will continue to rely on the latest advances in

computing to support increasingly large and complex simulations (Pidd and Carvalho, 2006).

Grid computing is arguably the latest advancement in the field of distributed computing. The

rationale of this thesis is that, as previous developments in computing have been adopted by

the simulation users and they have benefited from it, similarly grid computing technologies

provide an opportunity to further the practise of simulation in industry.

This research is motivated by the advances being made in the field of grid computing and the

advantages being derived by various disciplines through the adoption of grid computing

technologies. Simulation modelling is a problem solving methodology that has arguably

gained the most from using grid computing to conduct scientific simulations in disciplines like

particle physics, climatology, astrophysics and medicine, among others. Simulation is also

widely used in industry to aid decision making. It is, therefore, considered to be a logical next

step to investigate how simulation practice in industry can benefit from grid computing.

A further motivation of this research is the low adoption rate of grid computing outside of

academic and research domains. At present a major proportion of grid users comprises

researchers (physicists, biologists, climatologists, etc. – they can be considered as the

primary stakeholder of the applications running on the grid) and computer specialists with

programming skills (they usually provide IT support to the primary stakeholders). This is not

unexpected as the majority of applications using grid computing are research applications.

The adoption of grid computing technologies by employees at their work place has been

minimal. One important reason for this is, although the employees are experts in their own

discipline they generally do not have the necessary technical skills that are required to work

with present generation grids. A possible means to increase adoption is to incorporate grid

support in software applications that are used by the end-users to perform their day-to-day

jobs. Simulation practitioners in industry usually create simulations using CSPs. It was

therefore considered appropriate to focus on these simulation tools and to propose a grid

computing framework which investigates how the CSPs can benefit from grid computing

technologies.

Chapter 1: Introduction 3

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

1.2 Aim and objectives

The aim of this thesis is to investigate how grid computing will benefit CSP-based simulation

practice in industry. Towards this aim the following four objectives will be met.

 Objective 1: State the hypothesis and identify what grid computing has to offer

The hypothesis has already been presented in this chapter. The hypothesis states that

CSP-based simulation practice in industry will gain from using grid computing

technologies. Through literature survey, the latest developments in grid computing are

examined; the potential of using grid technologies are recognised; and several higher

level grid services that could be used to support the CSPs are identified.

 Objective 2: Propose the CSP-GC framework and identify grid computing middleware

that can potentially support the framework

To provide a logical structure for evaluation of the hypothesis, the CSP-GC framework is

proposed. The framework identifies several grid-facilitated CSP-specific services that can

be potentially provided through the use of grid computing. These CSP-specific services

are in turn based on higher level grid services (objective 1). Through literature review,

specific grid computing middleware are identified that could possibly support the CSP-

specific services outlined by the CSP-GC framework.

 Objective 3: Experimentally test the CSP-GC framework

Case studies are developed to experimentally test a subset of these middleware

(identified in objective 2) in relation to their support for some of the CSP-specific services

identified by the CSP-GC framework.

 Objective 4: Evaluate CSP-GC framework and test the hypothesis

The CSP-GC framework is evaluated based on the discussions on grid middleware in

relation to CSP-specific services (objective 2) and the results of the case study

experimentation (objective 3). Based on this evaluation, the hypothesis is either accepted

or rejected.

1.3 Research methods

Empirical research has been conducted in this study to experimentally investigate how grid

computing middleware can be used with existing CSPs for the benefit of the simulation end-

users. Empirical research method in computer science generally follows four distinct steps –

hypothesis generation, method identification, result compilation and conclusion (Johnson,

2003). In the hypothesis generation stage the idea to be investigated is explicitly stated. The

techniques that would be used to examine the hypothesis are then identified in the method

identification stage. Experimentation is generally one of the methods used during this stage,

Chapter 1: Introduction 4

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

as empirical research in computer science stresses the repeatability of results. The results of

the experiments are presented in the result compilation stage, based on which conclusions

are drawn and the hypothesis is either supported or rejected. A short discussion of these

different stages in the context of this research is presented below. The specific chapters in

which these stages have been used are also indicated.

The hypothesis presented in this research is that grid computing will benefit CSP-based

simulation practice in industry (chapter 1). The methods that have been used in order to

progressively establish this hypothesis are as follows.

 Literature review of grid computing and CSP-based simulation in industry. This is done in

order to investigate how grid computing technologies can be used to support CSP-based

simulation in industry (chapter 2).

 A framework that would provide a logical structure for evaluation of the hypothesis

(chapter 3).

 Case studies to experimentally evaluate the framework (chapter 5). A total of six real-

world and hypothetical case studies have been presented in this research.

The results of the experiments are then presented (chapter 5). Conclusions are finally drawn

on the basis of these results and grid-specific discussions in the earlier chapters, and the

hypothesis is either accepted or rejected (chapter 6).

This research has also led to the development of a grid computing middleware that is

specifically targeted at the CSPs (chapter 4). Some aspects of design research have been

used during the development of this artefact. In short, design research uses existing

knowledge in a problem area to suggest solutions that are implementable in the form of

software artefacts (Vaishnavi and Kuechler, 2006). These artefacts are then evaluated based

on a set of criteria. Artefact development and evaluation are both iterative processes, and

each iteration adds to knowledge in the problem domain. The problem area in this research is

the application of grid computing to CSP-based simulations. The artefact that is developed is

a grid computing middleware (WinGrid) that can support CSPs.

1.4 Audience, scope and limitation of this research

This research has been written with the following audience in mind.

 Simulation practitioners who use CSPs to model simulations in industry. It is expected

that this research would inform them of existing grid computing technologies that they

could benefit from.

 Researchers in grid computing may find the end-user driven ―grid at the workplace‖

approach to grid computing that is presented in this research as a facilitator for wider

adoption of grid computing in the enterprise. This can encourage development of grid

Chapter 1: Introduction 5

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

computing software that is specifically targeted at software tools used by end-users in

their workplace.

 The CSP vendors may consider grid-enabling their existing simulation products for the

benefit of their customers. It has to be added, however, that the focus of this thesis is on

using general purpose grid computing solutions with CSP packages. Implementing

customized grid computing middleware that supports software packages developed by

one particular vendor may be an intermediate solution. However, in the long run it is

hoped that software vendors (not limited to CSP vendors alone), researchers in grid

computing, developers of both open source and commercial grid computing middleware,

standard creation bodies, end users, among others, will work together to create standards

that would facilitate software applications to utilize multiple computing resources, made

available through grid middleware, for processing end-user computation jobs.

 Researchers in distributed simulation may find the sections pertaining to CSP-based

distributed simulation using IEEE 1516 HLA standard interesting. They may be

encouraged to adopt an approach similar to the one presented in this research for their

own research projects. The CSP vendors that are perhaps interested in incorporating

package-level support for distributed simulation in future may also benefit from this

research.

The scope of this research is limited to investigating four specific grid computing middleware

(BOINC, Condor, WinGrid and WinGrid-WS) in the context of providing certain grid-facilitated

higher level services to Windows-based DES and MCS packages. Furthermore, these

packages should be accessible by external applications through well-defined interfaces that

are exposed by the DES and the MCS CSPs.

The limitation of this research is that it only evaluates grid technologies that are freely

available or those that have been implemented during the course of this research.

Furthermore, although this research is targeted at end-users who are considered experts in

simulation modelling but not necessarily in information technology, practical implementation of

the CSP-grid integration solutions presented in this thesis will only be possible if the end-

users have programming knowledge (Java and Visual Basic) and are familiar with grid

middleware. However, it is hoped in the future the CSP-grid integration solutions will become

transparent to the user.

1.5 Thesis structure

This thesis is structured into 7 chapters. This chapter (chapter 1) has presented the research

hypothesis, has identified the aim and objectives of this research, the research method to be

used, the intended audience and finally its scope and limitations.

Chapter two of this thesis reviews the literature in the field of grid computing and presents an

overview of CSP-based simulation in industry. The objective of this chapter is to examine how

Chapter 1: Introduction 6

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

grid computing technologies can be used to support CSP-based simulation in industry. To this

end, this chapter identifies six higher level grid services that could potentially be used

together with CSPs. Furthermore, it identifies different forms of grid computing and specific

grid computing middleware that can potentially be used in the enterprise environment.

Chapter three builds on the higher level grid services identified in the previous chapter and

proposes the CSP-GC framework. This framework provides a logical structure for evaluation

of the hypothesis. The framework refers to each higher level grid service as a grid-facilitated

CSP-specific service that could be potentially supported using grid computing. The grid

computing middleware identified in chapter two are then evaluated with regards to each CSP-

specific service. The chapter concludes by arguing the need for a grid middleware that is

specifically implemented, based on identified ―ideal‖ middleware implementation

requirements, to support CSP-based simulation in industry.

Chapter four discusses the architecture of a grid middleware (WinGrid) that is implemented

during the course of this research. WinGrid incorporates the ―ideal‖ middleware

implementation requirements (which were identified in chapter three) and is specifically aimed

at CSPs. Finally, WinGrid is examined in relation to the CSP-GC framework defined services

to investigate whether it can support some of these services.

Chapter five investigates whether the grid-facilitated, CSP-specific solutions identified in

chapters 3 and 4 are implementable in practice. This is done by designing case studies that

experiment with grid middleware and CSPs. This is considered important because this thesis

is end-user oriented and it attempts to present the simulation user with solutions that can be

implemented at their workplace. The criteria for evaluating the CSP-specific services are also

presented in this chapter. As case studies are grouped under one or more of these CSP-GC

framework defined services, the evaluation criteria outlined for each service can be

considered as the evaluation criteria for the respective case studies under it. A total of five

real-world and hypothetical case studies are presented in this chapter.

Chapter six evaluates the CSP-GC framework based on the results of the case study

experimentation (chapter 5) and the discussions pertaining to middleware support for CSP-

GC framework defined services (chapters 3 and 4). The hypothesis presented in this research

is accepted or rejected based on the evaluation of the CSP-GC framework.

Chapter seven is the final chapter of this thesis. It provides a summary of the research and

discusses its contribution. It highlights how the aim and the objectives of this research have

been met. The chapter concludes by suggesting future areas of research in this field.

Figure 1 shows the purpose of each chapter and how they are related to each other.

Chapter 1: Introduction 7

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Figure 1: Chapters and their purpose

Chapter 3

Chapter 2

Chapter 1

Chapter 4

Chapter 5

Chapter 6

Statement of hypothesis.

Identify higher level grid
services that can potentially be
used with CSPs.

Identify the form of grid
computing and specific grid
middleware that is suitable for
CSP-based simulation in
industry.

Propose the CSP-GC
framework. Each higher level
grid service is mapped to a
CSP-GC framework defined
CSP-specific service.

Examine the identified grid
middleware in relation to the
CSP-GC framework defined
services.

Express the need for a
middleware that is specifically
targeted at CSPs.

Discuss architecture of
WinGrid. Examine WinGrid in
relation to the CSP-GC
framework defined services.

Formulate and conduct case
studies that use existing grid
middleware and WinGrid to
investigate whether support for
CSP-specific services can be
provided. The case study
evaluation criteria are based
on evaluation criteria for CSP-
specific services.

Present the evaluation criteria
for the CSP-specific services.

Evaluate CSP-GC framework based on case study experimentation
and discussions related to existing grid middleware and WinGrid.

Evaluate the hypothesis.

Chapter 7 Summary and conclusions.

Chapter 1: Introduction 8

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

1.6 Chapter summary

This chapter has presented the motivation and the rationale for conducting this research

(section 1.1), the aim and objectives (section 1.2) and the research methods that will be used

(section 1.3). It has further identified the audience, scope and limitations of this work (section

1.4). Finally, this chapter has given an overview of the structure of this thesis (section 1.5).

The next chapter is the literature review chapter. The purpose of this chapter is to identify how

grid computing technologies can be used to support commercial simulation packages that are

widely used in industry. To this end, this chapter identifies higher level grid services and

specific grid middleware that can be used in the context of simulation in industry. This chapter

also presents an overview of CSP-based simulation in industry.

Chapter 2: Grid computing and simulation packages 9

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

2 GRID COMPUTING AND SIMULATION PACKAGES

2.1 Introduction

The research presented in this thesis hypothesises that simulation practice in industry can

benefit from the use of grid computing. This chapter provides the context to this hypothesis

through a discussion on grid computing and the CSPs that are generally used to model

simulations in industry. This in turn identifies some of the potential benefits that could be

accrued by using grid computing technologies together with the CSPs to further the practise

of simulation in industry.

Section 2.2 of this chapter conducts a literature review on grid computing. It focuses on the

definition of the term ―grid‖, discusses its predominant use in scientific projects, describes

some of the uses of this technology (basic grid services and higher-level grid services), gives

an overview of grid computing middleware and production-level grids being used around the

world, and finally concludes with a discussion on different forms of grid computing.

This chapter then discusses simulation from an industry perspective and focuses on

simulation tools that are commonly used to model such simulations (sections 2.3 and 2.4).

Grid computing necessitates the use of multiple computing resources that are connected over

the network. Thus, for grid computing to offer any practical benefit to simulation practitioners it

is imperative that they have access to multiple networked PCs within their organization.

Informed by the discussion on grid computing and CSPs in previous sections, section 2.5

identifies four higher-level grid services that can be potentially used to support the commercial

simulation packages. This section further examines the extent to which the CSPs support

functionality similar to those provided by the higher-level grid services through custom

solutions.

This chapter discusses two specific forms of simulation that may gain from use of grid

computing. These are, distributed simulation (section 2.6) and web-based simulation (section

2.7). The extent to which the CSPs support distributed simulation and web-based simulation

through custom solutions are also discussed. This chapter then identifies two specific forms of

grid computing that could be potentially used with unmodified CSPs (section 2.8), namely

Public Resource Computing (PRC) and Enterprise Desktop Grid Computing (EDGC), and

discusses PRC middleware BOINC (section 2.9) and EDGC middleware Condor (section

2.10) in detail. The chapter concludes with presenting three different approaches to using

simulation tools together with grid computing software and identifies one of them to be most

appropriate for this research (section 2.11).

Chapter 2: Grid computing and simulation packages 10

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

2.2 Grid computing

The grid vision of providing users continuous access to computing resources, similar to public

utility services like electricity and telephone, can be traced back to the Multics (Multiplexed

Information and Computing Service) system that arguably discussed this in the context of

time-sharing of a CPU among jobs of several users (Corbato and Vyssotsky, 1965). The term

―grid computing‖ was itself preceded by the term metacomputing which also advocated

transparent user access to distributed and heterogeneous computing resources by linking

such resources by software and an underlying network (Smarr and Catlett, 1992).

Grid computing (or Grids) was first defined by Ian Foster and Carl Kesselman in their book

“The Grid: The Blueprint for a New Computing Infrastructure” as a hardware and software

infrastructure that provides access to high-end computational resources (Foster and

Kesselman, 1998). It was further stated that this access should be dependable, consistent,

pervasive and inexpensive. This definition of grid computing has since been modified twice by

the grid veterans; once by Foster, Kesselman and Tuecke in their paper titled “Anatomy of the

Grid” (Foster et al., 2001), and again by Foster and Kesselman with the publication of the

second edition of their book “The Grid: The Blueprint for a New Computing Infrastructure”

(Foster and Kesselman, 2004).

In Foster et al. (2001) grid computing has been distinguished from conventional distributed

computing by its focus on large-scale resource sharing, innovative applications and high-

performance orientation, with the objective of coordinated resource sharing and problem

solving in dynamic multi-institutional virtual organizations. A virtual organization is defined as

a group of individuals and/or institutions engaged in some joint task who share resources by

following clearly stated sharing rules. These rules define what is shared, who is allowed to

share and the condition under which sharing occurs. Unlike the previous definition, which

seems to suggest that access to High Performance Computing (HPC) resources in

supercomputing centres could be termed as grid computing, this definition lays special

emphasis on collaborative resource sharing between organizations whose resources are

generally under different administrative domains. It further clarifies the nature of sharing in the

grid environment to include not only file exchange but rather direct access to computers,

software, data, and other resources (attached computer peripherals, remote instruments like

sensors, etc.).

In Foster and Kesselman (2004) grid has been defined as a system that coordinates

distributed resources using standard, open, general-purpose protocols and interfaces with the

aim of delivering non-trivial qualities of service. The three key elements that are highlighted in

this definition are:

1. A grid provides coordinated resource sharing within an organization and among virtual

organizations (VOs) and addresses issues of security, VO membership, sharing policy,

Chapter 2: Grid computing and simulation packages 11

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

payment for use of resources, etc. that arise in such cross-organizational settings. The

VO element in this definition is not new. It was introduced in Foster et al. (2001).

2. A grid is built using standard, open, general-purpose protocols and interfaces that

address fundamental issues such as authentication, authorization, resource discovery

and resource access. This is an important new element of the definition. It highlights that

for any distributed system to be a part of the grid it must implement the ―inter-grid‖

protocols and standards that are gradually being created by grid-standards creation

communities like the Open Grid Forum (Open Grid Forum, 2007). This would encourage

both open source and commercial distributed systems to interoperate effectively across

organizations and thereby realize the grid vision.

3. A grid delivers nontrivial qualities of service (QoS) relating to throughput, availability,

response time, resource co-allocation, etc., such that the utility derived from the grid

infrastructure is significantly greater than what would have been derived if resources were

used in isolation. QoS is an important new element introduced in this definition, although

earlier definitions have implicitly indicated at it.

Re-definition of the term ―grid computing‖ twice over the period of nearly 5 years suggests

that this is still an evolving field. However, all the three definitions are consistent in terms of

their focus on large-scale computing. Thus, Foster and Kesselman (1998) mention ―access to

high-end computational resources‖, Foster et al. (2001) refer to ―large-scale resource sharing‖

and, finally, Foster and Kesselman (2004) highlight ―delivery of nontrivial QoS‖. This focus on

large scale computing makes grid computing an enabling technology for eScience (Hey and

Trefethen, 2002). e-Science is large scale science that is increasingly being carried out

through global collaborations, and which requires access to very large data sets and

computing resources distributed across a wide geographical area (National e-Science Centre,

2001). Some of the e-Science projects using grid technology are presented in table 1 below.

Table 1: e-Science projects that use grid computing

e-Science
Project

Disciple Details Reference

LHC e-Science
project, CERN
(Geneva)

Particle
physics

The LHC (Large Hadron Collider) project features a
high-luminosity accelerator and four state-of-the-art
particle physics collision detectors (ALICE, ATLAS,
CMS, LHCb). The four LHC experiments, named
after the four collision detectors, are designed to be
able to study particle physics under conditions well
beyond any other previous experiment.
When the LHC becomes operational in 2007 it will
produce roughly 15 Petabytes (15 million Gigabytes)
of data annually. The data will be accessed and
analysed by thousands of scientists (ATLAS alone
has about 1700 scientific collaborators from more
than 150 institutions).
Author’s Comment: As of October 2006, the LHC
collaboration consists of scientists and resource
providers in 40 countries.

(Lamanna, 2004)
and (LCG, 2007a)

NEES
e-Science
project, USA

Earthquake
engineering

The NEES (Network for Earthquake Engineering
Simulation) project links earthquake researchers
across the U.S. with leading-edge computing

(Spencer et al.,
2004)

Chapter 2: Grid computing and simulation packages 12

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

e-Science
Project

Disciple Details Reference

resources and research equipment like
supercomputers, data storage, networks,
visualization displays, sensors and instruments,
application code, among others. This allows
collaborative teams (including remote participants) to
plan, perform, and publish their experiments.

ESG e-Science
project, USA

Climatology In the ESG (Earth System Grid) project, global
climate models are used to simulate climate, and
experiments are executed continuously on an array
of distributed supercomputers. The resulting data
archive, spread over several sites, currently contains
upwards of 100 TB of simulation data. The ESG
project is a collaborative interdisciplinary project.

(Bernholdt, 2005)

BIRN e-Science
project, USA

Medical The BIRN (Biomedical Informatics Research
Network) project is establishing an information
technology infrastructure that will pool together
research facilities, instrumentation resources,
domain expertise and regional information to better
tackle diseases.

(Ellisman and
Peltier, 2004)

The adoption of grid computing outside e-Science projects has been limited. There are only a

few examples in the literature of the use of grids in industry for inter-organizational

collaborative work (i.e., access to shared VO resources for day to day operations of an

organization) or collaborative research. Arguably, this is best illustrated by the fact that the

majority of the research papers related to ―grid applications‖ that are listed on the website of

Globus Alliance (Globus Alliance, 2007b), a well recognised community of organizations and

individuals that are involved in the research and development of grid computing technologies,

are about the use of grid computing in e-Science projects.

One exception to this is the Distributed Aircraft Maintenance Environment (DAME) project that

has developed a distributed aircraft engine diagnosis environment as a proof of concept

demonstration for Grid computing (Jackson, 2003). This project has three industrial partners

(Rolls-Royce plc, Data Systems and Solutions, and Cybula) and four academic partners

(Universities of York, Leeds, Sheffield and Oxford). DAME is designed to use grid computing

to store terabytes of engine sensor data, which are generated by aircraft fleets during flight, in

distributed data repositories and to make them accessible for engine health monitoring

services. Other ways in which grid computing technologies have been used in this project can

be found from the cited paper.

This section of the thesis has defined grid computing and has highlighted its prevalence in e-

Science projects. Before concluding, it is worth adding that the concept of running user

applications using multiple distributed resources has been around for as long as computer

networks itself. For example, distributed systems like the Resource Sharing Executive

(RSEXEC) system (Forsdick et al., 1978), the National Software Works network operating

system (Forsdick et al., 1978), the V distributed operating system (Cheriton, 1988), the

Amoeba distributed operating system (Tanenbaum et al., 1990), Legion (Grimshaw and Wulf,

1996), the Uniform Interface to Computing Resources (UNICORE) system (Almond and

Chapter 2: Grid computing and simulation packages 13

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Snelling, 1999), among others, have been in existence for decades; however, there are some

key differences between the current approach to grids and the former approaches (Schopf

and Nitzberg, 2002).

 Grid computing facilitates use of heterogeneous hardware and software resources. For

example, different hardware architectures running different operating systems and

different versions of applications can all be combined together to form the grid. This is

being made possible through the development of standardized, interoperable grid

protocols and interfaces, and the implementation of the same in the form of grid

computing middleware for different hardware architectures and operating systems. The

previous approaches generally provided non-interoperable and custom solutions (Foster

and Kesselman, 2004).

 The grid approach is about resource sharing, and unlike previous approaches that

concentrated mainly on sharing computers and networks, it also focuses on the sharing of

data, specialized instruments, applications, etc.

 The grid approach advocates site autonomy for the different administrative domains that

collectively provide resources for grid computing. Thus, each administrative domain has

complete control over its local resources, policies governing use of such resources, the

user accounts that are maintained, etc.

 The grid approach focuses on the users. It enables them to select resources that are best

suited to fulfil the requirements of their applications. The previous approaches were

mainly driven by the requirements of the resource providers, for example, to maximize

utilization and throughput.

The next section looks at grid computing from the point of view of those involved in executing

their applications over the grid – the grid users (subsequently referred to only as the users).

2.2.1 Grid computing from the perspective of the users

The users perceive distributed grid resources as one single system that is capable of

processing their computation and data intensive jobs. This is graphically illustrated in figure 2.

By logging into one computer (which can be an office computer, a personal laptop, etc.), the

users expect to seamlessly access the underlying grid resources like computing clusters, disk

arrays, applications, instruments, databases, etc. This section presents an overview, from the

point of view of the users, of the services that can be provided by grids and the grid-specific

mechanisms that are involved in accessing them.

Baker et al. (2002) identify the following five basic grid services that can be provided by grids.

 Computation Services: These services allow user jobs (these can be considered as

executable programs written by the user) to be run on distributed computational

resources. A grid providing computational services is often called a Computational Grid.

Chapter 2: Grid computing and simulation packages 14

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

 Data Services: These services provide secured access to datasets. In order to create the

illusion of a mass storage, these datasets can be replicated, catalogued or even stored in

different locations. The processing of the datasets is normally carried out using

computational grids. Data Grids is a term that is used to define computational grids that

process massive datasets.

 Application Services: These services provide access to remote software and libraries.

They build on computational and data services that are provided by the grid.

 Information Services: These services use the computational, data and application

services to present data with meaning (i.e., information). For example, the output

generated by the simulation can be visualized.

 Knowledge Services: Knowledge can be defined as information applied to achieve a

goal, solve a problem or execute a decision. Data grids can be used to mine for

knowledge using data that is present in the databases.

Figure 2: Users’ view of grid computing

The users will have to interact with the grid system using grid-specific mechanisms in order to

access and utilize the services that have been identified above. These grid-defined

mechanisms are referred to as core grid mechanisms in this thesis. This thesis looks only at

the procedures for accessing computation services, as this introduces some important core

grid mechanisms (scheduling, brokering, etc.) that will be used in the subsequent discussions.

However, most of these mechanisms are also usually used for accessing the other grid

services that have been described in this section.

The users generally access computation service through job submission. Jobs generally

consist of executable code and associated data, wherein the code acts on the data to

produce some output. Jobs are submitted to the grid by the user using a local computer (also

referred to as the job submission node). The interaction between the users and the grid in

Computing
Clusters

Communication
(I/O)

Data

Applications Disk Farm

Instruments
User

Chapter 2: Grid computing and simulation packages 15

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

successful execution of the user jobs will involve all or some of the following core grid

mechanisms:

 Authentication and single sign-on: Users gain access to grid resources by

authenticating themselves to just one resource. This is made possible through the

generation of short-lived (usually 12-24 hours) proxy-certificates that enable dynamic

assignment of new user identity certificates for each new resource accessed by the user

or by a user program (Welch et al., 2003).

 Authorization: Users can access only those resources for which they have permission.

Two grid-defined mechanisms for authorization are gridmap-files and Virtual Organization

Membership Service (VOMS) (Alfieri et al., 2005). Authentication and authorization are

grid security mechanisms.

 Grid information service: Information pertaining to grid resources is maintained by the

grid information service (Czajkowski et al., 2001). This information is continually updated

to reflect the availability of resources. Other information like the configurations of the

machines (e.g., number of CPUs, RAM), the software available (e.g., MPI libraries, Java

runtime environment), etc. are also generally kept.

 Resource discovery: Through the grid information service the users discover available

resources for running their jobs. Resource discovery is not necessary if the users have

already decided on the resource over which to execute their jobs.

 Resource allocation: User jobs are allocated to resources that have been discovered

and that are considered appropriate for the execution of the jobs.

 Job submission: User jobs are submitted on the allocated resource. This is normally

achieved through batch submission systems like Portable Batch System (PBS) (Bayucan

et al., 1999), Load Sharing Facility (LSF) (Zhou, 1992), LoadLeveler (Kannan, 2001), etc.

running on the local computation resource. A local batch submission system, on the one

hand, allows the administrator of a resource to define policies with regard to its use for the

execution of different jobs; and on the other hand it provides a mechanism that ensures

that the user job will have access to resources required to complete its execution

(Bayucan et al., 1999).

 Data staging: User data is moved from the job submitting node to the computation node,

as local access to data at the computing node generally reduces execution time.

 Job monitoring: Users can monitor the progress of their jobs.

 Output retrieval: The outputs of the computations are retrieved by the users.

 Resource brokering: Resource discovery and job submission can be done on behalf of

the users by a Resource Broker (RB) component of the grid system, if present. The RB is

responsible for matching job requirements with resource capabilities and for assigning

jobs to the resources accordingly (Berlich et al., 2005). Thus, the RB allows the

submission of user jobs to different local batch submission systems that are running on

various grid resources (figure 3). Nimrod/G is an example of a RB that has extensively

been used over grids for parametric computing (task farming) by applications in the field

Chapter 2: Grid computing and simulation packages 16

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

of bio-informatics, operations research, etc. (Buyya et al., 2000). The concept of RB has

relevance to subsequent discussions.

Figure 3: Interaction between resource broker and grid resources

This section of the thesis has presented an overview of basic grid services and the means to

access them, using core grid mechanisms, from the point of view of the grid users. The next

section will discuss some of the higher-level grid services that built on the basic grid services

and provide the users with higher-level functionality.

2.2.2 Higher-level grid services

The basic grid services outlined in section 2.2.1 (for example, computation service, data

service, application service, etc.) can be used to offer higher level, grid-supported functionality

to the user applications. Using multiple grid nodes that are installed with Parallel Virtual

Machine (PVM) (Geist et. al, 1994) and / or parallel computing libraries based on Message

Passing Interface (MPI) (Argonne National Laboratory, 2007), the user is generally able to

execute parallel applications over the grid. For example, Huang et al. (2006) have

implemented a grid-based parallel visualization service to visualize massive datasets of

scientific data in parallel. They have used the MPICH-G2 (Karonis et al., 2003)

implementation of MPI over Globus middleware (discussed in section 2.2.3.1) for parallel

execution of their application. Thus, it can be argued that they utilize three basic grid services,

namely, computational service (for parallel processing), data service (to make available

scientific datasets) and application service (for accessing MPICH-G2 libraries installed over

different grid nodes), to provide a high-level information visualization service that abstracts

the underlying basic grid services. Grid computing middleware that provide parallel

computation support to user applications include Globus, Condor (discussed in sections

2.2.3.2 and 2.10) and InteGrade (Goldchleger et al., 2004). Grid support for executing parallel

applications will henceforth be referred to as parallel computation service.

Resource Broker

(RB)

Grid User

Resource running

LSF

Resource running

PBS

Resource running

LoadLeveler

User interacts with

RB

RB interfaces with local batch

submission systems to submit user jobs

Chapter 2: Grid computing and simulation packages 17

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Grid computing provides access to multiple computing resources and therefore it is generally

possible to execute different applications over various grid nodes. This is different from

parallel computation using grids (described in the earlier paragraph) where one application is

executed co-operatively by multiple grid resources. The ability to run different applications

concurrently over grids facilitates the execution of applications that are based on the master-

worker distributed computing architecture. This architecture (also referred to as task farming

architecture) consists of one master entity and multiple workers entities, wherein the master

entity decomposes the problem into small tasks, distributes these tasks among multiple

worker processes and gathers the partial results to produce the final result of the

computation; and the worker entities receive messages from the master with the next task (or

request next task from the master), process the task and send back the result to the master

(Heymann et al., 2000). Goux et al. (2000) describe a software framework called MW that

allows users to parallelize computations using the master-worker paradigm on the

computational grid. MW interfaces the user application (the user application consists of two

separate components, namely master program and worker program) with underlying grid

middleware. Thus, the user applications use the MW software framework to draw on

computation resources required for their execution. The AppLeS (Application Level

Scheduling) Master-Worker Application Template, or AMWAT, is yet another software

framework that targets deployment of small and medium-scale master-worker applications

(Berman et al., 2003). Grid support for executing master-worker type applications will

subsequently be referred to as task farming service.

Computational steering service is yet another high-level service that can be composed of

basic grid services. Unlike traditional non-interactive programs that are executed over the

grid, computational steering provides a way for the users to interact with grid applications

while they are running (Brooke et al., 2003). This allows a user to steer the execution of a

remote application based on the intermediate outputs being generated by it. Computational

steering usually necessitates concurrent execution of two or more programs over the grid,

wherein one program (client) provides the interface to steer the execution of one or more

remote programs. For example, the gViz e-Science project has demonstrated the use of gViz

computational steering library in an environment disaster simulation and visualization

application, where a client program is used to manipulate the wind directions while the

simulation and visualization components are running over the grid (Brodlie et al., 2004).

Similarly, the RealityGrid project has implemented a computational-steering library and a

steering client, where the steering client is used to steer one or more software components

(Brooke et al., 2003). The software components, including the RealityGrid steering client,

utilize the RealityGrid computational steering library for this purpose. Figure 4 shows an

example where the client is being used to computationally steer a simulation and a

visualization component.

Chapter 2: Grid computing and simulation packages 18

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Figure 4: Example of remote steering in RealityGrid (Brooke et al., 2003)

Grid computing technologies can be used to integrate previously uncoupled resources and

applications such as sensor networks, High Performance Computing (HPC) resources,

simulation and visualization applications, distributed datasets, command and control systems,

etc. This is referred to as grid-facilitated integration service in this thesis. The FireGrid project,

for example, utilizes the integration capability of the grid to develop real time fire emergency

response systems (Berry et al., 2005). It uses the computation service, a basic grid service, to

gain on-demand access to HPC resources and to run computational fluid dynamics fire

models using the provisioned resources. The simulations are steered using data sent over

wireless sensors networks (pre-deployed at the location of fire emergency) and the results of

the computations are input to a real-time command and control (C
2
) system. The C

2
system is

used for emergency response and evacuation planning. The FireGrid also utilizes the

knowledge service, another basic grid service outlined by Baker et al. (2002), for mining data

pertaining to key events.

A grid portal is a web-based application that is enhanced with the necessary software to

enable it to communicate with grid services made available by the grid middleware (Novotny,

2002). It provides the users with higher-level abstraction to the underlying grid services. The

web browsers provide an easy-to-use, graphical environment through which the users can

interact with the grid middleware. Furthermore, grid portals make it possible for the users to

access grids from virtually any computer that is connected through the Internet. Examples of

grid portals include the P-GRADE (Parallel Grid Run-time and Application Development

Environment) portal (Németh et al., 2004), the NGS (National Grid Service) portal (Yang et

al., 2005), the GENIUS (Grid Enabled web eNvironment for site Independent User job

Submission) grid portal (Barbera et al., 2003) and the Legion grid portal (Natrajan et al.,

2002). The use of grid portals to enable convenient access to grid middleware is

subsequently referred to as grid portal service.

The applications that are executed over grid resources can have dependencies among them.

For example, the output of one application can be the input to another application (sequential

dependency). Such dependencies between applications can be maintained using workflows

Chapter 2: Grid computing and simulation packages 19

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

and workflow management systems. Workflows are concerned with the automation of

procedures whereby files and data are passed between applications following a defined set of

rules to achieve an overall goal; and workflow management systems are responsible for

defining, managing and executing such workflows over computational resources (Yu and

Buyya, 2006). Examples of workflow management systems include Condor DAGMan

(discussed in section 2.10.4), Taverna (Oinn et al., 2004), Pegasus (Deelman et al., 2004)

and Gridbus workflow enactment engine (Yu and Buyya, 2004). Grid support for executing

workflows will subsequently be referred to as workflow service.

Grid computing facilitates collaboration among VOs. This collaboration can take various

forms. At the most basic level it can be collaboration through co-operative use of grid

resources. Table 1 in section 2.2 lists four such examples of collaborative resource sharing in

e-Science projects, namely, LHC (Lamanna, 2004), NEES (Spencer et al., 2004), ESG

(Bernholdt, 2005) and BIRN (Ellisman and Peltier, 2004).

Collaboration in the grid environment can take the form of users publishing their user-

developed web services (think of these as user applications that can be accessed using

standard Internet protocols and open standards) for other users to access. Web services are a

web-based technology that is increasingly being used to implement Service Oriented

Architectures (SOA) (Mahmoud, 2005). Web services support machine-to-machine interaction

over a network using SOAP messages sent over Hyper Text Transfer Protocol (HTTP) and

web-related standards (World Wide Web Consortium, 2004). SOAP is a lightweight

Extensible Markup Language (XML)-based protocol for exchange of information in a

decentralized, distributed environment (World Wide Web Consortium, 2000). OGSA (Open

Grid Services Architecture)-complaint grid middleware like GT-4 usually provide containers

(hosting environments) to host the user-developed web services, and provide mechanisms for

service providers to register their web services through use of service registries (service

publication), mechanisms for service consumers to search for services in the registries

(service discovery) and mechanisms to invoke the services when a suitable match is found

(service invocation). Both OGSA and GT-4 are further discussed in section 2.2.3.1.

Figure 5 shows the GT-4 container hosting both user-developed web services (―custom web

services‖ and ―custom WSRF [Web Services Resource Framework] web services‖) and GT-4

developed web services (―GT-4 WSRF web services‖). It depicts the service registry as

―registry administration‖ and the applications used by service consumers to access both the

user-developed and the GT-4 developed web services as ―user applications‖. The reader is

referred to Globus Alliance (2007a) for an overview on SOA, web services and WSRF.

Chapter 2: Grid computing and simulation packages 20

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Figure 5: GT-4 container hosting user-defined web services (Foster, 2006)

Another form of grid-facilitated collaboration could be virtual meeting support provided

through integration of audio, video and messaging capabilities with grid middleware. An

example of this is the Access Grid Collaboration System. This is based on technology

developed by the Argonne National Laboratory’s (ANL) Futures Laboratory Group (FLG).

Access grid is primarily meant for group-to-group human interaction through the use of

interactive presentation and software environments, remote visualization environments, large-

format multimedia displays, among others (Stevens and FLG, 2004). Screenshot 1 below

shows Access Grid being used for an interactive virtual meeting. In this thesis, the use of grid

technology to facilitate collaboration is referred to as collaboration service.

Screenshot 1: Group-based collaboration using Access Grid

This section has discussed some of the higher-level grid services that can be accessed by

users through use of grid computing. The services discussed were parallel computation

service, task farming service, computational steering service, integration service, grid portal

Chapter 2: Grid computing and simulation packages 21

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

service, workflow service and collaboration service. Most of these services built on the basic

grid services that were discussed in section 2.2.1.

The basic and the higher-level grid services can be provided through use of grid computing

software. This software is commonly referred to as grid computing middleware and is

discussed next.

2.2.3 Grid middleware

A grid middleware is a distributed computing software that integrates network-connected

computing resources (computer clusters, data servers, standalone PCs, sensor networks,

etc.), that may span multiple administrative domains, with the objective of making the

combined resource pool available to user applications for number crunching, remote data

access, remote application access, among others. A grid middleware is what makes grid

computing possible. With multiple VOs involved in joint research collaborations, issues

pertaining to security (authentication and authorization), resource management, job

monitoring, secure file transfers, etc. are of paramount importance. Thus, in addition to

making available a seamless distributed computing infrastructure to cater to the computing

needs of the grid user, the grid middleware usually provides mechanisms for security, job

submission, job monitoring, resource management and file transfers, among others. This

section gives an overview of grid middleware that are commonly installed on distributed

computing resources to create an underlying infrastructure for grid computing. The operating

system support for each middleware is also highlighted.

2.2.3.1 Globus middleware

The origin of Globus middleware can arguably be traced back to 1995, when 17

supercomputing centres, data centres and virtual reality laboratories across North America

were linked together through the I-WAY network to demonstrate distributed execution of a

number of supercomputing applications (Berlich et al., 2005). A management and application

programming environment called I-Soft was developed as part the I-WAY experiments and

was deployed at most of the 17 I-WAY sites (Foster et al., 1996). I-Soft can thus be

considered as the precursor to Globus. Globus has since come a long way with the current

version of the Globus middleware being version 4.

The Globus middleware is an open architecture and an open source set of services and

software libraries, developed in consultation with the user community, which supports grids

and grid applications (Foster et al., 2002). It implements a set of components (based on

standard grid protocols and interfaces) that provide basic grid services like authentication,

resource discovery, resource access, resource management, data management,

communication, etc., and a set of software libraries, both of which facilitate the construction

of more sophisticated grid middleware. As such, Globus is regarded more as a toolkit for the

development of other grid middleware rather than a ready-to-use grid solution (Berlich et al.,

Chapter 2: Grid computing and simulation packages 22

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

2005). Globus is thus referred to as Globus Toolkit (GT) in different versions of the

middleware, viz., GT-2, GT-4, etc. The majority of the middleware discussed later in this

section either includes components from Globus or are an extension of Globus itself.

Subsequent discussions on Globus are extensively referenced from Foster and Kesselman

(2004), unless otherwise stated.

 A few of the grid protocols that are implemented by Globus and its purpose are described

next.

 The Grid Security Infrastructure (GSI) protocol supports single sign-on user

authentication.

 The Grid Resource Allocation and Management (GRAM) protocol is for allocation and

management of user jobs on remote resources.

 The Monitoring and Discovery Service (MDS-2) provides a framework for discovering and

accessing information like server configuration information, networks status, etc.

 The GridFTP protocol is an extension of the popular File Transfer Protocol (FTP) protocol

and supports partial and parallel file access.

It has to be added that some of these protocols like GridFTP and GSI were first defined and

implemented by Globus version 2 (GT-2), before they were subsequently reviewed within the

standards bodies and recognised as standards. This is hardly surprising because from 1997

onwards GT-2 was generally considered the de facto standard for grid computing because of

its focus on reusability and interoperability with other grid systems. A community-wide grid

protocol standardization effort started in around 2001 with the emergence of the Global Grid

Forum, now called the Open Grid Forum (Open Grid Forum, 2007). This ultimately produced

the Open Grid Services Architecture (OGSA) - a service oriented framework, defined by a set

of community-developed standards, for the development of grid middleware. OGSA builds on

concepts and technologies from both the grid and web services communities with the

objective of providing an extensible set of grid services that VOs can aggregate in various

ways (Foster et al., 2002). It is widely believed that OGSA-based grid middleware will

encourage the adoption of grid computing technology in industry and will facilitate the

development of grid-based commercial applications. Globus toolkit versions 3 and 4 (GT-3,

GT-4) are both based on OGSA. A short overview of GT-4 is presented next.

GT-4 provides the following sets of components (Foster, 2006).

 A set of Globus-developed web services implementation of core grid services for resource

management (like WSRF implementation of GRAM), data access and movement

(Reliable File Transfer [RFT], OGSA-DAI [Antonioletti et al., 2005]), replication

management (Data Replication Server [DRS]), monitoring and discovery service (Index,

Trigger, WebMDS.), credential management (Delegation, SimpleCA) and instrument

management (Globus Teleoperations Control Protocol [GTCP]).

Chapter 2: Grid computing and simulation packages 23

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

 A set of Globus-developed non-web services implementations of core grid services for

resource management (GRAM), data access and movement (GridFTP), replication

management (Replica Location Service [RLS]), monitoring and discovery service (MDS-2)

and credential management (MyProxy).

 Three different containers, viz., Java container, Python container and C container, to host

user-developed services written in Java, Python and C respectively. These containers

provide implementations of security, management, discovery, state management, and

other mechanisms frequently required when building user-defined services.

 A set of client libraries that allow user programs in Java, Python and C to invoke

operations on both Globus-developed and user-developed services.

The GT-4 architecture is shown in figure 6 below. The figure shows only some of the

components described above. More information on the individual components of GT-4 can be

found in the ―GT-4 administration guide‖ (Globus Alliance, 2005).

Figure 6: GT-4 architecture showing the different components (Foster, 2006)

GT-4 is supported on UNIX, Linux and Windows operating systems. However, not all

components can be installed on Windows. For example, neither the pre-web services

implementations of the resource management component of GT-4 (GRAM), nor the WSRF

implementations GRAM can be installed on a Windows system. Furthermore, the non-web

services GT-4 implementations for security (MyProxy), file transfer (GridFTP), replication, and

information service (MDS-2) can only be run on UNIX and Linux platforms (Globus Alliance,

2005).

2.2.3.2 Condor middleware

Condor is a job scheduling system that is designed to maximize the utilization of collections of

networked PCs, referred to as a Condor Pool, through identification of idle resources and

Chapter 2: Grid computing and simulation packages 24

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

scheduling background user jobs on them (Litzkow et al., 1988). Although Condor was

originally designed to harness unutilized CPU-cycles from non-dedicated PCs within an

organization, the same design can be used to manage dedicated compute clusters. Using the

Condor-G extension to Globus it is possible to operate Condor across organizational

boundaries (Berlich et al., 2005).

Condor is supported on UNIX, Linux and Windows platforms. However, like Globus, not all

components of Condor can be installed on a Windows machine. For example, Condor does

not support several Condor execution environments like standard universe, PVM universe,

GT-4 grid type, LSF grid type, etc. on Windows (Condor Version 6.9.1 Manual, 2007a). The

reader is referred to section 2.10 for a detailed discussion on Condor.

2.2.3.3 European Data Grid (EDG) middleware

The EU-funded European Data Grid (EDG) project was a three year project (2001-2004) that

was started with the goal of developing technological infrastructure for facilitation of e-Science

collaborations in Europe. The grid computing middleware developed during this project is

commonly referred to as the EDG middleware. The EDG middleware itself is based on GT-2,

but in addition to Globus-supported standard grid features like grid security infrastructure, grid

information service, resource discovery and monitoring, job submission and management,

etc., it extends Globus to offer high functionality middleware services like resource brokering

and replication management (Berlich et al., 2005). Resource brokering and replication

management services are implemented using the Resource Broker (RB) and Replication

Management Tools (RMT) respectively, both of which are integrated with the EDG

middleware. Through the RB component, EDG middleware implements the ―push‖

middleware architecture wherein the RB periodically polls the computing resources to find out

the load levels and decide on whether new jobs are to be assigned to the resources (Berlich

et al., 2005).

After the completion of the EDG project in 2004, some of the EDG middleware components,

notably RB and RMT, have been further developed as part of other EU-funded grid projects

like the Enabling Grids for E-sciencE (EGEE) project (see section 2.2.4). The EDG

middleware has only been tested on RedHat Linux 7.3 (EDG WP6 Integration Team, 2003).

For subsequent discussions in this thesis relating to grid middleware, a distinction between

―pull‖ and ―push‖ middleware architecture is now presented. ―pull‖ and ―push‖ are two different

methods (models, approaches, architectures, mechanisms) for scheduling tasks (jobs) on

resources (Hantz and Guyennet, 2005). The tasks are scheduled by a middleware component

that can be referred to by various names, for example, job scheduler, workload management

system, task dispatcher, master process, etc. For the purpose of this research it is sufficient

to view the task scheduling component as an integrated part of the grid middleware. In a ―pull‖

model the computing resources request jobs from a central resource which maintains the job

Chapter 2: Grid computing and simulation packages 25

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

queue; whereas in a ―push‖ model one central resource schedules jobs on the available

resources and tries to centrally optimize the allocation of jobs between the resources

(Garonne et al., 2004). In the decentralized ―pull‖ model the system state information is

maintained by each resource, whereas in the centralized ―push‖ model state information of all

the resources is maintained at a central resource (Garonne et al., 2005).

2.2.3.4 Virtual Data Toolkit (VDT) middleware

Virtual Data Toolkit (VDT) is a grid middleware primarily meant for the US Open Science Grid

(see section 2.2.4). It is a combined package of various grid middleware components,

including Globus and Condor, and other utilities. The goal of VDT is to provide users with a

middleware that is thoroughly tested, simple to install and maintain, and easy to use. The

latest version of VDT (version 1.6.1) supports only Linux-based platforms like Debian Linux,

Fedora Core Linux, RedHat Enterprise Linux, Rocks Linux, Scientific Linux and SUSE Linux

(Virtual Data Toolkit, 2007). More information on the individual VDT components can be found

from the cited reference.

2.2.3.5 gLite middleware

The development of gLite middleware is being supported by the European Commission

funded EGEE project. gLite is primarily being developed for the LHC Computation Grid (LCG)

and the EGEE grids (see section 2.2.4). Twelve academic and industrial partners are involved

in the development of gLite. These include the European Organization for Nuclear Research

(CERN), the National Institute of Nuclear Physics (INFN, Italy), National Center for Scientific

Research (CNRS, France), Council for the Central Laboratory of the Research Councils

(CCLRC, UK), and National Institute for Nuclear Physics and High Energy Physics (NIKHEF,

The Netherlands).

The gLite-3 middleware (the latest version of gLite) uses components developed from several

other grid projects like Globus, Condor and EDG. gLite-3 is based on the web services

architecture and its underlying computing resources are referred to as Computing Elements,

or gLite CE for short. On one hand, gLite-3 middleware supports the ―pull‖ architecture that

empowers the gLite CEs to decide the best time to start a grid job; on the other hand, a RB

can be used to ―push‖ jobs just as EDG middleware (Berlich et al., 2005). Another middleware

which uses the ―pull‖ architecture for its RB is AliEn (a middleware primarily developed for

LHC ALICE experiment – see section 2.2.4). Because of its ―pull‖ implementation the AliEn

RB does not need to know the status of all resources in the system (Saiz et al., 2003). GLite-3

middleware is presently supported only on the Scientific Linux operating system (Burke et al.,

2007).

2.2.3.6 LCG-2 middleware

LCG-2 is the middleware for the LCG and the EGEE grids. It is a precursor to the gLite

middleware, and is being gradually replaced by gLite on both these production grids. The

Chapter 2: Grid computing and simulation packages 26

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

operating systems supported by LCG are Red Hat 7.3 and Scientific Linux 3 (Peris et al.,

2005).

2.2.3.7 OMII middleware

The Open Middleware Infrastructure Institute (OMII), based in the University of Southampton

and established as part of the five year (starting from late 2001) £250 million UK e-Science

core program, is mainly responsible for ensuring ―production-level‖ quality standards for grid

middleware components being delivered by various UK e-Science projects, ensuring that the

components are well documented and maintained in a middleware repository, undertaking

integration testing of these UK developed middleware components for interoperability with

components produced outside of the UK, and for testing the components to ensure

interoperability with open grid and web services standards. (Atkinson et al., 2005).

In order to achieve ―production-level‖ quality of middleware components, OMII works jointly

with the e-Science project teams in all phases of software development and/or employs its

own pool of software engineers to work on the software artifacts after they have been

delivered by the grid projects. Some of these components are collectively released as a

combined, quality assured, easy to install OMII software release. This software is also

referred to as the OMII middleware and it presently consists of two specific releases, viz.,

OMII server release and OMII client release. The OMII grid middleware is open source and

can be downloaded from the OMII website <http://www.omii.ac.uk/> for deployment

by the users. Some of the software components that are part of the OMII middleware are

GridSAM job submission and monitoring service, Taverna workflow tool (Oinn et al., 2004),

BPEL workflow editor and execution engine, application hosting environment, etc. More

details of these software components can be found on the OMII website.

The client and the server parts of OMII middleware are installed on the computers of the grid

clients (users) and grid service providers respectively. The client typically accesses the

computation resources and applications made available by the grid service provider through

the OMII client, via the OMII server (figure 7).

Figure 7: Conceptual view of users and service providers (OMII, 2006b)

The client part of OMII middleware can be installed on different distributions of Linux,

Windows and Apple Macintosh operating systems. However, the server part can only be

Chapter 2: Grid computing and simulation packages 27

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

installed on Linux flavor operating systems and on Apple Macintosh (OMII, 2006a). Both the

client and the server parts require Java to be pre-installed on the target machines.

2.2.4 Production grids

Production grids can be defined as grid computing infrastructures that have transitioned from

being ―research and development‖ test beds to being fully-functional grid environments,

offering users round-the-clock availability at sustained throughput levels. Production grids are

usually supported by a team that is responsible for the day-to-day maintenance of the grid

(including upgrading software), solving technical problems associated with the grid, helping

users through help-desk support, creating user documents, conducting training courses for

knowledge dissemination purposes, among others. This section gives an overview of some of

the largest production grids in the world and highlights the grid middleware running on them.

This information is presented in table 2 below.

Table 2: Examples of production grids

Grid
Name

Purpose Infrastructure Grid
Middleware

Reference

LCG (LHC
Computin
g Grid)

The purpose of
LCG is to provide
computation and
storage resources
for four LHC
particle physics
experiments, viz.,
ALICE, ATLAS,
CMS, LHCb, at the
European
Organization for
Nuclear Research
(CERN) near
Geneva.

The LHC infrastructure is arranged in a four-
tier hierarchy.
Tier 0 is located at CERN and is responsible
for the storage of all raw data. Tier I centres
are supercomputing facilities that
complement Tier 0’s capacity and act as
data distribution centres for Tier 2. Tier 2
centres provide facilities to analyze data.
Tier 3 centers consist of physicists and
other users who access data from their PCs
through the Tier 2 centres.
The LHC infrastructure comprises of
resources from other national and
international production grids like EGEE and
Grid3 (see below). At present the LCG grid
spans over 200 sites around the world and
has access to more than 30,000 CPUs and
20 PB of data storage capacity.
Author’s Comment: As of October 2006,
LHC consisted of 12 Tier-0 and Tier-1
centres and 38 Tier-2 centres. When the
LHC becomes operational in 2007 it will
require 100K of today‟s fastest CPU‟s.

LCG-2 /
gLite

(Lamanna,
2004),
(LCG,
2007a),
(LCG,
2007b) and
(Burke et al.,
2007)

OSG
(Open
Science
Grid),
USA

Research in
bioinformatics,
medical imaging,
nanotechnology,
physics, etc.

50 sites across United States, Asia and
South America.
Note: OSG infrastructure is also used for
the ATLAS and CMS experiments.

VDT (Open
Science
Grid, 2007)

DOE
Science
Grid, USA

Scientific
computing in
multiple disciplines
across DOE (US
Department of
Energy).

Aims to provide access to advanced
resources at multiple DOE resource sites:
initially, computers and storage systems at
Argonne National Laboratory (ANL),
Lawrence Berkeley National Laboratory
(LBNL), National Energy Research Scientific
Computing Centre (NERSC), Oak Ridge
National Laboratory (ORNL), and Pacific
Northwest National Laboratory (PNNL); In
time, the DOE Science Grid hopes to
incorporate other resource types (e.g.,
networks) and resources at other
laboratories and universities.

SciDAC
Collaboratory
Software
Environment

(Johnston,
2001)

Chapter 2: Grid computing and simulation packages 28

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Grid
Name

Purpose Infrastructure Grid
Middleware

Reference

Author’s Comment: DOE Science Grid is
now operational.

IPG
(NASA
Information
Power

Grid), USA

Provides support
for NASA’s
scientific and
engineering
communities.

The IPG will interconnect major computing
and data resources at multiple NASA sites.
It will provide access to around 300 CPUs
and 30-100 Terabytes of storage and is
connected through a network of at least 100
MBits/s.
Author’s Comment: IPG is now
operational.

Globus (Johnston,
1999)

Tera Grid,
USA

Research in
genomics,
earthquake studies,
cosmology,
climate and
atmospheric
simulations,
biology, etc.

As of 2003, the Tera Grid infrastructure
consists of the National Center for
Supercomputing Applications (NCSA), the
San Diego Supercomputer Center (SDSC),
ANL, California Institute of Technology
(Caltech) Center for Advanced Computing
Research, and the Pittsburgh
Supercomputing Center (PSC).

Globus (Reed,
2003)

Grid3,
USA

Resources are
used for high
energy physics
simulations and for
data analyses in
bio-chemistry,
astronomy, etc.

25 sites across the US and Korea
collectively provide more than 2000 CPUs.
Note: Grid3 also provides resources for
ATLAS and CMS experiments at CERN.

VDT (Grid3,
2007)

NAREGI
(National
Research
Grid
Initiative),
Japan

All areas of science
and technology.
Large-scale
nanoscience
simulations.

The National Institute of Informatics (NIN)
and the Institute of Molecular Science (IMS)
aim to operate a dedicated NAREGI test bed
with 18 teraflops of computing power
distributed over 3000 processors.

NAREGI
Middleware

(Matsuoka,
2005)

EGEE
(Enabling
Grids for
E-
sciencE)
Grid

EGEE Grid
infrastructure is
ideal for any
scientific research.

The EGEE project involves over 90 partner
institutions across Europe, Asia and the
United States and provides access to over
20,000 CPU and 5 Petabytes of storage.

LCG-2 /
gLite

(EGEE,
2007)

EDG
(European
Data Grid)

Provided intensive
computation and
analysis of shared
large-scale
databases across
distributed scientific
communities (e.g.,
high energy
physics, earth
sciences, bio-
Informatics, etc.)

CERN, INFN (Italy), CNRS (France),
Particle Physics and Astronomy Research
Council (UK), NIKHEF (Netherlands) and
European Space Agency (ESA).
Author’s Comment: The EU Data Grid has
been superseded by EGEE grid in March,
2004.

EDG
Middleware

(Segal,
2000) and
(EU-
DataGrid,
2004)

NGS
(National
Grid
Service),
UK

Production use of
computational and
data grid resources
in all branches of
academic research.

NGS provides access to over 2,000
processors and over 36 TB storage
capacities. These resources are provided by
the Universities of Manchester, Leeds,
Oxford and the Rutherford Appleton
Laboratory (RAL). The two High
Performance Computing (HPC) service
providers are UK National HPC Service
(CSAR) and the CCLRC Daresbury
Laboratory.
Author’s Comment: The NGS resource
base is gradually increasing with more
Universities contributing their clusters.

Globus (Yang et al.,
2005)

Chapter 2: Grid computing and simulation packages 29

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

As can be seen from the above table, most of these production grids have a resource base

spanning multiple VOs. These production grids are mainly being used for e-Science projects.

It has been noted earlier that there are very few examples of multiple VO-based grid

computing in industry. However, it is also true that grid computing middleware like Globus is

gradually being introduced within enterprises for processing enterprise-related applications. In

this scheme the organizations seek to leverage their existing computing resources using grid

middleware. Collaborations, if any, are limited to intra-organizational resource sharing and

problem solving. Some of the organizations that use grid computing middleware for their day-

to-day operations or integrate these middleware within their own application are listed in table

3 below.

Table 3: Example of organizations that use grid computing middleware

Company:
Application

Description Middleware Reference

SAP R/3:
Internet Pricing and
Configurator (IPC),
Workforce
Management (WFM)
and Advanced Planner
and Optimizer (APO)

IPC, WFM and APO applications are part of SAP’s R/3
product line and are designed to support large numbers
of requests generated by interactive clients using Web
browsers or from batch processes. Each client request
is dispatched to one of a number of worker processes.
SAP has modified these applications to use Globus
components to discover and reserve the resources
used to host those worker processes, and to execute,
monitor, and remove the worker processes on those
resources.

Globus (Foster,
2005)

GlobeXplorer:
GlobeXplorer

The data portrayed in the maps served by GlobeXplorer
originate from multiple sources, e.g. population data,
data on street networks, aerial images, satellite
Imagery, etc. Globus provides the technology required
to integrate data from such heterogeneous resource
base.

Globus (Gentzsch,
2004)

Planet Earth: Butterfly
Grid

Butterfly Grid supports massive multiplayer (MMP)
games via an on-demand service. Globus is used for
staging and maintenance of code; for scheduling,
monitoring and termination of processes; and as a
distributed monitoring framework using Globus’
Monitoring and Discovery Service (MDS-2). Globus
Security Infrastructure (GSI) is used for single sign-on
into multiple clusters.
Author’s comments: IBM is also a partner to this
project

Globus (Levine and
Wirt, 2004)

The question that has to be asked is: can the use of grid middleware within an organization

be termed as grid computing? The grid computing definition (Foster and Kesselman, 2004)

the author has been following stipulates collaborative problem solving among VOs and,

consequently, across administrative domains. Going by this definition the use of grid

computing middleware to access multiple resources within the same organization may not

qualify as grid computing. However, there is little agreement over what the term grid

computing actually means and there is not one, all-accepted, definition of grid computing. For

example, Baker et al. (2002) mention that the ―cooperative use of geographically distributed

resources unified to act as a single powerful computer‖ is known by several names such as

―metacomputing, scalable computing, global computing, Internet computing, and more

recently peer-to-peer or Grid computing‖ and Luther et al. (2005) refer to enterprise desktop

Chapter 2: Grid computing and simulation packages 30

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

grid computing, public distributed computing and peer-to-peer computing as different names

for Internet computing. However, as will be seen from the discussion presented in the next

section, grid computing, enterprise desktop grid computing and Internet / peer-to-peer / public

resource computing generally have a different set of objectives that determine the design

architecture of their underlying middleware technologies.

2.2.5 Different forms of grid computing

The discussion on grid computing, until this point, has shown that grid infrastructures,

middleware and applications have traditionally been geared towards dedicated, centralized,

high performance clusters (like Beowulf clusters [Beowulf.org, 2007]) and super computers

running on UNIX and Linux flavour operating systems (a notable exception being Condor

middleware). This form of grid computing will henceforth be referred to as cluster-based grid

computing. With the advent of Microsoft Windows Compute Cluster Server 2003 (Microsoft

WCCS, 2007) for parallel HPC (the OS includes Microsoft’s implementation of Message

Passing Interface – MS-MPI) in 2006, it is expected that grid computing middleware

specifically targeted at Windows-based operating systems will be developed in future.

Cluster-based grid computing can be contrasted with desktop-based grid computing which

refers to the aggregation of non-dedicated, de-centralized, commodity PCs connected

through a network and running (mostly) the Microsoft Windows operating system. Middleware

for cluster-based grid computing severely limits the ability to effectively utilize the vast

majority of Windows-based resources that are common place in both enterprise and home

environments, and therefore development of middleware for desktop-based grid computing is

important with the growing industry interest in grids (Luther et al., 2005).

Desktop grid computing or desktop grids addresses the potential of harvesting the idle

computing resources of desktop PCs for processing of parallel, multi-parameter applications

which consist of a lot of instances of the same computation with its own input parameters

(Choi et al., 2004). This definition fits with the original design objectives of Condor and it is

therefore considered appropriate to regard it as a desktop grid middleware. The idea of

harvesting unused CPU cycles has been around for decades with programs such as PARC

(Xerox Palo Alto Research Center) WORM, a program that replicated itself on networked PCs

and used the idle resources for computation, being developed as early as the 1970s (Chetty

and Buyya, 2002).

The desktop grid resources can be part of the same local area network (LAN) or can be

geographically dispersed and connected via a global network such as the Internet. Studies

have shown that desktop PCs can be under utilized by as much as 75% of the time (Mutka,

1992). This coupled with the widespread availability of desktop computers and the fact that

the power of network, storage and computing resources is projected to double every 9, 12,

Chapter 2: Grid computing and simulation packages 31

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

and 18 months respectively (Casanova, 2002), represents an enormous computing resource.

In this thesis the use of a desktop grid within the enterprise is termed as Enterprise-wide

Desktop Grid Computing (EDGC). Thus, EDGC refers to a grid infrastructure that is confined

to an institutional boundary, where the spare processing capacities of an enterprise’s desktop

PCs are used to support the execution of the enterprise’s applications (Chien et al., 2003).

User participation in such a grid is not usually voluntary and is governed by enterprise policy.

Applications like Condor, Platform LSF (Zhou, 1992), Entropia DCGrid (Kondo et al., 2004),

United Devices GridMP (United Devices, 2007) and Digipede Network (Digipede

Technologies, 2006) are all examples of EDGC.

Like EDGC, Internet computing seeks to provide resource virtualization through the

aggregation of idle CPU cycles of desktop PCs. But unlike EDGC, where the desktop

resources are generally connected to the corporate LAN and used to process enterprise

applications, Internet computing infrastructure consists of volunteer resources connected over

the Internet and is used either for scientific computation or for the execution of applications

from which the user can derive some benefit (for example, sharing music files). This research

distinguishes between two forms of Internet computing - Public Resource Computing (PRC)

and Peer-to-Peer Computing (P2P) - based on whether the underlying desktop grid

infrastructure is used for solving scientific problems or for deriving some user benefit

respectively. The different forms of grid computing are shown in figure 8. PRC and P2P

computing are described next.

Figure 8: Different forms of grid computing

PRC refers to the utilization of millions of desktop computers primarily to do scientific

research (Anderson, 2004). The participants of PRC projects are volunteers who contribute

their PCs to science-oriented projects like SETI@home (Anderson et al., 2002) and

Climateprediction.net (Christensen et al., 2005). Berkeley Open Infrastructure for Network

Computing (BOINC) (BOINC, 2007b) is arguably the most widely used PRC middleware that

enables the project participants to download work units from BOINC servers, process them

and upload the results back to the servers. The majority of the PRC middleware is supported

on Windows. This is not unexpected as PRC projects depend on volunteer computing

Peer 2 Peer

Computing (P2P)

Public Resource

Computing (PRC)

Grid Computing

Cluster-based

Grid Computing

Enterprise-wide

Desktop Grid

Computing (EDGC)

Internet

Computing

Chapter 2: Grid computing and simulation packages 32

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

resources, and the bulk of these resources presently run on the Windows operating system.

The participants of a PRC project are unable to use the underlying desktop grid infrastructure,

of which they themselves are part of, to perform their own computations.

P2P computing refers to a non-centralized infrastructure for file sharing over the Internet. P2P

networks are created with the resources of the volunteer users (peers), who derive the benefit

from such networks as it allows them download files that are shared by other peers. As P2P

computing is voluntary, the middleware for such systems should ideally have mechanisms to

organize the ad-hoc and dynamic peers in such a way that they can co-operate to provide file

sharing services to the P2P community; for example, the P2P middleware should have

mechanisms to quickly and efficiently locate files that are distributed among peers (Saroiu et

al., 2002). Some of the popular P2P file sharing systems are Gnutella (Sun et al., 2006),

KaZaA (Good and Krekelberg, 2003) and in the past, Napster (Giesler and Pohlmann, 2003).

They are all supported under the Windows operating system.

Unlike cluster-based grid computing whose user base is generally limited to participants of e-

Science projects (or those general users who have in-depth knowledge of grid middleware

like Globus) and like PRC / P2P computing whose user base is substantially larger and is

comprised of general users contributing their computing resources, enterprise-wide desktop

grid computing encourages wider employee participation through resource contribution.

Unlike PRC that does not allow the project participants to use the underlying infrastructure to

solve their own problems and like cluster-based grid computing that allows users to execute

their applications, enterprise-wide desktop grid users can utilize the aggregate resources to

process their enterprise-specific jobs. Comparisons, based on multiple criteria, between

cluster-based grid computing, desktop-based grid computing and PRC / P2P computing are

presented in table 4 below. Some of the differences between cluster-based grid computing

and PRC / P2P computing have been referenced from Foster and Iamnitchi (2003).

Table 4: Comparing different forms of grid computing

Comparison
based on:

Cluster-based
Grid Computing

Enterprise-wide Desktop
Grid Computing

P2P / Public Resource
Computing

Objective Pooling of resources that are
distributed among VOs and the
coordinated use of such
resources.

Pooling of resources that are
distributed in an enterprise.
The coordinated use of such
resources by the employees.

Pooling of resources that are
available at the edges of the
Internet and the coordinated
use of such resources.

Grid computing
middleware

Globus, Condor, LCG-2, gLite,
OMII, Virtual Data Toolkit, etc.

Condor, Entropia DCGrid,
Digipede Network, GridMP,
etc.
Author’s Comment: The focus
here is on Windows-based
middleware.

The middleware is usually
specific to a P2P or PRC
application. For example,
Gnutella and KaZaA P2P file
sharing middleware, PRC
middleware for Folding@Home
project (Pande, 2007). One
exception is BOINC which is
used for multiple PRC projects
like SETI@Home and
Climateprediction.net.

Applications Production grids can be used by
many scientific applications,

Enterprise-wide desktop grids
are used for the processing of

Each P2P and PRC application
normally has its own overlay

Chapter 2: Grid computing and simulation packages 33

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Comparison
based on:

Cluster-based
Grid Computing

Enterprise-wide Desktop
Grid Computing

P2P / Public Resource
Computing

spanning multiple projects. enterprise applications. network which is geared for
that specific application. One
exception is BOINC which is
used for multiple PRC projects

Target
community

Targeted at research
communities. Presently,
commercial interest in grid
computing is on the increase.

Enterprise-wide desktop grids
are primarily meant for use by
the employees.

PC owners are the target
community. They use P2P and
PRC applications to either
donate their resources for
scientific computation (e.g.,
SETI@Home) or to derive
some benefit from it (e.g., file
sharing using KaZaA)

User base Limited to those taking part in
collaborative projects.

Usually limited to employees
within an organization.

User base can span to
hundreds of thousands of
users.

Resources Computing resources used are
mostly powerful cluster
computers running on UNIX and
Linux OS. In addition, resources
in a grid can also consist of
scientific instruments. Local pools
of desktop PCs can be joined into
an administrative domain using
technologies like Condor, and can
be integrated into larger grids.

Resources can be both cluster
computers and desktop
computers available in an
organization. The clusters tend
to be dedicated resources. The
desktop PCs are mainly non-
dedicated employee PCs.

Leverages commodity desktop
PCs (running on Windows,
Unix, Linux, Macintosh, etc.
OS) that have intermittent
Internet connection.

Resource
administration
and sharing

Resources are administered in
accordance with well-defined
policies. Resource sharing criteria
are decided by the VOs. The
individual user normally has no
control over which VO resources
can be shared and / or accessed.

An organization-wide sharing
policy may be imposed on the
use of employees’ PCs.
Alternatively the employees
can be empowered to take
resource sharing decisions
pertaining to their PCs.

The end-users (PC owners)
are usually the resource
administrators and they decide
whether to share their
resources.

Communication

infrastructure
Grid resources are connected
over the Internet and proprietary
networks, e.g. LambdaRail
network (NLR, 2007). Centralized
administration of such resources
in VOs makes it possible for it to
be identified by static IP
addresses or through Domain
Name Service (DNS) servers.

Enterprise-wide desktop grid
computing normally takes
place within the confines of the
corporate Intranet. The firewall
prevents unauthorized access
to the grid from external
sources.

P2P and PRC resources are
connected over the Internet.
Increasingly, P2P systems are
designed to work
independently from DNS and
offer significant or total
autonomy from central servers.
For example, the first-
generation centralized P2P
systems, like Napster have
evolved to second-generation
flooding-based P2P systems
like Gnutella file sharing. PRC
projects usually depend on
central servers.

Trust Resources and users are trusted.
This is made possible through
Certification Authorities (CA) that
issue digital certificates for both
resources and their users.

Since access to the grid is
usually provided only to the
organization’s employees, and
since unauthorized remote
access is prevented through
corporate firewalls, both users
and resources are trusted.

Makes no assumptions on
trust. Thus, files shared (in the
case of P2P computing) and
results returned (in the case of
PRC) have to be verified.

Quality of
Service (QoS)

Designed to deliver non-trivial
QoS. Well-defined policies for
resource sharing accounts for
higher QoS.

The desktop PCs in an
enterprise grid are generally
non-dedicated resources and
are geared-up for High
Throughput Computing (HTC),
i.e., it focuses on deliveing
large amounts of processing
capacity over long periods of
time.

Less concerned with QoS as
P2P and PRC networks are
characterized by few providers
and many consumers. P2P and
PRC users normally have to be
provided with incentives to
encourage sharing.

Services Offers many services, e.g., Because enterprise grids are Offers only limited services like

Chapter 2: Grid computing and simulation packages 34

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Comparison
based on:

Cluster-based
Grid Computing

Enterprise-wide Desktop
Grid Computing

P2P / Public Resource
Computing

authentication and authorization,
resource discovery, job
scheduling, information services.
These services can be used by a
host of grid applications.

generally secure, the
applications running on them
can be provided with access to
databases, files in shared
directories, third-party
applications like CSPs, etc.

access to disk space (Gnutella)
and compute cycles
(SETI@Home). However,
these are NOT a generic set of
services that can be used by
P2P or PRC applications (see
protocols below).

Protocols OGSA is an effort towards the
standardization of grid protocols
and interfaces. This enables
interoperability between different
grid middleware. Furthermore,
applications can use these
standard protocols and interfaces
for service discovery, data query,
remote execution and monitoring,
etc.

The middleware installed on
enterprise-wide desktop grids
usually have their own
protocols, e.g., Condor.

Protocols in P2P and PRC are
generally application specific.
Thus, if a user runs multiple
P2P / PRC applications, each
application will run its own
protocols over its own overlay
network.

The discussion in this section has compared the different forms of grid computing. From Ian

Foster’s three-point definition of grid (Foster and Kesselman, 2004) - viz., non-centralized

resource sharing, use of standard and general purpose protocols and interfaces, and delivery

of non-trivial QoS - only the characteristics of cluster-based grid computing fits the definition

of grids. However, enterprise-wide desktop grids (like Condor, Entropia DCGrid, United

Devices GridMP) and P2P systems (like Gnutella) that do not implement standard grid

interfaces and protocols can still be considered as first-generation grids because they

integrate distributed resources in the absence of centralized control and offer ―interesting

qualities of services‖ (Foster, 2002). This research does not distinguish between different

generations of grids, and uses the term ―grid computing‖ to refer to cluster-based grid

computing, EDGC, PRC and P2P computing, unless explicitly stated.

This section of the thesis has conducted a literature review on grid computing. For

subsequent simulation-specific discussions on grids, the following three observations that

were made in the course of this literature review are important:

 Grid computing allows users to access higher-level grids services like parallel

computation service, task farming service, workflow service, etc.

 Cluster-based grid computing middleware like GT-4, VDT, gLite, etc. are primarily

targeted at Unix and Linux flavour operating systems

 Middleware for EDGC, PRC and P2P forms of grid computing are available for Windows

operating system.

The next two sections of the thesis present a brief overview of computer simulation (section

2.3) and the COTS simulation packages that are commonly used to model simulations in

industry (section 2.4).

Chapter 2: Grid computing and simulation packages 35

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

2.3 Computer simulation

A computer simulation uses the power of computers to conduct experiments with models that

represent systems of interest (Pidd, 2004a). Experimenting with the computer model enables

us to know more about the system under scrutiny and to evaluate various strategies for the

operation of the system (Shannon, 1998). Computer simulations are generally used because

they are cheaper than building (and discarding) real systems; they assist in the identification

of problems in the underlying system and allow testing of different scenarios in an attempt to

resolve them; allow faster than real-time experimentation; provide a means to depict the

behaviour of systems under development; involve lower costs compared to experimenting

with real systems; facilitate the replication of experiments; and provide a safe environment for

studying dangerous situations like combat scenarios, natural disasters and evacuation

strategies (Brooks et al., 2001; Pidd, 2004a).

Computer simulation can be applied in a wide range of application domains for a variety of

purposes. A few of these are discussed here. In manufacturing computer simulation can be

used to increase productivity by achieving a better operating balance among resources

(Zimmers and Brinker, 1978). Simulation can be used for assessing the performance of asset

and liability portfolios in the finance and insurance sectors (Herzog and Lord, 2003). In the

military it can be applied to support training, analysis, acquisition, mission rehearsal and for

testing and evaluation (Page and Smith, 1998). In healthcare, simulation can be used to

model the highly uncertain nature of illness (e.g., bird flu epidemics) and to represent the

complexity of subsystem interactions (e.g., interaction of blood supply chains with hospitals)

(Lowery, 1998). It can be used for the study of human-centred systems through integration of

human performance models with system performance models (Laughery, 1998). It can be

applied to Business Process Re-engineering (BPR) as simulation can model the interaction

between the various business process elements and can provide quantitative estimates of the

impact that a process redesign is likely to have on key performance measures (Bhaskar et al.,

1994).

This thesis investigates the application of grid computing to support the practice of DES and

MCS in industry, particularly in manufacturing (DES), healthcare (DES) and finance (MCS)

application areas. In a DES the behaviour of a model, and hence the system state, changes

at an instant of time (Brooks et al., 2001). Two approaches that can be used to control the

flow of time in a DES are the Time Slicing approach, where time is moved forward in equal

time intervals, and the Next-Event approach, where time is moved at variable time increments

from event to event, i.e., from one state change to the next state change (Pidd, 2004a). MCS,

on the other hand, is a simulation procedure that uses a sequence of random numbers

according to probabilities assumed to be associated with a source of uncertainty, for example,

stock prices, interest rates, exchange rates or commodity prices (Chance, 2004). Commercial

software packages are widely used in industry to facilitate DES and MCS (Tewoldeberhan et

al., 2002; Swain, 2003), and are discussed in the next section.

Chapter 2: Grid computing and simulation packages 36

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

2.4 COTS Simulation Packages (CSPs)

In the context of simulation practice in industry, although programming languages may be

used to build simulations in certain circumstances, models are generally created using

commercially available simulation packages (Robinson, 2005b). Visual Interactive Modelling

Systems (VIMS) usually refer to DES software that enable users to create models in a

graphical environment through an interactive ―click-and-drag‖ selection of pre-defined

simulation objects (entry points, queues, workstations, resources, etc.) and linking them

together to represent the underlying logical interactions between the entities they represent

(Pidd, 2004a). Examples of VIMS include commercially available DES packages like Witness

(Lanner group), Simul8 (Simul8 corporation), AnyLogic (XJ technologies) and Arena

(Rockwell automation). Similarly, MCS may be modelled in a visual environment using

spreadsheet software like Excel (Microsoft), Lotus 1-2-3 (IBM, formerly Lotus Software);

spreadsheet add-ins, for example @Risk (Palisade Corporation), Crystal Ball

(Decisioneering); or through MC-specific simulation packages such as Analytica (Lumina

Decision Systems) and Analytics (SunGard).

In this thesis the term COTS Simulation Package (CSP) is used to represent commercially

available software for both DES and MCS. Thus, spreadsheets and spreadsheet add-ins for

MCS are also regarded as CSPs. The term DES CSP or MCS CSP is used in cases where

CSP specific to DES or MCS need to be distinguished.

Swain (2005) has made a comprehensive survey of commercially available simulation tools

based on the information provided by vendors in response to a questionnaire requesting

product information. It is the seventh biennial survey of simulation software for DES and

related products (MCS software, distribution fitting software, etc.) and is published by the

Institute for Operations Research and Management Science (INFORMS). This list presently

consists of 56 CSPs and features the most well known CSP vendors and their products

(Swain, 2007). Table 5 below lists the CSPs by their type (i.e., MCS CSP or DES CSP) and

the platform they are supported on (i.e., Windows, UNIX, Linux or Apple Macintosh). The

tools that are neither MCS CSP nor DES CSP are highlighted in the table with a gray

background. The information on supporting platforms has been taken from the OR/MS survey

itself and the CSP type classification information was gathered from the CSP vendor website.

Classification based on both CSP-type and platform-type is important for subsequent

discussions.

Table 5: Survey of CSPs (extended from Swain’s OR/MS survey of simulation tools)

No Software Vendor Windows UNIX Linux Mac CSP Type (MCS/DES)

1 @RISK Palisade Corporation 1 MCS CSP

2 AgenaRisk Agena 1 1 1 MCS CSP

3 Analytica
Lumina Decision
Systems, Inc

1 1 MCS CSP

Chapter 2: Grid computing and simulation packages 37

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

No Software Vendor Windows UNIX Linux Mac CSP Type (MCS/DES)

4 AnyLogic 6.0 XJ Technologies 1 1 1 1

DES CSP

5 Arena Rockwell Automation 1 DES CSP

6 AutoMod BrooksSoftware 1 DES CSP

7 AutoSched AP BrooksSoftware 1 DES CSP

8
Crystal Ball
Professional

Decisioneering 1 MCS CSP

9
Crystal Ball
Standard

Decisioneering 1 MCS CSP

10 CSIM 19 Mesquite Software 1 1 1 1 DES CSP

11 DecisionPro
Vanguard Software
Corporation

1 MCS CSP

12 DecisionScript
Vanguard Software
Corporation

1 MCS CSP

13 eM-Plant UGS 1 DES CSP

14

Enterprise
Dynamics
Simulation
Software

Production Modelling
Corporation (PMC)

Not a MCS / DES CSP
(PMC appear to be
simulation consultants,
not CSP vendors)

15
Enterprise
Dynamics
Studio

Incontrol Enterprise
Dynamics

1
DES CSP

16 ExpertFit Averill M. Law
Not a MCS / DES CSP
(distribution fitting
software)

17 Extend Industry Imagine That, Inc. 1
DES CSP

18 Extend OR Imagine That, Inc. 1 1
DES CSP

19 Extend Suite Imagine That, Inc. 1 DES CSP

20 Flexsim
Flexsim Software
Products, Inc.

1 DES CSP

21 ForeTell-DSS DecisionPath, Inc.
Not a MCS / DES CSP
(system dynamics
software)

22
GAUSS matrix
programming
language

Aptech Systems, Inc.

Not a MCS / DES CSP
(It is a programming
language that can be
used for simulation)

23
GoldSim Monte
Carlo

GoldSim Technology
Group

1 MCS CSP

24 Lean MAST CMS Research Inc 1 DES CSP

25 Lean-Modeler Visual8 1 DES CSP

26 MAST CMS Research Inc 1 DES CSP

27
Micro Saint
Sharp Version

Micro Analysis &
Design

1 DES CSP

28 mystrategy
Global Strategy
Dynamics Ltd

1
MCS CSP
(for strategy planning)

29
Portfolio
Simulator

ProModel Corporation 1 DES CSP

30
Process
Simulator

ProModel Corporation 1
DES CSP
(plug-in to Microsoft
Visio)

31
ProcessModel
Version 5.1

ProcessModel, Inc. 1 DES CSP

32
Project
Simulator

ProModel Corporation 1
DES CSP
(add-in to Microsoft
Project)

Chapter 2: Grid computing and simulation packages 38

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

No Software Vendor Windows UNIX Linux Mac CSP Type (MCS/DES)

33
ProModel
Optimization
Suite

ProModel Corporation

Not a MCS / DES CSP
(OptQuest and
SimRunner are
optimization software
add-ons to other
ProModel products)

34

PSM++
Simulation
System (old
version:
PASION)

Stanislaw Raczynski
Not a MCS / DES CSP
(It is a simulation
language)

35
Quantitative
Methods
Software (QMS)

QuantMethods 1 1 1 1 MCS CSP

36 SAIL CMS Research Inc 1 DES CSP

37 SAS/OR SAS Institute Inc. 1 1 1 DES CSP

38

SCIMOD,
Techno Corr,
Techno Pas,
Profimax, etc.

Techno Software
International (TSI)

Not a MCS / DES CSP
(PMC appear to be
simulation consultants,
not CSP vendors)

39
ServiceModel
Optimization
Suite

ProModel Corporation 1 DES CSP

40 ShowFlow 2
Webb Systems
Limited

1 DES CSP

41 SIGMA Custom Simulations
Not a MCS / DES CSP
(It is a simulation
language)

42 Simcad Pro CreateASoft, Inc. 1 DES CSP

43 SIMPROCESS
CACI Products
Company

1 1 1 DES CSP

44 SIMSCRIPT II.5
CACI Products
Company

Not a MCS / DES CSP
(It is a simulation
language)

45
SIMUL8
Professional

SIMUL8 Corporation 1 DES CSP

46
SIMUL8
Standard

SIMUL8 Corporation 1 DES CSP

47 SLIM MJC Limited 1 1
DES CSP
(for modelling supply
chains)

48 Stat::Fit
Geer Mountain
Software Corp.

Not a MCS / DES CSP
(distribution fitting
software)

49
Supply Chain
Builder

Simulation Dynamics,
Inc.

1
DES CSP
(for modelling supply
chains)

50
Supply Chain
Guru

LLamasoft 1
DES CSP
(for modelling supply
chains)

51
Systemflow 3D
Animator

Systemflow
Simulations, Inc.

Not a MCS / DES CSP
(It is a 3D simulation
animator)

52
TreeAge Pro
Suite

TreeAge Software,
Inc.

1 1 1 MCS CSP

53

Visual
Simulation
Environment
(VSE)

Orca Computer, Inc. 1 DES CSP

54
WebGPSS
(micro-GPSS)

AcobiaFlux AB 1 DES CSP

Chapter 2: Grid computing and simulation packages 39

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

No Software Vendor Windows UNIX Linux Mac CSP Type (MCS/DES)

55 WITNESS 2006 Lanner Group 1 DES CSP

56 XLSim AnalyCorp Inc. 1 MCS CSP

TOTAL
MCS/DES CSPs

 45 7 7 6

Supporting
Platform (%)

 100.00 15.56 15.56 13.33

Information presented in Table 5 show that of the 56 simulation software and related products

that have been surveyed, 12 are MCS CSPs, 33 are DES CSPs, 4 are simulation /

programming languages (GAUSS matrix programming language, PSM++, SIGMA,

SIMSCRIPT II.5), 2 are distribution fitting software (ExpertFit, Stat::Fit), 1 is an optimization

suite (ProModel Optimization Suite), 2 appear to be simulation consultants (Production

Modelling Corporation, Techno Software International), 1 is a systems dynamic software

(ForeTell-DSS), and finally, 1 is a 3-D simulation visualization software (Systemflow 3D

Animator). Some CSPs support multiple simulation approaches. For example, AnyLogic,

Flexsim, Extend Industry and Extend OR support both DES and continuous simulation, and

AnyLogic further provides system dynamics and agent-based simulation capabilities.

However, for the purpose of this research, classification only on the basis of MCS and DES

CSP is considered.

Spreadsheet applications like Microsoft Excel and IBM Lotus1-2-3 have not been included in

Swain’s survey, but will nonetheless be considered as MCS CSPs since they can be used to

model MCS. SunGard Analytics software is used in banking and finance for Monte Carlo-

based credit risk simulations, and this too will be considered as MCS CSP. These products

have been specifically mentioned because some of the case studies that are discussed later

in the thesis have used MCS applications built using Excel and Analytics.

As stated earlier, the CSP-type categorization has been completed by the author based on an

extensive review of product information that is published on the vendor websites. As such,

there may be errors in the classification due to incomplete (or exaggerated) product

descriptions made available by the vendors or due to an inadvertent error on the part of the

author. But in the most part this classification is considered valid by the author.

Of the total 45 CSPs (12 MCS CSPs and 33 DES CSPs) that have been identified from

Swain’s survey, all the CSPs are supported in the Windows platform, 15.56% (approx.) are

supported in UNIX and Linux platforms, and only 13.33% (approx.) are supported under the

Apple Macintosh Operating System. Furthermore, Excel and Analytics are supported only on

the Windows platform. As will be discussed later in this thesis, platform support for CSPs is

important when considering different grid technologies that can be potentially used with

existing CSPs. Swain’s survey has been widely cited in simulation literature (e.g., Pidd,

2004a; Boer, 2005; Ryde, 2005; Pidd and Carvalho, 2006), and in this research it is used to

Chapter 2: Grid computing and simulation packages 40

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

investigate the extent of CSP support, through custom vendor implementations, for some

identified uses of grid technology in the context of CSP-based simulation.

The next section investigates the higher-level grid services, described earlier in section 2.2.2,

in the context of CSP-based simulation. The purpose here is to identify the higher-level grid

services which could be potentially used together with CSPs.

2.5 Higher-level grid services for CSP-based simulation

Before continuing further it is worth considering if there is an end-user demand for grid

technology for CSP-based simulation or, as has been pointed out earlier - ―grid is a solution in

search for a problem‖ (Schopf and Nitzberg, 2002), it is being investigated in this research to

explore technology-driven possibilities. It is arguable that the suggestion of using multiple

networked computers to execute simulations faster is appealing to practitioners, although they

may not be aware of the term ―grid computing‖. This argument is further strengthened by the

observations made by the author during his interactions with simulation end-users. Thus, in

the case of distributed experimentation at least, there appears to be some user demand for

distributed systems that can support execution of CSP-based simulations on multiple

computers. However, as has been discussed in section 2.2.2, the potential of executing

experiments in parallel over a network of computers (task farming service) is but one of

multiple higher-level services that can be provided through use of grids. The majority of

simulation users may be unaware of these grid-facilitate services, and from this perspective

grid computing can be seen as providing a technology-driven impetus to facilitate its possible

adoption for CSP-based simulation in industry.

Robinson (2005b) has distinguished between demand-led and technology-led innovation in

simulation practice. This distinction is rephrased to show its relevance to CSP-based

simulation modelling. A demand-led innovation occurs when the functionality provided by the

CSPs lag behind the requirements of the simulation practitioners, and the implementation of

which would aid current simulation practice. On the other hand, a technology-led innovation

occurs when research and development move ahead of the requirements of the CSP users,

and which has the potential to change and improve the current simulation practice. In this

thesis, the demand-led and technology-led innovations are considered in the context of using

multiple networked computers to support CSP users in industry.

The wide prevalence of CSPs suggests that (1) simulation practitioners using these packages

are constrained by the functionality provided by the package vendors, and (2) vendors will

generally have to become involved in further development of their packages to provide any

new features. CSP vendors usually have limited manpower and budget at their disposal, and

they might not consider incorporating support for a particular feature unless there is sufficient

demand for it (Ryde 2005). Thus, it is more likely that vendors will, first and foremost, be

Chapter 2: Grid computing and simulation packages 41

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

interested in supporting demand-led requirements before considering technology-led feature

support.

This thesis does not differentiate between demand-led and technology-led impetus to further

the practice of simulation in industry. It is considered that, from the perspective of the

simulation practitioner, what is important is getting all the CSP support required to complete

the task at hand. What is seen as a demand-led innovation by one user may be regarded as a

technology-led intervention by the other, and vice-versa. For example, in the context of

simulation practice in industry, distributed multiple replication (distributed experimentation)

and distributed model execution (distributed simulation) have been shown to be demand -led

and technology-led interventions respectively (Robinson, 2005b). Although it is generally

considered to be true that the demand for distributed experimentation is greater than the need

for distributed simulation (and the author agrees with this), from the perspective of the

simulation modeller such characterization may not be necessary. A user who generally

develops small models that require only a few minutes to execute on a PC may feel that

distributed experimentation is not necessary. Thus, he may consider it as a technology-led

innovation. On the other hand, a user who is involved in creating large and complex models

that require hours to execute on a single PC might be interested in distributing the execution

of the model onto multiple computers to decrease runtime, and may also see the benefits of

distributed experimentation. In this case the requirement for distributed simulation and

distributed experimentation support in CSPs can be seen as demand-led. In this thesis, both

the demand-led and technology-led innovations, in the context of using multiple computers for

simulation, are seen as potential areas for application of grid computing technologies.

The next four sections of this thesis discuss four higher-level grid services that can be

potentially used together with CSPs. The four services are parallel computation service

(section 2.5.1), task farming service (section 2.5.2), workflow service (section 2.5.3) and

collaboration service (section 2.5.4). The grid portal service is discussed in section 2.7 in the

context of web-based simulation. Grid-facilitated integration service is not investigated

because CSPs seldom need integration with physical systems, heterogeneous distributed

databases, etc. Similarly, computational steering service is not considered appropriate for

further investigation because the user will generally need to access the remotely running

graphical CSP interface to computationally steer the simulation, and grid middleware do not

generally support such remote visualization of user applications that are being executed over

various grid nodes. However, a groupware like Microsoft NetMeeting can be used to provide

such access (Taylor, 2000). A discussion on the higher-level grid services can be found in

section 2.2.2.

2.5.1 Parallel computation service

The Journal of Simulation’s (JoS) survey on the future for DES takes note of the present and

the expected future trends for creating increasingly large models (Taylor and Robinson,

Chapter 2: Grid computing and simulation packages 42

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

2006). CSPs, although suitable for most simulations that are modelled in industry, may

however be unable to simulate such large and complex models (Pidd, 2004b). Arguably, one

reason for this is, the larger the model, the greater the processing power and memory

required to simulate the model. Simulation is a computationally intensive technology that has

benefitted from increasing processor speeds made possible through advances in computer

science; and with ever increasing processing speeds, the CSPs, in future, will possibly

provide features that may not presently seem possible (for example, dramatic decrease in

model runtime, execution of increasingly large and complex models, etc.) (Hollocks, 2006).

However, it is also true that with more processing power available the simulation user may

tend to develop even larger and more complicated models simply because it is possible to do

so (Robinson, 2005a). This, in turn, may again mean that CSPs will not be able to support

execution of some user models because of their sheer size and complexity. Thus, in some

cases at least, there may be a need for more computation power to support the practice of

simulation in industry. One way to facilitate the execution of a large model using existing

computing resources is through development of CSPs that support parallel computing (i.e.,

utilizing multiple processors to speed up the execution of one simulation). The grid-facilitated

higher-level parallel computation service can then be used to execute such CSPs.

Parallel computing is the concurrent use of multiple processors to solve a computational

problem and generally involves the following three steps (Barney, 2006).

 Breaking down a problem into sub-parts that can be solved concurrently.

 Breaking down the sub-parts into a series of CPU instructions.

 Executing the instructions from each sub-part concurrently over different CPU’s.

The three steps that are described above are graphically illustrated in figure 9 below.

Figure 9: Parallel computing using multiple CPUs (Barney, 2006)

The set of processors that take part in such parallel computation can be referred to as a

parallel computer, and may include parallel supercomputers that have thousands of

Chapter 2: Grid computing and simulation packages 43

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

processors, networks of commodity PCs, shared-memory multiprocessors, distributed-

memory multiprocessors and embedded systems (Foster, 1995). Parallel computing is

generally used to speed up the execution of a computation, to solve problems that might be

impossible with traditional sequential computers, to provide concurrency, to take advantage of

non-local resources, among others (Barney, 2006).

In a parallel computation the processes (instructions) being executed on separate processors

may need to communicate with each other. Two dominant forms of such inter-process

communication are shared variables and message passing (Fujimoto, 1999b). A shared-

memory multiprocessor system can provide executing processes shared access to variables

using shared memory that is present in such systems. In the case of distributed-memory

multiprocessor systems and networks of PCs, where there is no access to shared memory,

the communication between the executing processes is usually accomplished by sending

messages that are based on message passing standards like MPI. PVM also has an explicit

message-passing model for such inter-process communication. The typical architecture of a

shared-memory and a distributed-memory multiprocessor system is shown in figure 10

(adapted from Barney, 2006). The architecture of a parallel computer comprising of a network

of PCs is similar to the distributed-memory multiprocessor, but with one key difference. The

technology used for interconnecting the different workstation nodes is based on standard

networking technology like Ethernet, and not on customized high speed interconnection

switches as it the case with distributed-memory multiprocessor computers. The discussion on

parallel computing in this thesis is in the context of using network of PCs for parallel

computation.

Figure 10: Shared-memory (A) and distributed-memory (B) multiprocessor machines

As has been stated earlier, a network of PCs built using commodity hardware, software and

networking technologies can run parallel programs using message passing mechanisms like

the MPI and PVM. A MPI program generally creates a fixed set of processes, one for each

processor, which may execute different programs (multiple instructions) or the same program

(single instruction) and communicate with other processes by calling library routines to send

and receive messages (Foster, 1995). The processes generally have access to different sets

of data (multiple data). Similarly in PVM, a collection of tasks (the unit of parallelism in PVM is

called a task) communicate with each other by sending messages and cooperatively solve a

Memory

CPU

CPU

CPU

CPU

Memory CPU Memory CPU

Memory CPU Memory CPU

Interconnection Switches

(A) (B)

Chapter 2: Grid computing and simulation packages 44

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

computation through data decomposition (multiple data), functional decomposition (multiple

instructions) or a combination of both (Geist et al., 1994). Thus, MPI and PVM both support

Single Program Multiple Data (SPMD) and Multiple Program Multiple Data (MPMD) parallel

programming models.

For a MCS or DES CSP to support parallel computation over a network of PCs with

distributed memory, the underlying simulation package will generally have to support

message passing mechanisms like those discussed above. This requires intervention from

the CSP vendor and may involve a total redesigning and implementation of the software. A

MCS CSP may implement a SPMD parallel processing model where each processor

executes the same model but with different random number streams. On the other hand, a

MPMD parallel processing model may have to be implemented by a DES CSP where different

sub-parts of the model are executed over different processors (this may require Parallel

Discrete Event Simulation (PDES) algorithms – discussed in section 2.6.2) or different sub-

components of the CSP (e.g., simulation executive, visualization sub-component, statistics

collection, interpreter for user-defined code, etc.) access multiple distributed processors

through a processor abstraction layer (shown in figure 11 below).

Figure 11: Parallel computing using a DES CSP

The CSPs that utilize multiple CPUs for simulation are listed in table 6. The table shows that

only two MCS CSPs enable parallel simulation execution over multiple-processor machines.

DES CSP Simul8 is not considered to provide parallel computation support for the reasons

noted in table 6 (next page). Furthermore, none of the 45 CSPs surveyed support parallel

computation over distributed processors. One reason for this may be that it is arguable as to

what extent a general purpose simulation application like the CSPs can provide parallel

simulation support. The overwhelming experience in parallel software development is that

high application performance requires load-balancing, communication, and synchronization

techniques that are often application specific (Nicol and Heidelberger, 1996). Nevertheless,

with improved technology and programming models it may be possible to parallelize CSP

So

Q1

Q2

Q3

R1

R2

R3

So

Processor1 Processor2 Processor3 Processor4

Processor Abstraction Layer

DES CSP

Chapter 2: Grid computing and simulation packages 45

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

applications to utilize processors distributed over the network efficiently, and as such parallel

computation service is considered as a potential higher-level grid service that could benefit

CSP-based simulation modelling.

Table 6: CSPs that support parallel computation

Software Vendor Features Information Source
(Appendix A.1)

@Risk
Industrial

Palisade
Corporation

The @RISKAccelerator integrated in @Risk
Industrial speeds-up MCS by using all CPUs in a
single, multiple-CPU machine.

Vendor website

Simul8
Professional
and Standard
Editions

SIMUL8
Corporation

Simul8 can use up to four processors in a multi-
CPU machine to conduct trials.
AUTHOR'S COMMENT: This cannot be
considered as parallel computation because each
trial runs a separate Simul8 process. Furthermore,
running one trial using 4 CPUs will generally not
give any performance benefit compared to, say,
running one trial on a single CPU machine (with
identical processor, RAM, etc. specifications).

Discussion with vendor
& Simul8 newsletter

TreeAge Pro TreeAge
Software, Inc.

To support complex and lengthy MCS, TreeAge
Pro can use up to eight processors on a single
computer.

Vendor website

There are some examples in literature where parallel simulators and optimizers have been

implemented for solving specific problems. For example, Mccoy and Deng (1999) have

implemented a high-performance, parallel, molecular-dynamics software package that

includes features like asynchronous message passing, dynamic load balancing, mechanisms

for data caching, etc. Mutalik et al. (1992) have implemented a parallel simulated annealing

algorithm and a parallel genetic algorithm for solving combinatorial optimization problems on

shared memory multiprocessor systems and distributed memory systems. Their approach

uses message passing for communication between processes running on multiple CPUs is

through message passing. Yau (1999) describe the AKAROA package for parallel steady-

state stochastic simulation of high-speed and integrated-services communication networks.

The package can be used on multiprocessor systems and heterogeneous computer networks.

Elmroth et al. (1999) have implemented a parallel version of TOUGH2 (Transport Of

Unsaturated Groundwater and Heat version 2) simulation package, a widely used software for

studying ground water flow related problems such as nuclear waste isolation, geothermal

reservoir engineering, etc., to solve a set of coupled mass and energy balance equations

using a finite volume method in parallel.

2.5.2 Task farming service

The practice of simulation can gain from an increased availability of computation power

(Robinson, 2005a). Grid facilitated task farming service uses multiple grid resources to

execute simulation experiments in parallel. Task farming involves distributing (farming) the

simulation experiments (tasks) over different PCs that are part of the grid infrastructure and

using the computational service and application service (basic grid services – section 2.2.1) to

execute the simulation over the grid nodes. The CSPs that support some form of task farming

are presented in table 7.

Chapter 2: Grid computing and simulation packages 46

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Table 7: CSPs that provide support for task farming

Software Vendor Features Information
Source

(Appendix A.2)

GoldSim Monte
Carlo

GoldSim
Technology
Group

The GoldSim Distributed Processing Module is an add-on
module that allows users to combine the power of multiple
computers connected over a network to carry out MCS.

Vendor website

SIMPROCESS CACI Products
Company

The Remote Plot Capability of SIMPROCESS allows the
user to set up multiple computers to present the plots
while the simulation is running on another computer.
NOTE: SIMPROCESS does not distribute the simulation
workload but only the visualization aspects and, as such,
offers only limited task farming features.

Vendor website

Simul8
Professional
and Standard
Editions

SIMUL8
Corporation

Simul8’s parallel processing feature allows the user to
spread the execution of trials across two or more
networked computers that have Simul8 installed. The PCs
only use spare CPU cycles to execute the models. A
network drive that can be accessed by all the PCs should
be made available for parallel processing to work.
NOTE: Simul8 does not presently provide task farming
support for multiple models (referred to as Multiple Model
Multiple Data (MMMD) task farming - section 3.3.2).

Vendor website
(Simul8 newsletter)

Vanguard
Studio
(DecisionPro)

Vanguard
Software
Corporation

Vanguard's Grid Computing Add-in give users the ability
to run large MCS by dividing the simulation task between
many computers on the Enterprise Grid.

Vendor website

Of the 45 CSPs that have been surveyed only 2 MCS CSPs and 1 DES CSP support task

farming. DES CSP SIMPROCESS only provides limited task farming features for reasons

noted in the above table. There are some examples in literature that have used task farming

architecture, consisting of one master computer and multiple worker computers, to execute

simulation experiments faster. For example, Marr et al. (2000) have used the SimManager

(master process) to execute parallel simulation studies over multiple Engines (worker

processes) using the Java-based Silk simulation system (Kilgore, 2000). Yücesan et al.

(1998) describe a project that aims to distribute DES experiments over the Internet with a

view on simulation optimization. The system they implement is called the PDESSS (Parallel

Discrete-Event Simulation Support System). Mustafee and Taylor (2006) have implemented a

task farming system that support concurrent execution of multiple instances of different

Simul8 models (MMMD task farming - section 3.3.2).

Robinson (2005b) has discussed some of the potential applications of simulation in a

networked environment (refereed to as distributed simulation in his paper) under four specific

categories, viz., model execution, data management, experimentation and project processes.

This is presented in table 8 below.

Table 8: Potential applications of simulation in a networked environment (Robinson, 2005b)

Category Potential Application Description

Model execution Distributing model execution Splitting the execution of a large model
across a series of computers

Linking separate models Running separate models concurrently
across a series of computers

Data management Linking to database and other
software

Linking models to remote databases and
other software

Linking to real-time systems Linking models to remote real-time systems

Chapter 2: Grid computing and simulation packages 47

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Experimentation Gaming Distributed users interacting with a
simulation.

Distributed multiple
replications

Distributing replications across a series of
computers to speed up execution

Distributed multiple scenarios Distributing experimental scenarios across
a series of computers to speed-up
experimentation

Project processes Sharing models Giving distributed users access to the same
simulation model

Application sharing Giving distributed users access to the same
simulation software

Virtual meetings Remote meetings between modellers and
users during model development

Searching for model
components

Searching for and downloading components
for model building

As can be seen from the table above, two potential applications of simulation under the

―experimentation category‖ are distributed multiple replications and distributed multiple

scenarios. In this thesis distributed multiple replication and distributed multiple scenarios are

referred to as Single Model Multiple Data (SMMD) task farming and Multiple Model Multiple

Data (MMMD) task farming respectively (discussed in section 3.3.2). SMMD task farming

refers to the execution of one model using different experiment parameters over multiple

processors. MMMD task farming, on the other hand, refers to multiple SMMD experiments

being executed concurrently over the grid. Simulation, being a computationally intensive OR

technique that usually requires multiple experimentation runs with varying parameters, can

potentially gain from the use of additional computing resources being made available through

the task farming service. As such, task farming is considered as a potential higher-level grid

service that could benefit the practise of CSP-based simulation in industry.

2.5.3 Workflow service

Grid-facilitated workflow service has the potential to link CSPs with other software

applications through use of workflow management systems (WMSs). The reader is referred to

section 2.2.2 for examples of WMSs. The WMS is usually responsible for executing different

applications over the grid in a phased manner based on dependencies between executing

programs. The dependency is generally in the form of data, wherein data output from one

application serves as the input to a different application. The applications usually run on

different grid nodes and the responsibility of transferring data between the nodes is generally

with the WMS and the underlying grid middleware.

An example of a workflow using a CSP and an external application can be the visualization of

a model by the latter from the simulation output of the former. For example, a visualization

application like Systemflow 3D Animator can be used to animate the output of a simulation in

3-D graphics, provided a time stamped event log is generated by the DES CSP (Systemflow

Simulations, 2006). This is shown in figure 12.

Chapter 2: Grid computing and simulation packages 48

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Figure 12: Workflow using a DES CSP and a visualization application

Looking at the above example in the context of grid-facilitated workflow service, it may be

possible to use a WMS to specify the dependencies between the DES CSP and the

Systemflow 3D Animator. This would enable the WMS to execute both the applications over

(possibly) different grid resources in a phased manner (i.e., the execution of DES CSP and

Systemflow 3D Animator is sequential). The WMS would also be responsible for transferring

data output by DES CSP to the grid node running the Systemflow 3D Animator.

It can be argued that linking CSPs to data sources (databases, spreadsheets, etc.) also

represent a form of workflow because CSPs and the data sources are different applications

and the former may be dependent on data from the latter (to populate variable values, etc.).

And as most CSPs provide means to access databases, spreadsheets and files (Robinson,

2005a), it can be assumed that workflow support is already present in most simulation

packages (some of the MCS and DES CSPs that support data source access are presented

in table 9 below). Here the communication is generally one way, i.e., the CSPs performs read

and write operations on data sources.

Table 9: CSPs that support data source access

Software Vendor Features Info. Source
(Appendix A.3)

AnyLogic 6.0 XJ
Technologies

AnyLogic models can dynamically read and write data to
spreadsheets, databases, Enterprise Resource
Planning (ERP) or Customer Relationship Management
(CRM) systems.

Vendor website

Arena Rockwell
Automation

Provides ActiveX Data Object (ADO) and Open
DataBase Connectivity (ODBC) access to Oracle,
Access, Excel, etc.

Vendor website

Enterprise
Dynamics
Studio

Incontrol
Enterprise
Dynamics

Provides ODBC access to databases. Vendor website

GoldSim Monte
Carlo

GoldSim
Technology
Group

Enables exchange of data between any ODBC-
compliant database and GoldSim model

Vendor website

Simprocess CACI Products
Company

SIMPROCESS has the capability to provide simulation
models as callable services through the use web
services. This capability provides simulation-on-demand
to applications within the enterprise.

Vendor website

Vanguard
Studio
(DecisionPro)

Vanguard
Software
Corporation

Vanguard’s Web Services Add-ins allows inter-
connection between the Vanguard models and other
enterprise systems. For example, by applying the Web
Services Add-ins Vanguard models can be built that pull
real-time data from an Enterprise Resource Planning
(ERP) system through a web service, performs a Monte
Carlo cash flow simulation and then push the results
back into the same ERP system through another web
service.

Vendor website

Application:
Systemflow 3D

Animator

Output Input Application:
DES CSP

Chapter 2: Grid computing and simulation packages 49

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Software Vendor Features Info. Source
(Appendix A.3)

WITNESS
2006

Lanner Group
Witness can access spreadsheets and databases like
Oracle, SQL Server, Access, etc.

Vendor website

Furthermore, it can be argued that CSP-based workflow implementation is not limited to

linking CSPs with data sources alone, and it may be possible to write code that interfaces the

CSPs with one or more applications (optimization software, data analysis software,

visualization application, etc.). Interfacing simulation software with external programs

generally requires application-level support to facilitate inter-process communication between

the executing programs. COM (Component Object Model) is one such technology that allows

different software programs to communicate with each other by means of interfaces (Gray et

al., 1998). The MCS and DES CSPs that expose package functionality through Application

Programming Interfaces (APIs), COM, Object Linking Embedding (OLE) (Gani and Picuri,

1995) and similar technologies are presented in table 10 below. Such access should ideally

also be provided by the external applications (with which the CSPs are being linked) to

facilitate two-way communication.

Table 10: CSPs that expose package functionality

Software Vendor Features Info. Source
(Appendix A.4)

AgenaRisk
Enterprise
Edition

AgenaRisk Agena API provides Java routines that allow users to
create, edit and execute AgenaRisk models.

Vendor website

Simprocess CACI Products
Company

Provides external application call and remote application
call support that enables the user to write java modules to
interface Simprocess with applications running on the
same computer or other computers over the network
respectively.

Vendor website

Simcad Pro CreateASoft,
Inc.

Includes a Visual Basic scripting engine that makes it
possible for Simcad Pro to interfaces with custom and off-
the-shelf applications.

Vendor website

Crystal Ball
Professional and
Premium
Editions

Decisioneering Crystal Ball Professional and Premium Editions include a
Developer Kit that consists of macro command and method
libraries that can be called from within a VBA program or
from any other language outside of Excel that supports
OLE 2 automation.

Vendor website

GoldSim GoldSim
Technology
Group

A Dynamic Link Library (DLL) makes it possible to link an
external computer program directly to GoldSim.

Vendor website

Extend Industry,
Extend OR and
Extend Suite

Imagine That,
Inc.

Extend supports the component object model
(COM/ActiveX) and makes it possible to control an
application from within Extend, or have it control Extend.

Vendor website

Enterprise
Dynamics Studio

Incontrol
Enterprise
Dynamics

Allows creation of simulation solutions that can act as
stand-alone applications or solutions that are embedded
with other systems.

Vendor website

Analytica Lumina
Decision
Systems, Inc

Enterprise-level features including OLE linking. Vendor website

Witness Lanner The SIMBA SDK (Software Developer's Kit) includes a
COM enabled version of WITNESS that can be used by
external applications. It also includes ActiveX libraries that
enable WITNESS displays inside other products that
support such objects (e.g. Microsoft Excel) or other
programmed interfaces.

Vendor website

Chapter 2: Grid computing and simulation packages 50

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Software Vendor Features Info. Source
(Appendix A.4)

@Risk
Professional

Palisade
Corporation

The Excel Developer Kit (XDK) automates and customizes
@RISK for Excel through a complete library of commands
and functions. @RISK for Excel can be added to any
custom application.

Vendor website

Enterprise
Dynamics

Production
Modelling
Corporation

Enterprise Dynamics uses open architecture, supporting
major industry standards and can be easily connected or
integrated with other software systems and components.

Vendor website

ProModel ProModel
Corporation

Using Microsoft Visual Basic (or any other ActiveX-enabled
language), ProModel can be executed from another
application.

Vendor website

Arena Rockwell
Automation

Provides ActiveX controls, Visual Basic for Applications
(VBA), ActiveX object model for external control.

Vendor website

Simul8 Standard
and Professional
Editions

Simul8 Corp Provides a standard Windows COM interface that allows
any application that can use COM to drive SIMUL8.

Vendor website

eM-Plant UGS eM-Plant has an open system architecture that supports
multiple interfaces and integration capacities like ActiveX,
Sockets, etc.

Vendor
Website

AnyLogic XJ
Technologies

AnyLogic can interoperate with software written in Java or
other languages (via Java Native Interface). External
programs can be called from anywhere in the model, and
vice versa. Simulation models can be called from external
program using the open API of AnyLogic simulation
engine.

Vendor website

Finally, it may be possible to link simulations to real-time systems (Robinson, 2005b). Linking

simulations to physical real-time systems can facilitate symbiotic simulation. A symbiotic

simulation system consists of a simulation model interacting with the physical system in a

mutually beneficial way, with the former benefitting from continued access to the latest data

and the automatic validation of the simulation outputs, and the latter benefitting from

optimized performance obtained from the analysis of simulation experiments (Low et al.,

2005). Communication between the CSP and the physical system may be achieved using

open interfaces. The CSPs that expose package functionality have already been listed in

table 10. The physical system (through associated software) should generally provide similar

access to the CSPs to facilitate two-way communication.

For the purpose of this research, linking CSPs to data sources, applications and real-time

systems is not considered a workflow because there is usually no overarching mechanism

(like WMS in case of grids) that (1) controls phased execution of the different applications and

(2) is responsible for transferring data between the applications. Furthermore, grid-facilitated

workflow service is designed to work on distributed resources, and linking CSPs to data

sources etc. may only work if the applications are installed on the same computer.

2.5.4 Collaboration service

Grid-facilitated collaboration service provides mechanisms that could potentially allow

different users to mutually access each other’s applications. In the context of CSP-based

simulation, this service will be discussed in relation to (1) simulation model reuse through

model sharing between different users, and (2) sharing CSPs and individual models for co-

Chapter 2: Grid computing and simulation packages 51

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

operative model development. Another form of collaboration that has been identified in

section 2.2.2 involves interactions among remote grid users through integrated support for

virtual meetings. The importance of communication among the simulation modellers and the

problem owners in conducting a successful simulation study cannot be overstated, and

therefore virtual meeting support for CSP-based simulation will also be discussed.

Simulation model reuse refers to the creation of new models using pre-existing modelling

artefacts like portions of simulation code, simulation components and complete models in

itself, with the purpose of reducing the time and cost for model development (Robinson et al.,

2004). Model reuse is a form of collaboration because models created by one modeller may

be reused by others. An extension of model reusability is the concept of separate

development and user groups, whereby models are developed and validated by one group

and then used to specify simulations by another group (Bortscheller and Saulnier, 1992). Pidd

(2002) distinguishes between four different types of model reuse that can be applied to

simulation, viz., code scavenging (reusing existing code), function reuse (reusing functions

that provide specific functionalities), component reuse (reusing encapsulated simulation

modules that provide a well-defined interface for communication with other such modules)

and full model reuse (reusing a pre-existing model) . Figure 13 indicates the frequency of

model reuse and the complexity that is associated with the four forms of model reuse.

Figure 13: Frequency of model re-use and its underlying complexity (Pidd, 2002)

In the context of DES CSPs simulation models may be reused in the following ways (Paul and

Taylor, 2002).

 Through reuse of basic modelling components like queues and workstations that are

included in the DES CSPs. In Pidd’s classification this can be referred to as fine-grained

component reuse.

 Through reuse of subsystem models that may be available through a model library or that

have been previously developed by the modeller. In Pidd’s classification this can be

referred to as coarse-grained component reuse.

 Through reuse of similar models that have been developed previously with appropriate

changes. In Pidd’s classification this is referred to as full model reuse.

Full model

reuse
Code

Scavenging

Frequency

Complexity

Component

reuse

Function

reuse

Chapter 2: Grid computing and simulation packages 52

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

In a networked environment simulation model reuse will generally involve searching and

downloading model components (also existing models) for model building (Robinson, 2005b).

For simulation practitioners to benefit from such an approach the search-and-download

features should ideally be integrated with the CSPs. The search feature could potentially

allow discovery of CSP model components through an inter-organizational repository of

models, and the download feature could make it possible to load the model into a CSP,

modify it according to the requirements of the new model and then execute it (Bell et al.,

2006). Table 11 below lists the CSPs that allow creation of reusable modelling components.

Table 11: CSPs that support creation of reusable model components

Software Vendor Features Information
Source

(Appendix A.5)

Crystal Ball
Standard and
Professional
Editions

Decisioneering Crystal Ball 7 supports collaboration by allowing multiple
users to subscribe to distributions that have been created by
other users.

Vendor website

Extend
Industry,
Extend OR and
Extend Suite

Imagine That,
Inc.

Extend blocks are components that are the building blocks
for other models. It is possible to create, reuse and distribute
these blocks through the Extend library.

Vendor website

Micro Saint
Sharp Version
2.1

Micro Analysis
& Design

Micro Saint allows creation of reusable modelling
components.

Vendor website

Visual
Simulation
Environment
(VSE)

Orca Computer,
Inc.

Users can reuse model components from a library. They can
create (and sell) their own library of reusable models and
model components developed for a specific problem domain.

Vendor website

Arena Rockwell
Automation

With Arena Professional users can develop custom
templates that consist of libraries of modelling objects.

Vendor website

eM-Plant UGS eM-Plant helps to create models using libraries of standard
and specialized components. The users can also extend the
library with their own objects.

Vendor website

Vanguard
Studio
(DecisionPro)

Vanguard
Software
Corporation

Vanguard Library Server makes models available to other
model builders as components. Multiple components, each
of which may be maintained independently, can be linked
together for analysis. The Vanguard server manages all
interaction between the components.

Vendor website

AnyLogic XJ
Technologies

The native Java environment of AnyLogic supports
extensibility including custom java code, external libraries,
and external data sources.

Vendor website

Of the eight MCS and DES CSPs that have been listed above only two appear to facilitate

simulation reuse in a networked environment. MCS CSP Crystal Ball (Version 7.0) has a

distribution gallery that allows multiple users to subscribe to distributions that have been

created by others. Similarly MCS CSP DecisionPro, which is a sub-system of the web-based

Vanguard Studio, makes model components available to users.

Sharing CSPs and individual models enable different users to access the same simulation

software and/or the same simulation model for model building purposes. Obviously, this is a

form of collaboration because multiple simulation users are involved. In this thesis sharing

CSP applications is discussed in the context of web-based simulation in section 2.7. CSPs

that enable joint simulation development through model sharing are listed in table 12.

Chapter 2: Grid computing and simulation packages 53

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Table 12: CSPs that facilitate model sharing

Software Vendor Features Information
Source

(Appendix A.6)

AnyLogic XJ
Technologies

AnyLogic 6 allows the use of version control software
(namely CVS) from the model development environment to
facilitate multiple modellers to work on a large project.
Functions to share, commit and update models are available
from the project tree view provided by the CSP.

Vendor website

As can be seen from the table above, only one out of the 45 CSPs that have been surveyed

appear to support model sharing for the purposes of cooperative model development.

However, it may be also possible to facilitate joint development of models using other

techniques like merging several model files together from various developers (Ryde, 2005).

Packages like Simul8 and ProModel offer such capabilities.

Virtual meetings may encourage frequent interactions between the simulation modellers and

problem stakeholders. Through a survey of simulation consultants and their respective clients,

Robinson and Pidd (1988) have observed that three important factors related to the success

of a simulation study were (1) regular communication between the clients and the consultants,

(2) regular meetings between the clients and the consultants and (3) teamwork. All three

factors are bound together by the common requirement of communication. In a distributed

environment such communication can be achieved through virtual meetings. A CSP that

supports this form of collaboration would generally require integrating audio, video and

messaging capabilities along with the package. At present there are no CSPs that integrate

virtual meeting capabilities along with their packages.

The discussions in this section have shown that CSP-based simulation modelling may gain

from the use of grid-facilitated collaboration service, as this higher-level grid service can

potentially provide mechanisms for reusing model components, can facilitate model sharing

for joint development and provide support for virtual meetings. It is interesting to note that the

three possible applications of grid-facilitated collaborative service in the context of CSP-based

simulation (namely, model reuse, model sharing and virtual meeting) have been included in

Robinson’s classification of potential applications of simulation in a networked environment

(Robinson, 2005b) (table 8).

Section 2.5 of this thesis has discussed four higher-level grid services in relation to CSPs.

The four services were parallel computation service (section 2.5.1), task farming service

(section 2.5.2), workflow service (section 2.5.3) and collaboration service (section 2.5.4). The

next two section of this thesis describe two specific forms of simulation, namely, distributed

simulation (section 2.6) and web-based simulation (section 2.7). Both these forms of

simulation involve the use of multiple computing resources, and as such it will be interesting

to investigate them in the context of grid computing. Although there are no higher-level grid

Chapter 2: Grid computing and simulation packages 54

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

services for distributed simulation and web-based simulation, it may be possible to define

simulation-specific higher level grid services which would allow both these forms of simulation

to be included in the grid computing framework for CSPs that will be proposed in this thesis.

Distributed simulation is discussed next. It will include an overview of distributed simulation

and its application areas (section 2.6.1), distributed simulation theory and conservative

synchronization algorithm (section 2.6.2), middleware for distributed simulation and HLA-

based simulations using DES CSPs (section 2.6.3) and, finally, a discussion on grid-facilitated

distributed simulation service (section 2.6.4).

2.6 Distributed simulation

Distributed Simulation generally refers to the execution of a DES comprising two or more

individual models, each of which runs on a separate processor. These processors can be a

part of a multiprocessor computer or may belong to multiple PCs that are connected over the

network. Parallel Discrete Event Simulation (PDES) usually refers to the execution of such

distributed DES on parallel and distributed machines (Page and Nance, 1994).

Some of the reasons for using distributed simulations are as follows (Fujimoto, 1999a;

Fujimoto, 2003).

 Distributed simulation can facilitate model reuse by ―hooking together‖ existing

simulations into a single simulation environment. It is usually far more economical to link

existing simulations to create distributed simulation environments than to create new

models within the context of a single tool or piece of software.

 A large simulation may have memory and processing requirements that cannot be

provided by a single system. Distributing the simulation execution across multiple

machines may allow the memory and processors of many computer systems to be

utilized. Thus, distributed simulation may enable large simulations to be executed that

could not be executed on a single computer.

 Executing simulations on a set of geographically distributed computers facilitates wider

user participation in the simulation experiments. This also alleviates the cost and time that

is normally associated with bringing participants to one physical place for conducting a

joint simulation exercise.

In the context of PDES, Fujimoto (2001) distinguishes between parallel and distributed

simulation based on the frequency of interactions between processors during the simulation

execution. A parallel simulation is defined as running a simulation on a tightly coupled

computer with multiple central processing units (CPUs) where the communication between

the CPUs can be very frequent (e.g., thousands of times per second). A distributed

simulation, on the other hand, is defined as executing simulations on multiple processors over

loosely coupled systems (e.g., a network of PCs) where the interactions take more time (e.g.,

Chapter 2: Grid computing and simulation packages 55

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

milliseconds or more) and occur less often. Sometimes the terms parallel simulation and

distributed simulation are used interchangeably (Reynolds, 1988). In one of his more recent

papers, Fujimoto (2003) uses the term distributed simulation to refer to both the parallel and

distributed variants of PDES. The rationale presented is that, although historically, the terms

―distributed simulation‖ and ―parallel simulation‖ referred to geographically distributed

simulations and simulations on tightly coupled parallel computers respectively, new

distributed computing paradigms like clusters of workstations and grid computing has made

this distinction less obvious. This research takes a similar view and therefore does not

distinguish between the parallel and distributed variants of PDES. The terms distributed

simulation and PDES will henceforth be used to refer to the execution of distributed simulation

on both multiprocessor machines and over network of PCs.

2.6.1 Application areas of PDES

Some of the current and potential application areas for PDES are presented in table 13 below

(Fujimoto, 1999b).

Table 13: Application areas of parallel and distributed simulation

Applications Type of simulation

Military applications Analytical war game simulations are performed to evaluate different strategies
for war. These simulations are typically composed of individual models that
represent different military divisions and use PDES algorithms (discussed in
section 2.6.2) for synchronization of the models. Another application of PDES in
the military is for training, and test and evaluation (T&E). These are conducted
in distributed virtual environments (DVE) where both humans (human-in-the-
loop) and devices (hardware-in-the-loop) take part in the simulation.
Note: Unlike traditional distributed analytic simulations, DVE simulations are
executed as per wall clock time. Furthermore, they usually incorporate rich 3-D
graphics that gives users the look and feel of being embedded in the system
being modelled.

Telecommunication
networks

Analytical PDES have been used widely to evaluate networking hardware,
software, protocols and services in the telecommunication industry.

Social interactions
and business
collaborations

Distributed virtual environments allow people to interact socially and to develop
business collaborations on the Internet.
Note: This was identified as a potential application area of distributed
simulation in 1999, but today it has become a reality with popular Internet-
based 3-D social networks like Second Life (Linden Research, 2007).

Medical application
(potential area)

Computer generated virtual environments have been created both for doctors
(to practice surgical techniques) and for patients (to treat various phobias).
However, most of this work is currently limited to non-distributed virtual
environments.

Transportation
(potential area)

PDES can reduce the time taken to experiment with different strategies for
responding to unexpected events like congestion resulting from weather
conditions, etc. This will help take decisions faster.

Although the table lists only some of the application areas of distributed simulation, the fact

that CSP-based simulation has not been identified as either a current or potential distributed

simulation application area may seem to suggest that there is very little work done in the area

of CSP-based distributed simulation. To further validate this observation, the DES CSPs will

be examined with regards to in-built support for distributed simulation in section 2.6.4.

Chapter 2: Grid computing and simulation packages 56

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

2.6.2 PDES theory

A simulation has to process events in increasing timestamp order. Failure to do so will result

in causality errors. A causality error occurs when a simulation has processed an event with

timestamp T1 and subsequently receives another event with timestamp T2, wherein T1 > T2.

Since the execution of the event with time stamp T1 will have normally changed the state

variables that will be used by the event with timestamp T2, this would amount to simulating a

system in which the future could affect the past (Fujimoto, 1990). For a serial simulator that

has only one event list and one logical clock it is fairly easy to avoid causality errors. In the

case of distributed simulation, the avoidance of causality is a lot more difficult because it has

to deal with multiple event lists and multiple logical clocks that are assigned to various

processors. The reason for this is explained below.

The system being modelled (e.g., a factory) may be composed of a number of physical

processes (e.g., distinct manufacturing units within the factory). In a distributed simulation,

each physical process is usually mapped to a logical simulation process running on a

separate machine. All the interactions between the physical processes (e.g., material

movement from one unit of a factory to another) are modelled as messages that are

exchanged between their corresponding logical processes. Each message will have a time

stamp associated with it.

Figure 14: Execution of events in a distributed simulation (Fujimoto, 1990)

In the figure 14 above, the simulation represents a physical system that has two physical

processes, say, PP1 and PP2. Logical simulation processes LP1 and LP2 model the two

physical processes. Each of these logical processes have their own simulation executive,

simulation clock and an event list. During simulation initialisation the event lists of both LP1

and LP2 are populated with the events E1 and E2 respectively. The timestamps for E1 and E2

are 10 and 20 respectively. It will be possible for LP1 to process event E1 without any

causality error since the timestamp of E1 < timestamp of E2. But LP2 will not be able to

execute event E2 at time 20 because causality error may then occur. The reason for this is

that execution of E1 might schedule another event E3 for LP2 at time 15. In such a case, if

E1

E2

E3

LP1 LP2

Simulated

Time

10

20

Chapter 2: Grid computing and simulation packages 57

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

LP2 had been allowed to execute E2 at simulated time 20 then it would have resulted in a

causality error because the time stamp of E3 < the time stamp of E2. Different

synchronization protocols are proposed for distributed simulation that prevent or correct such

causality errors.

Synchronization protocols are one of the most important research areas of distributed

simulation. They can be broadly divided into conservative (pessimistic) protocols and

optimistic protocols. In a conservative protocol a processor is never allowed to process an

event out of order; whereas in an optimistic protocol a processor is allowed to process an

event out of order, provided it can revert back to its previous state in the case of a causality

error (Nicol and Heidelberger, 1996). A pessimistic protocol like Chandy-Misra-Bryant

(Chandy and Misra, 1979; Bryant 1977) implements the conservative synchronization

protocol. Synchronization here is achieved through propagation of “null" messages (Chandy

and Misra, 1979) or through deadlock detection and recovery mechanisms (Chandy and

Misra, 1981). An optimistic synchronization protocol like Virtual Time, and its implementation

called the Time Warp mechanism, executes events without considering the event time

ordering (Jefferson, 1985). It has to save its state frequently so that a rollback to a previous

state can occur when an event with a time stamp less than the current simulation time is

received. There have also been several attempts to combine both conservative and optimistic

approaches (e.g., Local Time Warp) in order to provide more efficient synchronization

schemes (Rajaei et al., 1993). However, for the understanding of CSP-based PDES, the

discussion that has been presented on pessimistic and optimistic synchronization protocols

will suffice.

Based on the literature review of PDES algorithms it is possible to draw the following two

conclusions:

(1) Conservative and optimistic algorithms like Chandy-Misra-Bryant and Virtual Time are

required for the execution of distributed simulations.

(2) A DES CSP has to implement synchronization protocols, based on the conservative and

optimistic synchronization algorithms, to provide support for distributed simulation.

2.6.3 Distributed simulation middleware

A distributed simulation middleware is a software component that implements the PDES

algorithms to achieve synchronization between the individual running simulations. The next

four sections of this thesis review four such middleware, viz., HLA-RTI, FAMAS, GRIDS and

CSPE-CMB, that can be used to facilitate distributed execution of CSP-based simulations.

Distributed simulation middleware like Aggregate Level Simulation Protocol (ALSP) (Fischer

et al., 1994) and Distributed Interactive Simulation (DIS) (Miller and Thorpe, 1995) have been

used widely in defence training simulations. However, there has been no reported application

of these technologies to CSP-based simulations. As such they fall outside the scope of this

research and will not be discussed further.

Chapter 2: Grid computing and simulation packages 58

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

2.6.3.1 High Level Architecture (IEEE 1516.2000)

The High Level Architecture (HLA) (IEEE 1516, 2000) was originally proposed to address the

need for interoperation between existing and new simulations within the U.S Department of

Defense (DoD). This came from the need to reduce the cost of training military personnel by

reusing computer simulations linked via a network. In the HLA, a distributed simulation is

called a federation, and each individual simulation is referred to as a federate. A HLA Runtime

Infrastructure (HLA-RTI) is a distributed simulation middleware, conforming to the HLA

standards, that provides facilities to enable federates to interact with one another, as well as

to control and manage the simulation.

The HLA is composed of four parts: a set of compliance rules (IEEE 1516.0, 2000), the

Federate Interface Specification (FIS) (IEEE 1516.1, 2000), the Object Model Template

(OMT) (IEEE 1516.2, 2000), and the Federate Development Process (FEDEP) (IEEE 1516.3,

2003). The rules are a set of ten basic conventions that define the responsibilities of both

federates and the federation in the context of their relationship with the HLA-RTI. The FIS is

an application interface standard which defines how federates interact within the federation.

The FIS standard is implemented by the HLA-RTI. The HLA-RTI, thus, forms a base into

which existing simulations (federates) can be "plugged into" to form a large distributed

simulation (Fujimoto and Weatherly, 1996).There are several implementations of HLA-RTI

available, for example, DMSO HLA-RTI (US Department of Defense Modelling and Simulation

Office, 1999) and Pitch pRTI (Karlsson and Olsson, 2001). The OMT provides a common

presentation format for HLA federates. FEDEP defines the recommended practice processes

and procedures that should be followed by users of the HLA to develop and execute their

federations.

For models created using CSPs to interoperate using the HLA standard, some of the FIS-

defined interfaces have to be implemented. The FIS organises the communication between

federates and the HLA-RTI into six different management groups. These are:

 Federation management: HLA-RTI calls for the creation and deletion of a federation, the

joining and resigning of federates from the federation, etc.

 Declaration management: These pertain to the publication and subscription of messages

between federates.

 Object management: Calls that relate to the sending and receiving of messages to and

from federates.

 Ownership management: Calls for transfer of an object and attribute ownership.

 Time management: These provide synchronization services.

 Data distribution: For efficient routing of data between federates.

Mustafee and Taylor (2006a) have shown that a HLA-based CSP interoperability solution is

possible by using services defined in at least four of these six management groups, viz.,

Chapter 2: Grid computing and simulation packages 59

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

federation management, declaration management, object management and time

management.

The time management component of the HLA supports interoperability among federates that

use different time management mechanisms. These include federates executing simulations

using both conservative and optimistic synchronization protocols (Fujimoto and Weatherly,

1996). One possible way through which time advance is coordinated in the HLA federation is

now explained. A federate must explicitly request authorization from the HLA-RTI to advance

simulation time to T. The HLA-RTI will grant permission to advance to T only when it can

guarantee that all messages with a time stamp less than T have been delivered to the

federate. This is the conservative synchronization protocol in action. Several services are also

provided within HLA for the inclusion of optimistic federates such as those using the Time

Warp synchronization protocol (Dahmann et al., 1997).

Almost all research in CSP interoperability using the HLA is concerned with conservative

synchronization. This is probably because an optimistic approach is considered more

complex as there is a need to save and restore system states periodically. Although it may be

possible to save and restore the simulation system state by invoking a ―file save‖ and a

subsequent ―file open‖ operation (through exposed CSP interfaces), this may drastically affect

the performance of the simulation as both ―file save” and ―file open‖ operations are Input /

Output (I/O) operations on persistent storage (not memory). Wang et al. (2004) have

proposed the use of a HLA-based middleware called rollback controller for optimistic

synchronization of CSP-based federates. However, at the time of writing, there have been no

reported investigations pertaining to the integration of the rollback controller with a

commercial simulation package. The subsequent discussions in this section focus on

conservative CSP-based simulations using the HLA.

The problem of creating distributed simulations consisting of CSPs using the HLA was first

addressed in Straßburger et al. (1998). CSPs can be perceived of as standalone ―black box‖

packages that expose simple interfaces that are used to control the package and to access

the model stored within the package. The main problem is therefore the manner in which the

HLA-RTI software is interfaced to the CSP. Some examples of early HLA-related work are

now presented. The IMS MISSION project attempted to use distributed simulation and CSPs

within large decision support environments in manufacturing supply chains (McLean and

Riddick, 2000). Individual research projects developed different, but incompatible approaches

to the use of the HLA in support of distributed simulation with CSPs AnyLogic (Borshchev et

al., 2002), AutoSched (Gan et al., 2005), Witness (Taylor et al., 2003); and simulation

languages MODSIM III (Johnson, 1999), SLX (Straßburger et al., 1998), among others.

Interoperability of models created using heterogeneous CSPs have been studied by Hibino et

Chapter 2: Grid computing and simulation packages 60

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

al. (2002), whereby three commercial manufacturing simulators (QUEST, SIMPLE++ and

GAROPS) have been interfaced with HLA using an adapter-based approach.

Building on the lessons learnt from these work, a standardization effort, described in Taylor et

al. (2006b), specifically addressing the problems of HLA-based distributed simulation and

CSPs began in 2002. This has led to the development of a suite of CSP Interoperability

(CSPI) standards under the Simulation Interoperability Standards Organization’s (SISO) CSPI

Product Development Group (CSPI PDG). The CSPI PDG’s standards are intended to

provide guidance on how specific requirements of HLA-based distributed simulation can be

supported with CSPs. These standards provide a set of Interoperability Reference Models

(IRM) that describe different distributed simulation requirements, a set of Data Exchange

Representations (DER) that are used to define the format of data exchanged between the

models, and a set of Interoperability Frameworks (IF) that specify the architecture and

protocol used to integrate the CSP with the HLA-RTI and exchange data in a time

synchronized manner. Currently, there are six IRMs that describe the distributed simulation

requirements for different scenarios; one DER and one IF (Taylor et al., 2006a).

Recent work on CSPI standards include Wang et al. (2006) who study possible

implementations of the Type II IRM (synchronous entity passing); Taylor et al. (2005a) who

investigate the use of distributed simulation in engine manufacturing; Gan et al. (2005) who

investigate the use of distributed simulation in semiconductor manufacturing; Mustafee et al.

(2006b) who report on using distributed simulation to model the supply chain of blood. The

use of these standards within a semiconductor manufacturing decision support environment is

discussed in Lendermann et al. (2005).

It is evident from this literature review that a lot of research in CSP interoperability is focussed

on using HLA-RTI middleware. This is to be expected since HLA is an IEEE standard for

distributed simulation and facilitates modular federation development using well-defined FIS.

It is expected that the evolving CSPI PDG standards will encourage further research on using

HLA to achieve CSP interoperability.

2.6.3.2 Generic Runtime Infrastructure for Distributed Simulation (GRIDS)

The Generic Runtime Infrastructure for Distributed Simulation (GRIDS) was first proposed as

an architecture for studying bandwidth reduction techniques for distributed real-time

simulations (Taylor et al., 1999). The GRIDS was then extended to provide distributed

simulation environment for CSP interoperability (Taylor et al., 2001). Unlike the fixed

functionality advocated by HLA, GRIDS was designed to provide only basic functionality for

interoperation of different federates and a mechanism which would allow addition of extra

services on an ―on-demand‖ basis (Taylor et al., 2002). GRIDS was thus extensible. This

extensibility was made possible by Thin Agents that were designed to provide additional

services like different time synchronization algorithms, message filtering and security.

Chapter 2: Grid computing and simulation packages 61

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

GRIDS was proposed because it is felt that HLA-RTI, designed primarily for interoperating

military simulations, provided services that would possibly never be used in industry. It was

felt that a lighter alternative supporting extensibility would be more suitable for distributed

simulation in industry.

2.6.3.3 FAMAS.MV2 0.2 "Simulation Backbone"

FAMAS.MV2 0.2 "Simulation Backbone" is an architecture for linking different simulation

models created as part of FAMAS.MV2 research programme (Veeke et al., 2002). It has also

been proposed as a lightweight architecture for coupling of simulation models built using

CSPs (Boer, 2005). In comparison to HLA, Famas provides only a limited set of subsystems

(figure 15) for CSP interoperability (thus the term lightweight).

Figure 15: CSP-based distributed simulation using FAMAS (adapted from Boer, 2005)

The centralized Backbone Time Manager (BBTM) is probably the most important of these

subsystems and is responsible for synchronization of several DES models running on multiple

computers. It uses the conservative synchronization protocol. Each federate taking part in the

distributed simulation sends the next event time to BBTM. BBTM selects the federate that has

an event with the smallest next event time and grants it permission to execute that event. If

two or more participating federates send the same event time then the BBTM gives federates

permission for execution in First In, First Out sequence (Boer, 2002).

2.6.3.4 CSPE-CMB

The CSPE-CMB middleware (Mustafee, 2004) implements both the Chandy-Misra-Byrant

―null‖ message algorithm (Chandy and Misra, 1979) and the deadlock avoidance and

recovery mechanisms (Chandy and Misra, 1981). Unlike HLA-RTI, FAMAS or GRIDS

middleware that depend on a central process (e.g., HLA-RTI depends on the central rtiexec

process, FAMAS is dependent on backbone time manager) to grant individual simulations

permission to advance their simulation clocks, CSPE-CMB implements a decentralized

approach. This requires each federate to run the conservative synchronization algorithm and

interact with other federates to find out the next safe time to advance the simulation.

Communication Layer

CSP Model2 CSP Model1

Logging

Subsystems

Backbone Time

Manager
Real Control

Subsystem

CSP Model3

Visualization

Subsystem

Technical Components

Functional Components

....

Chapter 2: Grid computing and simulation packages 62

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

The CSPE-CMB middleware has been used with a CSP emulator (Mustafee, 2004) to

compare its performance with HLA-RTI on different interconnected federate topologies

(Taylor et al., 2005b). It has also been used to successfully simulate three Simul8 models,

each of which represents a part of a fictitious manufacturing assembly line consisting of a

source, a variable number of queues and workstations and a sink (figure 16). Development of

this middleware has since been discontinued in favour of CSPI PDG standards that

encourage CSP interoperation through HLA-RTI.

Figure 16: Distributed simulation using Simul8 and CSPE-CMB middleware

2.6.4 Distributed simulation service

From the above discussion it is clear that a higher-level grid service that facilitates the

execution of distributed DES over grid resources will require the support of a distributed

simulation middleware. Since a grid infrastructure consists of multiple computing resources, it

will be possible to execute the individual DES models, which together make up a distributed

simulation federation, over different grid resources. The distributed simulation middleware can

be started on one of the grid nodes. In this thesis the distributed simulation service will be

discussed in the context of enabling HLA-based DES over the grid.

Simulation practitioners may benefit from using a CSP that supports distributed simulation if

they are involved in creating large and complex models (Mustafee et al., 2006b) or modelling

supply chains (Gan et al., 2000; Sudra et al., 2000). Swain’s survey (Swain, 2007) of CSPs,

Simul8 Model A Simul8 Model B

: Source : Queue : Workstation : Sink

CSPE-CMB

CSPE-CMB CSPE-CMB

Simul8 Model C

Entities transferred from

Models A and B to Model C

Chapter 2: Grid computing and simulation packages 63

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

complemented by the author’s review of product information that is published in the vendor

websites, is now used to investigate the level of distributed simulation support present in

existing DES CSPs. This is presented in table 14 below.

Table 14: CSPs and distributed simulation support

Software Vendor Features Info. Source
(Appendix A.7)

Arena Rockwell
Automation

Interprocess Communication is possible.
IMPORTANT: No further information is available on the
website.

Vendor website

AutoMod Brooks Software The Model Communications Module allows information
to be transferred between models and control systems,
multiple models, and models to other applications.

Vendor website and
from author’s
discussions with
simulation experts

Simprocess CACI Products
Company

Simprocess provides support for external entity
schedules that allow external applications to "feed"
entities to a SIMPROCESS model. This allows the user
to develop portions of a SIMPROCESS model and
distribute it to separate computers to share the
workload.
IMPORTANT: Although entities can be transferred
between models the simulation clocks across the
separate computers are not synchronized.

Vendor website

Of the three CSPs that have been identified as providing some sort of distributed simulation

support, only AutoMod has some form of distributed model execution capabilities. In

Simprocess there is no mechanism for time synchronization between the running models and

therefore it cannot be considered as providing distributed simulation support. Arena allows

some form of inter-process communication but it does not necessarily suggest that it supports

distributed simulation.

Robinson (2005b) has highlighted ―distributed model execution‖ and ―linking separate models‖

as two potential applications of simulation in a networked environment under the ―model

execution category‖ (table 8). Both these applications can be considered as distributed

simulation because, distributing the execution of a simulation by (1) splitting a large model

into sub-models and linking them or (2) by linking existing models together is frequently

referred to in literature as distributed simulation (Hibino et al., 2002; Wang et al., 2006; Taylor

et al., 2006a).

2.7 Web-based simulation

According to Page et al. (2000), ―Web technology has the potential to significantly alter the

ways in which simulation models are developed (collaboratively, by composition),

documented (dynamically, using multimedia), analyzed (through open, widespread

investigation) and executed (using massive distribution)‖. Observations relating to the use of

web technology in the field of simulation can be found in literature (Pidd et al., 1999; Fishwick,

1997; Kuljis and Paul, 2000). These are:

 Web enables distributed component-based simulation.

Chapter 2: Grid computing and simulation packages 64

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

 Parallel and distributed model execution is possible over the web.

 Distributed model repositories can be made available for simulation practitioners.

 Simulation education and training can benefit from free and widely accessible modelling

environments made available on the web.

 Web-based simulation of autonomous software agents is possible.

 Scientific simulations that require, for example, execution of software applications on

multiple machines, data stored on various locations, etc., is facilitated over the web.

The Java programming language is increasingly being used for implementing web-based

applications. Some of the advantages of using Java as a platform for creating web-based

simulations are (Pidd et al., 1999; Page et al., 2000):

 Java is an object oriented programming language and is therefore suitable for

component-based simulation.

 Simulation models in Java can be made widely accessible through Java applets that can

be downloaded by client browsers.

 Java is platform independent and, thus, Java applets can be run on any Operating

System that has Java Runtime Environment (JRE) installed.

 Java has built-in threads that can be put to good use in modelling simulations.

 Java provides support for graphics.

 Some aspects of Java such as multi-threaded programming are generally considered

easier to learn compared to some other programming languages.

Kuljis and Paul (2000) present an overview of several Java based DES environments like

DEVSJAVA, JavaGPSS, Silk, JavaSim, Web-enabled Simulation Environment (WSE), etc.

that either support web-based simulation (like WSE) or can be considered as potential

candidates to offer such web-based simulation functionality in the future. In this thesis,

however, web-based simulation is discussed only in the context of MCS and DES CSPs. Most

of the applications of web-based simulation that have been described above (for example,

parallel and distributed model execution, model composition using components, massive

distribution, joint model development, etc.) have already been discussed in the context of

higher-level grid services that can be potentially used with CSPs.

2.7.1 Defining web-based simulation

For the purpose of this research it is important to distinguish between simulations running on

a networked environment (network-based simulation) and simulations running over the web.

In this thesis all web-based simulations are also considered as network-based simulations

since they rely on multiple computing resources that are connected through a network.

However, all network-based simulations are not considered as web-based simulations since

they may not use the underlying World Wide Web technologies but may implement

customized distributed computing solutions. A discussion on Internet, Intranet, World Wide

Chapter 2: Grid computing and simulation packages 65

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Web (WWW) and WWW-technologies will make this distinction more apparent. Kurose and

Ross (2003) has been extensively referenced in this discussion.

The public Internet is a worldwide computer network that connects millions of end systems

(computing devices like desktop PCs, UNIX workstations, servers, PDA’s, televisions, game

consoles, etc) and intermediate switching devices (like routers, hubs and switches) that

mainly run the TCP (the Transmission Control Protocol) and IP (the Internet Protocol)

protocols to control the sending and receiving of information between them. The private

Intranet uses infrastructure (end systems, switching devices and communication links) and

protocols similar to that of the Internet but its access is confined within an organization.

The Internet Protocol stack is based on layered protocol architecture, with each protocol

belonging to one of the layers and providing a service to a protocol belonging to a layer above

it. The Internet Protocol stack consists of five layers – the physical layer, the data link layer,

the network layer, the transport layer and the application layer. The Open Systems

Interconnection Basic Reference Model, or OSI Reference Model for short, has two additional

layers – session layer and presentation layer. But for the purpose of this discussion an

overview of five layers will be sufficient. The protocol layers can be implemented in software

(like protocols in the application and transport layers, example, HTTP, TCP, UDP), hardware

(like protocols in the physical and data link layers), or in a combination of both (like protocols

in the network layer). The hardware is generally the Network Interface Card (NIC). Each layer

communicates with the other by exchanging layer-specific messages. The Internet protocol

stack is shown in figure 17 below. Messages generated at the application layer (layer-5

messages) flow down the protocol stack, and at each layer these messages are

complemented with further layer specific data to create a corresponding layer-specific

message. Thus, layer-5 message becomes a layer-4 message in the transport layer. A brief

discussion of the protocol layers follows next.

Figure 17: Layered architecture of Internet Protocol (IP) stack

The application layer consists of protocols that support network applications, for example,

Hyper Text Transfer Protocol (HTTP) that supports web-based applications, Simple Mail

Transfer Protocol (SMTP) for email, File Transfer Protocol (FTP) to support file transfer, etc.

The transport layer protocols like TCP and User Datagram Protocol (UDP) provides services

for transporting layer-5 messages. The network layer is responsible for routing layer-3

Application Layer (Layer -5 messages)

Transport Layer (Layer -4 messages)

Network Layer (Layer -3 messages)

Link Layer (Layer -2 messages)

Physical Layer (Layer -1 messages)

Chapter 2: Grid computing and simulation packages 66

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

messages from one host to another. It consists of the IP protocol that defines the fields in the

layer-3 messages as well as how the end systems and routers act on these fields.

Furthermore, it specifies the routing protocols that determine the routes these layer-3

messages take between sources and destinations. The link layer routes layer-2 messages

through a series of routers between source and destination. Finally, the physical layer is

responsible for moving individual bits in a layer-1 message from one node to the other.

The World Wide Web, commonly referred to as the Web, is an Internet (and Intranet)

application that uses HTTP as its application layer protocol. HTTP protocol is implemented

using a client program and a server program, each of which executes on different end

systems and communicate with each other using structured HTTP request and response

messages. HTTP uses the TCP as its underlying transport protocol. The communication

between the client and server programs is shown in figure 18 below (adapted from Kurose

and Ross, 2003).

Figure 18: Communication between client and server programs

The web application consists of a hierarchy of interconnected web pages that are accessible

to the user through navigation elements called hyperlinks. The web pages comprise of objects

like HTML (Hyper Text Markup Language) files, graphics images, Java applets, audio clips,

video clips, etc. and are accessible through a unique Uniform Resource Locator (URL). The

URL (for example, www.brunel.ac.uk/students/library.htm) identifies the end

system running the server program (the domain name brunel.ac.uk is translated into a

specific machine address through the Domain Name Server [DNS] service) and the path to a

web page (students/library.htm). Web pages are requested by the end system

running the client program from the end system running the server program through

invocation of the URLs. The client programs are the web browsers like Internet Explorer,

Mozilla Firefox and Netscape; the server programs are web servers like Internet Information

Server (IIS), Apache HTTP Server and Sun Java System Web Server.

The overview of the World Wide Web, arguably the most popular Internet application to date,

as presented above is the basis of the definition of web-based simulation that is presented in

this thesis. Web-based simulation is defined as simulation in a client-server based distributed

computing environment that uses web-based technologies like web browsers, web servers,

hyperlinks, URLs, among others. The CSPs that support web-based simulation may therefore

make their CSP applications accessible to simulation practitioners through web pages. These

End system running

Client Program

End system running

Client Program

HTTP request HTTP request

HTTP response HTTP response

End system running

Server Program

Chapter 2: Grid computing and simulation packages 67

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

web pages are rendered by the client browsers (running on the PCs of simulation users) and

may contain static text, dynamic simulation applets, HTML form elements (like input boxes,

list boxes) for inserting experiment parameters, etc.

2.7.2 Web-based simulation and CSPs

Lorenz et al. (1997) have described three possible approaches to web-based simulation using

existing simulation packages. They refer to these packages as simulation and animation

(S&A) tools. The first approach is the remote S&A approach where the user specifies

parameter values for a simulation model using web-based HTML forms and submits it to the

PC that is hosting the web server. The web server invokes the S&A tool, executes the

simulation based on the input values retuned by the form, and sends back the results to the

user. The drawback of this approach is that the animation of the simulation cannot be viewed

by the user and he has no control over the simulation once it has started running on the

server. The second approach is defined as the local S&A approach where the user

downloads Java applets (which include the code for simulation executive) from the server,

loads it into the web browser and then runs the simulation on a local machine. This approach

supports animation and user interaction with the simulation model. The third approach is

referred to as animation and manipulation using a Java data server. In this case the

simulation runs remotely on the server; however, the user is able to view the animation and

exert some control over the running of the simulation through a Java applet (downloaded from

the server) that establishes a connection with the Java data server and gets a continuous

data feed from the running model. The three approaches are graphically shown in figures 19,

20 and 21 below. The figures have been adapted from Lorenz et al., (1997). It is generally

possible to interface the CSPs that expose package functionality (see table 10) with an

application running over the web server. For example, Whitman et al. (1998) have

implemented the remote S&A approach to web-based simulation using DES CSP Witness

(that exposes package functionality) and web-based technologies like VBScript and HTML.

As web service is a web-based technology, access to CSPs through use of web services also

qualifies as web-based simulation.

Figure 19: Remote S&A approach to web-based simulation using CSPs

Web Server Web

Browser

Simulator

PC hosting web

server

PC of simulation

practitioner

1

3
2 3

Legend:

1. Send Parameters

2. Start simulation

3. Return results

Chapter 2: Grid computing and simulation packages 68

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Figure 20: Local S&A approach to web-based simulation using CSPs

Figure 21: Java data server approach to web-based simulation using CSPs

The CSPs that support web-based simulation through static HTML pages, dynamic Java

applets and callable web services are listed in table 15 below.

Table 15: CSPs that provide support for web-based simulation

Software Vendor Features Information
Source

(Appendix A.8)

Quantitative
Methods
Software (QMS)

QuantMethods QMS runs as a client-server application. The problem
solution engine is the server and the browser is the client.
The browser is used to create, edit, and optionally store
problems; and to view and print the output. The server
accepts input from the browser, generates solutions to
problems, and sends the output to the browser. Since the
software is accessed through the browser, there is no need
to install QMS on every machine.

Vendor website

MineSim Systemflow
Simulations,
Inc.

MineSim is an interactive 3-D web-based simulation of an
underground mine. MineSim is written in Java and runs as
an applet in the browser. The applet downloads the MineSim
application to the local machine but does not install any
program.

Vendor website

Vanguard
Studio
(DecisionPro)

Vanguard
Software
Corporation

Vanguard Application Server makes all models, built using
Vanguard Studio and a Web Development Add-in, available
as web-based applications that anyone in the organization
can access using only a Web browser interface. Vanguard’s
Web Services Add-in allows inter-connection between the
Vanguard models, that are executed on Vanguard server
and other enterprise systems.

Vendor website

AnyLogic XJ
Technologies

AnyLogic models can be placed on a website as applets. It
allows clients to run fully functional interactive models
directly in their web browsers without installing any kind of
runtime or viewer version.

Vendor website

Web and

Java Server

Web

Browser

Simulator

PC hosting web

server

PC of simulation

practitioner

1

2

4

Legend:

1. Invoke applet

2. Download applet

3. Establish remote

connection between

Java server and applet

4. Simulation results

Applet 3

Web Server Web

Browser

PC hosting web

server

PC of simulation

practitioner

2

3

Legend:

1. Invoke applet

2. Download applet

3. Run applet and

show results

Applet

with

simulation

executive

1

Chapter 2: Grid computing and simulation packages 69

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Software Vendor Features Information
Source

(Appendix A.8)

AgenaRisk
Enterprise
Edition

AgenaRisk The AgenaRisk API is a set of java routines that lets the
user create, edit and execute AgenaRisk models as part of a
client server, web service or desktop enabled application.

Vendor website

Witness Lanner Witness Server is an additional module for Witness that runs
on a central server and serves multiple users. There is no
need for Witness to be installed on every computer. Data for
a simulation experiment can be set through a webpage or
through customized dialogue boxes. After the data has been
set, an experiment can be submitted to the central server
and the job monitored. There is an optional web site hosting
facility on the server.

Vendor website

Analytica

LuminaDecision
Systems, Inc

Analytica Decision Engine (ADE) can deliver Analytica
models as a Web application.

Vendor website

Simprocess CACI Products
Company

SIMPROCESS has the capability to provide simulation
models as callable services through the use web services.
The models are executed on the server.

Vendor website

The table above shows that only eight out of the 45 CSPs that have been surveyed in this

research support web-based simulation. Based on the limited adoption of web technology by

the CSP vendors on one hand, and the ever gaining popularity of WWW-based applications

on the other, it would be interesting to investigate whether a grid-facilitated web-based

simulation service could be use together with the CSPs.

2.7.3 Web-based simulation service

The discussions on higher-level grid services in section 2.2.2 have described the grid portal

service as a web-based application that provides users with higher-level abstraction to the

underlying grid services. Use of grid portals may make it possible for the user to upload

simulation models and experiment parameters, monitor simulation progress and to download

the results of the simulation using their web browsers. The grid portal interfaces with the grid

middleware to provide these services to the users. Unlike custom web-based CSP solutions

that are implemented by vendors for particular CSPs (see table 15), grid portals are generally

not targeted at specific applications (for example, Simul8) or particular application domains

(for example, simulation). As such, the level of CSP-specific functionality that can be provided

by grid portals is usually limited when compared to the functionality provided by custom CSP-

specific solutions.

Screenshot 2 shows the job submission web page for the NGS portal (Yang et al., 2005). As

can be seen from the screenshot, the web page provides input boxes to specify the path for

the executable (which can be the CSP), the input file (which can be the simulation model), the

output file (which can be used to collect the results of the simulation), links to specify the

arguments (which can be the different simulation experiment parameters), etc. The

screenshot only shows a part of the job submission web page and the reader is referred to

<https://portal.ngs.ac.uk> for more details.

Chapter 2: Grid computing and simulation packages 70

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 2: Job submission web page for the NGS portal

Screenshot 3: Workflow editor in P-GRADE portal (adapted from Kiss, 2007)

Chapter 2: Grid computing and simulation packages 71

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Some grid portals provide a GUI interface to create workflows using Java-enabled web

browsers. The P-GRADE portal (Németh et al., 2004) and the NGS portal are examples of

grid portals that offer such functionality. Screenshot 3 (previous page) shows the P-GRADE

workflow editor. The workflow created using the editor consists of 5 individual jobs (four MPI

parallel jobs and one sequential job), wherein the MPI jobs ―cummu‖, ―visin‖ and ―satel‖ are

dependent on data that is output from the MPI job ―delta‖. Similarly, the sequential job ―ready‖

is dependent on data that is output from ―cummu‖, ―visin‖ and ―satel‖ MPI jobs.

Web-based simulation service could be potentially provided through the use of web services

also. It has been discussed earlier in section 2.2.3.1 that grid computing middleware has

traditionally been implemented using custom protocols. However, with the introduction of the

web services oriented OGSA framework it is widely believed that middleware based on OGSA

standards will become increasingly available in future. A cluster-based grid middleware that

implements OGSA standard is Globus GT-4. It allows the creation of user-developed services

(based on web services) that can be hosted in GT-4 implemented Java, Python or C

containers (figure 6). These containers provide mechanisms for security, service discovery

and management, etc., which are usually required for building services in the grid

environment. What it means for web-based simulation is that ―callable‖ web services that

expose CSP functionality can be deployed through grid middleware. The simulation user can

then write applications that call these web services to realize web-based simulation over

grids.

This section of the thesis has described web-based simulation and has identified that grid-

facilitated web-based simulation service can potentially support CSPs through use of grid

portals and through mechanisms to host ―callable‖ web services that expose CSP interfaces.

Informed by the discussions on grid middleware (section 2.2.3) and the different forms of grid

computing (section 2.2.5) in the earlier sections, the next section investigates the form of grid

computing that is suitable for CSP-based simulation in industry.

2.8 Grid middleware and CSPs

Section 2.2.5 has identified four different forms of grid computing. These are cluster-based

grid computing, enterprise-wide desktop grid computing (EDGC), public resource computing

(PRC) and peer-to-peer computing (P2P). The discussions in section 2.2.3 have highlighted

that the middleware for cluster-based grid computing are primarily targeted at UNIX and Linux

flavour operating systems (the only notable exception being Condor middleware). Middleware

for EDGC, PRC and P2P, on the other hand, are widely support under the Windows platform.

The OR/MS survey of CSPs, complemented by the author’s own investigation of simulation

software, has shown that all packages are supported on the Windows platform, 15.56% on

both UNIX and Linux operating systems and only 13.33% CSPs are supported on Macintosh.

Chapter 2: Grid computing and simulation packages 72

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

This shows the prevalence of Windows-based CSPs in industry. Furthermore, it is a widely

accepted observation that employees generally use the Windows-based systems at their

workplace. It is therefore arguable that for this research to be widely relevant to the practice of

CSP-based simulation in industry, it should, first and foremost, focus on Windows-based grid

computing solutions. Discussion of cluster-based grid solutions for CSP-based simulation

modelling is thus outside the scope of this thesis. P2P computing is also not investigated

further because it generally supports only file sharing and as such P2P networks cannot be

used to execute programs (like CSPs) on the peer resources. From this point on, the terms

―desktop grid computing‖, ―desktop grids‖, ―grid computing‖ and ―grids‖ will be used

synonymously to refer to only PRC and EDGC, unless explicitly stated. Two middleware,

chosen in this research as representative forms of either the EDGC or the PRC form of grid

computing, are now discussed, namely, BOINC and Condor.

BOINC is an open source PRC middleware that allows users to create new BOINC-based

projects to cater to their computational needs. Condor is an EDGC middleware that is used

for both e-Science research and for enterprise application processing. Both BOINC and

Condor are cycle stealing systems (i.e., a system that harnesses the unused CPU cycles of

idle PCs to process other jobs in the background) that can run on non-dedicated Windows

PCs.

The rationale of choosing BOINC as a representative form of PRC middleware is as follows.

 It is presently the most popular PRC middleware.

 It is presently the only PRC middleware that allows users to create their own projects.

 It is available free of cost.

The rationale of choosing Condor as a representative form of EDGC middleware is as follows:

 It has the largest EDGC deployment base. More than 80,000 Condor hosts around the

world make up approximately 160 production-level Condor pools (see

<http://www.cs.wisc.edu/condor/map/> for updated Condor statistics).

 It is available free of cost. Other EDGC middleware like Entropia DCGrid, United Devices

GridMP and Digipede Network are commercial solutions.

BOINC and Condor are discussed next in sections 2.9 and 2.10 respectively. The purpose of

this discussion is to acquire an in-depth understanding of these systems, which would in turn

allow proper evaluation of the middleware in respect to its suitability for providing higher-level

grid services to the CSPs in later chapters. Unfortunately none of these middleware are

OGSA compliant or support hosting of user-developed web services using custom solutions.

Therefore some grid-facilitated higher-level services that require web service support cannot

be evaluated using these middleware, namely, ―web-based simulation through the use of web

Chapter 2: Grid computing and simulation packages 73

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

services‖ (web-based simulation service) and ―searching and downloading CSP model

components‖ (collaboration service). These are areas for further research.

2.9 Public-Resource Computing (PRC) middleware BOINC

2.9.1 Overview of PRC

Public-resource computing (PRC) refers to the utilization of millions of desktop computers

primarily to do scientific research (Anderson, 2004). Berkeley Open Infrastructure for Network

Computing (BOINC) (BOINC, 2007b) is the most widely used PRC application that supports

scientific projects with diverse objectives such as studying climate change (Stainforth et al.,

2002), improving the design of particle accelerators (LHC@home, 2007) and finding cures for

human diseases (Taufer, 2006). BOINC was developed by those responsible for the PRC

project SETI@home (Anderson et al., 2002), which originally used bespoke software to

search for evidence of extraterrestrial intelligence in radio signals. BOINC now provides a

generic set of tools and patterns which are used to support a wide range of PRC projects.

Presently, BOINC is used by around 20 such projects, which together consume an estimated

350 teraflops of processing power, generated by approximately 1 million computers

contributed by some 600,000 volunteers (Anderson, 2006). Non-BOINC based projects use

bespoke software to facilitate research with similar objectives, for example, finding a cure to

cancer (Parabon computation, 2007), understanding protein folding (Pande, 2007) and

computing mersenne prime numbers (Woltman, 2007).

The participants of PRC projects are volunteers who register with one or more such projects

and install the required PRC software. This software then contacts the central project servers

and downloads work units for processing (in the case of BOINC it also downloads project

specific executable code as BOINC is a general purpose PRC client). BOINC implements the

master-worker distributed computing architecture and uses the ―pull‖ mechanism for

scheduling jobs, where the volunteer computers request (pull) jobs from the PRC project

servers (figure 22). The time it takes to complete the execution of a work unit and return back

the result depends, among other things, on the machine hardware, the amount of time a PC is

left running and user preferences. The volunteers are themselves unable to use the

underlying desktop grid infrastructure, of which they themselves are part of, to perform their

own computations.

2.9.2 BOINC architecture

The BOINC system [figure 23, adapted from (Anderson, 2006) and (Perez, 2005)] contains

several server-side components, which may execute on separate machines if required. Most

of the server side components can only be installed over a UNIX or Linux flavour operating

system. The database holds all the metadata associated with the project and lifecycle

information for each work unit. A client’s command channel operates via the scheduling

server, using an XML-based protocol. Results are transferred using HTTP via the data

Chapter 2: Grid computing and simulation packages 74

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

servers. In addition to work units and results, other files may be transferred between server

and client, including application executables and any other interim data the application may

require during the operation. The database also has a web-based front-end that is used for

displaying project information specific to volunteers, for example, how many computers have

been contributed by the user, the number of work units processed, etc. On the client side, the

BOINC core client manages interaction with the server, while optional components (like

screensaver and manager) provide graphical control and display elements for the benefit of

the user. The BOINC client API provides the interface between the user-created application

client and the BOINC core client. The API is a set of C++ functions and the application client

is compiled with it. In other words, the BOINC application client will generally have to be

written in C++ (BOINC, 2007c). All communication between the BOINC core client and the

BOINC project servers take place through HTTP on port 80 (BOINC, 2007d). The BOINC

core client can therefore operate behind firewalls and proxies.

Figure 22: The “pull” model of PRC projects

BOINC

database

Scheduling

server

Web

interface

Data

servers

Server library

Application

backend server

Application-specific components

BOINC core client

Client API

Application client

ManagerScreensaver

Optional GUI elements for

user control of the client

Server

Client

Client library

Figure 23: The BOINC system

(2) (2)

(2) (2)

(2)

PRC Project

Servers

(2)

Volunteer

PC

Volunteer

PC

Volunteer

PC

(1) Volunteer PCs “pull”

job from PRC Project

Servers

(2) Volunteer PCs process

job

(3) Volunteer PCs return

results to PRC Project

Servers

(1)

(3)

(1)

(3)

(1)

(3)

(1)

(3)

(1)

(3)

(1)

(3)

Volunteer

PC

Volunteer

PC

Volunteer

PC

Chapter 2: Grid computing and simulation packages 75

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

BOINC has been primarily designed and developed for use as PRC software. As such, some

of its design goals arise from the need to (1) attract new participants and to retain existing

ones, (2) to guarantee the correctness of results being returned by clients processing work

units using heterogonous computing resources, and (3) to ensure that a modest BOINC

server setup will be capable of handling tens of thousands of client requests. BOINC

implements these design goals by providing support for redundant computing (whereby each

work unit is sent to multiple clients for processing in order to identify and reject erroneous

results), implementing exponential back off on failure (this allows a BOINC server to

gracefully process client requests even after an extended outage), rewarding the participants

in the form of a credit system and recognising them through web-based ―leader boards‖,

facilitating community building through the creation of teams, and finally, providing graphics

visualization as an inducement to further attract and retain participants (Anderson, 2004).

2.9.3 BOINC in an enterprise setting

Although BOINC was originally designed to support PRC, lately there has been a realization

that the same software can be reconfigured to support desktop grid computing (BOINC,

2007a). The widespread availability of desktop PCs in organizations makes the deployment of

such an enterprise-wide BOINC infrastructure an even more attractive option. Thus, it may be

possible to implement and deploy BOINC-based projects for use exclusively within an

enterprise, such that it is geared up to support the execution of the enterprises’ applications.

The participants of such an enterprise-wide BOINC setup can be the employees of the

organization who contribute their work PCs. The participation in such projects may not be

voluntary and can be governed by the policy of the organization. The computations being

performed by the BOINC clients will be in line with the needs of the enterprise, and unlike

PRC where volunteers are encouraged to contribute their resources, only employees and

other trusted sources will be allowed to participate in the enterprise-wide BOINC projects.

BOINC features that are necessary in the PRC context but may not be required in an

enterprise grid (for e.g., user rewards system, anti-cheating measures, mechanisms to deal

with client failure or extended network non-connectivity, etc.) can be disabled.

In the PRC setting, project specific application clients are downloaded from the server by the

BOINC core client as required. Only BOINC itself needs to be pre-installed on each client

computer. This type of BOINC application can be referred to as a „runtime application client‟

(BOINC-RAC) because there are no client-side dependencies for application code. In an

enterprise environment such a standalone executable application client may encourage

participation outside of the project sponsor’s department. A disadvantage is the need to

package applications in the downloadable form that BOINC requires, which may require

development work.

Chapter 2: Grid computing and simulation packages 76

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Within the enterprise employee computers are frequently installed with office productivity

applications. When these pre-installed applications are used for client side processing then

only a small application client is required to be downloaded by the BOINC core client. This

type of BOINC application can be referred to as a „proxy application client‟ (BOINC-PAC)

because it processes enterprise data by triggering pre-installed desktop applications.

However, this approach may incur additional administration overheads such as ensuring that

security permissions and application versions are correct on every participating client

machine.

BOINC PRC applications vary widely in their installed footprint, size of work unit, and disk and

memory space needed during execution (Christensen et al., 2005). In an enterprise setting,

the choice of BOINC-RAC versus BOINC-PAC will depend on these practical factors as well

as the administrative policies in place. In a BOINC-based desktop grid environment the inter-

departmental participation in a project may vary depending on which of these two approaches

is implemented. For BOINC-RAC applications it is relatively easy for different departments to

participate in projects because such applications do not impose any client side dependencies.

However this inter-departmental camaraderie may not always be possible in the case of

BOINC-PAC applications because they require invocation of third-party software which first

has to be installed on client PCs.

Figure 24: Multiple BOINC projects in an organization

For example, the simulation department may create the BOINC-PAC project ―A‖ using a

specialist software package like DES CSP. But the accounts department in the same

organization may not be able to participate in such simulation projects because their

departmental PCs are only installed with specialist financial software. They can, however,

create a BOINC-PAC project ―B‖ to handle their own processing requirements. The credit risk

department may create BOINC-PAC project ―C‖ that requires Microsoft Excel. Since Excel is

Simulation dept. LAN Accounts dept. LAN

Credit risk departmental LAN

Corporate network

A B C D

C C

C C

C C

C C

CC

C C C

D D

D D D D

D D

AA

AA B B

B BBOINC

server

Clients attached to BOINC projects:

DDDD D

Chapter 2: Grid computing and simulation packages 77

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

a widely used application, it can be expected that it is installed on most PCs in the

organization. Thus, the simulation and the accounts departments can join in with the finance

department to execute the Excel-dependent BOINC application on their respective

departmental resources. Similarly, a BOINC-RAC application (project ―D‖) created by the

accounts department can be easily executed by all three departments due to the lack of

client-side dependencies. Figure 24 shows these four different BOINC execution scenarios.

This section has presented an overview of PRC and has discussed the architecture of BOINC

and how it can be used in an enterprise setting. A discussion of Condor is presented next.

2.10 Enterprise Desktop Grid Computing (EDGC) middleware Condor

The Condor project was born in the University of Wisconsin-Madison in 1988. Condor is an

opportunistic job scheduling system that is designed to maximize the utilization of

workstations through identification of idle resources and scheduling background jobs on them

(Litzkow et al., 1988). A collection of such workstations is referred to as a Condor pool.

Condor has mechanisms to checkpoint running jobs (i.e., save the state of a program that is

being executed) and migrate them to other workstations, when the previously idle resource

are reclaimed by the PC owners (Litzkow et al., 1997). When Condor was first introduced in

1988 it was unique because it was arguably the only production system that allowed every

user to contribute as much or as little of their resources, and offered an alternative to the

dominant centralized processing model of the day (Thain et al., 2004).

Condor established the term High Throughput Computing (HTC) to distinguish a distributed

computing environment that could deliver large amounts of processing capacity over long

periods of time (i.e., it focuses on providing an increasing number of floating point operations

over time), with the centralized High Performance Computing (HPC) environment that focuses

on delivering an increasing number of floating point operations per second (FLOPS) (Livny

and Beck, 1997). HTC is thus a 24 hours a day, 7 days a week, 365 days a year activity with

non-dedicated user computers. As desktop PCs become faster, cheaper and more widely

available, the aggregate processing power that could be made available using Condor HTC is

constantly on the rise.

Although Condor was originally designed to provide HTC through cycle stealing, the same

system design can also be used to manage Beowulf clusters, multi-processor machines and

wide-area distributed systems; for example, the Condor pool at the University of Wisconsin-

Madison manages workstations, several clusters, and several multiprocessors all in one

system and a Condor pool in Italy harnesses resources from workstations spread throughout

ten cities (Condor, 2007). The focus of this thesis is however on using Condor on a network of

commodity PCs.

Chapter 2: Grid computing and simulation packages 78

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Over the years the functionality provided by Condor has steadily increased to include features

like Condor flocking (two or more Condor pools in different administrative domains that are

linked together), multiple Condor universe (each universe supports one specific job execution

environment, e.g., Condor MPI universe supports execution of MPI programs), Condor-MW

(specifically for master-worker type applications), Condor-G (the job management part of

Condor that allows users to submit jobs to clusters running Globus middleware), Condor

Directed Acyclic Graph Manager (DAGMan supports workflow), Chirp protocol (lightweight

remote I/O protocol that can be used with Condor), NeST (resource manager for Condor

network storage), among others (Condor Version 6.9.1 Manual, 2007b; Condor DAGMan,

2007; Condor MW, 2005). In the subsequent sections of this thesis a subset of these features

that are considered appropriate for providing grid-facilitated higher-level services to the CSPs

are investigated. The next section looks at the architecture of Condor.

2.10.1 Condor architecture

Condor HTC architecture defines resource providers and resource consumers. The resource

providers make their resources available to Condor for the processing of jobs that originate

from the resource consumers. The jobs to be processed may have dependencies with

regards to the operating system on which the job is to be processed, the memory and disk

space required, the available software libraries that are needed and so forth. On the other

hand, the resource providers may have certain conditions (e.g., only Java jobs can be run)

and preferences (e.g., jobs originating from resource consumer ―x‖ is given priority) based on

which access to their resource is granted. Condor allows resource consumers and resource

providers to advertise these requirements, conditions and preferences by providing a

language called classified advertisements (ClassAds) that provide a flexible and expressive

framework for matching jobs originating from the former with resource offers from the latter

(Thain et al., 2004).

The ClassAds are scanned by a Condor matchmaker agent (an agent is a Condor software

component), running on only one computer in a Condor Pool, to find a match between the

requirements advertised by the resource consumer agents (representing the resource

consumers) and the resources advertised by the resource provider agents (representing the

resource providers). The same computer can run both resource consumer and resource

provider agents. Once a match has been found by the matchmaker agent, it notifies both the

resource consumer and the resource provider agents. Upon receiving this notification, the

resource consumer agent claims the resource advertised by the resource provider agent

through a claiming protocol. The job is executed by the resource provider agent and the

results of the computation are returned back to the resource consumer agent. The

matchmaking process is illustrated in figure 25. The figure has been adapted from Basney

and Livney (1999). The Condor matchmaker agent can be considered as the resource broker

in a Condor pool. The existence of the Condor matchmaker agent as a broker introduces an

extra layer of communication between the resource consumer and the resource provider

Chapter 2: Grid computing and simulation packages 79

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

agents. As such, it is arguable that the Condor resource management architecture does not

directly map either to the ―pull‖ or the ―push‖ job scheduling mechanism (although, after a

match has been found, the resource consumer agent may ―push‖ the job to the resource

provider agent [Robinson and DeWitt, 2007]). Condor’s ―broker-based‖ job scheduling

mechanism is important for later discussions and therefore it is discussed in more technical

detail below.

Figure 25: Condor resource management architecture

Resource Consumer

Agent

Resource Provider

Agent

Matchmaker Agent

Figure 26: Communication between different Condor processes

The matchmaker agent consists of two separate processes – the collector and the negotiator.

Similarly, the resource consumer and the resource provider agents are made up of two

Resource

Consumer

Agent

Advertising

Resource

Requested

Advertising

Resource

Offered Match

Notification

Resource

Provider

Agent

Match

maker

Agent

Claiming

Protocol

Chapter 2: Grid computing and simulation packages 80

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

separate processes each, namely, schedd and shadow in the case of the former, and startd

and starter in the case of the latter. The interaction between the processes is shown in figure

26 and is described in table 16 below. Both the figure and the table are referenced from

Robinson and DeWitt (2007).

Table 16: Interaction between different Condor processes

The Condor agents generally run on multiple machines over the Condor pool (with the

exception of matchmaking agent that runs on only one computer), and therefore the

interactions between the agents is though Socket communication. Condor uses multiple static

ports (ports that are opened on usually known port numbers, for example, matchmaking agent

uses port numbers 9614 and 9618), multiple dynamic ports (ports that are opened at

randomly chosen port numbers from a particular port range, for example, Condor uses all

valid port numbers above 1023 for dynamic port assignment), relies on bi-directional (many-

to-many) pattern of communication between machines and uses both TCP and UDP ports

Chapter 2: Grid computing and simulation packages 81

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

(Beckles et al, 2005). This discussion (Condor’s reliance on multiple, bi-directional, static and

dynamic ports) will be referenced later in the thesis.

The architecture of Condor allows jobs from different users to be executed simultaneously

over one Condor Pool. Furthermore, these jobs can be standalone jobs requiring only one

computer to process it, or they can be MPI or PVM-based parallel jobs requiring concurrent

access to multiple resources. The sections below examine key Condor concepts that can help

provide higher-level grid services to the CSPs.

2.10.2 Condor universe

Condor universe is an execution environment for jobs that are submitted by the users.

Depending upon the type of job to be executed and its requirements, the user needs to select

from among the following Condor universes (Condor Version 6.9.1 Manual, 2007b):

 Standard universe

 Vanilla universe

 Java universe

 PVM universe

 Parallel universe

 Grid universe

 Scheduler universe

 Local universe

Standard universe provides support for checkpoint and migration of user jobs. To run jobs

that can use the standard universe the program to be executed has to be recompiled with the

Condor libraries using the condor_compile program. This allows Condor to transparently save

the current state of the running job at periodic intervals. If the resource on which the job is

currently running becomes busy, the job is migrated to another resource along with the

checkpoint file. Thus the program is restarted from the previous checkpoint state. Standard

universe also supports remote system calls which permit remote resources to access files in

the job submission machine. Although the support for checkpoint and migration might be

useful for running large CSP-based simulations on non-dedicated resources, standard

universe will not be discussed further as it is not currently supported in Windows (Condor

Version 6.9.1 Manual, 2007a).

Vanilla universe is for executing programs that cannot be re-linked with Condor libraries. It

does not support checkpoint, migration or remote system calls. Therefore, when a resource

becomes busy, the currently executing job will either have to be suspended for later execution

(until the time the resource becomes idle again), or the job terminated and resumed on a

different host. Because vanilla universe does not support remote system calls, the access to

files is through the use of a network file system (NFS) or using the Condor file transfer

mechanism (FTM).

Chapter 2: Grid computing and simulation packages 82

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Java universe supports the execution of java programs using the Java Virtual Machine (JVM)

execution environment. The JVM itself is not included with the Condor installation package

and it will have to be separately installed. The command condor_status –java lists the JVM

vendor and the JVM version information for each resource in the Condor pool. For example,

as can be seen in screenshot 4 below, resource 217-H is the only PC that is running JVM

version 1.5.0. All the other PCs are running JVM version 1.4.2. Unlike vanilla universe where

the user jobs usually consist of executable files (.exe) that can be run natively by the

Operating System, Java universe jobs comprise of .class and .jar files that are executed

through the JVM. However, like vanilla universe, Java universe does not support checkpoint,

migration or remote system calls, and employs either NFS or Condor FTM for file transfers.

Since both of these universes have much in common, and because Java is platform-neutral,

open source, and is widely used in the industry, only Java universe will be discussed again in

later sections. Although it may be possible to execute a java job in the standard or vanilla

universe, it would be a waste of network resources because it would involve the transfer of

the entire JVM binary and the standard Java libraries to each resource (Thain et al, 2004).

Screenshot 4: JVM related information output using Condor command “condor_status”

PVM universe supports the execution of parallel programs written for the Parallel Virtual

Machine (PVM) environment (Geist et. al, 1994). PVM provides a set of software tools and

message passing libraries that enable parallelism at program level by allowing parallel

computation of spawned processes on multiple computers. However, PVM universe is not

currently supported on Windows (Condor Version 6.9.1 Manual, 2007a) and will be excluded

from further discussion.

Parallel universe provides an execution environment for parallel jobs. It has superseded the

Condor MPI universe as it not only provides support for programs written using the MPI

standard, but also other parallel programming environments and different MPI

implementations like MPICH2, Open MPI, etc. Parallel universe is supported in the Windows

platform but requires installation of parallel programming libraries on the different PCs that

make up the Condor pool. It appears from this discussion that Condor parallel universe

execution environment can provide the grid-facilitated parallel computation service to the

CSPs.

Chapter 2: Grid computing and simulation packages 83

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Grid universe enables a user to submit jobs to various grid job management systems using

the standard Condor job submission interface. Thus, grid universe jobs can be submitted to

grid resources running the Globus middleware (referred to as GT-2, GT-3 and GT-4 grid types

or simply as Condor-G) or the UNICORE middleware (referred to as Unicore grid type); they

can be submitted to clusters running the PBS batch system (PBS grid type) or the LSF batch

system (LSF grid type) or jobs can be submitted to another Condor system itself (Condor grid

type [Condor-C]). Of these, only the Condor grid type is presently supported in Windows

(Condor Version 6.9.1 Manual, 2007a). Condor-C makes it possible for users to transfer jobs

between different condor resources that may or may not be a part of the same Condor pool. If

the resources are not part of the same pool then Condor-C utilizes the Condor flocking

mechanism that allows two or more Condor pools to be linked together. Transfer of jobs

between queues is a functionality that does not directly map to any of the six higher-level grid

services that have been identified in this chapter. As such, it will not be discussed any further

in this research.

Scheduler universe and Local universe allow jobs to be executed immediately on the

resource on which the job is submitted. Thus, there is no need for matchmaking with remote

resources. Another feature of both these universes is that jobs are never pre-empted. Local

universe provides better job management features compared to the scheduler universe and

should normally be used when executing jobs on the submit machine. These universes will

not be discussed any further because they only support program execution on one machine.

This research, on the other hand, is based on the assumption that multiple computers are

available for grid-enabled CSP-based simulation.

The discussions in this section have shown that, of the 8 Condor universes only Java

universe and parallel universe merit further investigation for the purposes of this research.

The next section looks at the job submission mechanism for Condor.

2.10.3 Condor job submission mechanism

There are four steps for running jobs under Condor – (1) code preparation, (2) selection of

Condor universe, (3) creation of submit description file and, finally, (4) job submission

(Condor Version 6.9.1 Manual, 2007b).

Code preparation: A Condor job consists of user executables and associated data. It is run

unattended in the background and is unable to interact with the users. However, a limited

degree of interaction may be possible through files that contain proper program inputs. The

console output generated while running the job are directed to files. In the code preparation

stage the program may have to be modified to support its execution along these lines.

Selection of Condor universe: The next step involves selection of an appropriate Condor

universe. This selection is based on the requirements of the job. For example, Condor java

Chapter 2: Grid computing and simulation packages 84

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

universe will have to be selected if the user intends to run a Java job. Depending upon the

universe chosen, the program may have to be recompiled with Condor libraries. For example,

to use standard universe the user program will have to be recompiled with the

condor_compile command.

Creation of submit description file: The third step involves the creation of a submit

description file (.sub). Every Condor job has a corresponding .sub file that controls the details

of the job submission through different Condor-defined variables. Examples of a few of these

variables and their purpose are given below.

 executable: Informs Condor which program to run (executable = HelloWorld.class).

 arguments: The command line arguments for a program (arguments = HelloWorld Hi)

 universe: The runtime environment to use (universe = Java).

 input: The filename containing keystrokes that emulate interactive program input (input =

inputfilename.txt).

 output: Console output during program execution will be redirected to this file

(output=outputfilename.txt).

 log: Messages generated by Condor will be written to this file (log=logfile.log)

 queue: The value assigned to the queue variable will determine the number of

replications of a single job to run (queue = 10). In the case of a CSP-based simulation

experiment, for example, the value of queue=10 will mean that the experiment is

executed 10 times over the available grid nodes.

 transfer_input_files: The files that are to be transferred to the execution directory of a

resource (transfer_input_files = ..\AsianStockOption.class, ..\jacob.jar)

 should_transfer_file: Whether files are to be transferred to a resource (should_tansfer_file

= yes)

An example of a submit description file is shown later in section 5.5.

Job submission: The fourth and final stage involves the submission of a job using the

condor_submit command. The argument to this command is the name of the submit

description file. Once submitted, the progress of the job can be monitored through the

condor_q command. This command shows the jobs that are either running or idle (i.e., in

queue), the job number, the job owner, the time the job was submitted, etc. A job can also be

removed from the queue prior to its execution by using the command condor_rm. The

argument to this command will specify the job that has to be marked for removal. The status

of the Condor pool can be determined using condor_status. The output from this command

will list the machines currently in the Condor pool, their hardware configurations (CPU and

memory), their activity status (busy or idle), etc. Screenshots showing the output of these

commands are included in section 5.5.

Chapter 2: Grid computing and simulation packages 85

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

The next section gives an overview of a Condor component – Condor DAGMan – that can be

potentially used to provide the CSP-specific workflow service.

2.10.4 Condor DAGMan

Condor Directed Acyclic Graph Manager (DAGMan) is a workflow management system. It is a

meta-scheduler for Condor that operates at a higher-level than the Condor scheduler and

manages dependencies between jobs (Condor DAGMan, 2007). The job workflow is

represented using the DAG data structure which shows jobs as vertices in the graph. The

directed lines that connect these vertices are called the graph edges and they provide the

direction of the work flow. For example, a ―diamond‖ DAG (figure 27) represents the direction

to the flow of work between four jobs wherein Job A has to be executed first followed by

simultaneous execution of Job B and Job C, and finally Job D (Frey, 2002). The diamond

DAG can be defined by a .dag file as follows:

DAG file

Job A a.sub

Job B b.sub

Job C c.sub

Job D b.sub

Parent A Child B C

Parent B C Child D

Figure 27: Graphical representation of diamond DAG (Frey, 2002)

In the DAG file each job has a placeholder and lists the accompanying Condor .sub job

submit file. For example, the job defined in a.sub is given a place holder Job A. The .dag file

represents the direction of work flow between the defined placeholders using parent and child

relationships. Once this .dag file is submitted to Condor DAGMan (using command

condor_submit_dag) it interacts with the Condor Scheduler to submit jobs to the Condor job

queue based on the outlined job dependencies.

It appears from the discussion above that Condor DAGMan can provide the grid-facilitated

higher-level workflow service to CSPs. Thus, if there are multiple models to be executed,

such that the results of one simulation will serve as input for the others, or if there is need to

Job A

Job B Job C

Job D

Chapter 2: Grid computing and simulation packages 86

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

export simulation result data to another application for further processing, then Condor

DAGMan can be potentially used to automate the job execution workflow.

2.10.5 Condor MW

Condor has a MW (Master Worker) software library that enables users to create master-

worker type applications. This C++ library consists of a set of source files that need to be

compiled with a user application before the Condor system can be used for the master-worker

type computations. To do this, the user application imports the MW library, subclasses three

specific MW classes (MWTask, MWDriver and MWWorker) with application specific code, and

compiles the application (Condor MW, 2005). The compiled MW-application code uses

Condor’s resource management system to find idle machines through matchmaking, to

assign computations, to monitor resources, etc. Thus, Condor MW uses the ―broker-based‖

job scheduling mechanism of Condor.

The MWTask represents the basic job unit and describes the inputs and outputs that are

associated with it. MWTask is processed by the MWWorker process on allocated resources.

The MWDriver corresponds to a master process and manages the whole computation. It

creates instances of MWTask, sends the tasks over to multiple MWWorker for processing,

retrieves and collates the results of the tasks and finally, decides when the computation is

over. Figure 28 below shows how a master worker type computation is performed using

Condor MW. The figure has been adapted from Condor MW (2007).

Figure 28: Processing job using Condor MW

Condor MW supports both task-parallel and job-parallel applications. In a task-parallel

application a single process acts as the master and is responsible for directing and

coordinating the computations being executed on the workers. A job-parallel application, on

the other hand, obtains parallelism through one application (or user) submitting many jobs

Condor

Resource

Mgmt.

Condor Pool

MWWorker

MWWorker

MWWorker

MWWorker

MWDriver (Master Process)

Requests for

resources

Resource

allocation

MWTask

MWWorker

Chapter 2: Grid computing and simulation packages 87

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

(each job is a combination of executable code and associated data) to the Condor scheduler

and being responsible for the detection of job completion. In the case of task-parallel

applications using Condor MW, the master co-ordinates with the resource consumer agent

(see figure 25) to request resources and receives resource allocation and de-allocation

notifications (a resource is de-allocated when the job is completed). In the case of a job-

parallel application using Condor MW, the application (or user) uses the standard Condor

system commands to submit jobs and reads the log files using Condor-provided APIs to

determine when a job is complete (Basney et al., 1999). It has to be added, however, that

although task-parallel applications and job-parallel applications are both referred to as task

farming (in this thesis and in some papers), the widely accepted definition of task farming

applies mostly to task-parallel applications alone. This definition can be summarized as

follows. The task farming application consists of one master entity and multiple worker

entities, wherein the master entity decomposes the problem into small tasks, distributes these

tasks among multiple worker processes and gathers the partial results to produce the final

result of the computation; and the worker entities receive messages from the master with the

next task, process the task and send back the results to the master (Heymann et al., 2000).

The discussions in this section have shown that Condor MW can potentially provide grid-

facilitated task farming service to the CSPs. Furthermore, such service can be provided for

both CSP-specific task-parallel applications and job-parallel applications. In this thesis

Condor’s support for job-parallel applications will be examined in the context of Condor Java

universe, using standard Condor job submission and monitoring mechanisms (section 5.5).

2.10.6 Section summary

This section of the thesis has examined the EDGC middleware Condor. It has identified

Condor parallel universe execution environment, Condor DAGMan and Condor MW as

potential Condor-specific mechanisms that could provide grid-facilitated parallel computation

service, workflow service and task farming services to the CSPs. Condor Java universe has

also been identified as the potential execution environment for Java based applications. The

next section presents three different approaches to using CSPs together with grid computing

middleware.

2.11 Different approaches to using CSPs with desktop grids

For desktop grids to support CSP-based simulation it should take into account that users are

specialists in simulation modelling (and not distributed computing) and any technological

solution must be developed with little or no change to the CSP. Three possible approaches

for using desktop grids with unmodified CSPs are discussed next. These are referred to as

the CSP-middleware integration approach, the CSP-runtime installation approach and the

CSP-preinstalled approach.

Chapter 2: Grid computing and simulation packages 88

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

2.11.1 CSP-middleware integration approach

One possible way of using desktop grid middleware together with CSPs is to ―bundle‖ the

latter along with the former. When a desktop grid middleware is installed on a PC, the CSP is

also installed on it. In an enterprise-wide desktop grid the jobs from other users (guest

processes) may run alongside the programs being executed by the resource owner (host

processes). However, the guest processes are usually run in a ―sandbox‖ that is implemented

by the middleware. This provides a logically separate and secure execution environment for

both the host and guest processes. In Entropia DCGrid for example, the sandbox mechanism

is called the Entropia Virtual Machine (EVM) and it wraps interpreters like cmd.exe, Perl and

Java Virtual Machine (JVM) to prevent unauthorized access to a computer (Calder, 2005).

Thus, it might be possible to include a CSP installation inside the EVM and offer it as part of

an Entropia installation. The problem with this approach is that it will require changes to the

enterprise desktop grid middleware as a CSP will have to be integrated with it. Furthermore,

an enterprise desktop grid is a general purpose distributed computing environment that allows

the execution of various user applications (not limited to simulation alone). Although the

integration of interpreters like JVM can be justified because of the wide prevalence of Java

applications, it is arguably more difficult to explain the inclusion of a CSP (but which CSP?

there are at least 45 of them), unless a customized desktop grid middleware distribution is

created for meeting simulation requirements of a specific organization. This approach is not

considered appropriate for this research.

2.11.2 CSP-runtime installation approach

The second approach involves the installation of a CSP package at runtime, i.e. just before

the simulation experiment is conducted. BOINC-RAC, discussed in section 2.9.3, is an

example of this approach. In this case the CSP itself is transferred to the desktop grid nodes,

along with the data files associated with the simulation and the trigger code. This approach is

not feasible for a number of reasons. (1) the size of CSPs frequently exceed 100s of MBs and

it may not be feasible to transfer such large amounts of data to multiple clients over the

network, (2) the CSP will first need to be installed on the desktop grid node before the

simulation can start, (3) such an installation is normally an interactive process and requires

human intervention, (4) an installation normally requires administrative privileges on the client

computers, (5) transferring CSPs may lead to a violation of the software licence agreement

that may be in place between the CSP vendor and the organization (if the number of desktop

grid nodes executing simulations exceed the number of licences purchased). This approach is

therefore not considered appropriate for this research.

2.11.3 CSP-preinstalled approach

The third solution is to install the CSP in the desktop grid resource, just like any other

application is installed on a PC. BOINC-PAC, discussed in section 2.9.3, is an example of this

approach. The drawback with this approach is that the sandbox security mechanism

implemented by most enterprise desktop grids may have to be forfeited. However, as

Chapter 2: Grid computing and simulation packages 89

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

simulations are created by trusted employees running trusted software within the bounds of a

fire-walled network, security in this open access scheme could be argued as being irrelevant

(i.e. if it were an issue then it is an issue with the wider security system and not the desktop

grid). The CSP-preinstalled approach is considered appropriate for using CSPs with desktop

grids and will be perused further in this research.

The procedure to execute CSP-based simulation experiments over desktop grids following

the CSP-preinstalled approach is as follows:

 The simulation user programs an executable ―trigger‖ code in C++, Java, Visual Basic

(VB), etc. that accesses the CSP functionality through exposed interfaces. CSPs that

expose package functionality have been listed earlier in table 10. The trigger code should

generally invoke the CSP, load the model file, transfer experiment parameters into the

model, execute the model, etc.

 The simulation user makes available the data files associated with the simulation

(simulation model files, experiment parameter files, etc.) and the executable file

containing the trigger code to the desktop grid nodes where the experiment will be

executed. Two possible ways of doing this is through a shared grid access to a network

drive, or by transferring the required files using the desktop grid middleware. The

experiment parameters can also be sent from the user node through Socket

communication.

 The desktop grid middleware invokes the executable trigger code on a remote desktop

node. The simulation starts and results are saved in a file. The user accesses the

simulation results from the shared network drive, or the files are transferred back to the

user. Alternatively, the results can also be sent across to the user over the desktop grid

through Sockets.

2.12 Chapter summary

The purpose of this chapter was to investigate what grid computing has to offer to CSP-based

simulation in industry. Towards this aim, a literature review on grid computing was conducted

in section 2.2. Two important outcomes of this review were, (1) identification of different

higher-level grid services that could be provided through use of grid middleware (e.g., parallel

computation service, task farming service, computation steering service, etc.) and (2)

identification of different forms of grid computing (e.g., cluster-based grid computing, EDGC,

PRC and P2P).

This chapter then presented an overview of simulation in industry (section 2.3) and the tools

(CSPs) that are used to build and run these simulations (section 2.4). It defined CSPs to

include packages that support both discrete event simulation (DES CSPs) and Monte Carlo

Chapter 2: Grid computing and simulation packages 90

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

simulation (MCS CSPs), as both these forms of simulation are extremely popular in industry.

The widespread availability of Windows-based CSPs was also highlighted.

Section 2.5 then focussed on four higher-level grid services (identified earlier in section 2.2)

that could be potentially used together with CSPs. The four services that were discussed

were parallel computation service, task farming service, workflow service and collaboration

service. The DES and MCS CSPs were assessed in relation to the four services in order to

investigate the degree to which the CSPs support such functionality through custom

implementations. In most cases this support was been found to be extremely limited.

Sections 2.6 and 2.7 then discussed two specific forms of simulation, namely, distributed

simulation and web-based simulation, which could potentially benefit from use of grid

computing. Two new grid-facilitated higher level services that were specific to distributed

simulation and web-based simulation were identified. These services were named distributed

simulation service and web-based simulation service respectively.

Section 2.8 then investigated the form of grid computing that was suitable for use with CSPs.

Informed by the discussion on grid middleware in section 2.2, it was found that cluster-based

grid computing was generally unsuitable for CSP-based simulation because it was mainly

targeted at UNIX and Linux systems and the CSPs were predominantly Windows-based. It

identified other forms of grid computing, notably PRC and EDGC, that is supported on

Windows-based PCs to be more appropriate for CSP-based simulation in industry. Sections

2.9 and 2.10 then discussed two representative middleware for PRC and EDGC forms of grid

computing, namely BOINC and Condor. Finally, section 2.11 presented three different

approaches to using CSPs with desktop grid middleware and identified one of them (CSP-

preinstalled approach) to be the most appropriate.

Based on the six higher-level grid services that were identified for use with CSPs in this

chapter (parallel simulation service, task farming service, workflow service, collaboration

service, distributed simulation service and web-based simulation service), the next chapter

proposes a grid computing framework with the purpose of undertaking an organized study on

how grid computing could further the practise of CSP-based simulation in industry.

Chapter 3: Proposing the CSP-GC framework 91

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

3 PROPOSING THE CSP-GC FRAMEWORK

3.1 Introduction

Chapter 2 has provided the context to the research hypothesis that CSP-based simulation in

industry can benefit from grid computing. It has identified six higher-level grid services and

has found Windows-based grid computing middleware, specifically middleware for PRC and

EDGC, to be suitable for use with the CSPs. The overview chapter also presented three

possible approaches to using the CSPs with grid computing middleware. Among the three

approaches, one approach, viz., the CSP-preinstalled approach, was considered appropriate

for this research. Before continuing further the reader is reminded that, unless explicitly

stated, the terms ―desktop grid computing‖, ―desktop grids‖, ―grid computing‖ and ―grids‖ are

being used synonymously to refer to both PRC and EDGC.

This chapter proposes the COTS Simulation Package – Grid Computing (CSP-GC)

framework for evaluation of the hypothesis (section 3.2). The framework is based on the

higher-level grid services that have been identified for potential use with CSPs in chapter 2.

Each higher-level grid service is referred to as a grid-facilitated CSP-specific service in the

CSP-GC framework because the purpose of the framework is to investigate how grid

computing can provide support (through grid-facilitated services) to existing CSPs. Section

3.3 discusses the implementation aspects of the six CSP-specific services in the grid context

(section 3.3).

This chapter then examines the PRC middleware BOINC and the EDGC middleware Condor

in relation to each of the six CSP-specific services in order to establish their suitability for use

with the CSPs (section 3.4). This is followed by a general discussion on the suitability of

BOINC and Condor for grid-enabling CSP-based simulations (section 3.5). The chapter

concludes by recognising the need for a Windows-based grid computing middleware for use

in industry that uses the ―push‖ based job scheduling mechanism, supports Java-based

applications and is suitable for deployment in an organization that has network security

restrictions in place (section 3.7).

3.2 The CSP-GC Framework

This section proposes the CSP-GC framework to investigate how grid computing can

advance the practice of simulation in industry. The CSP-GC framework provides a logical

structure for the evaluation of the hypothesis presented in this thesis by organizing the

possible uses of grid computing for CSP-based simulation into six distinct grid-facilitated

CSP-specific services. Each CSP-specific service is a potential application of grids

technology for CSP-based simulation and is derived from one of the six higher-level grid

services that have been identified in the previous chapter. The six CSP-specific services that

are presented in this framework are parallel computing service, task farming service, workflow

Chapter 3: Proposing the CSP-GC framework 92

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

service, collaboration service, distributed simulation service and web-based simulation

service. The CSP-GC framework is shown in figure 29 below. The service descriptions of the

six CSP-GC framework defined services are presented in table 17.

The CSP-GC framework shows that the CSP-specific grid services utilize the basic grid

services like computation service, data service, application service, etc., and the core grid

mechanisms like authentication and authorization, resource discovery, resource allocation,

etc., that are usually provided by the grid middleware. The reader is referred to section 2.2.1

for a discussion on the basic grid services and the core grid mechanisms. The grid

middleware, in turn, makes use of enterprise resources like desktop PCs, corporate Intranet

and DES and MCS CSPs, to provide the underlying hardware, network and software

infrastructure required to support a desktop grid. The grid middleware can be accessed using

middleware-specific Command Line Interface (CLI) commands or, optionally, through a grid

portal.

Figure 29: The CSP-GC framework

Table 17: CSP-GC framework defined services and their descriptions

CSP-GC framework defined
services

Service description

Parallel computing service Parallel computing service can potentially speed up the execution of a
single CSP-based DES or MCS using multiple processors. The grid
middleware should generally provide support for running parallel
MPI/PVM applications. Further description of this service can be found
in section 3.3.1.

Task farming service Task farming service can potentially reduce the time taken to execute
batch simulation experiments by distributing the execution of multiple
CSP-based DES and MCS experiments over different grid nodes. This
service supports concurrent execution of multiple instances of the
same simulation model (SMMD task farming) or different simulation
models (MMMD task farming). Further description of this service,
including SMMD and MMMD variants of task farming, can be found in
section 3.3.2.

Workflow service Workflow service can potentially enable phased execution of different
CSP-based DES/MCS models and other external applications based

Computation, Data and Application resources (Desktop PCs, CSPs)

Grid Middleware

Parallel

Computing

Service

Collaboration

Service
Web-based

Simulation

Service

CLI / Grid Portal

Task

Farming

Service

Workflow

Service

Distributed

Simulation

Service

Basic grid services (computation service, data

service, etc.) and core grid mechanisms (resource

discovery, job submission, job scheduling, job

monitoring, etc.) provided by grid middleware

Enterprise computing resources

CSP-specific services that can

potentially be provided through the

use of grid computing

Access to grid middleware

Legend

Chapter 3: Proposing the CSP-GC framework 93

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

CSP-GC framework defined
services

Service description

on the underlying data dependencies. Further description of this
service can be found in section 3.3.3.

Collaboration service Collaboration service can potentially facilitate collaboration among
simulation practitioners by providing mechanisms which allow (1) reuse
of DES/MCS model components among different users, (2) sharing of
DES/MCS models for joint development and (3) virtual meetings.
Further description of this service can be found in section 3.3.4.

Distributed simulation service Distributed simulation service has the potential to execute DES CSP-
based distributed simulation using the HLA-RTI middleware for
distributed simulation. Further description of this service can be found
in section 3.3.5.

Web-based simulation service Through the use of grid portals, web-based simulation service can
potentially provide simulation users with web-based access to DES and
MCS CSPs for conducting simulation experiments. Furthermore, this
service can potentially provide mechanisms to host ―callable‖ web
services that expose CSP interfaces.Further description of this service
can be found in section 3.3.6.

The next section of the thesis examines the grid-facilitated CSP-specific services that are

outlined by the CSP-GC framework in greater detail.

3.3 Grid-facilitated CSP-specific services

The CSP-GC framework has identified six CSP-specific services that can be potentially used

together with the CSPs. Table 17 has presented service descriptions pertaining to each of the

services. This section further examines these services in relation of its implementation

requirements.

3.3.1 CSP-specific parallel computing service

Parallel computing is the concurrent use of multiple processors to solve a computational

problem in the fastest possible time. Parallel computing service in the grid environment has

the potential to speed up the execution of a single DES or MCS using multiple processors.

The multiple processors taking part in such a computation may include shared-memory and

distributed memory multiprocessor computers, network of workstations, etc. The form of grid

computing that has been found suitable for grid-enabling CSP-based simulations is desktop

grids. The computing infrastructures of such grids are generally made up of a network of

workstations that do not have access to shared memory. It has been discussed earlier in

section 2.5.1 that parallel programs in a distributed memory environment (like desktop grids)

can be run using message passing mechanisms like the MPI and PVM. This generally

requires that the grid middleware has support for MPI implementation like MPICH2 (Argonne

National Laboratory, 2006) and / or PVM environment. Thus, for the desktop grid middleware

to support the CSP-specific parallel computation service, it should ideally support execution of

MPI/PVM–based parallel programs.

3.3.2 CSP-specific task farming service

Task farming service for CSPs has the potential to speed up DES or MCS experimentation

using multiple distributed processors. In the context of this research, task farming is defined

as the execution of multiple individual simulations on PCs that are connected through the

Chapter 3: Proposing the CSP-GC framework 94

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

network. It is based on the master-worker distributed computing architecture. Unlike parallel

computation service, the objective here is not to speed up the execution of one instance of a

simulation but to utilize many computers to complete a set of simulation experiments faster.

In the context of a MCS the distinction between the parallel computation service and the task

farming service is not very obvious. This is because a MCS run may require execution of the

same model many thousands of times over, but with different random numbers. In such cases

the number of Monte Carlo iterations can be distributed over a set of processors through the

task farming service. This results in speeding up the execution of one MCS – the same

objective as that of parallel computation service for MCS CSPs. Nevertheless there exists one

key difference between them. In the case of a parallel MCS, the MCS CSP may spawn

multiple child processes and use MPI / PVM messages to communicate with them. In the

case of the task farming approach there are individual MCS CSPs running on each processor

(but executing the same MCS code) and there exists one master process that has the task of

distributing the Monte Carlo iterations to the individual CSPs and collating the results. The

communication between the master process and the individual CSPs is through the

underlying grid infrastructure. Thus, the task farming approach is based on the principles of

master-worker (also known as master-slave) and two separate programs are involved,

namely, the master program and the worker program (the CSP). The parallel computation

approach consists of only one program (the CSP) that concurrently executes several

processes that are spawned from it (Elts and Komolkin, 2004).

The task farming service for CSPs can potentially support simultaneous execution of multiple

sets of simulation experiments, wherein each set consists of one MCS or DES model with

associated experiment parameters. For a MCS the experiment parameters can be the

different values for simulation variables, the number of iterations that are to be performed, the

random number seed to be used, etc. Similarly, for a DES the experiment parameters can

consist of values for different model-defined variables like processing time for workstations,

number of entities in the queue, model warm-up time, the simulation end time, etc.

3.3.2.1 Task farming scenarios

Two terminologies relating to task farming service for CSPs are now introduced – Single

Model Multiple Data (SMMD) and Multiple Model Multiple Data (MMMD). These terminologies

are inspired from Michael Flynn’s 1966 classification of very high speed computer

architectures and parallel programming models.

Michael Flynn’s 1966 classification: Michael Flynn has classified the computer

architectures into Single Instruction Stream-Single Data Stream (SISD), Single Instruction

Stream-Multiple Data Stream (SIMD), Multiple Instruction Stream-Single Data Stream (MISD)

and Multiple Instruction Stream-Multiple Data Stream (MIMD) (Flynn, 1966). A computer with

SISD architecture is a serial computer that executes one instruction on a single data stream

Chapter 3: Proposing the CSP-GC framework 95

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

at any particular point in the program’s execution (i.e., the von Neumann computer comprising

of a single CPU that runs a series of instructions through a sequence of read and write

operations on the memory). When different instruction sets are executed on multiple

processors but access only one data stream then they can be termed as MISD machines. A

SIMD machine has multiple processors that execute the same instruction in synchronization

but on different data streams. Finally, a MIMD machine has multiple processors that execute

different instruction sets on different data streams. This classification was done along two

independent dimensions of Instruction and Data, where each dimension could have a state

that was either Single or Multiple, and could be represented in the form of a matrix (Barney.

2006). This matrix is presented in table 18 below.

Table 18: Michael Flynn’s classification of computer architectures

 Single Data Multiple Data

Single Instruction SISD SIMD

Multiple Instruction MISD MIMD

Parallel programming models: Two parallel programming models, namely, Single Program

Multiple Data (SPMD) and Multiple Program Multiple Data (MPMD) are frequently used for

programming the MIMD multiple processor machines (Aubanel, 2000). A MIMD machine

executing a SPMD parallel program will run a single program over multiple processors, but

each processor will have access to multiple data. On the other hand, a MPMD program being

executed on a MIMD machine will execute different program code on each processor and will

access multiple data streams.

In the context of task farming for CSPs, CPUs of multiple PCs are harnessed together using

grid middleware and used for cooperatively executing a set of CSP-based simulation

experiments faster. The collection of these PCs can arguably be referred to as a MIMD

machine because each PC can execute different instructions on different data sets. For CSP-

based simulations the multiple instructions (MI) can be the different MCS or DES models that

can be potentially executed in parallel on different computers, and the multiple data (MD) can

refer to different experiment parameters for these models (this is subsequently referred to as

Multiple Model Multiple Data [MMMD] task farming). Furthermore, like the SPMD parallel

computing model, one single MCS or DES model having different experiment parameters can

also be executed on a grid-based MIMD system (this is subsequently referred to as Single

Model Multiple Data (SMMD) task farming). The use of SPMD and MPMD terminologies have

not been considered appropriate to describe the two task farming scenarios (SMMD and

MMMD) because of inherent differences in parallel computing and the master-worker based

distributed computing.

It is worth considering the other variants of CSP-based task farming that may exist. In the

case of MMMD task farming, the different models may belong to the same CSP or to different

CSPs. These are referred to as single CSP MMMD and multiple CSP MMMD task farming

Chapter 3: Proposing the CSP-GC framework 96

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

respectively. This thesis investigates only the single CSP MMMD. Thus, the concurrent

execution of different simulation models, each having a separate set of experiment

parameters, created using a single MCS or DES CSP will be examined. However, it is

arguable that the master-worker architecture that supports single CSP MMMD task farming

can equally support its multiple CSP variant.

Finally, it is possible to represent two other task farming scenarios by drawing a matrix similar

to the one used for the classification of computer architecture (shown in table 18). This matrix

is presented in table 19 below and shows a total of four task farming scenarios.

Table 19: Possible task farming scenarios with CSPs and desktop grids

 Single Data Multiple Data

Single Model Single Model Single Data (SMSD) Single Model Multiple Data (SMMD)

Multiple Model Multiple Model Single Data (MMSD) Multiple Model Multiple Data (MMMD)

This thesis identifies SMSD task farming to be the serial execution of a single simulation

model with one set of experiment parameters on one computer. This will not be examined any

further because it is contrary to the objective of task farming which uses multiple computers.

MMSD task farming is identified as the execution of multiple models that use the same set of

experiment parameters over a grid. Again this will not be examined in this thesis because it is

unlikely that two different models will have the same set of variables and use identical sets of

experiment parameters.

3.3.3 CSP-specific workflow service

Grid-facilitated workflow service has the potential to logically link the execution of different

CSPs and software applications that are available on the various grid resources. In the

context of CSP-based simulation, workflows can be used, for example, to potentially enable

phased execution of different CSP models that represent different parts of the supply chain.

For grid computing to support workflow service, it should ideally be possible for the grid

middleware to provide mechanisms to execute multiple programs in a phased manner over

different grid nodes and to transfer the data generated by the programs amongst the nodes.

3.3.4 CSP-specific collaboration service

The term ―collaboration‖ can be defined as the cooperation among different individuals to

attain common goals. It can therefore be argued that all the six CSP-GC framework defined

services involve some form of collaboration between the modellers because the desktop grid

infrastructure being used for delivery of grid services is composed of the computing resources

that are used by the modellers at their workplace. Thus, by making their resources available

over the desktop grid, each user is contributing towards the overall goal of using grid

computing technologies to support simulation at their workplace.

Chapter 3: Proposing the CSP-GC framework 97

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

However, in this thesis, the CSP-specific collaboration service is derived from the grid

facilitated higher-level collaboration service. Discussions in sections 2.2.2 and 2.5.4 have

identified three potential uses of this service in the context of CSP-based simulation

modelling, namely, (1) collaboration service can facilitate reuse of model components

between different users (through search and download of model components), (2) it can

facilitate sharing of CSP models (for joint development purposes), and (3) it can facilitate

interaction between those involved in simulation studies (through virtual meeting support).

These are subsequently referred to as three different forms of CSP-specific collaboration

service. These three forms of collaboration service have also been recognised as potential

application areas of simulation in a networked environment by Robinson (2005b). The

different forms of collaboration service are discussed next in relation to the grid middleware

support required to implement them.

Model reuse: Simulation model reuse will generally involve the ―search and download‖ of

model components for model building (Robinson, 2005b). Through user-developed web

services, an OGSA-compliant grid middleware (like GT-4) can potentially provide the ―search

and download‖ support for existing CSP-model components that may be distributed over

different grid resources. P2P grid computing middleware, generally used for ―search and

download‖ of multimedia files, can also potentially offer such services (the reader is reminded

that the P2P form of grid computing is not discussed in this thesis because it generally does

not allow the execution of user programs, like CSPs, over peer computers). For searching

CSP models, an ontology-based semantic approach that utilizes web service discovery and

deployment architecture has been proposed by Bell et al. (2006). This involves the creation of

external descriptions for the CSP models using well-defined simulation ontology. This

approach could possibly be used to search for models in the grid environment.

Sharing single model: It is arguable as to what extent grid computing can effectively support

sharing of the same CSP models for joint development purposes. It may be possible to

download copies of a model using user-defined web services, but synchronization of multiple

copies of the same model will generally require package level support. CSP AnyLogic, for

example, allows use of version control software to facilitate joint model development (see

table 12). This research does not concern itself with CSP functionality that is implemented

through custom solutions, and therefore this form of collaboration service falls outside the

scope of this thesis.

Virtual meeting support: For grid computing to support virtual meetings it will generally be

required that such middleware provide integrated support for audio, video, messaging, virtual

whiteboards, etc.

Chapter 3: Proposing the CSP-GC framework 98

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

In summary, the two forms of grid-facilitated collaboration service for CSPs that will be

investigated further are (1) collaboration service that provides support for search and

download of model components, and (2) collaboration service that provides support for virtual

meetings.

3.3.5 CSP-specific distributed simulation service

Distributed simulation service only applies to DES CSP. A desktop grid middleware that

provides distributed simulation support to DES CSPs should generally include mechanisms to

enable synchronization of simulation time among different simulation models and to transfer

messages between them. The message exchange by models running on multiple desktop

grid hosts (henceforth referred to as peer-to-peer message passing) can be implemented in a

centralized or a de-centralized manner. In centralized peer-to-peer message passing, one

central component is responsible for receiving and sending messages from and to different

hosts. When each host is responsible for communication with other hosts it is referred to as

de-centralized peer-to-peer message passing. Grid computing middleware, such as BOINC

and Condor, are not considered appropriate for enabling distributed simulation over a desktop

grid because such solutions do not incorporate mechanisms for time synchronization and

communication between individually running models (Lüthi and Großmann, 2001). The

reasons for this are discussed below.

Time synchronization is outside the purview of grid middleware because these are general

purpose programs that are designed to support a wide range of user applications, and the

vast majority of applications do not require time synchronization mechanisms. Centralized

and de-centralized peer-to-peer message passing is also outside the scope of most grid

middleware because the focus is on executing serial applications over multiple computers. An

exception to this is Condor PVM universe and parallel universe (discussed in section 2.10.2),

which support parallel execution through message-passing mechanisms. However, none of

these universes have inbuilt time synchronization mechanisms. A distributed simulation

middleware may therefore have to be used along with a grid middleware to potentially enable

distributed simulation of DES CSPs over the grid. The literature survey has shown that IEEE

1516 HLA standard is increasingly being used for distributed simulation in industry (section

2.6.3.1). As such, this research will discuss the grid-facilitated distributed simulation service

with reference to HLA-RTI middleware for distributed simulation.

This thesis proposes two different approaches that could enable a grid middleware to employ

the time synchronization and centralized peer-to-peer message passing services provided by

HLA-RTI middleware to realize CSP-based distributed simulation. The first approach, referred

to as the middleware integration approach, requires that a grid middleware communicate with

the HLA-RTI middleware (HLA rtiexec process) using HLA-defined interfaces to manage the

distributed simulation. The second approach, referred to as the application integration

approach, proposes that the distributed simulation application (different CSP models and

Chapter 3: Proposing the CSP-GC framework 99

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

associated code) be written such that they manage the simulation execution amongst

themselves. Irrespective of the approach followed, the simulation applications themselves will

interact with the HLA services for federation management, declaration management, time

management, etc., by using the HLA-defined interfaces.

3.3.5.1 Middleware integration approach to CSP-based distributed simulation

The middleware integration approach will generally require modification to the grid software

because it will now have to communicate with HLA-RTI to manage the CSP-based distributed

simulation. Such communication may be possible through a manager federate that is invoked

by the middleware and over which it exerts local control (figure 30). One advantage of this

approach is that jobs can be migrated from busy nodes to idle nodes, thereby potentially

speeding up the distributed simulation execution. Migration is possible because of two

reasons. One, the grid middleware, together with the manager federate, is effectively the

manager of the distributed simulation. Two, the grid middleware is aware of the status of the

individual grid nodes and has mechanisms to schedule and monitor jobs.

Figure 30: Middleware integration approach to providing distributed simulation service

3.3.5.2 Application integration approach to CSP-based distributed simulation

The application integration approach does not require any modification to the grid middleware

itself. Here the distributed simulation application (consisting of the CSP models and

associated code) has to manage the execution of the federation. The grid middleware is only

responsible for allocating idle computing nodes over which the distributed models can be run.

Thus job migration between nodes is not possible because the middleware no longer acts as

the manager for the federation. The HLA rtiexec process can be started as a different process

on one of the nodes of the desktop grid or on another computer altogether (figure 31). The

simulation federates can then communicate with the HLA rtiexec process to advance time and

to exchange messages between them. In this approach the grid middleware is unaware of

rtiexec-mediated peer-to-peer communication taking place between models that are being

Node 5

(HLA rtiexec process)

Node 1 (HLA Federate A)

Node 7 Node 2 (HLA Federate B)

Node 3 (HLA Federate C)

Node 6

Node 4 (Manager Federate)

Node 8

Node 9

Node 10

 Active desktop grid nodes Idle desktop grid nodes HLA-RTI communication Desktop grid

Chapter 3: Proposing the CSP-GC framework 100

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

executed over the grid. As no change to the desktop grid middleware is necessary, any grid

middleware can be potentially used to implement the application integration approach.

Figure 31: Application integration approach to providing distributed simulation service

3.3.6 CSP-specific Web-based simulation service

For the purpose of this research, web-based simulation is defined as simulation in a client-

server environment that uses web-based technologies like web browsers, web servers, web

services and Java applets, among others. In the context of CSPs it means that the simulation

packages are accessible through web pages or through ―callable‖ web services. It is usually

possible to create a web-based front-end to a CSP application that exposes package

functionality. An example of this has been shown with regards to DES CSP Witness in the

earlier chapter (section 2.7.2). A simulation user who is able to access a package through a

web browser will arguably not have a need to use grid-facilitated web-based simulation

service. However, this service is only one among six potential CSP-specific services. If grid

technology is adopted to support the other five services, then it is likely that web-based

simulation service will also be used because it standardized the access to CSPs in a

distributed environment.

Discussions in section 2.7.3 have identified two possible ways through which web-based

simulation service could potentially support the CSPs, namely, (1) through use of grid portals

and (2) through use of ―callable‖ user-developed web services that expose CSP interfaces

and which are hosted in web services containers provided grid middleware. These are

subsequently referred to as two different forms of CSP-specific web based simulation service.

This section has discussed the six CSP-GC framework defined CSP-specific services in

detail. Sections 2.9 and 2.10 have earlier presented a detailed discussion on BOINC and

Condor with the objective of examining the underlying grid middleware mechanisms that can

be potentially used to grid-enable the DES and the MCS CSPs. The next section examines

BOINC and Condor in relation to each of the six CSP-specific services.

Active desktop grid nodes

Idle desktop grid nodes

HLA-RTI communication

Desktop grid

Node 1 (HLA Federate A)

Node 7 Node 2 (HLA Federate B)

Node 3 (HLA Federate C)

Node 6

Node 8

Node 9 Node 4

Node 5 Node 10

 HLA rtiexec process

PC without desktop grid

middleware

Chapter 3: Proposing the CSP-GC framework 101

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

3.4 Investigation of CSP-specific services using BOINC and Condor

3.4.1 Investigation of parallel computation service

It has been discussed earlier in section 3.3.1 that the grid middleware that can potentially

provide parallel computation service to CSPs will generally need a mechanism for inter-

process communication between the simulation processes being executed in parallel over

multiple PCs. This is usually only possible if the grid middleware has support for parallel

computing environments such as PVM, MPICH2, Open MPI, etc.

BOINC middleware is designed for jobs that do not require any form of inter-process

communication between executing processes. Here, lot of instances of the same computation

are executed, but with different input parameters. As such, parallel computing environments

like those discussed earlier are not supported by it. It can therefore be argued that BOINC will

not be able to provide parallel computation service to the CSPs.

Condor provides two runtime environments – PVM universe and parallel universe – for

running parallel programs that use message passing mechanisms for inter-process

communications. Of these only parallel universe is supported on Windows environment. Thus,

Condor parallel universe may be potentially able to provide parallel computation service to

Windows-based CSPs.

3.4.2 Investigation of task farming service

BOINC and Condor MW support task-parallel applications, i.e., one master process directing

the execution of several worker processes. In addition, Condor MW and Condor Java

universe also support job-parallel applications, i.e., one process (or user) submits multiple

jobs to a job scheduler (section 2.10.5 highlights some other differences between task-parallel

and job-parallel applications). It is therefore considered likely that these middleware will also

be able to execute the CSP-based SMMD and MMMD task farming.

Task-parallel application execution over a desktop grid is generally based on the master-

worker distributed computing architecture. BOINC implements the master-worker distributed

computing architecture and uses the ―pull‖ mechanism for scheduling jobs (subsequently

referred to as ―pull‖ based model of the master-worker architecture). Condor MW, on the other

hand, implements this architecture but utilizes Condor’s ―broker-based‖ job scheduling

mechanism (subsequently referred to as ―broker-based‖ model of the master-worker

architecture).

The reader is reminded that Condor MW provides a C++ software library that has to be

compiled with a user application before it can be executed over the Condor desktop grid. The

compilation requirements of a MW application over Windows platform are as follows (Condor

MW, 2005).

Chapter 3: Proposing the CSP-GC framework 102

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

 The compiler needed is any C++ compiler that is compatible with the compiler that built

the libcondorapi.a library. This library is a part of Condor. Presently MW has only been

tested with G++ compiler version 3.3.4 over Windows XP.

 Compilation of user application with MW library is via Cywgin. Cygwin provides a Linux-

like environment for Windows using a DLL (cygwin1.dll) that acts as a Linux API emulator

layer and provides Linux API functionality (Cygwin, 2007).

Using Condor MW for implementing task-parallel applications in a Windows environment has

some drawbacks.

 Condor MW has a Resource Management and Communication (RMComm) component

that is responsible for communication between master and workers. There are different

RMComm implementations like CondorPvm, Files, Sockets, etc. In a Windows

environment the user application generally has to be compiled with MW library through

the Cygwin environment. Compilation of the MW application using Cywgin suggests that

the RMComm will use POSIX system calls during execution. POSIX or Portable

Operating System Interface for uniX is an IEEE 1003 standard that describes standard

interfaces to the Unix operating system and its different variants (Walli, 1995). Thus,

every Windows machine over which a MW application will be run may require access to

Cygwin. This can be done in several ways, for example, (1) using Condor’s file transfer

mechanism cygwin1.dll can be temporarily transferred to the machines running the MW

application; (2) If the Windows machines have access to a Network File System then

cywgin.dll may be placed in the network share; (3) Cygwin can be installed on all the

Windows machines in the Condor pool.

 The user application should be a C++ application as it requires recompilation with the

C++ MW library. Thus, a Java-based application will not generally be able to use the MW

library to implement Java-based task parallel solutions over Condor.

In summary, it can be argued that BOINC, Condor MW and Condor Java universe can

potentially support CSP-specific task farming services.

3.4.3 Investigation of workflow service

It has been discussed earlier in section 3.3.3 that for a grid middleware to support workflow

service it should ideally provide mechanisms to execute multiple programs in a phased

manner over different grid nodes and transfer data between them. Investigation of BOINC

middleware has shown that BOINC projects usually consist of only one executable

(sometimes with multiple versions). For running multiple programs, therefore, different BOINC

projects may have to be created. In a workflow there is usually a dependency between

executing programs, for example, the data output from one program can be the input to a

subsequent program. It is very unlikely that such dependencies can be maintained when

using BOINC across projects because of the following reason:

Chapter 3: Proposing the CSP-GC framework 103

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

 Every BOINC project has its own application and relational database. The database

stores descriptions of applications, workunits, results, user information, etc. Furthermore,

every project also has its own scheduling servers and data servers (Anderson, 2004).

Implementation of application workflows using BOINC does not seem feasible because it may

necessitate communication between project specific scheduling and data servers. BOINC

does not presently support such inter-project communication and it is therefore not

considered suitable for providing workflow support to CSPs.

The discussion of Condor DAGMan meta-scheduler in section 2.10.4 has shown that it has

been designed to manage dependencies between jobs. The workflow itself has to be defined

in a .dag file. DAGMan reads this file and submits jobs to Condor in a phased manner based

on the underlying job dependencies. Condor DAGMan can therefore be potentially used along

with Condor’s Java Universe execution environment to provide CSP-specific workflow

service.

3.4.4 Investigation of collaboration service

Support for (1) search and download of CSP-based model components and (2) support for

virtual meetings are the two forms of collaboration service that have been identified for further

investigation in section 3.3.4. The reader is reminded that the search and download of model

components may be possible through the use of web services that are hosted by the grid

middleware, and virtual meetings would generally require integrated middleware support for

audio, video, etc. The discussions on BOINC and Condor in sections 2.9 and 2.10 have

shown that none of these facilities are supported by the middleware, and consequently it can

be argued that neither of the middleware can provide CSP-based collaboration service.

3.4.5 Investigation of distributed simulation service

Section 3.3.5 has presented two approaches that could be used for HLA-based distributed

simulation using DES CSPs in the grid environment. The first approach is the middleware

integration approach which proposes that the manager component, responsible for controlling

the distributed simulation, be integrated with the grid middleware. BOINC provides source

code access and it may be possible to use the ―middleware integration approach‖. But clearly,

source code modification and recompilation of a general purpose desktop grid middleware is

not a trivial task. Furthermore, a simulation practitioner in industry cannot be expected to have

the distributed systems expertise required to implement such a middleware-integrated

solution. This approach is therefore not considered appropriate for providing distributed

simulation service and will not be discussed any further.

The second approach is referred to as the ―application integration approach‖ that does not

propose any modification in the grid middleware itself. Here the responsibility of managing a

distributed simulation federation rests with the application (consisting of the CSP models and

Chapter 3: Proposing the CSP-GC framework 104

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

associated code). As no changes to the grid middleware are necessary, it can be argued that

both BOINC and Condor can be potentially used to provide distributed simulation service to

DES CSPs. The following two sections discuss how BOINC and Condor could be used for

providing this service.

3.4.5.1 Investigation of distributed simulation service using BOINC

A BOINC project usually consists of a single executable file (henceforth referred to as BOINC

proxy application client or BOINC-PAC for short) that is transferred to the BOINC middleware

(also referred to as the core client) running on a client computer when it first attaches itself to

a project. The BOINC-PAC dependencies such as project initialization files, library files, DLLs,

etc. are also passed along with the executable. The core client periodically downloads BOINC

workunits from the project servers. These workunits generally provide input parameters or

data to the BOINC-PAC application for processing. In the context of CSP-based simulation,

the BOINC-PAC could be an executable file that invokes a CSP and loads a simulation model

that has been downloaded by the BOINC core client. The work units can provide different

simulation parameters (e.g., processing time for work stations, queue length) that are to be

loaded into the model before running it. The results of the simulation can then be written into

text files for transfer back to the BOINC project servers. Interaction between BOINC-PAC and

the CSPs could be through the package interfaces that are exposed by the latter.

A distributed simulation requires the synchronized execution of two or more DES models. For

BOINC to be able to support distributed simulation, the BOINC-PAC downloaded from the

project server should generally be able to execute different models on different computers.

For example, if a distributed simulation consists of model-A and model-B, then both models

are downloaded to client computers (say, computer X and computer Y) as presently there

appears to be no mechanism to transfer selective files to different core clients. For BOINC-

based distributed simulation to begin, the BOINC-PAC in computers X and Y have to be told

to execute either model-A or model-B. For obvious reasons both X and Y cannot execute the

same model. The investigation of BOINC middleware has shown that workunits can pass

different variable values to BOINC-PAC. Thus, if two BOINC workunits are created (for

model-A and model-B) then the core clients running on computers X and Y will generally

download one workunit each and execute either model-A or model-B. The variable values

passed along with the workunit will determine which model is executed over which computer.

This will, in turn, start the CSP-based distributed simulation over BOINC middleware. For a

more in-depth discussion on creation of workunits with different parameters the reader is

referred to section 5.4.

This discussion has shown that BOINC can potentially provide distributed simulation service

to DES CSPs. However, this will also require the use of HLA-RTI distributed simulation

middleware.

Chapter 3: Proposing the CSP-GC framework 105

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

3.4.5.2 Investigation of distributed simulation service using Condor Java universe

Condor Java universe allows the execution of Java programs using Condor’s standard job

submission mechanisms. A CSP-based distributed simulation comprising of two models (say,

model-A and model-B) can be submitted as two separate jobs (job-A and job-B). Each job has

a corresponding job description file that lists Condor-defined variables like executable (this

can be the name of the program which interfaces with the CSP and the HLA-RTI), arguments

(the argument can be the name of the simulation model that will be used by the program),

transfer_input_file (this can be the simulation model files, simulation experiment parameter

files, etc. that have to be transferred over the network), and so on. The job description files for

these jobs can be written such that they provide values that would facilitate the execution of

different models on different nodes of the desktop grid. For example, the value provided to

variable transfer_input_file in the job description files for job-A and job-B could be model-A

and model-B respectively. Thus, it seems possible that Condor Java universe, along with

HLA-RTI, will be able to provide distributed simulation service to DES CSPs.

3.4.6 Investigation of web-based simulation service

The two possible ways of supporting the CSP-specific web-based simulation service in the

grid environment have been identified in section 3.3.6. These are through the use of web

services and grid portals. A grid middleware that implements the OGSA standards will

generally enable users to create web services that can be deployed over the middleware. In

the context of CSP-based simulation it may thus be possible to create web services that

expose CSP functionality, which in turn can be used by the simulation user to access the

CSP. BOINC and Condor middleware do not conform to the OGSA framework, nor do they

provide a custom web service hosting solution. Similarly, these middleware do not include a

web-based front-end to submit jobs, which could possibly have been used to upload CSP-

based simulation models and parameters for remote execution over grid nodes. BOINC and

Condor are therefore considered unsuitable for providing web-based simulation service to the

CSPs.

3.5 Suitability of BOINC and Condor for CSP-specific services

The previous section has examined BOINC and Condor middleware in relation to the six

services proposed by the CSP-GC framework. Table 20 below summarizes the middleware

that have been identified as having the potential of offering such CSP-specific services.

Table 20: BOINC and Condor support for CSP-specific services

CSP-specific service Grid Middleware Comments

Parallel computation service Condor parallel universe

MES and DES CSPs may need
to support MPI / PVM

Task farming service
(both MMMD and SMMD variants)

 BOINC
 Condor Java universe
 Condor MW

Condor MW cannot use the
Condor java universe execution
environment

Workflow service Condor DAGMan with Condor
Java universe

None

Chapter 3: Proposing the CSP-GC framework 106

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Collaboration service
(search & download of CSP models
and virtual meetings)

None None

Distributed simulation service BOINC with HLA-RTI
 Condor Java Universe with

HLA-RTI

HLA-RTI distributed simulation
middleware will also have to be
used

Web-based simulation service
(web services and grid portals)

None None

Condor parallel universe execution environment supports the execution of parallel jobs. To

exploit this environment, the MCS and DES CSPs will generally have to be implemented such

that they support parallel processing through message passing mechanisms like MPI / PVM

for inter-processor communication. However, none of the 45 MCS and DES CSPs surveyed

in this research support such a feature and consequently they may not benefit from parallel

simulation service that can possibly be offered by Condor. Task farming service and

distributed simulation service can be potentially supported by both the middleware; however

the latter service will also require using HLA-RTI middleware. Condor DAGMan can be

potentially used along with Condor Java universe to support the workflow service. However,

none of the middleware presently supports collaboration service and web-based simulation

service. In summary it can be said that BOINC and Condor may be able to offer four of the six

CSP-specific services.

BOINC and Condor have been identified as representative middleware for PRC and EDGC

forms of grid computing (section 2.8). The rationale for this includes their wide deployment

base and the fact that they are available free of cost. Since two specific middleware have

been used to evaluate the potential of offering grid-facilitated CSP-specific services, it is

difficult to generalize the results of this investigation. However, since both BOINC and Condor

are based on the general principle of PRC and EDGC forms of grid computing, it is arguable

that some of the conclusions pertaining to the extent of BOINC and Condor’s support for

CSP-specific services may well apply to other middleware implementations of PRC and

EDGC. For example, the middleware that includes a workflow mechanism (like Condor

DAGMan) should generally be able to support the CSP-specific workflow service, middleware

which supports execution of Java-based programs should generally be able to provide task

farming service using the CSP-grid integration technology presented in this thesis (CSP-grid

integration technology is discussed in section 4.4), and so on.

3.6 Suitability of BOINC and Condor for deployment in industry

This section discusses the suitability of BOINC and Condor for supporting CSP-based

simulation in industry. This discussion is not about the CSP-specific services (which have

already been discussed in the earlier paragraph), but about implementation and deployment

aspects of the middleware. It is informed by literature, by author’s interactions with simulation

experts and IT staff, and the author’s own experience with implementing different grid-based

solutions.

Chapter 3: Proposing the CSP-GC framework 107

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

This discussion is structured under five specific categories. Four of these categories directly

map to the implementation aspects of the middleware (over which a user usually has no

control) and are considered important when deciding upon the suitability of the middleware for

deployment in industry. These four categories refer to the operating system for which the

middleware has been implemented, the number of ports that are opened by the middleware

for communication, the job scheduling mechanism that is implemented and whether the

middleware provides task-parallel or job-parallel task farming support. The fifth category,

namely, application support, is specific to the application that is being written to be executed

over the grid and over which the user has some control. The programming language being

used to implement the application is the important consideration here. Table 21 below shows

BOINC and Condor specific information pertaining to each of the five categories. The sections

in this thesis that refer to the middleware specific information, which is presented in the table,

have also been indicated. Each of the five categories are discussed next.

Table 21: BOINC, Condor and middleware deployment considerations

 BOINC Condor

Operating system UNIX / Linux to host BOINC server
(section 2.9.2). The clients can be
Windows based.

Supported on Windows (section
2.2.3.2). Some components are only
supported in Unix / Linux, but for CSP-
specific services Windows installation is
adequate.

Communication Uses port 80 (section 2.9.2) Uses multiple, bi-directional, static and
dynamic ports (section 2.10.1)

Job scheduling
mechanism

―pull‖ based model of the master-
worker architecture (section 2.9.1)

Implements ―broker-based‖ job
scheduling mechanism (2.10.1).
(Condor MW implements the “broker-based”
model of the master-worker architecture
[section 2.10.5])

Task farming
support

Supports task-parallel applications
(section 3.4.2)

Supports job-parallel applications
(section 3.4.2). Condor MW supports
both job-parallel and task-parallel
applications.

Application
support

Supports applications written using
C++. User applications have to be
compiled with the BOINC client C++
APIs (section 2.9.2)

Different Condor universes support user
applications written in C, C++ and Java
(section 2.10.2). For creating job-
parallel and task-parallel applications,
the user applications have to be
compiled with the C++ Condor MW
library (section 2.10.5).

3.6.1 Category - operating system

The table shows that BOINC requires at least one UNIX or Linux flavour operating system to

support BOINC server side components. Although grid middleware targeted at UNIX and

Linux operating systems were not considered appropriate for this research (section 2.8),

BOINC was an exception because it allowed Windows-based BOINC clients to process the

jobs. Nevertheless, the requirement of at least one UNIX/Linux PC for BOINC-based desktop

computing may not fit with an enterprise’s existing infrastructure or expertise. Furthermore,

the creation and management of projects on the BOINC server require a high degree of

intervention from the user, which runs counter to the principle of transparent job processing

which desktop grids should generally aspire to provide. Unlike BOINC, Condor does not rely

Chapter 3: Proposing the CSP-GC framework 108

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

on the presence of any Unix/Linux PC within the Condor pool. Furthermore, job submission,

job monitoring and result retrieval are relatively straightforward processes in Condor (see

section 5.5). Thus, in the operating systems category, Condor may be more appropriate for

deployment in organizations that have Windows infrastructure in place.

3.6.2 Category – communication

BOINC uses the HTTP port (port 80) for all communication. Condor middleware, on the other

hand, uses multiple, bi-directional, static and dynamic ports. Deploying Condor middleware in

industry will therefore require the network administrator to open a large number of ports –

something which network administrators are generally most reluctant to do (Beckles et al,

2005). Thus, in the communications category, BOINC will generally be preferred for

deployment in an organisation.

3.6.3 Category - job scheduling mechanism

It has been discussed earlier in section 2.2.3.3 that ―pull‖ and ―push‖ are two different

middleware approaches for scheduling tasks on resources (Hantz and Guyennet, 2005). Its

application is not limited to PRC and EDGC forms of grid computing. Cluster-based grid

computing middleware also implement these approaches to process jobs that are submitted

by the users. For example, EDC middleware implements the ―push‖ approach (section

2.2.3.3) and gLite-3 middleware supports both approaches (section 2.2.3.5). If the middleware

implements the ―push‖ mechanism then it periodically polls the grid nodes to find out the load

levels and decide on whether new jobs are to be assigned to the node; on the other hand, a

middleware that implements the ―pull‖ mechanism empowers the grid nodes to decide the

best time to start a job and thereafter request a new job (Berlich et al., 2005). Furthermore, in

the centralized ―push‖ approach the state information of all the nodes is maintained at a

central resource, whereas in the decentralized ―pull‖ approach the system state information is

maintained by each node (Garonne et al., 2005). A third approach can be a ―broker-based‖

approach to job scheduling. In this case a software process (for example, the matchmaking

agent in Condor) is responsible for matching jobs with available resources, before the job can

be ―pushed‖ from the job submission machine to the job execution machine. The broker-

based approached has earlier been discussed in section 2.10.1. The implementation of the

―pull‖ mechanism results in stateless grid (the system does not need to know the status of the

underlying grid resources) which is a lot more fault tolerant and simpler to implement, but this

comes at the expense of a slightly worse performance compared to a ―push‖ implementation

(Saiz et al, 2003). ―pull‖ mechanism is generally suited for situations where the supply of jobs

greatly exceeds the available computing resources and the jobs are not generally time critical

(Garonne et al., 2004). This is typical of a PRC project.

This discussion now considers the efficiency of ―pull‖, ―push‖ and ―broker-based‖ scheduling

mechanisms in the enterprise environment. Garonne et al. (2005) have conducted

performance studies related to the efficiency of ―pull‖ and ―push‖ approaches in the context of

Chapter 3: Proposing the CSP-GC framework 109

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

scheduling tasks on multiple local schedulers that are shared among many users. The results

have shown that, in terms of performance for High Throughput Computing (HTC), the

centralized ―push‖ approach is better than the decentralized ―pull‖ approach under ideal

conditions (e.g., no network or hardware failures, no disk space shortage, no service failure,

etc.). Similarly, a ―broker-based‖ scheduling approach will generally be less efficient that the

―push‖ based approach because the former introduces one more layer of communication

between the nodes requesting resources and the nodes providing those resources.

It can further be argued that ―pull‖ approach will generally be less efficient compared to a

―push‖ approach in cases where the length of the job queue may be continually varying. In a

―push‖ scheduling mechanism, as soon as a job becomes available it will be pushed to an

available grid node. However, in the case of a ―pull‖ scheduling mechanism, the grid nodes

will request jobs at predefined intervals of time. If the request fails (because of server failure

or because job queue is empty or for some other reason) then the grid node will generally

wait for a predefined interval of time before making another request. For example, BOINC

implements exponential client back off in case of server failure (Anderson, 2004). In cases

where the BOINC server is up and running, but the BOINC clients are unable to ―pull‖ jobs

because the job queue is empty, the clients have to wait for a timeout period (usually 60

minutes) before requesting new job from the server (Chandra et al., 2005).

A general purpose grid middleware used in an enterprise environment will generally have a

fluctuating queue size since many employees will be using the grid for processing their

applications. In such cases a middleware that implements the ―push‖ architecture will

generally be able to utilize more CPU cycles for processing. In a large organization, which

may have a grid infrastructure that comprises of 100’s of PCs, the additional processing

capacity gained by using a push-based middleware compared to using a pull-based or broker-

based middleware can be quite substantial. However, the evaluation of BOINC and Condor

has shown that they do not implement the ―push‖ approach. Thus, there may exist a need for

a middleware for use in industry which implements the ―push‖ based mechanism for job

scheduling.

3.6.4 Category - task farming support

The terms task-parallel and job-parallel are discussed next in the context of task farming.

Section 3.10.5 has previously discussed that in a task-parallel task farming application one

master process is responsible for directing and coordinating the execution of multiple worker

process and assimilation of the results; whereas in a job-parallel task farming application one

application (or user) submits many jobs using standard middleware-specific job submission

mechanisms and is responsible for the detection of job completion (it receives no job

completion message from the middleware unlike task-parallel applications). It is arguable that

BOINC only supports task-parallel applications because it consists of server side daemon

processes like the on-demand work generator (generates BOINC workunits in response to a

Chapter 3: Proposing the CSP-GC framework 110

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

scheduler request), validator (examines the results retuned from the grid nodes) and

assimilator (parses the results and inserts it into a database) that can together be considered

as a master process that is in total control of multiple BOINC clients. The reader is referred to

Anderson (2004) for more information on the BOINC daemon processes. Condor Java

universe supports job-parallel applications, and Condor MW supports both job-parallel and

task-parallel applications.

For conducting CSP-based simulation experiments, task-parallel applications will generally be

better suited since one master process will be in control of the overall experimentation

process. Thus, the simulation practitioner will usually be able to load the experiment

parameters into the task-parallel application, which will in turn interact with the underlying grid

middleware to schedule the experiments over different grid nodes, receive simulation results

asynchronously from nodes, and finally collate the results and present them to the simulation

user. Since both Condor and BOINC support task-parallel applications, both the middleware

are considered appropriate for use in the task farming category.

3.6.5 Category - application support

Table 21 shows that BOINC supports user applications that are written in C++. This is

because the user application will have to be compiled with BOINC-defined C++ APIs.

Similarly, Condor MW supports user applications that are written in C++. The different Condor

universes, however, support C, C++ and Java-based applications. For example, Condor

standard universe and vanilla universe execution environments support C and C++

applications; Java is supported by Condor Java universe, etc.

Java is widely used in industry. It is generally accepted that the two important reasons

contributing to its popularity and widespread use are, Java applications can be run on any

operating system that has Java Runtime Environment (JRE) installed and Java is open

source and available for free. Thus, in the application support category, it is arguable that

Condor with Java universe execution environment will be the middleware of choice.

This research is investigating how grid computing technologies can be used to support CSP-

based simulation practise in industry. Because of Java’s extensive use in industry, the CSP-

grid integration technology that is presented in this thesis is mainly based on Java. Although

the technology presented also uses dynamic link libraries (DLLs) created in Visual Basic, it is

more for the purpose of facilitating faster program development rather than a strict technical

requirement. In other words, it is generally possible to implement the DLL code in the Java

program itself. The CSP-grid integration technology is presented in section 4.4. Condor Java

execution environment allows Java applications to be run using Condor, and as such the

CSP-grid integration technology proposed in this thesis is compatible with Condor’s Java

environment.

Chapter 3: Proposing the CSP-GC framework 111

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

3.6.6 Section summary

This section has investigated BOINC and Condor with respect to its suitability for deployment

in industry for supporting CSP-based simulation. The suitability was assessed under five

different categories, namely operating system, communication, job scheduling mechanism,

task farming support and application support. It was found that none of the middleware had

ideal implementation, with respect to supporting CSP-based simulation in industry, under all

the five categories. For example, under the operating system category Condor was found

suitable for deployment; under communication category BOINC, which uses the standard

HTTP port for all its communication, was considered suitable since it does not require

opening up extra ports; in the job scheduling mechanism category none of the middleware

were considered ideal since they did not implement the ―push‖ model of job scheduling; in the

task farming support category, however, both BOINC and Condor were considered

appropriate since both the middleware supported task-parallel task farming applications;

finally, in the application support category, the use of Condor with Java execution

environment was considered appropriate. Table 22 below summarizes this information.

Table 22: Ideal middleware implementation for CSP-based simulation

 Ideal middleware implementation for
CSP-based simulation in industry

Middleware that
implements the feature

Operating system Middleware is supported on Windows
operating system

Condor

Communication Middleware opens only one
communication port

BOINC

Job scheduling
mechanism

Middleware implements ―push‖ job
scheduling mechanism

None

Task farming support Middleware supports task-parallel task
farming applications

BOINC and Condor

Application support Middleware supports Java-based user
applications

Condor with Java execution
environment

The table above shows that neither Condor nor BOINC has an ideal middleware

implementation for running CSP-based simulation in industry. The ideal middleware would be

the one which is supported on Windows, which uses only one communication channel,

implements the ―push‖ job scheduling mechanism, supports task-parallel task farming

applications and would support Java-based user applications. Thus, there may exist a need

for a middleware that is an ideal implementation for supporting CSP-based simulation in

industry.

3.7 Chapter summary

In this chapter a grid computing framework for CSP-based simulation is proposed (section

3.2). This framework is called the COTS Simulation Package – Grid Computing (CSP-GC)

framework. The objective of this framework is to provide a logical structure for the evaluation

of the hypothesis presented in this thesis. The CSP-GC framework consists of six CSP-

specific services that can potentially be provided to simulation users in industry through the

use of grid technology. This chapter has then discussed the implementation aspects of these

Chapter 3: Proposing the CSP-GC framework 112

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

services from a technological perspective, i.e., how can grid computing middleware support

the CSP-specific services (section 3.3)?

Next, this chapter has examined PRC middleware BOINC and EDGC middleware Condor in

relation to the six CSP-specific services (section 3.4) and has concluded that both BOINC and

Condor can potentially support some of these services (section 3.5). The chapter has

concluded by identifying the implementation requirements of the ideal grid middleware for

CSP-based grid computing in industry (section 3.6). These requirements have been one of

the motivations for the development of the WinGrid middleware during the course of this

research.

WinGrid is an EDGC middleware which have been developed specifically for CSP-based

simulation in industry. As such, it implements all the ideal middleware requirements that have

been identified in section 3.6. The next chapter presents an overview of WinGrid (and a web

services extension of it called WinGrid-WS) and examines the level of support this

middleware can provide for CSP-specific services.

Chapter 4: Development of desktop grids for Windows 113

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

4 DEVELOPMENT OF DESKTOP GRIDS FOR WINDOWS

4.1 Introduction

The previous chapter has proposed the CSP-GC framework. The framework has defined six

grid-facilitated CSP-specific services that could potentially help the simulation practitioner in

industry. The evaluation of PRC middleware BOINC and EDGC middleware Condor have

shown that some of these services could possibly be supported by them. However, it has also

been noted that neither of the middleware are ideal implementations for supporting CSP-

based simulation in industry.

This chapter introduces a new grid computing middleware called WinGrid (Mustafee and

Taylor, 2006a; Mustafee et al., 2006b). WinGrid is an EDGC middleware that is targeted at

the Windows operating system (thus, the chapter name ―WinGrid-The Desktop Grid for

Windows‖). The primary motivation for implementing WinGrid was to provide an ideal

middleware implementation for supporting CSP-based simulations in industry. As such,

WinGrid incorporates the five ideal middleware characteristics that were identified in the last

chapter and were considered important for grid-based simulations in industry. Thus, WinGrid

is supported on Windows, it uses only one communication channel, it implements the ―push‖

job scheduling mechanism, it supports task-parallel task farming applications and would

support Java-based user applications.

The author’s extensive involvement with the GridAlliance project

(http://www.westfocus.org.uk/ICT/p54g12_Home.aspx) was another motivation for

the development of WinGrid, as it was thought that source code control over the middleware

would facilitate quick implementation of grid applications for industry. Grid Alliance was a

WestFocus funded (http://www.westfocus.org.uk) one year project (2005-2006)

between the University of Westminster and Brunel University that aimed at providing grid

solutions to industry.

Subsequent to presenting an overview of the WinGrid architecture (section 4.2), this chapter

discusses the web-service extension to WinGrid called WinGrid-WS (section 4.3), presents

the CSP-grid integration technology that is used for WinGrid-CSP integration (section 4.4),

evaluates both WinGrid and WinGrid-WS in relation to the CSP-specific services (section 4.5)

and then concludes with a general discussion on their suitability for supporting the six CSP-

GC framework defined services (section 4.6).

4.2 WinGrid architecture

WinGrid is a Java-based middleware that is based on the master-worker distributed

computing architecture. It supports execution of task-parallel applications where a single

master process is responsible for directing and coordinating the computations being executed

Chapter 4: Development of desktop grids for Windows 114

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

on the workers. This generally involves the master process dividing a problem into small

parallel tasks, sending them over to the worker nodes for processing (using the WinGrid

infrastructure) and assimilating the results that are returned by the workers (figure 32).

WinGrid, being a Java-based grid middleware itself, supports the execution of task-parallel

applications written in Java. WinGrid implements the ―push‖ job scheduling mechanism. It

does this by starting a server process on each worker. The server process enables the

workers to continuously listen for incoming tasks from the master computer. The server

process is started on only one port number at each worker node. Thus, WinGrid uses only

one port number for all its communication. Before the architecture of WinGrid is described any

further, the reader should note that the discussions in this paragraph and the previous section

have highlighted that WinGrid implements all the five ideal middleware characteristics that

were identified in the last chapter and were considered important for grid-based simulations in

industry.

Figure 32: The “push” model implemented by WinGrid

WinGrid consists of the following four components:

 The Manager Application (MA)

 The WinGrid Job Dispatcher (WJD)

 The Worker Application (WA)

 The WinGrid Thin Client (WTC).

The MA is a task-parallel application that runs on the master computer. The master computer

is the desktop grid node from which jobs are submitted. The WJD, which is the WinGrid job

scheduler, also runs on the master computer. The WAs and WTCs run on each worker

computer that is part of the WinGrid infrastructure. The MA interacts with the WJD to transfer

work to the WTCs. The WTCs, in turn, interact with their WAs to process the jobs and return

the results back to the WJD. These results are then transferred by the WJD to the MA.

(2)

(2)

(2)

Worker PC

Worker PC

Worker PC

 Master PC (1)

(3)

(1)

(3)

(1)

(3)

(1)

(3)

(1)

(3)

(1)

(3)

(2)

(2)

(2)
Worker PC

Worker PC

Worker PC

(1) Master PC “pushes” job to WorkerPCs, (2) WorkerPCs process job, (3) WorkerPCs return results to MasterPC

Chapter 4: Development of desktop grids for Windows 115

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

The WAs are unmodified software applications that are connected to the WTCs via open

interfaces that are exposed by the applications. The WTC is also responsible for advertising

and monitoring local grid resources, accepting new jobs from the master process and

returning back the results. It provides a GUI interface through which the desktop user can set

preferences like whether to accept guest jobs, which applications to share, etc. As shown in

figure 33 below, the user submits a job through the MA (1), which in turn interacts with the

WJD process (2) in the manager computer to send work (3) to the WinGrid workers and their

WTCs (4). The WTC passes this work to their WA for processing (5) and returns the result to

the WJD (6). The results of all the individual jobs are communicated back to the MA which

then collates the results and presents it to the user.

Figure 33: WinGrid architecture

In the context of using WinGrid with the CSPs to support task-parallel applications, the MA

can be a user application that lists different experiment parameters and the WA can be

unmodified CSPs that are installed over different WinGrid nodes. In order to simulate multiple

instances of the model over different WTCs, WinGrid will usually have to create different

instances of the CSP-model file and transfer them over to the different WTCs. The files can

be transferred either through Sockets, or alternatively, it could be made available over a

shared network drive. WinGrid presently uses a network share drive that is accessible by all

the WTCs and the WJD. The experiment parameters that are present in the MA can be

transferred to the WAs through the Socket channel that is established between the WJD and

the WTCs. Thus, it is possible for different WTCs to start their WAs using different experiment

parameters. The simulation results that are output by the WAs can similarly be returned back

to the WJD. These results can then be collated together and displayed to the user through the

MA.

As has been discussed earlier, WinGrid uses only one port number for all communication.

However, unlike BOINC, the port it uses is not the standard HTTP port (i.e., port 80) – a port

.

WinGrid Job

Dispatcher

(2)

Manager

Application

(1)

Worker

Application

(5)

WinGrid

Thin Client

(4)
(6)

(3)

(6)

(3)

WinGrid

Thin Client

(4)

Worker

Application

(5)

.

Chapter 4: Development of desktop grids for Windows 116

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

that is usually reserved for web-based applications (including web services). Instead WinGrid

uses port 5000. Port 5000 is opened on each WTC. This is unlike BOINC which, irrespective

of the number of BOINC clients, usually operates through only one open port on the server

side. The need to start one server process per WTC can sometimes be seen as a security-

threat by organizations. The alternative to this can be to implement a single-server based

―pull‖ job scheduling mechanism, whereby the workers pull jobs from the master, as it

requires starting only one server process for the master. In this case the server listens

continually for incoming job requests from the workers. This ―pull‖ job scheduling mechanism,

implemented through the Java web services extension to WinGrid, is discussed next. The

reader is reminded that BOINC middleware is another grid middleware which implements the

pull model.

4.3 WinGrid-WS architecture

The architecture of WinGrid-WS (Mustafee et al., 2006a) extends the original WinGrid

architecture through the addition of the WinGrid Shared Repository (WSR). WSR is server

software that needs to be installed on only one desktop grid node. In the WinGrid-WS

architecture the WJD transfers user jobs to the WSR (1). To pull jobs from the shared job

repository the WTCs send requests to the WSR on a regular basis (2). When a WTC has

finished with a job it transfers the results back to the WSR (3). To retrieve the results (4), the

WJD similarly sends out requests to the WSR on a regular basis. The interactions between

the WJD and MA, and between WTC and WA are similar to that described earlier in section

4.2. Figure 34 below shows the architecture of WinGrid-WS.

Figure 34: Architecture of WinGrid-WS

The next section presents the design and technology that has been used for the purpose of

integrating WinGrid with CSPs. Although the discussion is specific to WinGrid and CSPs, the

same design principle and technology can be potentially used for the integration of any Java-

based grid middleware (or a Java-based execution environment like Condor Java universe)

with applications that expose their package functionality through COM, OLE or other related

.

Worker
Application

WinGrid
Thin Client

WinGrid
Thin Client

Worker
Application

.

WinGrid
Job

Dispatcher

Manager
Application

WinGrid
Shared

Repository

(1)

(2)

(2)

(3)

(4)

Chapter 4: Development of desktop grids for Windows 117

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

technologies. For obvious reasons the application being grid-enabled should generally have

non-trivial processing requirements to benefit from the use of grid computing. The technology

used for integrating WinGrid with CSPs is also referred to as CSP-grid integration technology.

4.4 CSP-grid integration technology

The CSPs are referred to as WAs in the WinGrid architecture. The WTCs running on different

grid nodes need to communicate with the WAs to pass on simulation parameters, control

simulation execution, retrieve the results, etc. Interaction between the WTCs and the CSPs is

made possible through a Visual Basic Dynamic Link Library (DLL). The WTC, which is written

in Java, invokes operations on the DLL through the use of Java Native Interface (JNI) (Sun

Microsystems Limited, 2000). WinGrid uses the JACOB Java-COM Bridge (Alder, 2004),

which in turn is based on JNI, for WTC-DLL communication. JNI is required because Java

code cannot directly access native code (i.e., code written in a programming language other

than Java). The DLL can be manually registered (using the Windows regsvr32 command) or

automatically registered (through WTC code) on the different WinGrid nodes. The DLL uses

the vendor defined open interfaces to access the CSPs. The simulation packages that expose

functionality have been listed earlier in table 5 in chapter 2.

The DLL has well-defined methods that are invoked by both WTCs and CSPs. The functions

that are invoked by the WTCs are referred to as WinGrid-defined Invocation Methods (WIM),

whereas the methods called by the CSPs are refereed to as CSP-defined Callback Methods

(CCbM). The DLL, in turn, invokes the open interfaces of the CSPs by calling CSP-defined

Invocation Methods (CIM) to accomplish a variety of tasks, for example, to load a simulation

package into computer memory, to load a simulation file into the CSP, etc. The DLL also

returns back the results to the WTC by invoking WinGrid-defined Callback Methods (WCbM)

through JNI. These callbacks enable asynchronous WTC processing (i.e., after invoking WIM

the WTC does not have to wait for the method to return, and it can process some other code

before it receives a callback from the DLL through WCbM).

The CSP packages usually provide some callback methods (CCbM) that have to be

implemented by the application invoking the CIMs. For example, DES CSP Simul8 has a

CCbM MySimul8_S8SimulationEndRun which is invoked by Simul8 to signal the end of a

simulation run. DES CSP Witness, on the other hand, defines Modelstatus variable whose

value has to be checked by an application from time to time to find out when a simulation run

has ended. The DLL may, therefore, have to implement one of these mechanisms to receive

information from the CSP.

In this research the DLL is also referred to as an adaptor. For interfacing WTC with a

particular CSP a new adapter will generally have to be written (WA adapter). This adaptor will

provide application-specific implementation to the WIM that will be invoked by the WTC. For

Chapter 4: Development of desktop grids for Windows 118

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

example, the implementation of the WIM method wtcapp_runWA(timeX|), which may be

invoked by the WTC to run a simulation model to timex, will be different based on the

underlying CSP. Thus, a Simul8 adapter that interfaces the DES CSP Simul8 with WTC will

use the Simul8-defined CIM RunSim(timeX) to run a model to timeX. Similarly, Witness

adapter will use the Witness-defined CIM Run(timeX) to achieve a similar objective. The

interaction between WTC-WAadapter-CSP is shown in figure 35 below.

Figure 35: Interaction between WTC-WAadapter-CSP

Table 23 below lists some of the WIM and WCbM methods that are used for communication

between WTC and the WA adapter and describes their purpose. However, it has to be added

that these method signatures (method name and argument list) have not yet been

standardized in WinGrid and some of them are written bespoke according to the requirements

of the application.

Table 23: Interfaces used for communication between WTC and WA adapter

Interfaces

WIM /
WCbM

Description of the interfaces
Note: The WIM and WCbM methods described in this
table are implemented in WA adapter and WTC
respectively.

wtc_init () WIM WA adapter initialization method. This method can
be used to initialize variables defined by the WA
adapter, register DLLs, etc.

wtc_dest () WIM This method can be invoked by the WTC to
deregister DLLs, de-initialize variables defined by the
WA adapter, etc.

wtcapp_init () WIM This method can be used to perform application
specific initialization pertaining to the WA. For
example, loading CSP-specific libraries.

wtcapp_dest () WIM This method can be used to perform application
specific de-initialization pertaining to the WA. For
example, it can be used to unload CSP-specific
libraries.

wtcapp_openWA
(filename, phase, ..)

WIM Opens the WA. The filename is the name of a CSP
file. Phase is used only for workflows.

wtcapp_closeWA () WIM Closes the WA.

wtcapp_decipherApplication
SpecificMessage (message, ..)

WIM The WJD transfers experiment parameters in the
form of messages to the different WTCs. These
messages are encoded using method
wjdapp_encodeApplicationSpecificMessage() [See
table 24]. This method deciphers the messages that
are received from the WJD.

wtcapp_setExperimentParams () Invokes appropriate CIM calls to insert experiment
parameters into the WA.

wtcapp_runWA (timeX) WIM This method is used to run a simulation till timeX.

wtcapp_getResults () WIM Extracts the results from the WA.

wtc_simulationComplete () WCbM This callback method is invoked from the WA
adapter. It informs the WTC that simulation is

WIM:

WinGrid-defined

invocation methods

CCbM:

CSP-defined callback

methods

WTC application code

WCbM:

WinGrid-defined

callback methods

CIM:

CSP-defined

invocation methods

(accessible though

interfaces exposed by

the CSP)

WTC CSP / WA Adapter CSP (WA)

Chapter 4: Development of desktop grids for Windows 119

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Interfaces

WIM /
WCbM

Description of the interfaces
Note: The WIM and WCbM methods described in this
table are implemented in WA adapter and WTC
respectively.

complete.

wtc_jobComplete (results) WCbM Returns the result to the WTC. This callback method
is invoked from wtcapp_getResults().

The WTC-WAadapter-CSP integration design makes it possible for the WTC to communicate

with WA on the worker nodes. A similar design is implemented for communication between

the WJD and the MA on the master node. For example, the MA can be an Excel spreadsheet

that contains the parameters of an experiment. An Excel adapter (MA adapter) can thus be

created for communication between the WJD and the Excel spreadsheet (figure 36). The

WJD will communicate with the MA adapter through well-defined WIM and WCbM methods.

The MA adapter will use the Excel-defined Invocation Methods (EIM) and Excel-defined

Callback Methods (ECbM) to communicate with the MA. Table 24 lists some of the WIM and

WCbM methods that are used for communication between WJD and the MA adapter on the

WinGrid master computer.

Figure 36: Interaction between WJD-MAadapter-Excel

Table 24: Interfaces used for communication between WJD and MA adapter

Interfaces

WIM /
WCbM

Description of the interfaces
Note: The WIM and WCbM methods described in this table are
implemented in MA adapter and WJD respectively.

wjd_init () WIM MA adapter initialization method. This method can be used to
initialize variables defined by the MA adapter.

wjd_dest () WIM This method can be invoked by the WJD to de-initialize
variables defined by the MA adapter.

wjdapp_init () WIM This method can be used to perform application specific
initialization pertaining to a MA.

wjdapp_dest () WIM This method can be used to perform application specific de-
initialization pertaining to a MA.

wjd_openPropertiesFile () WIM Opens the WTC properties file. This file contains the IP
addresses, port numbers and machine names of the different
WinGrid nodes.

wjd_closePropertiesFile () WIM Closes the WTC properties file.

wjd_getIPsandPorts () WIM Extracts IP addresses, port numbers and machine names
from the WTC properties file.

wjd_returnIPandPort (value) WCbM Returns the IP addresses, port numbers and machine names
to the WJD. This callback method is invoked from
wjd_getIPsandPorts ().

wjdapp_openMA (filename) WIM Opens the MA. The filename is the name of the application to
open. For example, if the MA is an Excel-based application
then the file to open is an Excel file.

wjdapp_closeMA () WIM Closes the MA.

wjdapp_encodeApplication
SpecificMessage ()

WIM Gets experiment information from the MA. The
implementation of this method will extract the required values

WIM:

WinGrid-defined

invocation methods

ECbM:

Excel-defined callback

methods

WJD application code

WCbM:

WinGrid-defined

callback methods

EIM:

Excel-defined

invocation methods

(accessible though

interfaces exposed by

Excel)

WJD Excel / MA Adapter

(DLL)

Excel (MA)

Chapter 4: Development of desktop grids for Windows 120

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Interfaces

WIM /
WCbM

Description of the interfaces
Note: The WIM and WCbM methods described in this table are
implemented in MA adapter and WJD respectively.

from the MA and will construct a string with different fields,
separated with field demarcations like comma and colon. This
method is called only once by the WJD. Parameters
pertaining to all the experiments are returned to the WJD
through invocation of
wjdapp_returnApplicationSpecificMessage (see below). WJD
will then create sub-jobs for each experiment and will allocate
them to the available WTCs. The jobs received by the WTCs
are deciphered using method
wtcapp_decipherApplicationSpecificMessage(message, ..)
[See table 23].

wjdapp_returnApplication
SpecificMessage (message)

WCbM Returns the experiment parameters to the WJD. This WJD-
implemented callback method is invoked from
wjdapp_encodeApplicationSpecificMessage ().

wjdapp_gatherResults
(var1, var2, ..)

WIM This method is invoked by the WJD to collate individual
results returned by the WTCs. Its implementation is specific
to the MA.

wjdapp_resultcollection_
openFile (filename, var , ..)

WIM This method is invoked when the individual WTC results are
presented in a different file (not the MA). This method will
open the file whose filename is passed as an argument.

wjdapp_resultcollection_
closeFile()

WIM This method closes the result collection file that was earlier
open by wjdapp_resultcollection_openFile (filename, var , ..).

wjdapp_donemessage WCbM This callback method informs the user that application
processing is complete. It is invoked after
wjdapp_gatherResults (var1, var2 ..) has completed.

Tables 23 and 24 have shown the interfaces that can be used for communication between the

WTC and the WA adapter on the worker nodes and the WJD and the MA adapter on the

master node. These WIM and WCbM methods are defined by WinGrid and are implemented

by the WA adapter, MA adapter, WTC or the WJD. For the WA / MA adapter to actually

invoke the WA / MA, it should have access to open interfaces made available by the external

WA and MA applications. In the context of this research, the MAs are Excel-based

applications and the WAs are the CSPs.

Excel applications can be accessed through Microsoft Excel 11.0 Object Library. This library

can be imported when writing the Visual Basic MA adapter for communication with the MA.

The library provides methods that can be used by the adapter to access Excel-defined

workbooks and worksheets, cells, formulas, formatting functions, etc. Using these methods

the adapter will generally be able to extract experiment parameters from the Excel-based MA

and import simulation results into it. Some of the methods that can be called by the MA

adapter are presented in table 25 below. The reader is referred to Microsoft Support (2007)

for an example that shows a Visual Basic application accessing Excel through the Microsoft

Excel 11.0 Object Library.

Table 25: Interfaces used for communication between MA and MA adapter

Interfaces

EIM /
ECbM

Description of the interfaces
Note: EIM and ECbM methods are implemented in
MA(Excel) and MA adapter respectively.

Excel.Application varXlApp =
New Excel.Application ()

EIM Gets a reference to the Excel.Application object. The
variable which holds a reference to this object is

Chapter 4: Development of desktop grids for Windows 121

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Interfaces

EIM /
ECbM

Description of the interfaces
Note: EIM and ECbM methods are implemented in
MA(Excel) and MA adapter respectively.

varXlApp.

Excel.workbook varXlWbk =
varXlApp.Workbooks.Open (filename)

EIM Opens Excel workbook (MA) with the name filename.
The reference to this workbook is held in the object
varXlWbk.

Excel.worksheet varXlWsheet =
varXlWbk.Worksheets (sheetname)

EIM A workbook can contain multiple worksheets. This
method selects the worksheet with the name
sheetname. A reference to this worksheet is held in
variable varXlWsheet.

varXlApp.Visible = TRUE EIM This is an Excel-defined property. The value TRUE
indicates that the Excel application will be visible to the
user.

varXlWsheet.Cells
(rownumber, colnumber)

EIM This method is used to either extract values from cells
or to assign values to cells within a worksheet. A
reference to the worksheet is held in variable
varXlWsheet. The row number and column number of
the cell are passed as arguments rownumber and
colnumber.

varXlApp.Application.Run (macroname) EIM This method is used to execute a user-defined macro
with name macroname.

varXlApp.Worksheets.Add () EIM Adds a new worksheet to the workbook.

varXlWbk.Close (Boolean FALSE) EIM Closes the workbook without saving any changes
(FALSE). A Boolean value TRUE will save and close
the workbook.

varXlApp.Quit () EIM Quits the Excel application.

varXlApp _WorkbookOpen
(Wb As Excel.Workbook)

ECbM This callback method is invoked by Excel when a
workbook is successfully opened.

varXlApp _WorkbookNewSheet
(Wb As Excel.Workbook, Sh As Object)

ECbM This callback method is invoked by Excel when a new
worksheet is successfully added to a workbook.

In the case of the WA, the simulation practitioner will have to refer to the documentation

provided by the vendor to investigate whether the CSP could be accessed by an external

application, and if so, the functionality that can be accessed. For implementing CSP task

farming using WinGrid, the exposed interfaces should generally support operations to load

the CSP software into computer memory, open and save model files, import variable values

(like queue size, processing time for a workstation, etc.) into the model, execute a model for a

pre-defined simulation time, extract results from the model (example, number of entities that

have been processed, number of entities waiting in a queue, etc.), execute CSP-defined

program code (example, Visual Logic in case of Simul8) and exit the CSP application. To

support these operations, a CSP-specific library (if available) can be imported when writing

the Visual Basic WA adapter. Table 26 below lists some of the CIM and CCbM methods that

are exposed by CSP Simul8 Professional and which can be used to support task-parallel task

farming applications. For a more exhaustive list of the COM methods the reader is referred to

Simul8 Corporation (2002). CSP Simul8 Professional is used as an example to highlight the

key functionality that may be required to be exposed by the CSPs. As such, the descriptions

of the interfaces are more important than the signatures of the interfaces themselves.

Table 26: Interfaces used for communication between WA and WA adapter

Interfaces

CIM /
CCbM

Description of the interfaces
Note: CIM and CCbM methods are implemented in WA

(Simul8 Professional) and WA adapter respectively.

SIMUL8.S8Simulation varS8Obj =
GetObject ("", "SIMUL8.S8Simulation")

CIM Gets a reference to the SIMUL8.S8Simulation object.
The variable which holds a reference to this object is
varS8Obj.

Chapter 4: Development of desktop grids for Windows 122

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

varS8Obj.Open (filename) CIM Loads Simul8 into computer memory and opens the file
specified by the argument filename.

varS8Obj.Save (filename) CIM Saves the Simul8 model that is presently open with the
name specified by the argument filename.

varS8Obj.RunSim (timeX) CIM Runs simulation till timeX.

varS8Obj.ExecVL (command) CIM Executes Simul8 Visual Logic code. The code to be
executed is specified in the argument command. For
example, varS8Obj.ExecVL
("SET Machine1.Operation Time = 10”)

varS8Obj.SimulationTime CIM This is a read-only property. It returns the present
simulation time from Simul8.

varS8Obj.StopSim () CIM Stops the presently running simulation.

varS8Obj.Close () CIM Closes the Simul8 model that is presently open.

varS8Obj.Quit () CIM Exits Simul8.

SIMUL8.S8SimObject varS8SimObject =
 varS8Obj.SimObject (objectname)

CIM Gets a reference to a Simul8 simulation object (for
example, workcentre, storage, entry, exit, conveyor,
tank, resource, etc.) that is present in the model. The
variable which holds a reference to this object is
varS8SimObject.

varS8SimObject. Completed CIM This is a read-only property. If varS8SimObject is a
Simul8 workcentre object, then this value refers to the
number of entities that have been processed by the
workcentre.

varS8SimObject.CountContents CIM This is a read-only property. If varS8SimObject is a
Simul8 exit (sink) object, then this value refers to the
number of entities that have been processed by the
model.

varS8Obj _S8SimulationEndRun () CCbM This callback method is invoked by Simul8 when a
simulation run is complete.

varS8Obj _S8SimulationReset () CCbM This callback method is invoked by Simul8 when a
simulation has been successfully reset.

varS8Obj _S8SimulationEndTrial() CCbM This callback method is invoked by Simul8 when a trial
has ended.

The interaction between the different WinGrid components (namely, MA, MA adapter, WJD,

WTC, WA adapter and WA) are shown using a UML sequence diagram in figure 37. The WA

in this example is CSP Simul8 Professional and the MA is an Excel-based application. The

reader should use the sequence diagram only as a reference, as the sequence of the method

invocations and indeed the methods themselves may vary depending on the application to be

grid-enabled. The interfaces used by WinGrid have not yet been standardized and some of

them are written bespoke based on the application requirement.

This section has described the adapter technology that has been used in this research for the

integration of WinGrid with CSPs. Since this technology is based on Java, any middleware

that supports the execution of Java programs can also potentially use this technology. For

example, it may be possible to use the Condor middleware with the Java universe execution

environment to implement CSP-specific task farming. Furthermore, the WAs are not limited to

CSPs alone and any application that (1) exposes its functionality through well-defined

interfaces, (2) requires non-trivial amounts of CPU cycles to process user jobs, and (3)

supports partitioning of a large job into multiple parallel sub-jobs, can be considered as a

potential WA that might gain from task farming using WinGrid. The next section examines

WinGrid and WinGrid-WS with regards to the CSP-specific services proposed by CSP-GC

framework.

Chapter 4: Development of desktop grids for Windows 123

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Excel (MA) MA Adapter WJD WA AdapterWTC

wtcapp_openWA ()

wtc_init ()

wtcapp_init ()

Open (filename)

wtcapp_decipherApplicationSpecificMessage()

ExecVL (command)

RunSim (timeX)

S8SimulationEndRun ()

wtc_simulationComplete ()

wtcapp_runWA (timeX)

wtcapp_getResults ()

SimObject (objectname)

SimObject.Completed

SimObject.CountContents

wtc_jobComplete (results)

Save (filename)

Close ()

Quit ()

wtcapp_closeWA ()

wtcapp_dest ()

wtc_dest ()

wtcapp_setExperimentParams ()

GetObject ("", "S8Simulation")

wjd_init ()

wjdapp_init ()
Excel.Application ()

wjd_openPropertiesFile ()

wjd_getIPsandPorts ()

wjd_closePropertiesFile ()

wjd_returnIPandPort (value)

Workbooks.Open (filename)

WorkbookOpen (Wb As Excel.Workbook)

Cells (rownumber, colnumber)

Close (FALSE)

Quit ()

wjdapp_openMA (filename)

Workbooks.Open (filename)

WorkbookOpen (Wb As Excel.Workbook)

wjdapp_encodeApplicationSpecificMessage ()

Cells (rownumber, colnumber)

wjdapp_returnApplicationSpecificMessage (message)

wjdapp_gatherResults ()

Worksheets.Add ()

WorkbookNewSheet (Wb As Excel.Workbook ..)

wjdapp_dest ()

wjd_dest ()

Results returned

by WTC to WJD

E
x
p

e
ri
m

e
n

t
 p

a
ra

m
e

te
rs

 t
ra

n
s
fe

rr
e

d
 f
ro

m
 W

J
D

 t
o

 W
T

C

S
o

c
k
e

t
c
o

n
n

e
c
ti
o

n

e
s
ta

b
lis

h
e

d

b
e

tw
e

e
n

 W
J
D

 a
n

d

W
T

C

End message from

WJD to WTC

Loops

Call backs

Socket communication

Method invocation
Asynchronous method

invocation

Method

L
e

g
e

n
d

Worksheets (sheetname)

Worksheets (sheetname)

Cells (rownumber, colnumber)

wjdapp_donemessage ()

Figure 37: UML sequence diagram showing the interaction between WinGrid components

Chapter 4: Development of desktop grids for Windows 124

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

4.5 Investigation of CSP-specific services using WinGrid and WinGrid-WS

The CSP-GC framework, presented in chapter 3, has identified six CSP-specific services that

can be potentially used to support CSP-based simulations in industry. This section examines

WinGrid in relation to the CSP-specific services to assess the degree to which this purpose

built middleware, for CSP-based simulation in industry, can support these services. WinGrid-

WS is only discussed in the context of task farming and web-based simulation service

because it was specifically implemented for providing these two services.

4.5.1 Investigation of parallel computation service

Section 3.5 has highlighted that for a CSP to effectively benefit from the parallel simulation

service, it is generally required that these packages are implemented to support parallel

processing through message passing mechanisms like MPI / PVM. However, none of the 45

MCS and DES CSPs that have been surveyed in this research presently have a parallel

implementation (section 2.5.1). Consequently, incorporating parallel computing service with

WinGrid was not considered necessary at this time because WinGrid is specifically

implemented for CSP-based simulation, and the CSPs do not presently have parallel

MPI/PVM implementations.

4.5.2 Investigation of task farming service

The discussion on WinGrid (section 4.2) and WinGrid-WS (section 4.3) has shown that these

middleware can potentially support task-parallel task farming service through their respective

―push‖ and ―pull‖ implementations. Furthermore, WinGrid may be able to support both SMMD

and MMMD variants of task farming as it is possible to run different programs concurrently

over multiple grid hosts (similar to Condor). WinGrid-WS was designed for only SMMD task

farming.

4.5.3 Investigation of workflow service

WinGrid implements workflows through the WJD – the job scheduler for WinGrid. The WJD is

aware of the dependencies between different jobs that are submitted to it. This is a bespoke

WJD solution for executing workflows and has its disadvantages. Hard coding workflow logic

into the WJD implies that WinGrid will not be able to support other workflow routines until the

source code itself is modified. The improved solution to this is to create a WinGrid Workflow

component on top of the WJD (like DAGMan in Condor). The application workflow logic,

which can be represented using XML-defined tags, can then be input into the WinGrid

Workflow component and which will thereafter be responsible for submitting jobs to WJD

based on the underlying workflow logic.

4.5.4 Investigation of collaboration service

Grid facilitated collaboration service can be provided in two possible forms. One, through

providing mechanisms that facilitate the search and download of CSP-based model

components over the grid, and, two, through virtual meetings. Section 3.3.4 has identified the

Chapter 4: Development of desktop grids for Windows 125

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

use of web services and integrated video conferencing mechanisms for enabling this service

through grid middleware. WinGrid does not support the hosting of user-defined web services.

Moreover, communication in WinGrid is implemented using Java sockets and not web

services. Neither does it include integrated support for virtual meetings. WinGrid is therefore

considered inappropriate for supporting CSP-based collaboration service over the grid.

4.5.5 Investigation of distributed simulation service

Investigation of distributed simulation service with BOINC and Condor (section 3.4.5) has

shown that the ―application integration approach‖, wherein the user application (consisting of

CSP models and associated code) is responsible for managing a distributed simulation

federation, is more appropriate for distributed simulation in the grid environment. WinGrid

supports this approach. WinGrid has mechanisms to execute multiple CSP models

concurrently over different grid nodes, and it can therefore potentially provide distributed

simulation service through use of HLA-RTI middleware.

4.5.6 Investigation of web-based simulation service

As discussed in section 3.3.6, web-based simulation service can be potentially supported

over the grid environment through the use of web services and grid portals. As has been said

earlier, WinGrid does not support the hosting of user-defined web services. Neither does

WinGrid have a web-based front-end. WinGrid-WS, on the other hand, uses web services for

communication between grid nodes. But it does not presently support deployment of user-

developed web services. However, WinGrid-WS implements a grid portal (screenshot 5) that

could be accessed by simulation users through their web browsers. The portal makes it

possible to upload simulation models and experiment parameters for batch execution, monitor

the progress of simulations and download the results.

Screenshot 5: Web front-end to WinGrid-WS (Alstad, 2006)

Chapter 4: Development of desktop grids for Windows 126

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

In summary, it can be said that WinGrid does not provide support for web-based simulation

service. WinGrid-WS only partially supports this service through a grid portal.

4.6 Suitability of WinGrid and WinGrid-WS for CSP-specific services

The previous section has examined the level of support that WinGrid can provide for all the

six CSP-specific services. It has also examined WinGrid-WS in relation to two specific

services – task farming service and web-based simulation service. This investigation has

shown that WinGrid can potentially support distributed simulation, both variants of task

farming service and work flow service; WinGrid-WS can support the SMMD variant of task

farming service and web-based simulation service (through grid portal). Table 27 below

summarizes this information.

Table 27: WinGrid and WinGrid-WS support for CSP-specific services

CSP-specific service Grid Middleware Comments

Parallel computation service None

MES and DES CSPs may need
to support MPI / PVM

Task farming service
(both MMMD and SMMD variants)

 WinGrid
 WinGrid-WS

WinGrid-WS presently supports
only SMMD task farming

Workflow service WinGrid None

Collaboration service
(search & download of CSP models
and virtual meetings)

None None

Distributed simulation service WinGrid with HLA-RTI

HLA-RTI distributed simulation
middleware will also have to be
used

Web-based simulation service
(web services and grid portals)

 WinGrid-WS WinGrid-WS presently supports
only grid portals

WinGrid and WinGrid-WS specific information provided in the table above is now combined

with the middleware suitability information presented in the context of BOINC and Condor in

section 3.5, to present the reader with a single suitability reference table (table 28) that lists all

the CSP-specific services and the middleware that could be potentially used to support them.

Table 28: Middleware support for CSP-specific services

CSP-specific service Grid Middleware Comments

Parallel computation service Condor parallel universe

MES and DES CSPs may need
to support MPI / PVM

Task farming service
(both MMMD and SMMD variants)

 BOINC
 Condor Java universe
 Condor MW
 WinGrid
 WinGrid-WS

Condor MW cannot use the
Condor java universe execution
environment. WinGrid-WS
presently supports only SMMD
task farming

Workflow service Condor DAGMan with Condor
Java universe

 WinGrid

None

Collaboration service
(search & download of CSP models
and virtual meetings)

None None

Distributed simulation service BOINC with HLA-RTI
 Condor Java Universe with

HLA-RTI
 WinGrid with HLA-RTI

HLA-RTI distributed simulation
middleware will also have to be
used

Web-based simulation service
(web services and grid portals)

 WinGrid-WS WinGrid-WS presently supports
only grid portals

Chapter 4: Development of desktop grids for Windows 127

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

The information presented in the table shows varying levels of grid support for CSP-specific

services. On the one hand, task farming service can be potentially supported by all

middleware; on the other hand, collaboration service is not supported at all. The parallel

simulation service is unique in the sense that although Condor could potentially support it, the

non-parallel implementation of CSPs limits its use. Furthermore, the table identifies that

WinGrid-WS is the only middleware that can partially support web-based simulation service

through the use of grid portals.

WinGrid can be criticized along the lines that, although it was implemented specifically for

CSP-based simulation in industry, it does not support all the CSP-specific services. However,

the reader is reminded that the ideal middleware implementation requirements, identified in

section 3.6.6 of this thesis, were mainly based on core middleware architecture designs which

were considered important for grid middleware deployment in industry. It is however

acknowledged by the author that a middleware specifically implemented to support CSP-

based simulation should ideally support all the six services defined by the CSP-GC

framework. WinGrid was developed on an incremental basis. The services that were

considered most important were implemented first. Thus, support for task farming service was

included in WinGrid, followed by the inclusion of workflow service and distributed simulation

service. The support for web-based simulation service was included in WinGrid-WS. Support

for parallel simulation service was not considered a top priority at this time because the CSPs

do not presently provide MPI/PVM implementations. Similarly, support for virtual meeting, a

form of collaboration service, was presently not considered because groupware applications

like Microsoft NetMeeting include support for virtual meetings and are usually available for

use in the Windows environment.

4.7 Chapter summary

This chapter has presented the architecture of WinGrid (section 4.2). WinGrid is an EDGC

middleware that has been implemented during the course of this research primarily to provide

an ideal middleware implementation for supporting CSP-based simulations in industry. This

chapter has also presented an overview of WinGrid-WS middleware (section 4.3). WinGrid-

WS supports task-parallel task farming with a ―pull‖ based job scheduling mechanism. The

CSP-grid integration technology for communication between WinGrid with CSPs, through the

use of adapters, is discussed in section 4.4. It is further noted that this adapter-based

approach can be potentially used with any Java-based middleware (or a middleware that

supports Java execution environment).

This chapter has then examined the extent to which WinGrid and WinGrid-WS can support

the CSP-specific services (section 4.5). The discussion on WinGrid-WS was however limited

to task farming service and web-based simulation service because WinGrid-WS was

specifically implemented to support only these two services. The examination of the

Chapter 4: Development of desktop grids for Windows 128

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

middleware has shown that some of the services can be supported by WinGrid and WinGrid-

WS (section 4.6).

The hypothesis presented in this thesis is that CSP-based simulation practice in industry will

benefit from the adoption of grid computing technologies. To provide a logical structure to

evaluate this hypothesis the CSP-GC framework has been proposed. The framework has

identified six CSP-specific services that are derived from the higher level grid services.

Through a detailed investigation of four grid computing middleware – BOINC, Condor,

WinGrid and WinGrid-WS – it has been established that some of these services can be

potentially supported. Thus, until this point the hypothesis has not been disproved. To prove

this hypothesis, however, it has to be shown through implementation that grid middleware can

be used together with the CSPs to provide the middleware specific solutions that have been

recognised to support the CSP-specific services (section 3.5 and section 4.6). This will be

investigated through case study experimentation in the next chapter.

Chapter 5: Case studies 129

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

5 CASE STUDIES

5.1 Introduction

The previous chapter has presented an overview of WinGrid and the web services extension

to WinGrid called WinGrid-WS. WinGrid was developed during the course of this research as

it was considered important to investigate an EDGC middleware that implemented the ideal

middleware characteristics, identified in section 3.6.6, for executing CSP-based simulation in

industry. The chapter then examined WinGrid in relation to the six CSP-specific services. It

was argued that WinGrid was potentially able to support three of these services, namely, task

farming service, workflow service and distributed simulation service. WinGrid-WS, on the

other hand, supported task farming service and web-based simulation service through use of

grid portal. Thus, the hypothesis presented in this thesis has not been disproved because all

four grid middleware that have been assessed, namely BOINC (chapter 2), Condor (chapter

2), WinGrid and WinGrid-WS (chapter 4), can potentially support some of the CSP-GC

framework identified services.

This chapter investigates whether the theoretical and technical evaluation of the middleware,

presented in the earlier chapters, in support for CSP-specific services is realizable in practice,

i.e., can it be implemented? Section 5.2 presents the criteria for the evaluation of the

hypothesis. These criteria are tested using a total of five real-world and hypothetical case

studies. These case studies are outlined in section 5.3 together with their evaluation criteria.

The first and second case studies examine BOINC and Condor in relation to SMMD and

MMMD task farming service in sections 5.4 and 5.5 respectively. This is followed by an

investigation of WinGrid in the context of SMMD task farming service in the third case study

(section 5.6). The fourth case study evaluates the workflow service using WinGrid (section

5.7). This is followed by an investigation of WinGrid in relation to distributed simulation service

in the fifth and final case study (section 5.8).

5.2 Criteria for hypothesis evaluation

To prove the hypothesis that the adoption of grid computing will help the simulation

practitioner in industry, it has to be shown that the middleware can operate together with the

CSPs towards the realization of the CSP-specific services.

For the evaluation of distributed simulation service and task farming service, another yardstick

could be the time taken to execute simulation experiments over a grid as compared to

standalone execution. However, such an evaluation may only possible if the grid

infrastructure is comprised of dedicated resources (like cluster-based grid computing). The

two forms of grid computing that have been found suitable for implementing grid solutions in

industry are PRC and EDGC. The middleware for both of them are designed for non-

dedicated resources like desktop PCs that are used by the employees at their workplace.

Chapter 5: Case studies 130

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

PRC and EDGC are primarily meant for High Throughput Computing where the objective is to

provide sustained access to idle CPU cycles made available by the user PCs. But it is also

true that PCs that are not being used can be considered as dedicated resources, and a

simulation performance comparison with dedicated standalone PCs, in this case, could

therefore be justifiable.

In the case of task farming service it can intuitively be said that multiple dedicated grid nodes

will execute a set of simulation experiments faster, compared to one dedicated desktop PC,

and the more the number of grid nodes the faster the execution speed. It can also be argued

that faster grid execution over non-dedicated resources is very much possible as research

has shown that desktop PCs can be under utilized by as much as 75% of the time (Mutka,

1992). However, this may ultimately depend upon the number of resources that make up the

grid infrastructure and specific usage pattern of the PC owners.

In the case of distributed simulation service it may be difficult to arrive at a similar conclusion

because the simulations running on different PCs will need synchronization between them,

i.e., they are more like peer-to-peer simulation where the executions of the models are

interlinked. In this case, an efficient execution of a set of distributed models may only be

possible if the grid nodes are dedicated. This is because in the case of non-dedicated

resources an interruption in the running of even one model may eventually halt the entire

distributed simulation federation.

In summary, the hypothesis presented in this thesis is primarily evaluated based on whether

the identified grid middleware solutions for supporting CSP-specific services are

implementable in practice, and thereby whether the services are realizable. In the case of

task farming service and distributed simulation service the additional requirement is whether

grid computing can offer better performance compared to standalone execution, and thereby

making it a viable technology for use by the simulation practitioners. In the case of task

farming service, the second requirement has to be evaluated using both dedicated and non-

dedicated resources. In the case of distributed simulation service this requirement needs to

be evaluated using only dedicated resources. Parallel simulation service and collaboration

service is not being considered for hypothesis evaluation because it has been identified in

section 4.6 that none of the middleware that have been examined in this research would

support these services.

As case studies are being used to examine the CSP-GC framework defined services, the

hypothesis evaluation criteria that have been discussed in this section will be used for the

evaluation of the case studies. The hypothesis evaluation criteria are applicable to both DES

and MCS CSPs; the only exception being distributed simulation service which is applicable

Chapter 5: Case studies 131

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

only in the case of DES CSPs. Table 29 below summarizes the case study evaluation criteria

for the four CSP-specific services that have been identified as ―grid implementable solutions‖.

Table 29: Criteria for hypothesis evaluation

CSP-specific service Case study evaluation criteria

Task farming service
(both SMMD and MMMD variants)

 Solution is implementable and the service is realizable
 Execution is faster over dedicated grid resources compared to a

standalone execution
 Execution is faster over non-dedicated grid resources compared

to a standalone execution

Workflow service Solution is implementable and the service is realizable

Distributed simulation service Solution is implementable and the service is realizable
 Execution is faster over dedicated grid resources compared to a

standalone execution

Web-based simulation service
(grid portals)

 Solution is implementable and the service is realizable

5.3 CSP-GC framework investigation scenarios

In this section the terms ―investigation scenarios‖ and ―case studies‖ are used synonymously.

The CSP-GC framework investigation scenarios are important because they provide a well-

defined structure for experimental evaluation of the CSP-GC framework, and in turn form the

basis for evaluation of the hypothesis.

The case studies are either based on real-world problems that were encountered by the

author during the course of this research or are hypothetical investigation scenarios. In the

case of the former category, irrespective of their different requirements, the case studies are

similar on three accounts; one, all the requirements can be mapped to one or more grid-

facilitated CSP-specific services; two, all of them involve the integration of a MCS or a DES

CSP with desktop grid middleware; three, the simulations have been created by simulation

users in industry. The hypothetical case studies also involve the integration of a MCS or DES

CSP with a grid middleware, map into one or more grid-facilitated CSP services and the

simulations that are used are created by OR/MS researchers, CSP vendors or simulation

users in industry. However, the hypothetical case studies have been specifically targeted at

middleware that have not been used for real-world investigation scenarios.

As has been listed in table 28 (chapter 4), parallel simulation service cannot be used by the

CSPs, although the Condor parallel universe execution environment can potentially support it,

because the underlying packages do not presently have parallel implementations. It has also

been discussed that none of the middleware that have been investigated in this research can

presently support collaboration service. Similarly, it has been discussed that web-based

simulation service can presently be supported only through the use of grid portals. An

abridged version of Table 28 is presented in the next page (table 30) that shows grid

middleware support for the remaining four CSP-specific services. The sections in this thesis

which discussed these services in relation to the middleware, and which in turn formed the

basis of the information provided in table 30, are also indicated.

Chapter 5: Case studies 132

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Table 30: CSP-specific services that can be potentially implemented

CSP-specific service Grid Middleware Comments

Task farming service
(both MMMD and SMMD variants)

 BOINC (section 3.4.2)
 Condor Java universe (section

3.4.2)
 Condor MW (section 3.4.2)
 WinGrid (section 4.5.2)

 WinGrid-WS (section 4.5.2)

Condor MW cannot use the
Condor java universe execution
environment. WinGrid-WS
presently supports only SMMD
task farming

Workflow service Condor DAGMan with Condor
Java universe (section 3.4.3)

 WinGrid (section 4.5.3)

None

Distributed simulation service BOINC with HLA-RTI (section

3.4.5.1)

 Condor Java Universe with
HLA-RTI (section 3.4.5.2)

 WinGrid with HLA-RTI (section

4.5.5)

HLA-RTI distributed simulation
middleware will also have to be
used

Web-based simulation service
(grid portals)

 WinGrid-WS (section 4.5.6) None

As can be seen in the table above, the potential grid middleware support for CSP-specific

services vary from service to service. The CSP-GC framework investigation scenarios are

implemented using a subset of these middleware. The middleware that is selected for CSP-

grid integration is based on the following considerations:

 For real-world case studies, access to computing resources that are necessary for

installing a desktop grid middleware. For example, for installing BOINC middleware

access to at least one UNIX / Linux PC is mandatory.

 For real-world case studies, the security restrictions in place within the organization have

played a key role in the selection of a middleware. For example, there may be a

restriction on the number of communication channels that can be opened by the

middleware, the file transfer mechanisms, etc.

 For real-world case studies, the flexibility offered by a grid middleware to implement the

problem solution.

 The author’s involvement in the GridAlliance project has played a part in the selection of

middleware for the case studies. One of the primary motivations for developing WinGrid

was to facilitate quick implementation of GridAlliance demonstration applications, as it

was thought that source code control over the middleware would be an advantage.

 The middleware support for CSP-grid integration technology (section 4.4) that have been

used in this research.

 Finally, all four grid middleware have been used in at least one case study to realize a

grid-facilitated CSP service.

The case studies that are used for evaluation of CSP-GC framework are highlighted with a

gray background in table 31. Each case study is identified by a name that is presented in

capitalized bold letters. The DES or MCS CSPs which have been used together with the grid

middleware are also indicated. The hypothetical case studies are marked as [hyp]. The table

Chapter 5: Case studies 133

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

also lists the evaluation criteria for each case study, which is in turn based on the CSP-

specific service the case study is grouped under. However, in the case of task farming

service, the evaluation of the case studies are based on a subset of the task farming

evaluation criteria (total of three criteria, highlighted in table 29). The reason for this is

discussed next.

The three case study evaluation criteria for task farming service are – (1) the solution is

implementable and the service is realizable, (2) grid execution over dedicated nodes is faster

compared to a standalone execution and (3) grid execution over non-dedicated nodes is

faster compared to a standalone execution. There are a total of four case studies associated

with SMMD and MMMD variants of task farming that use three different grid middleware (see

table 31). The hypothetical Condor case study evaluates MMMD task farming, whereas the

other three case studies, viz., the hypothetical BOINC case study, the Ford case study and

the Investment bank case study, implement SMMD task farming. The evaluation criterion for

the Condor and BOINC case studies is that it should be possible to implement the CSP-grid

integration solution. Here, execution speed is not considered because, firstly, both the case

studies are hypothetical, and, secondly, the other two real-world task farming case studies

present an experimental evaluation of execution speed. The Ford case study uses dedicated

WinGrid nodes for this evaluation. The Investment bank case study, on the other hand, uses

non-dedicated WinGrid nodes.

Table 31: Case studies

CSP-
specific
service

Grid
middleware

Case study
MCS / DES
CSP used

Case study evaluation
criteria / Comments

Task
farming
service
(both MMMD
and SMMD
variants)

 BOINC BOINC CASE
STUDY [hyp]
(SMMD task farming)

Microsoft
Excel
(MCS CSP)

 Solution is implementable
and the service is realizable

 Condor
Java
universe

CONDOR CASE
STUDY [hyp]
(MMMD task farming)

Microsoft
Excel
(MCS CSP)

 Solution is implementable
and the service is realizable

 Condor MW No case study-
based investigation

None Could not be applied to real-
world ―ford case study" and
―investment bank case study‖
because of security concerns
related to Condor middleware,
viz., opening multiple ports.

 WinGrid FORD CASE
STUDY
(SMMD task farming)

Witness
(DES CSP)

 Solution is implementable
and the service is realizable

 Execution is faster over
dedicated grid resources
compared to a standalone
execution

INVESTMENT
BANK CASE
STUDY
(SMMD task farming)

Analytics
(MCS CSP)

 Solution is implementable
and the service is realizable

 Execution is faster over non-
dedicated grid resources
compared to a standalone
execution

 WinGrid-
WS

No case study-
based investigation

None Could not be applied to real-
world ―investment bank case
study‖ because WinGrid-WS
does not support workflows.

Chapter 5: Case studies 134

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

CSP-
specific
service

Grid
middleware

Case study
MCS / DES
CSP used

Case study evaluation
criteria / Comments

WinGrid-WS was, however,
deployed at Ford to support
SMMD task farming (discussed
later).

Workflow
service

 Condor
DAGMan

No case study-
based investigation

None Could not be applied to real-
world ―investment bank case
study‖ because of security
concerns related to Condor
middleware, viz., opening
multiple ports.

 WinGrid INVESTMENT
BANK CASE
STUDY

Analytics
and Excel
(MCS CSPs)

 Solution is implementable
and the service is realizable

Distributed
simulation
service

 BOINC with
HLA-RTI

No case study-
based investigation

None WinGrid was chosen over
BOINC because of the author’s
involvement with GridAlliance
project.

 Condor
Java
Universe
with HLA-
RTI

No case study-
based investigation

None WinGrid was chosen over
Condor because of the author’s
involvement with GridAlliance
project.

 WinGrid
with HLA-
RTI

UK NATIONAL
BLOOD SERVICE
(NBS) CASE
STUDY [hyp]

Simul8
Professional
(DES CSP)

 Solution is implementable
and the service is realizable

 Execution is faster over
dedicated grid resources
compared to a standalone
execution

Web-based
simulation
service
(grid portals)

 WinGrid-
WS

No case study-
based investigation

None WinGrid-WS was deployed at
Ford to support web-based
access to SMMD task farming
(discussed later).

The table above shows that there are a total of five different case studies. The investment

bank case study is grouped under two CSP-specific service categories, namely, task farming

service and workflow service. Since there are three more case studies that evaluate the

potential of grid middleware to offer task farming service, this case study will mainly

concentrate on workflow service. This case study will also evaluate WinGrid’s support for task

farming service over non-dedicated grid nodes.

Web-based simulation service (through use of grid portal) is the only CSP-specific service

that has not been included in a case study investigation, although it has been identified that at

least one middleware (in this case WinGrid-WS) can potentially support it. This is because

grid portals usually provide a higher level service to the other CSP-specific services. Thus, a

simulation user can potentially use a grid portal to upload simulation models, experiment

parameters files, etc., to conveniently access the other CSP-specific services. This means

that the other CSP-specific services like task farming service, distributed simulation service,

etc., should ideally be implementable before grid portals can be used to support these

services. Thus, it was considered important to first investigate the other services in the

context of different case studies. However, although no WinGrid-WS specific case study has

been presented in this thesis, WinGrid-WS has been implemented to support SMMD task

Chapter 5: Case studies 135

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

farming and web-based simulation using grid portals and was deployed in Ford (Dunton

Technical Centre, Basildon, Essex). This work is reported in Alstad (2006) and Mustafee et al.

(2006a). It has to be added here that WinGrid-WS was conceived because WinGrid, although

having earlier demonstrated the viability of SMMD task farming in Ford (this case study is

presented later), could not be deployed due to security concerns associated with its multiple

server socket-based ―push‖ implementation of job scheduling. However, as things stand today

(May 2007), WinGrid is again being considered for production deployment at Ford.

The sections that follow will investigate the following five case studies.

 BOINC case study with PRC middleware BOINC and MCS CSP Excel to evaluate

middleware support for SMMD task farming service (section 5.4).

 Condor case study with EDGC middleware Condor and MCS CSP Excel to evaluate

middleware support for MMMD task farming service (section 5.5).

 Ford case study with EDGC middleware WinGrid and DES CSP Witness to evaluate

middleware support for SMMD task farming service (section 5.6).

 Investment bank case study with EDGC middleware WinGrid and MCS CSP Analytics

and Excel to evaluate middleware support for workflow service and SMMD task farming

service (section 5.7).

 The UK National Blood Service (NBS) case study with EDGC middleware WinGrid and

DES CSP Simul8 Professional to evaluate middleware support for distributed simulation

service. The distributed simulation middleware that will be used is HLA-RTI (section 5.8).

5.4 BOINC case study for evaluation of SMMD task farming service

This case study investigates whether BOINC can provide SMMD task farming service to the

CSPs. A financial model created using MCS CSP Excel is used to experimentally evaluate

whether a BOINC-CSP solution is implementable in practice. Table 32 below shows the case

study evaluation criteria. As has been stated earlier in section 5.4, the execution speed

evaluation criteria is not considered for this case study because it is a hypothetical case

study, and furthermore, two other real-world case studies (sections 5.6 and 5.7) evaluate the

speed of execution of a batch of simulation experiments over both dedicated and non-

dedicated grid nodes. Some performance results for the BOINC case study can however be

found in the Appendix C, but it will not be included in subsequent discussions.

Table 32: BOINC case study

CSP-specific
service

Grid Middleware MCS / DES CSP
used

Case study evaluation criteria

SMMD task
farming
service

BOINC Microsoft Excel
(MCS CSP)

(1) Solution is implementable and the
service is realizable

This section is structured as follows. Section 5.4.1 highlights the importance of using a PRC

middleware BOINC in an enterprise setting. Section 5.4.2 then describes the Excel-based

MCS application used for the investigation of this case study. This is followed by a technical

Chapter 5: Case studies 136

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

discussion on how the application was grid-enabled (section 5.4.3). This section concludes

with the evaluation of BOINC with regards to its potential for providing the SMMD task farming

service (section 5.4.4).

5.4.1 Overview

BOINC middleware is primarily used for scientific computing using millions of volunteer PCs.

However, as discussed in section 2.9.3, it should also be possible to use the PRC middleware

within an organization for the processing of enterprise applications. Using a hypothetical case

study, this research now investigates how BOINC can be used in a desktop grid environment

to provide the SMMD task farming service to the CSPs. This work has been done together

with J. Zhang, J. Saville and S.J.E Taylor and has been accepted for publication. Arguably,

this is the first attempt to use a PRC middleware in an enterprise environment. There are no

existing examples of enterprise application processing using BOINC in literature.

This research is important because BOINC was architecturally designed for large-scale,

redundant computing using PCs that are intermittently connected to the Internet. In an

enterprise the PCs are usually centrally managed (thereby eliminating the need for redundant

computing) and enjoy dedicated connectivity to the corporate LAN. Furthermore the

processing requirements for enterprise applications may not be large scale (compared to

scientific application processing), but there may be multiple concurrently executing enterprise

applications. These applications may be frequently added, updated and deleted. These

differing characteristics of PRC and enterprise processing make this investigation interesting

because an attempt is being made to use a middleware designed for the former to be used by

the latter.

5.4.2 Range Accrual Swap (RAS) application

The application that is used to implement SMMD task farming using BOINC is a Microsoft

Excel-based spreadsheet application used for financial modelling by a leading European

financial institution. Microsoft Excel provides support for running MCS and is therefore

considered as a MCS CSP. The financial model calculates the risk of a Range Accrual Swap

at various points in time until the maturity of the transactions. Range Accrual Swap is a type

of financial derivative instrument in which certain fixed cash flows are exchanged for an

uncertain stream of cash flows based on the movement of interest rates in the future. The

model requires the estimation of future uncertain cash flows through simulation of the interest

rate curve using a standard stochastic process. The implied cash flows, based on the evolved

interest rates, are used to determine the value of the instrument at present date and in the

future. The possible values of the instrument in the future enable this financial institution to

determine the risk for its client on account of these transactions. A screenshot of the RAS

application is shown in screenshot 6.

Chapter 5: Case studies 137

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 6: Range Accrual Swap (RAS) application

The successful and accurate calculation of risk using the RAS application requires a large

number of MCS and takes a significant amount of time. Each simulation run (iteration) is

independent of previous runs and is characterized by the generation of random values for

various defined variables and by solving equations containing these variables. The

conventional approach of using only one instance of Microsoft Excel is not feasible in

situations where the business desires a quick turnaround (answer). One solution to this is to

distribute the processing of the MCS model over a grid and utilize the spare processing power

of the grid nodes and the Excel software installed on them. Thus, if the RAS model requires

100,000 iterations and the grid infrastructure consists of 10 dedicated grid nodes, then it

should be possible to assign each node to run 10,000 (100,000/10) iterations instead of using

only one computer to run all of the 100,000 iterations. In order to arrive at the final values, an

average of the multiple result sets returned by the different grid nodes (10 in this case) can be

calculated. This grid-facilitated execution of the RAS model has the potential of speeding up

the simulation of the financial models manifold, depending on the number of grid nodes

available and whether they are dedicated or non-dedicated resources.

5.4.3 Grid-enabling RAS application

A BOINC-based project requires application specific implementation on both the client side

and the server side. The client side implementation usually consists of writing a C++

application client that uses BOINC client library and APIs to integrate with the BOINC core

client. This is illustrated in figure 23 in section 2.9.2. The core client is downloaded from the

BOINC website, installed on individual PCs and is attached to a BOINC project. Once

successfully attached the core client downloads the project specific application client and

Chapter 5: Case studies 138

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

work units for processing. The core client, which is in effect the manager of a compute

resource, makes available CPU cycles to the attached project based on the user’s

preferences. These preferences can be set using either the menu provided by the core client

(screenshot 7) or through a web interface (screenshot 8). The latter offers the user more

flexibility in specifying CPU, memory, disk and network usage. The core client can support

multiple BOINC-based projects, but at any one time only one project can be executed. This is

illustrated in screenshot 9 (next page) where four different BOINC projects, viz,

BOINC@Brunel, Rosetta@Home, ClimatePrediction.net and SETI@home, are attached but

only one project (SETI@home) is communicating with the BOINC server side scheduler.

Screenshot 7: Setting user preference using menu provided by BOINC core client

Screenshot 8: Setting user preference using web interface

Chapter 5: Case studies 139

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 9: BOINC core client attached to multiple projects

Section 2.9.3 has distinguished between two different types of BOINC application clients:

runtime application client (BOINC-RAC) and proxy application client (BOINC-PAC). BOINC-

PAC is used for this case study which assumes that Microsoft Excel is installed on the BOINC

client computers.

The BOINC-PAC for the RAS case study is implemented in Visual C++. The BOINC-CSP

integration design is similar to that presented for WinGrid-CSP integration (section 4.4), the

difference however is that the former uses Visual C++ and the latter Java for invoking CSP-

specific operations defined by the Visual Basic DLL adapter. Also, since Visual C++ code can

directly invoke VB DLLs there is no need for JNI in the case of the BOINC-PAC.

BOINC-PAC uses the BOINC client library and APIs to interface with the BOINC core client. It

interacts with the Excel adapter to execute operations on the RAS Excel-based spreadsheet.

The Excel adapter, in turn, uses the COM interface of Excel to perform basic operations like

opening and closing the simulation file, setting the number of iterations, executing the

simulation and writing the results of the simulation to a text file (out.txt). The text file is

subsequently uploaded to the BOINC server. The interaction of the different program

components is shown in figure 38. Once the BOINC-PAC is downloaded by the core client

onto a PC it triggers the execution of the RAS MCS by utilizing the Excel software installed on

the local resource. Unlike most BOINC-based PRC projects where the entire executable

required to process data is downloaded to a PC, this approach only downloads the proxy

application code (executable C++ file and the Excel adapter) and uses enterprise software (in

this case Excel) to process the jobs on the grid nodes. Arguably, this not only maximizes an

enterprise’s return on investment (ROI) on computing resources but also for the software that

has been purchased.

Chapter 5: Case studies 140

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

BOINC core client

BOINC-PAC

Excel adapter (DLL)

Microsoft Excel

RAS application

COM interface

COM calls

spread

sheet

.xls

para-

meter

.txt

Downloaded

to client

Pre-installed

out.txt

Configuration

files

Results

uploaded

to server

Figure 38: Execution of RAS application using BOINC

The number of Monte Carlo iterations to be performed by the RAS application is not hard-

coded and is read by BOINC-PAC from a parameter file (parameter.txt in figure 38 above).

This file contains a list of values separated by a space. Each value represents the number of

iterations that need to be performed on an experiment being executed on a BOINC node. The

position of the value in the parameter file indicates the experiment number. Thus, if the

parameter file contains the following five values, viz., 10000 5000 7000 1000 3000, then the

first simulation experiment will do 10000 iterations, the next experiment will perform 5000

iterations and so on. In this case study a constant value of 300 has been used for all the 200

experiments that have been conducted. The parameter file therefore contains the value 300,

repeated 200 times, each separated by a space. It is arguable that the iteration value (300)

could have been hard coded for this case study. However, a parameter file has still been used

because it provides a mechanism that allows the passing of different arguments to a

simulation. This would allow BOINC to be used for SMMD task farming using DES CSPs,

wherein different arguments for the DES models need to be passed to the clients for

simulating different experiments.

The discussion that follows mainly concerns the BOINC server side implementation for the

RAS application. When the BOINC core client first attaches itself with the RAS project it

downloads the BOINC-PAC from the BOINC server. This application consists of a VC++

executable and a client initialization file called init_data.xml. Subsequently, the core client

downloads the project workunits. In BOINC one unit of computation is represented as a

workunit. These workunits are created using the BOINC create_work command and then

placed in the download directory of the BOINC server. The arguments supplied to the

create_work command include, among others, (1) the workunit template filename, (2) the

result template filename and (3) the command_line parameter. The template files are XML

files that describe the workunit (work_unit_template.xml) and its corresponding results

(result_template.xml). The workunits are created by running a program that invokes the

Chapter 5: Case studies 141

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

create_work command in a loop to generate the required number of workunits. The

arguments to the create_work command are described next.

 The ―workunit template file‖ lists the input files that are packed together as a workunit. In

the RAS BOINC project the input files are the RAS Excel-based spreadsheet, the Excel

adapter, and the parameter file. The workunit template file also mentions the quorum

(XML tag <min_quorum>) and the maximum total results (XML tag <max_total_results>).

However, since BOINC is being used in an enterprise grid environment that assumes

some form of centralized control over the computing resources, the value for both

<min_quorum> and <max_total_results> are set to one. In other words, it is expected

that all the results that are returned are valid and therefore the same workunit will not be

sent to more than one BOINC node.

 The ―result template file‖ lists the files that will be uploaded to the BOINC server after the

results have been computed by the BOINC-PAC. In the RAS application, the file that is

uploaded from each BOINC client is called out.txt. As has been said earlier, this file

contains the results of the RAS simulation.

It has to be added here that a better implementation was to include the RAS application,

Excel adapter and the parameter file with the BOINC-PAC itself, because including these

files as part of a workunit suggests that they will be downloaded whenever the BOINC

core clients request a new workunit. This is not required for the RAS application because

all the files are identical. However, it has been observed that the core client does not

download files that are already present in the local computer’s BOINC project directory.

Thus, only the command_line parameter (see below) is transferred to the BOINC client at

each invocation of the workunit request.

 The optional command_line argument in the create_work command is used to pass a

position value to the BOINC-PAC application. This position value represents an

experiment number and BOINC-PAC reads the parameter file parameter.txt to extract the

value at this position. This value, as has been discussed earlier, represents the number of

iterations that have to be performed on a simulation experiment being run on the client.

The use of the command_line argument is specific to the BOINC-PAC application being

developed.

To experimentally prove that BOINC can provide SMMD task farming service to CSPs, 200

MCS experiments (each with 300 iterations) were conducted. Thus, the parameter file

consisted of 200 consecutive values, each value being 300 and separated by a space. A Java

program was used to iteratively create these 200 work units by invoking create_work with

command_line argument (the argument is an integer value which is 1 for the first workunit, 2

Chapter 5: Case studies 142

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

for the second workunit and so on). These workunits were downloaded by different BOINC

nodes and the RAS application executed using the locally installed MCS CSP Excel. The

results of the simulation were then automatically uploaded to the BOINC project server.

The RAS BOINC project had been executed within the confines of the Brunel University

firewall. Illustrated in figure 39, it comprised of the following:

 One PC running the CentOS 4.3 operating system with a 864MHz Pentium III processor

and 256MB RAM. All BOINC server-side components and the MySQL database were

executed here.

 Four laptop computers running the Microsoft Windows XP Professional operating system,

each with a 1.73GHz Intel Celeron processors and 1GB RAM. Each laptop was pre-

installed with the BOINC client and MCS CSP Excel. One of these laptops had two

network cards, and acted as the router between the test LAN and the University LAN. The

University LAN was used to access the BOINC server.

 Four low-end desktop PCs running either Microsoft Windows XP Professional or Microsoft

Windows 2000, with either Pentium I or Pentium II processors and 128MB or 256MB

RAM. Like the laptops, these were pre-installed with BOINC client and MCS CSP Excel.

 The laptops and desktop PCs were connected through a 100Mbps switch to form a

private test LAN.

Figure 39: BOINC test network

5.4.4 Evaluation of SMMD task farming service

The results of the experiments and related discussions are included in Appendix C. For the

purpose of evaluating BOINC support for SMMD task farming, the only criterion was that the

solution is implementable in practise, and thus the task farming service using BOINC is

realizable. Through a detailed discussion in the previous section it has been shown that

BOINC server

BOINC client

and router

100Mbps switch

BOINC clients

Brunel campus network

Chapter 5: Case studies 143

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

BOINC can be used for supporting the CSP-specific SMMD variant of task farming service.

However, it has to be added that using BOINC in an enterprise setting has its drawbacks.

Most of these drawbacks are implementation related. These drawbacks are listed below.

 BOINC requires a UNIX/Linux-based server installation, which may not fit with an

enterprise’s existing infrastructure or expertise.

 Creation and management of projects on the BOINC server and the operation of the

BOINC client presently requires a degree of intervention from the user. This runs counter

to the principle of transparent job processing that desktop grids should ideally provide.

But it is possible that this burden could be lessened considerably though scripting and

automation.

 BOINC clients are designed to pre-fetch workunits from the server so that the execution

of BOINC-based applications can continue uninterrupted. However, when a BOINC

infrastructure consists of both high and low configuration PCs, as was the case with the

BOINC test bed that was used for this case study, workunits can be hoarded by faster

running PCs. Essentially hoarding occurs because the BOINC system currently provides

no fine control over how many work units are pre-fetched by each client, and thus ―fast‖

clients and ―slow‖ clients both pre-fetch multiple work units. If the work units are relatively

large-grained, the fast clients may ―run dry‖ before the slow clients have finished

processing the first of their work units.

The reader is reminded that one of these drawbacks, namely, the requirement for a PC

running UNIX/Linux operating system, has already been discussed in section 3.6. The

discussions in this section have shown that BOINC is not an ideal middleware implementation

for CSP-based simulation in industry. The other two drawbacks that have been highlighted in

this section further adds to this argument.

5.5 Condor case study for evaluation of MMMD task farming service

The Condor case study evaluates the EDGC middleware Condor in relation to its potential to

support the MMMD variant of task farming service. Table 33 below summarises the

technologies used and the case study evaluation criteria.

Table 33: Condor case study

CSP-specific
service

Grid Middleware MCS / DES CSP
used

Case study evaluation criteria

MMMD task
farming
service

Condor Java
universe

Microsoft Excel
(MCS CSP)

(1) Solution is implementable and the
service is realizable

An overview of the case study is presented in section 5.5.1. MMMD task farming necessitates

that two or more models are used for concurrent execution over the grid. This investigation,

therefore, attempts to grid-enable two different applications – the Asian Option application

(section 5.5.2) and the Range Accrual Swap application (section 5.5.3) – with the objective of

Chapter 5: Case studies 144

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

executing them concurrently using Condor middleware. Section 5.5.4 then discusses the

technology used to grid-enable both these Excel-based applications. This is followed by an

evaluation of Condor with regards to its suitability for supporting the CSP-specific MMMD task

farming service (section 5.5.5).

5.5.1 Overview

The Multiple Model Multiple Data (MMMD) variant of task farming has the potential to execute

different CSP models, which may belong to different simulation users, simultaneously over

the grid. Furthermore, these models may be created and executed using different MCS and

DES CSPs. However, in this hypothetical case study, models created using the same MCS

CSP (Microsoft Excel) are used. The first model is called the Asian Option application which

has been created by Professor Eduardo Saliby (Federal University of Rio de Janeiro, Brazil;

visiting professor at Brunel University, UK). The second model is the RAS application that has

been previously used in the BOINC case study. The RAS model has been created by the

credit risk division of a major investment bank. The evaluation criterion for this case study is

that the Condor-CSP solution for supporting MMMD task farming is implementable in practise.

This would also mean that the CSP-specific task farming service is realizable with Condor.

5.5.2 Asian Options (AO) application

The Asian Options Application uses Descriptive Sampling, which can be seen as a variance

reduction technique, to calculate options whose payoffs are path-dependent on the underlying

asset prices during the life of the option (Marins et al., 2004). Variance reduction techniques

are procedures that produce more precise estimates without a corresponding increase in

computing effort (Nelson, 1987). Descriptive sampling achieves this goal through a fully

deterministic selection of a simulation model's input variable values and the random

permutations of those values (Saliby, 1997). Screenshot 10 shows the Microsoft Excel-based

AO application.

The AO application estimates the value of the Asian options by simulating the model a

number of times and then calculating the average of the results of the individual iterations. On

a single PC, executing multiple iterations of the AO application takes a significant amount of

time. CSP-specific task farming service has the potential to reduce the time taken to process

the AO application by distributing its processing over multiple grid nodes. An average of the

results returned from each node can then be calculated to determine the value of the options.

5.5.3 Range Accrual Swap (RAS) application

The RAS application has already been described in section 5.4.2. The application is the same

but the technologies used for interfacing RAS with BOINC and RAS with Condor are different.

The integration of RAS with BOINC has been discussed in section 5.4.3. The section that

follows describes how both RAS and AO are used with the Condor Java universe execution

environment.

Chapter 5: Case studies 145

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 10: Asian Options (AO) application

5.5.4 Grid-enabling AO and RAS applications

The Condor Java universe execution environment is designed for the execution of Java

programs. The Java-VB DLL based integration technology that has been used previously for

WinGrid and Simul8 can therefore be used for executing CSP applications over a Condor

pool. The reader is referred to section 4.4 for more information pertaining to the adapter-

based approach to CSP-grid integration.

Condor

AO.class

AO

adapter

(DLL)

Microsoft Excel

AO

application

COM

interface

COM calls

Sprea

dsheet

.xls

out.txt

Condor

RAS.class

RAS

adapter

(DLL)

Sprea

dsheet

.xls

out.txt

COM

interface

COM calls

RAS

application

Microsoft Excel

Pre-

installed
Transfered

to client

Figure 40: Execution of RAS and AO applications on a Condor pool

Different Java programs (AO.class and RAS.class) and adapters (AO adapter and RAS

adapter) have been developed for AO and RAS applications respectively. As shown in figure

40 above, the AO.class/RAS.class communicates with the AO/RAS adapter to control the

Excel-based AO/RAS application. The results of the simulation are written back to their

Chapter 5: Case studies 146

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

respective out.txt files, which are then transferred back to the Condor node from which the

jobs were originally submitted. The figure also shows the files that have been transferred to

the remote Condor nodes from the job submission node. Both the AO and RAS applications

are executed concurrently over the Condor pool.

The discussion now focuses on the Condor mechanism that allows the submission of multiple

jobs. There are two applications in this case study and for supporting MMMD task farming it is

generally required that it should be possible to submit multiple instances of each application

over the Condor pool. The job submission file is used to achieve this. As has been discussed

earlier in section 2.10.3 of this thesis, every job has a corresponding job submit file (.sub file)

that defines variables that control different aspects of job submission. The most important of

these Condor-defined variables, for the purpose of task farming, is the queue variable. The

integer value assigned to this variable determines the number of replications of the same job

that are to be executed over the Condor pool. Screenshots 11 and 12 show the .sub file for

the AO and the RAS applications respectively. The value ―50‖ assigned to the queue variable

(the last variable in the screenshots) suggests that both the AO and the RAS applications will

be executed for a total of 50 times over different grid nodes. Some of the other job submission

variables shown in the .sub file are discussed next.

Screenshot 11: Job submit file for AO application

Chapter 5: Case studies 147

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 12: Job submit file for RAS application

The universe variable is assigned a value ―Java‖ because the Condor Java execution

environment is being used to run the simulations. The executable variable defines the name

of the Java class file that has the main() method. The reader may notice that the name of the

.class files for AO and RAS applications are not AO.class and RAS.class (as shown in figure

40) but AsianStockOption.class and RangeAccrualSwap_ExcelMonteCarloSimulation.class

respectively. The argument variable is used to pass a command line argument to the Java

program. For this hypothetical case study, the number of iterations for each simulation model

has been set to a modest value of ―10‖ through the use of this argument variable. The reader

is however reminded that both AO and RAS applications will be executed 50 times over, and

therefore the total number of simulation iterations for each application, taken as a whole, will

be 500 (50*10).

Each simulation experiment will have a unique working directory associated with it. These

directories should be present on the Condor node from which jobs are submitted, or on a

network drive that can be accessed by the job submission node. The working directories are

represented by the variable initialdir. In the case of the AO and the RAS applications the

values assigned to this variable are ―dir1.$(process)‖ and ―dir.$(process)‖ respectively.

Chapter 5: Case studies 148

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

$process is a Condor-defined integer variable that is incremented automatically depending on

the number of instances of a particular job that have been submitted. Thus, if queue=50 then

the value of the $process variable will start from 1 and will end at 50. This in turn suggests

that the working directory for the first job will be ―dir1.1‖ and for the last job it will be ―dir1.50‖

(in case of AO application). These working directories are important because they will contain

the results of the individual experiments and the log files that are output by Condor during

execution of each experiment (screenshot 13). The variables that define the names of the

three different Condor log files for console output, error information and Condor-specific

messages are output, error and log respectively. It has to be added, however, that a Condor

job is in-effect executed under a temporary directory that it created by Condor on the grid

node that is assigned the task of processing the job (screenshot 14 shows a temporary

directory called ―dir_3768‖ that has been created for executing one instance of a simulation).

Once the simulation is complete, the results from the temporary directory are transferred to

the individual working directories and the temporary directory deleted.

Screenshot 13: Results from the simulation experiments

Screenshot 14: Condor jobs getting executed in temporary execution directory

Chapter 5: Case studies 149

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

The files to be transferred to the execution host are indicated by the transfer_input_files

variable. These files are transferred to the temporary execution directory created by the job

executing node. The variable when_to_transfer_output and its corresponding value

―ON_EXIT‖ suggest that the simulation results (and the Condor log files) are transferred back

from the temporary execution directory to their respective working directories. This concludes

the discussion on the variables defined in the Condor submit files.

Jobs are submitted for execution using the Condor command condor_submit. The argument

to this command is the job description file associated with each job. Screenshot 15 below

shows that .sub files for both the AO application (aso.sub) and the RAS application (ras.sub)

are submitted using this command, and that 50 instances of each application are created

automatically by Condor (see message: ―50 jobs(s) submitted to cluster 109/110‖). Once the

jobs have been submitted the status of the Condor pool can be determined using the

command condor_status. Screenshot 15 shows that at present three grid nodes (computers

with names 210-A, 214-E and 215-F) are executing the jobs that have been submitted

(Activity=―Busy‖), while the remaining are ―Idle‖. However, all the nodes have been claimed by

Condor (State=‖Claimed‖) and it is expected that these will soon start executing the

simulations.

Screenshot 15: AO and RAS applications execution over Condor pool

The status of jobs that have been submitted can be found using the command condor_q.

However, only jobs that are yet to be completed or are presently running are displayed by this

command (screenshot 16). The jobs that have been completed are not shown.

Chapter 5: Case studies 150

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 16: Status of job queue displayed using Condor command “condor_q”

Finally, it is possible to mark submitted jobs for removal from the job queue. This is done

using the command condor_rm. The job number that represents the job to be deleted has to

be provided as an argument to this command. The job number can be determined from the

output of the command condor_q (field ID). The output of condor_rm command is shown in

screenshot 17 below.

Screenshot 17: Jobs removed from the queue using Condor command “condor_rm”

The Condor pool that was used to evaluate MMMD task farming comprised of the following:

 Four laptop computers running the Microsoft Windows XP Professional operating system,

each with a 1.73GHz Intel Celeron processor and 1GB RAM. Each laptop was pre-

installed with Condor middleware and Microsoft Excel. One of these laptops had the

Condor matchmaking agent running. More details on matchmaking can be found under

section 2.10.1.

Chapter 5: Case studies 151

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

 Three low-end desktop PCs running either Microsoft Windows XP Professional or

Microsoft Windows 2000, with either Pentium I or Pentium II processors and 128MB or

256MB RAM. Like the laptops, these were pre-installed with Condor middleware and

MCS CSP Excel.

 The laptops and desktop PCs were connected through a 100Mbps switch to form an

isolated Condor test pool (figure 41).

Laptop running Condor

matchmaker agent

100Mbps switch

Condor pool

Figure 41: Condor test pool

5.5.5 Evaluation of MMMD task farming service

The evaluation criterion for this case study was whether practical implementation of the task

farming service was possible, and in turn whether the CSP-specific task farming service was

realizable using EDGC middleware Condor. The discussion presented in the previous section

has shown that the middleware can support MCS CSPs to execute different models, each

with multiple running instances, over the Condor pool. It can be argued that the Condor

mechanism which allows submission and execution of multiple instances of two different MCS

CSP-based models would also allow execution of multiple DES CSP-based models over the

Condor pool. It can therefore be concluded that Condor can support CSP-based MMMD task

farming service. This, understandably, also suggests that Condor can support SMMD task

farming.

5.6 Ford case study for evaluation of SMMD task farming service

The Ford Motor Company case study evaluates WinGrid with respect to task farming service.

It is a real-world case study. As shown in table 34, there are two evaluation criteria that will

have to be satisfied. One, the task farming service can be implemented in practise, and two,

the execution of batch simulation experiments is faster over dedicated grid nodes compared

to their execution over a dedicated standalone computer.

Chapter 5: Case studies 152

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Table 34: Ford case study

CSP-specific
service

Grid Middleware MCS / DES CSP
used

Case study evaluation criteria

SMMD task
farming
service

WinGrid Witness
(DES CSP)

(1) Solution is implementable and the
service is realizable

(2) Execution is faster over dedicated
grid resources compared to a
standalone execution

This section is structured as follows. Section 5.6.1 presents an overview of the case study.

Section 5.6.2 then describes the simulation application (FIRST) that is being used in Ford to

create Witness models and to experiment with them. This is followed by a discussion on the

technology used to grid-enable FIRST (section 5.6.3). The experiments that are conducted

using FIRST and their results are presented in section 5.6.4 and section 5.6.5 respectively.

This section concludes with a discussion on the viability of using WinGrid for supporting

SMMD task farming (section 5.6.6).

5.6.1 Overview

The Ford Motor Company makes use of computer simulation to design new engine

manufacturing facilities and for process improvement in routine day-to-day operations. The

production of an engine is a complex operation at Ford as it involves the manufacture and

assembly of a wide variety of components into several possible engine types based on orders

from the customer (Taylor et al., 2005a). Using simulation in this process helps to experiment

with different machine configurations, buffer capacities, changeover schemes (switching

production from one engine type to another), shift patterns, machine downtime, etc., and

contributes to ensuring a smooth work-flow in the engine production line.

Ford uses the DES CSP Witness at the Dunton Engineering Centre in Essex. Wider adoption

of simulation has been hindered due to the lack of expertise required for using Witness. Like

any other CSP such knowledge is normally acquired over a period of time. In order to

encourage faster adoption of simulation, Ford felt the requirement for an application which

would make it easier and quicker for people to use simulation (Ladbrook and Janusszczak,

2001). As a response to this the FIRST application was developed by Ford with assistance

from the Lanner Group (the developers of Witness).

5.6.2 Fast Interactive Replacement Simulation Tool (FIRST) application

Fast Interactive Replacement Simulation Tool (FIRST) is a Ford proprietary tool that builds a

Witness model of an engine manufacturing line based on data input through Microsoft Excel.

The Excel-based application consists of more than 30 worksheets, 10 VBA modules and

many Excel macros. It uses Visual Basic for Application (VBA) to interface between Excel and

the Witness CSP, and dramatically cuts down the time it takes to build and run a Witness

simulation model by automating much of the process of model building.

Chapter 5: Case studies 153

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 18: FIRST application main menu

Screenshot 19: Graph generated by FIRST using data returned by Witness

Chapter 5: Case studies 154

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

To build a manufacturing line in Witness through FIRST, the application has to be provided

with inputs such as the number of machines, corresponding buffer sizes, time and frequency

of tool change, changeovers, shift patterns, user defined distributions, warm-up period,

experimentation period, etc. Once all the data has been entered and the ―Run Simulation‖

button clicked (see screenshot 18), the model is built in Witness and the simulation starts.

Results of the simulation are returned back to FIRST and are displayed using various Excel-

based features like tables, graphs (see screenshot 19), conditional formatting, etc. FIRST is

under continuous development and new features are added to match the requirements of the

modellers at Ford.

The complexity of an engine manufacturing line at Ford usually means that a number of

experimental scenarios may have to be run before an ideal solution can be identified (this fits

the requirements of SMMD task farming because only one Witness model is being simulated

but with multiple parameters). Each run requires setting experiment values using FIRST and

then executing the model to determine the outcome. This commences with the process of

parsing the various Excel worksheets (defined within the application) and executing

appropriate Witness commands with arguments based on the extracted values. This, in turn,

progressively builds the Witness model, and when the model is complete, Witness starts

simulating it. The time taken to generate the model using FIRST is dependent upon the

amount of data to be parsed. For example, in the case of large models comprising multiple

manufacturing lines it may take as long as 10-15 minutes to modify the model (re-

parameterise for experimentation) and up to 60 minutes to run it. If 10 different scenarios

were to be run using FIRST then the execution time is approximately 11 to 12 hours to finish

all the experiments using one computer. Keeping in mind the fact that Ford has multiple

Witness licences, it would be reasonable to assume that the time taken to build and conduct

multiple simulation experiments can be significantly reduced by utilizing all the available

computing resources. One way to achieve this is through grid computing and executing the

FIRST application over the grid.

In this case study WinGrid is used to investigate whether SMMD task farming service could

speed up simulation experimentation using FIRST. Most of the PCs in Ford’s simulation

division can be used uninterrupted during the execution of a simulation. The WinGrid nodes

can therefore be considered as dedicated resources. The next section describes how WinGrid

is integrated with FIRST to enable SMMD task farming.

5.6.3 Grid-enabling FIRST using WinGrid

Integration of FIRST with WinGrid is achieved using the WinGrid-CSP integration technology

that has been presented in section 4.4. Since FIRST is an Excel-based application, it can be

accessed through Excel’s COM interface. A custom built FIRST adapter has been developed

which encapsulates the COM function calls required by WTC to interact with the FIRST

Chapter 5: Case studies 155

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

application. In the WinGrid architecture, FIRST is the Worker Application (WA). Further

discussions on WinGrid architecture can be found in section 4.2.

For the purpose of experimenting with multiple simulation scenarios, an Excel spreadsheet

based controller called FIRST experimentation tool has been developed. It lists all of the

experiment parameters. In the WinGrid architecture, the First experimentation tool is the

Manager Application (MA) and it interacts with the WinGrid Job Dispatcher (WJD) to send

different parameters for experimentation to different FIRST applications through their

corresponding WinGrid Thin Clients (WTCs). Once the FIRST application has completed

simulating a model, it sends back to the MA the result it received from Witness. This

communication is done through the corresponding WTCs and the WJD. For each result

received by the FIRST application tool a new worksheet is created and the values stored. The

worksheets are named according to the experiment numbers. The interaction between the

MA and WJD is by means of an Excel Adapter. This adapter contains specific COM calls

required by the WJD to access the MA. A screenshot of the FIRST experimentation tool is

shown in screenshot 20 below. The example shows experimentation with various buffer sizes

of the machines.

Screenshot 20: FIRST experimentation tool showing a list of experiments

As has been noted earlier, WinGrid is written in Java which is a non-COM compliant

language. Java Native Interface technology has therefore been used for communication

between the Excel Adapter, WinGrid and the First Adapter. Figure 42 shows the integration

architecture of WinGrid and FIRST.

Chapter 5: Case studies 156

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Figure 42: Integration architecture of WinGrid and First

5.6.4 Experiments

The FIRST application automatically builds a Witness model that consists of one main and

one supplementary assembly line. These models are based on data that are preset in the

FIRST application. The data provides, among other details, the number of machines in each

assembly line and their corresponding buffer sizes. Multiple experiments with FIRST over

WinGrid have been conducted by varying the size of the buffer, such that each experiment

has a different set of buffer parameters. The FIRST experimentation tool (see screenshot 20)

defines the buffer capacities of each machine in the main assembly line, for all the

experiments that are to be conducted. The performance is measured in terms of the time

taken to execute 25, 50, 75 and 100 runs of the experiment respectively. So as to

demonstrate the potential of achieving speedup when using FIRST over dedicated WinGrid

nodes, the same experiments are repeated using a standalone version of FIRST. An Excel

spreadsheet similar to FIRST experimentation tool is used to automate the running of the

standalone version. The results obtained by the WinGrid version and the standalone version

of FIRST are shown in section 5.6.5.

In order to evaluate the performance of FIRST over WinGrid, a dedicated 4-node

experimental test bed was set up consisting of PCs with PIII 648 MHz processors and 256MB

RAM, connected through an isolated 100Mbps switch. Three of these nodes were configured

as WinGrid workers and were installed with WTC, Witness and the FIRST application (Excel).

Excel Adapter

FIRST

Experimentation

Tool

Experiment

Parameters

WinGrid Job

Dispatcher

JNI calls

COM calls

COM Interface

Witness CSP

FIRST Adapter

FIRST

WinGrid Thin

Client

COM Interface

JNI calls

COM calls
application
COM calls

Witness CSP

FIRST Adapter

FIRST

WinGrid Thin

Client

COM Interface

JNI calls

COM calls

Network

Communication

.

.

Worker

Application

(WA)

Worker

Application

(WA)

Manager

Application

(MA)

Chapter 5: Case studies 157

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

The fourth PC served as the WinGrid master and had the WJD and FIRST experimentation

tool (Excel) installed on it.

5.6.5 Results

The results obtained from the experiments are shown below (graph 1). The performance

results show that the WinGrid version of FIRST completed the execution of all the

experiments approximately three times faster when compared to the standalone execution.

This is to be expected since three dedicated WTCs were processing jobs sent by the master

computer.

0

5000

10000

15000

20000

25000

30000

35000

25 50 75 100

Experiment Runs

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

Single computer execution

3-node WinGrid execution

Graph 1: Time taken to execute FIRST application using different workloads

5.6.6 Evaluation of SMMD task farming service

The two evaluation criteria for this case study were, (1) the WinGrid solution is implementable

and the CSP-specific task farming service is realizable, and (2) dedicated WinGrid nodes

could achieve faster execution of FIRST simulations compared to dedicated, one computer,

execution. Through a discussion on the WinGrid-FIRST integration technology (section 5.6.3)

it has been shown that criterion one has been met. The results of the experiments in section

5.6.5 have demonstrated that criterion two has also been met. It can therefore be concluded

that WinGrid can facilitate SMMD task farming and can help simulation users to execute

simulation experiments faster.

Although the case study had shown the viability of the grid-enabled FIRST application within

Ford, it was not considered for production-level deployment within their simulation group. The

reasons for this are discussed in the next page.

Chapter 5: Case studies 158

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

After a successful demonstration over an experimental WinGrid test bed, the logical next step

was to deploy WinGrid and the grid-enabled FIRST application on the computers at Dunton.

This would demonstrate the application to the engineers of the group and the feedback

gathered could be used for further development of the grid version of FIRST. Doing this

required the approval of the IT support staff at Ford as they were responsible for maintaining

the existing hardware, installing software and securing computer systems within the

organization. Two issues were identified through discussions with the IT support staff with

regard to WinGrid deployment at Ford. First, Ford did not allow any kind of server software to

be installed on the office computers. Another requirement of Ford was the use of web

services for communication between PCs. As has been stated earlier, web services enable

application interaction using standard Internet protocols and open standards. In other words,

a web service is accessible on the same terms as any other resource on the Internet. Since

desktops at Ford have Internet access (with current security policy), web services deployed

on any web server should also be accessible.

Both these constraints ruled out the deployment of the current WinGrid implementation.

WinGrid did not fulfil the first requirement because WTCs have inbuilt server functionality and

are meant to be installed on individual office PCs. The use of Java sockets for communication

between the WinGrid nodes meant that it also failed to satisfy the second requirement.

Multiple sockets are required because WinGrid implements the ―push‖ job scheduling

mechanism (section 4.2). The ―push‖ mechanism has been found to be appropriate in the

context of using grid middleware in an enterprise setting (section 3.6.3). But clearly, the

security restrictions in place at Ford would not allow the production deployment of WinGrid.

It was realized that for the deployment of WinGrid to be possible at Ford, the existing ―push‖

based architecture had to be substantially changed and requirements imposed by Ford

incorporated into the system. The modified architecture was based on web services and was

called web services extension to WinGrid, or WinGrid-WS for short. It was implemented by

Anders Alstad as part of his Masters dissertation (Alstad, 2006). WinGrid-WS implements the

―pull‖ job scheduling mechanism and uses web services for communication. Thus, it uses port

80 for all its communication (like BOINC). This shows that although the ―pull‖ middleware

architecture is not considered very efficient for CSP-based simulation in industry (see section

3.6.3), WinGrid-WS was still preferred over WinGrid. This indicates that grid middleware

solution should be flexible and should be able to adapt to changing industry requirements.

Finally, it has to be added that the original multi-server implementation of WinGrid is again

being considered for production deployment at Ford (May 2007). This was made possible

through further discussion with the IT staff at Ford.

Chapter 5: Case studies 159

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

5.7 IB case study for evaluation of workflow and SMMD task farming services

The real-world Investment Bank (IB) case study investigates how workflows can be

implemented using WinGrid. It is also an example of SMMD task farming using MCS CSP

Analytics. The focus of this case study is, however, on workflows because MCS-based

SMMD task farming has been previously discussed in section 5.4. The services being

evaluated, the technologies being used and the case study evaluation criteria are listed in

table 35 below. The primary evaluation criterion for both these services is that the solution

can be implemented, and thus the CSP-specific services can be realized. The additional

criterion for task farming service is that non-dedicated WinGrid nodes will be able to execute

a set of simulation experiments faster.

Table 35: Investment bank case study

CSP-specific
service

Grid Middleware MCS / DES CSP
used

Case study evaluation criteria

Workflow
service

WinGrid Analytics and Excel
(MCS CSP)

(1) Solution is implementable and the
service is realizable

SMMD task
farming
service

WinGrid Analytics
(MCS CSP)

(1) Solution is implementable and the
service is realizable

(2) Execution is faster over non-dedicated
grid resources compared to a
standalone execution

The next section (5.7.1) provides a brief overview of credit risk simulation and the MCS CSP

Analytics. The Analytics-based IRS-RBF application currently being used by the bank for

simulating five different financial products is discussed in section 5.7.2. The technology used

for grid-enabling the IRS-RBF application to support workflow and task farming services is

presented in section 5.7.3, followed by a discussion on the experiments that were conducted

(section 5.7.4) and their results (section 5.7.5). This section concludes with an evaluation of

the suitability of WinGrid to support the workflow service and SMMD task farming service

(section 5.7.6).

5.7.1 Overview

The investment bank uses MCS CSP Analytics for Monte Carlo-based credit risk simulations

of counterparty transactions. The transactions between the investment bank and the

counterparties may involve agreements to exchange different sequences of payments over a

period of time. Credit risk is the potential that the counterparty will fail to meet its obligations in

accordance with the agreed terms (Basel Committee on Banking Supervision, 1999).

In assessing credit risk from a single counterparty, an institution (in our case the investment

bank) must consider three issues (Contingency Analysis, 2003):

(1) Default probability: What is the likelihood that the counterparty will default on its obligation

either over the life of the obligation or over some specified time period?

(2) Credit exposure: In the event of a default, how large will the outstanding obligation be

when the default occurs?

Chapter 5: Case studies 160

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

(3) Recovery rate: In the event of a default, what fraction of the exposure may be recovered

through bankruptcy proceedings or some other form of settlement?

Credit risk simulations are usually used to calculate the credit exposure over a period of time.

Analytics is the calculation engine for the Credient credit risk system that provides algorithms

to calculate time-dependent profiles of credit exposure using MCSs (Credient Analytics,

2007). Analytics consists of three separate applications, namely, Analytics Desktop, Market

Data Manager (MDM) and Analytics Server COM Object. The Analytics Desktop application

(screenshot 21) is a standalone application that uses a calculation engine to construct and

analyse financial portfolios. It links to the Market Data Manager to derive both current and

historical market data which serve as inputs to these calculations. Analytics Server COM

Object is essentially a COM interface to the Analytics Desktop and can be invoked by external

systems.

Screenshot 21: MCS CSP Analytics Desktop application

Analytics Desktop application is installed on multiple workstations within the credit risk

division of the investment bank. It is currently used to support five different financial products,

namely, currency swaps, default swaps, forward rate agreements, interest rate swaps (IRS)

and risky bond forwards (RBF). For each of these products, a contractual agreement is

reached between the investment bank and the counterparties to exchange payments over a

period of time. These products involve a risk element and differ based on the mechanisms

Chapter 5: Case studies 161

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

that determine what is exchanged (for example, principal amount, foreign exchange, etc.),

how the exchange payments are calculated (for example, interest rate payments calculated

over a notional principle, fixed payments, etc.). The time taken by Analytics to create risk

profiles varies considerably based on the product under consideration. Using multiple

Analytics-installed workstations made available through desktop grid middleware, it might be

possible to reduce the execution time of the MCSs through task farming.

In this case study WinGrid has been used with Microsoft Excel spreadsheets and Analytics for

computation of complex risk calculations. The MCS CSP here is Analytics, and Excel is used

to construct different parameters (using Excel VBA) for Analytics to simulate. The existing

IRS-RBF application is described next.

5.7.2 IRS-RBF application

The investment bank uses the IRS-RBF application to simulate five different financial

products. This application comprises of different Excel spreadsheets, VBA modules and MCS

CSP Analytics. Analytics is invoked by the VBA modules (present in the Excel spreadsheets)

through the Analytics Server COM Object. The IRS-RBF application takes its name from two

different products, namely, Interest Rate Swaps (IRS) and Risky Bond Forwards (RBF), which

it simulates. The name has been given by the author to represent the collective components

that logically make up this application.

Simulations of the financial products are a two-stage process. In the first stage, risk profiles

are generated by invoking Analytics through Excel. The parameters passed-on include

different currency codes like GBP, INR and USD. Analytics outputs the results of the

simulation in the form of text files. The first stage is subsequently referred to as the generate

profiles stage.

In the second stage, referred to as the create table stage, PFE and EPE tables are

generated by Excel. These tables are based on the values present in the text files that are

created in the generate profiles stage. PFE or Potential Future Expose is the maximum

amount of counterparty exposure (i.e., the maximum outstanding obligation if counterparties

were to default) that is expected to occur on a future date with a high degree of statistical

confidence; EPE or Expected Positive Exposure is the average counterparty exposure in a

certain interval, e.g., a month or a year (Canabarro and Duffie, 2003).

Stage one and stage two processing of the IRS-RBF application involves three distinct

operations that have to be ―manually-executed‖. These operations are (1) generate profiles,

(2) create EPE tables, and (3) create PFE tables. The EPE/PFE create table operations can

only start after successful execution of the generate profile operation. The time taken to

execute both these phases for each of the five products that is simulated by the IRS-RBF

application is shown in table 36. The total number of currencies used for simulating these

Chapter 5: Case studies 162

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

products is also indicated. The data for this table has been provided by the credit risk analysts

who have developed the IRS-RBF application.

Table 36: Execution time for different products using the original IRS-RBF application

Products Generate Profiles Create Tables Currencies

Currency Swaps 15 minutes 10 minutes 37

Default Swaps 15 minutes 5 minutes 1

Forward Rate Agreements 35 minutes 10 minutes 11

Interest Rate Swaps (IRS) 1 hour 15 minutes 12 hours 23

Risky Bond Forwards (RBF) 4 hours 30 minutes 1 hour 20 minutes 13

From the table it is clear that the IRS and RBF products take the maximum time to execute.

The numbers of currencies that are simulated by these products are 23 and 13 respectively.

Ideally, the bank would expect to run the IRS and RBF simulations with 37 currencies. This

means that the execution time will be further increased. It has been demonstrated earlier in

the Ford case study (section 5.6) that WinGrid’s SMMD task farming service could be used to

reduce execution time of simulation experiments over dedicated nodes. The same service

could arguably be used for the investment bank case study to speed up the IRS-RBF

application. However, unlike Ford, where the simulation department had access to dedicated

resources over which to run their simulations, the computers being used by the credit risk

division of the investment bank are non-dedicated resources. These resources are the

desktop PCs that are used by the credit risk analysts at their work place. Thus, WinGrid’s

SMMD task farming service would have to be executed over these non-dedicated PCs.

The IRS-RBF application also provides us with an opportunity to assess whether CSP-based

workflow service could be potentially supported through WinGrid. This opportunity arises

because the IRS-RBF simulation involves the manual invocation of three distinct operations

(generate profiles, create EPE tables, create PFE tables), and there is data dependency

between these operations. A workflow could potentially combine the manual operations into

one all-encompassing automated operation. In this case study WinGrid is examined in

relation to its potential for executing such a workflow.

The grid-enabled version of the IRS-RBF application only simulates the IRS and RBF

products because they can gain most from execution over the grid. The next section

discusses the implementation of SMMD task farming service and workflow service using IRS-

RBF application and WinGrid.

5.7.3 Grid-enabling IRS-RBF application

For the IRS-RBF application to utilize the resources made available through WinGrid, it has to

be integrated to the WTC and the WJD. Integration of the Excel-based IRS-RBF application

with WTC is achieved using Excel’s COM interface. A custom built IRS-RBF adapter has

been developed which encapsulates the COM function calls required by WTC to interact with

Chapter 5: Case studies 163

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

the IRS-RBF application. In the WinGrid architecture, the IRS-RBF application is the Worker

Application (WA). Further discussion on WinGrid architecture can be found in section 4.2.

In this case study the WinGrid Master Application (MA) that controls the IRS and RBF

simulation execution is called the WJD Application Specific Parameter (ASP) Tool for IRS-

RBF application (screenshot 22). It is an Excel-based tool that consists of specific parameters

that are required for processing the IRS-RBF application; for example, the name of the output

directory, the name of the product to simulate (IRS or RBF), the operation to perform (create

table, create profiles or both), the filename to simulate, whether the WJD process had

crashed during an earlier run, etc. All this information is present in the worksheet called

“General”. The WJD APS tool also consists of two other worksheets, namely “RBF” and “IRS”.

These worksheets contain data specific to the RBF and the IRS simulations respectively.

Each worksheet has a list of currencies. Each currency is a separate unit of computation

(job). The interaction between the MA and WJD is by means of an Excel Adapter. This

adapter contains specific COM calls required by WJD to access the MA. Figure 43 shows the

integration architecture of WinGrid and IRS-RBF application.

Screenshot 22: WJD Application Specific Parameter (APS) tool for IRS-RBF application

As has been pointed out earlier, although this case study primarily focuses on the

implementation of the workflow service using WinGrid, it is also an example of SMMD task

farming service with MCS CSP Analytics. SMMD task farming has been previously discussed

in the context of the BOINC case study and therefore only a brief overview of SMMD task

farming with WinGrid will be presented in the next section (section 5.7.3.1). This will be

followed by a discussion of the workflow service implementation for the IRS-RBF application

using WinGrid (section 5.7.3.2).

Chapter 5: Case studies 164

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Figure 43: Integration architecture of WinGrid and IRS-RBF application

5.7.3.1 SMMD task farming with MCS CSP Excel and WinGrid

 The WJD is the WinGrid master process that interacts with the MA (WJD APS tool for IRS-

RBF application) to extract the currency list. This interaction is performed through the Excel

adapter. The adapter defines procedures to extract currency values present in the RBF and

IRS worksheets of the MA and to transfer them to the WJD. The WJD then allocates the job

to each connected WTC. Each job consists of one currency name and one control message

(control messages are discussed in the next section). The WTCs process the jobs and return

the results. The results are only job completion messages because the outputs of the

simulations that are executed by the WTCs are stored in the shared output folder that the

WJD can also access. After one currency has been successfully computed the WJD will send

the next currency in its queue. This process repeats until all the currencies have been

successfully processed. This is an example of SMMD task farming because each WTC will

process the same IRS-RBF application (single model) using different parameters (multiple

data) that are passed-on to Analytics as inputs to the MCS.

5.7.3.2 Workflows with WinGrid

The grid-enabled version of the IRS-RBF application consists of a total of 9 Excel files (with

their associated VBA code) and the Analytics defined procedures for MCS. This application

requires 5 Excel files for simulating either the IRS or the RBF financial product. Out of these 5

files only one is for common use. Thus, 4 files (for IRS) + 4 files (for RBF) + 1 file (common

for IRS and RBF) = 9 Excel files in the IRS-RBF application. The files are stored in shared

Excel Adapter

WJD ASP Tool

for IRS-RBF

Application

Experiment

Parameters

WinGrid Job

Dispatcher

JNI calls

COM calls

COM Interface

Analytics CSP

IRS-RBF Adapter

IRS-RBF

Application

WinGrid Thin

Client

COM Interface

JNI calls

COM calls
application
COM calls

Analytics CSP

IRS-RBF Adapter

IRS-RBF

Application

WinGrid Thin

Client

COM Interface

JNI calls

COM calls

Network

Communication

.

.

Worker

Application

(WA)

Manager

Application

(MA)

Worker

Application

(WA)

Chapter 5: Case studies 165

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

network directories to enable both WAs and the MA to access them. The IRS-RBF application

processing consists of the following five phases irrespective of whether it is being used for the

IRS or the RBF simulation.

Phase 1: Create Profiles

Phase 2: Create EPE tables from the output files generated in Phase 1.

Phase 3: Create PFE tables from the output files generated in Phase 1.

Phase 4: Collate data from the EPE tables generated in Phase 2.

Phase 5: Collate data from the PFE tables generated in Phase 3.

These five phases are processed either by the WAs or the MA. Of the 5 files required for both

the IRS and RBF simulation, 3 are required by WAs and 2 by the MA. The files on which the

different IRS and RBF phases are dependent are listed below.

WA requirement for IRS:

 Phase 1: Generate_Profiles.xls

 Phase 2: Generate_Profiles_[IRS_Create_Table_EPE].xls

 Phase 3: Generate_Profiles_[IRS_Create_Table_PFE].xls

MA requirement for IRS:

 Phase 4: Generate_Profiles_[IRS_MASTER_EPE].xls

 Phase 5: Generate_Profiles_[IRS_MASTER_PFE].xls

WA requirement for RBF:

 Phase 1: Generate_Profiles.xls

 Phase 2: Generate_Profiles_[RBF_Create_Table_EPE].xls

 Phase 3: Generate_Profiles_[RBF_Create_Table_PFE].xls

MA requirement for RBF:

 Phase 4: Generate_Profiles_[RBF_MASTER_EPE].xls

 Phase 5: Generate_Profiles_[RBF_MASTER_PFE].xls

For both IRS and RBF application processing, phases 1, 2 and 3 are processed by the WAs

on WTCs through the SMMD task farming mechanism implemented by WinGrid. Thus, the

WJD allocates jobs for all three phases to the WTCs. Each job consists of a currency name

and an associated control message. The control message identifies the processing phase

(phase 1, phase 2 or phase 3) and an Excel file. The WAs read the control message, open

the Excel file and then execute the VBA procedures defined in the file.

In Phase 1 of processing, the execution of the VBA code by WinGrid invokes the Analytics-

defined procedures in a finite loop. Every iteration of the loop transfers a new set of

parameters for Analytics to simulate. The output of the MCS is written into a file by Analytics.

Thousands of such files are created during Phase 1 in case of both IRS and RBF simulations.

Chapter 5: Case studies 166

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Phase 2 and Phase 3 of the IRS-RBF application processing involves creation of EPE and

PFE tables from the output files generated in phase 1. The WAs create these Excel –based

tables by reading phase 1 output files from a shared network drive. Irrespective of the number

of jobs processed by WAs in phases 2 and 3, only one Excel file per WA per phase is

created.

Phase 4 and Phase 5 of processing for both IRS and RBF simulations is carried out by the

MA after the previous phases have been successfully executed by the WAs. The MA creates

two master files – one for EPE and another for PFE – with the objective of presenting

collective results to the user. The MA does this by transferring data from the temporary Excel

files (created by each WA during phase 2 and phase 3 of the simulation) to the Master EPE

and PFE files. Thus, if there are 8 WTCs then the MA will have to combine results generated

by each of the 8 WAs. And it has to do it twice - once for the master EPE table generation and

again for the master PFE table generation.

As can be seen from the discussion above, there exists dependencies between these five

processing phases in the IRS-RBF application. For example, Phases 2 and 3 can start only

when phase 1 has completed. Similarly, processing for phases 4 and 5 can begin only after

phase 2 and phase 3 processing has completed. The workflow between phases is

represented in the form of a diagram below (figure 44). The dotted box signifies that multiple

WAs can process the first three phases of the IRS-RBF application. Also, jobs in phases 2

and 3 can be processed in parallel by different WAs. The MA running in WJD is represented

by a square box. The MA is responsible for processing phases 4 and 5 sequentially, after the

earlier three phases have been processed by the WAs.

Figure 44: IRS-RBF application workflow

The workflow is currently implemented by the WJD using an algorithm which dispatches jobs

to the WTCs based on the underline dependencies between phases 1, 2 and 3. The WJD

algorithm then instructs the MA to sequentially process phases 4 and 5 of the IRS-RBF

application. Execution of the IRS-RBF application workflow is shown in screenshot 23.

Phase 1:

Create profiles

Phase 2:
Create EPE

tables

Phase 3:
Create PFE

tables

Phase 4:

Master EPE

table

Phase 5:

Master PFE

table

WAs MA

Chapter 5: Case studies 167

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 23: WinGrid WJD console showing execution of workflow in phases 1 to 3

Further information on the IRS-RBF application and WinGrid can be found from the WinGrid

user documentation (version 1) in Appendix D.

5.7.4 Experiments

The IRS-RBF application can be used for simulating both the IRS and the RBF financial

products by changing a value of a specific field in the WJD APS tool (screenshot22). The time

taken to execute each job (a combination of currency name and an associated control

message) varies according to the execution phase and the financial product being simulated.

Since currency is the basic unit of computation, the numbers of jobs that are sent by the WJD

to the respective WTCs in phases 1 to 3 are dependent on the number of currencies that will

be simulated. For example, if the IRS application processes 23 currencies then the total

number of workunits that will be dispatched by the WJD will be 69 (23 workunits each for

phase 1, phase 2 and phase 3 respectively).

In these experiments two different workloads have been used for both IRS and RBF products.

IRS is simulated with 10 currencies and 23 currencies, therefore the total number of workunits

will be 30 and 69 respectively. RBF is simulated with 5 and 13 currencies, thus the total

numbers of workunits are 15 and 39 respectively. This is shown in table 37 (next page). Each

workload is also given a name (indicated within square braces).

#Job

Phase2

Stage of

Processing

Phase3

Status:

Phase 3

Status:

Phase 2

Phase1

Status:

Phase 1

Chapter 5: Case studies 168

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Table 37: Workunits to be processed by IRS and RBF simulations

 Workload one Workload two

IRS 30 [30 workunits(IRS)] 69 [69 workunits(IRS)]

RBF 15 [15 workunits(RBF)] 39 [39 workunits(RBF)]

Identical IRS-RBF experiments for this case study were conducted on, (1) one dedicated

WinGrid node (running both WJD and WTC), (2) 4 non-dedicated WinGrid nodes connected

through the investment bank’s corporate LAN, and (3) 8 non-dedicated WinGrid nodes

connected with the corporate LAN. The grid-enabled IRS-RBF application was used for

running experiments over the different test beds. The reasons for not using the original IRS-

RBF application for execution over one dedicated, standalone PC were as follows.

 The original application was modified to a large extent by the author to enable faster

execution of the grid-version of the application. The execution time of the original IRS-

RBF application is presented in table 36.

 To run the IRS and RBF simulations using the original application meant that three

different operations (create profiles, create EPE tables and create PFE tables) had to be

manually invoked by the user. The execution of the grid-version of this application, on the

other hand, was fully automated.

The experiments were conducted over a period of two days during normal working hours of

the investment bank. The 4-node and the 8-node WinGrid experiments were run using

production machines that were also being used by the analysts to do their jobs. The one node

experiments were conducted using a PC that was not being used. The configurations of the

machines used for the experiments are shown in table 38 below.

Table 38: Configuration of WinGrid nodes

PC no. CPU RAM Operating System

PC1 2.99GHz Intel Pentium IV Processor (hyper-threaded) 512MB Microsoft XP Professional

PC2 2.99GHz Intel Pentium IV Processor (hyper-threaded) 512MB Microsoft XP Professional

PC3 2.79GHz Intel Pentium IV Processor (hyper-threaded) 512MB Microsoft XP Professional

PC4 2.13GHz Intel Pentium II Processor (hyper-threaded) 2GB Microsoft XP Professional

PC5 2.13GHz Intel Pentium II Processor (hyper-threaded) 2GB Microsoft XP Professional

PC6 2.13GHz Intel Pentium II Processor (hyper-threaded) 2GB Microsoft XP Professional

PC7 2.13GHz Intel Pentium II Processor (hyper-threaded) 2GB Microsoft XP Professional

PC8 2.13GHz Intel Pentium II Processor (hyper-threaded) 2GB Microsoft XP Professional

As can be seen from the table, all the CPUs were hyper-threaded. Hyper-Threading

Technology (HTT) is a new CPU technology that makes a single physical processor appear

as two logical processors, wherein the physical execution resources are shared and the

architecture state is duplicated for the two logical processors (Marr et al., 2002). The

operating system treats a hyper-threaded CPU as two processors instead of one and a

program can schedule processes or threads on both the logical processors and the CPU will

execute them simultaneously (as if there were two physical processors present in the

system).

Chapter 5: Case studies 169

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

The dedicated WinGrid node used for performing the standalone experiments had a 2.99GHz

HTT Intel Pentium IV processor with 512MB RAM. The 4 non-dedicated WinGrid nodes used

for the experiments comprised of different subsets of the machines at different times. The

results of the experiments are presented next.

5.7.5 Results

The results of the IRS and RBF simulations are presented in graph 2. These results are

based on two separate runs for each workload. The execution of all the four workloads,

pertaining to either IRS or RBF simulation, was fastest using the 8 non-dedicated WinGrid

nodes. The slowest execution was recorded by the standalone, dedicated WinGrid node.

Comparing execution speed of IRS-RBF application

0

2000

4000

6000

8000

10000

12000

14000

30 w orkunits

(IRS)

69 w orkunits

(IRS)

15 w orkunits

(RBF)

39 w orkunits

(RBF)

IRS / RBF workunit size

s
e
c
o

n
d

s

1 dedicated PC

4 non-dedicated WinGrid nodes

8 non-dedicated WinGrid nodes

Graph 2: Time taken to execute the IRS-RBF application using different workloads

For workloads [30 workunits (IRS)], [69 workunits (IRS)] and [15 workunits (RBF)] the time

taken to execute the IRS-RBF simulations using the 4 node WinGrid test bed was comparable

to its 8 node counterpart. One reason for this may be that, with 8 nodes the number of Excel

files created in Phase 2 (create EPE table) and Phase 3 (create PFE table) of the workflow

are double the number of Excel files created when running the simulation using 4 nodes.

Thus, the sequential MA operation in phases 4 and 5 (collate data from the EPE and PFE

tables) would generally take more time in the case of the former. An additional reason could

be the specific usage pattern of the PCs during the experiments. It is therefore possible that

the majority of the PCs in the 8 node set-up had their WTC clients manually or automatically

shut down because the analysts were using the computers for their own work. The WTC

Chapter 5: Case studies 170

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

program can be shut down manually through WinGrid’s graphical user interface (see

Appendix D). This can also happen automatically as the WTC program is designed to

continuously monitor CPU and the memory usage on a PC, and if the resource usage crosses

the pre-determined CPU/RAM threshold levels then the user jobs are immediately stopped.

Similarly, jobs are started automatically again when the CPU and memory usage decreases

as a result of a resource not being used. Thus, the time taken to execute the simulations on

non-dedicated WinGrid nodes is very much related to the usage pattern of the underlying

desktop PCs. Arguably, this is best shown by the results of workload [30 workunits (RBF)] in

relation to its execution over 4 non-dedicated WinGrid nodes, where the time taken to

complete the simulation is comparable to that of its standalone counterpart.

The IRS-RBF workflow consists of five different phases, of which three can be executed in

parallel by the WTCs. The results presented in the subsequent discussions are only relevant

to the first three phases of the workflow. Graph 3 shows the number of job assignments made

by the WJD to the WTCs during the execution of both the IRS and RBF simulations. In

general, the number of jobs received for processing by the WTCs (as a whole) is more than or

equal to the number of jobs assigned by the WJD. This is because once a job is assigned to a

WTC, it may either successfully process the job or may terminate processing before the

simulation is complete. The latter happens if the WTC process is stopped either automatically

or manually. In this case the unfinished job is again pushed back to the WJD queue for

assignment to other WTCs. If dedicated WinGrid nodes are used then the number of job

assignments by the WJD is generally equal to the number of jobs received and processed by

the WTCs. Thus, when the IRS/RBF simulations are run on a dedicated, one computer

WinGrid node the number of job assignments from the WJD (running on the same computer)

for workloads [30 workunits (IRS)], [69 workunits (IRS)], [15 workunits (RBF)] and [39

workunits (RBF)] are 30, 69, 15 and 39 respectively. The total number of job assignments for

the corresponding workloads in case of 4 node and 8 node WinGrid experiments are higher.

The graph also shows that the total job assignments for workload [39 workunits (RBF)] are

substantially higher for the 4 non-dedicated WinGrid node experiments. As noted earlier (and

depicted in graph 2), this would generally contribute to the increased execution time for RBF

simulation with 39 workunits [39 workunits (RBF)] over the 4-node WinGrid test bed.

The number of work assignments made by the WJD to the WTCs, with respect to 4 node and

8 node WinGrid executions, in each of the three phases of RBF-IRS simulation are shown in

graph 4 and graph 5 respectively. The graphs show that the number of job assignments made

during phases one (create profiles) is usually higher than the other two phases. This is

because the IRS-RBF application takes more time to complete the execution of phase one.

Using non-dedicated WinGrid resources for IRS-RBF application processing suggests that the

likelihood of WTCs discontinuing processing of larger work units in phase 1, because of user

Chapter 5: Case studies 171

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

intervention, is generally higher compared to the other two phases. However, this ultimately

depends on the resource usage pattern during the actual execution of a simulation.

Comparing job assignments from the WJD to WTCs

during execution of IRS-RBF application

0

200

400

600

800

1000

1200

1400

30 w orkunits

(IRS)

69 w orkunits

(IRS)

15 w orkunits

(RBF)

39 w orkunits

(RBF)

IRS/RBF workunit size

jo
b

 a
s
s
ig

n
m

e
n

ts

.

1 dedicated PC

4 non-dedicated WinGrid nodes

8 non-dedicated WinGrid nodes

Graph 3: Total job assignments for IRS-RBF simulation

Job requests for each phase of IRS-RBF application:

Execution over 4 non-dedicated WinGrid nodes

0

200

400

600

800

1000

1200

1400

30 w orkunits

(IRS)

69 w orkunits

(IRS)

15 w orkunits

(RBF)

39 w orkunits

(RBF)

IRS/RBF workunits

jo
b

 a
s

s
ig

n
m

e
n

ts

Phase 1 requests Phase 2 requests Phase 3 requests

Graph 4: Job assignments for different phases of IRS-RBF simulation (4 nodes)

Chapter 5: Case studies 172

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Job requests for each phase of IRS-RBF application:

Execution over 8 non-dedicated WinGrid nodes

0

20

40

60

80

100

120

30 w orkunits

(IRS)

69 w orkunits

(IRS)

15 w orkunits

(RBF)

39 w orkunits

(RBF)

IRS/RBF workunits

jo
b

 a
s
s
ig

n
m

e
n

ts

Phase 1 requests Phase 2 requests Phase 3 requests

Graph 5: Job assignments for different phases of IRS-RBF simulation (8 nodes)

5.7.6 Evaluation of workflow and SMMD task farming service

The real-world investment bank case study had two evaluation criteria. One, that the solution

is implementable for both workflow service and SMMD task farming service. This would, in

turn, mean that both these services were realizable using WinGrid. Two, in the case of SMMD

task farming service the speed of execution of the IRS-RBF application using non-dedicated

WinGrid nodes is faster than using one dedicated computer. The discussions in section 5.7.3

have shown that the solution is implementable. The results of the simulation presented in the

earlier section have shown that criterion two has also been met. It can therefore be concluded

that the case study has met both the evaluation criteria and WinGrid can be used to support

the CSP-specific services pertaining to workflow and SMMD task farming.

5.8 NBS case study for evaluation of distributed simulation service

Distributed simulation can be used to address various requirements. These are highlighted in

section 2.6 of this thesis. The purpose of the NBS distribution simulation is to attempt faster

model execution using a set of distributed processors (case study evaluation criteria two). The

simulation models used in the investigation of the NBS case study have been developed by

Korina Katsaliaki from the University of Southampton as part of her PhD (Katsaliaki, 2007).

Table 39 presents a summary of the technologies used and the evaluation criteria for this

case study.

Chapter 5: Case studies 173

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Table 39: NBS case study

CSP-specific
service

Grid Middleware MCS / DES CSP
used

Case study evaluation criteria

Distributed
simulation
service

WinGrid with HLA-
RTI

Simul8
Professional
(DES CSP)

(1) Solution is implementable and the
service is realizable

(2) Execution is faster over dedicated
grid resources compared to
standalone execution

The overview of the NBS supply chain is presented in section 5.8.1. This is followed by a

discussion on the standalone NBS model, originally built for execution on a single computer,

(section 5.8.2) and its distributed counterpart (section 5.8.3). Sections 5.8.4 and 5.8.5 then

describe the alternative HLA time advance mechanisms for the grid version of the NBS

simulation and the technology used for their respective implementations. The experiments

conducted using the standalone and the distributed versions of the NBS simulation and their

results are presented in sections 5.8.6 and 5.8.7, followed by a discussion on the suitability of

WinGrid in providing a distributed simulation service to DES CSPs (section 5.8.8).

5.8.1 Overview of the National Blood Service (NBS) supply chain

The UK NBS is a part of the National Health Service Blood and Transplant (NHSBT)

organization. NHSBT was formed on 1st October 2005 as a result of the merger of the

National Blood Authority (NBA) (which manages the NBS, Bio Products Laboratory and the

International Blood Group Reference Laboratory) and UK Transplant (NHS Blood and

Transplant, 2006). The NBS is responsible for collecting blood through voluntary donations,

testing the blood for ABO and Rhesus grouping and infectious diseases such as HIV,

processing the blood into around 120 different products (of which the main three are Red

Blood Cells (RBC), plasma and platelets), storing the stockpile and transferring excess stock

between different NBS centres, and finally issuing the different blood products to the hospitals

as per their needs. The NBS infrastructure consists of 15 Process, Testing and Issuing (PTI)

centres which together serve 316 hospitals across England and North Wales. Each PTI

Centre thus serves around 20 hospitals. The NBS simulation has been modelled with inputs

from the Southampton PTI Centre.

Blood products are stored in PTI centres until they are requested by the hospitals served by

that centre. A hospital places an order for blood products when its inventory falls below a

predetermined order point, or when rare products not held in stock are requested for

particular patients. Hospitals normally receive their orders daily and the blood remains in the

hospital bank until it is cross-matched (tested for compatibility) for a named patient. It is then

placed in ―assigned inventory‖ for that patient for a fixed time after the operation. If it is not

used, it is returned to ―unassigned inventory‖ and can be cross-matched again for another

patient. On average a unit will be cross-matched four times before it is either used or

outdated. In practice, however, only half of the cross-matched blood is actually transfused.

Chapter 5: Case studies 174

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

This clearly represents a huge potential for savings since the cost of a single unit of RBC is

approximately £132.

5.8.2 Conventional approach to modelling the NBS supply chain

In their original study, Katsaliaki and Brailsford (2007) modelled the NBS Southampton PTI

and included only RBC and platelets, which together comprise 85% of issues and are the

chief source of wastage and shortages. The model was originally built using the DES CSP

Simul8 Professional and was meant for standalone, one computer execution. In this section

the original NBS model (henceforth referred to as the conventional NBS model) is described.

This discussion is important because the conventional NBS model will be subsequently

compared to its distributed counterpart with regards to execution speed. This comparison is

needed because the second criteria for evaluating the CSP-specific distributed simulation

service is that, a distributed simulation running over dedicated grid resources will run faster

than its standalone counterpart. Otherwise, the simulation practitioner may not have any need

for distributed simulation. Other potential benefits of using distributed simulation, for example

saving time and cost associated with creating new simulations through the linking of existing

models, wider participation of simulation practitioners in a geographically distributed

experiment, etc. are not considered for the purpose of this research.

There are two main categories of entities in the model; items and orders. Items are the

individual blood units (RBC and platelets) delivered from the NBS PTI centre to the hospitals

in a one-way direction, since returns of products are not allowed. Orders are placed by the

hospital blood bank managers to the NBS PTI centre for blood products. Requests are

matched with items according to their characteristics (attributes) and delivered as appropriate.

The NBS model starts from a representative state to eliminate the need for warm-up. While

the model runs, data such as the day and time of placing an order, the requested blood

product (RBC or platelets), the amount by blood group, etc. are reported to an Excel file. The

model advances time in simulated minutes but the hospitals’ blood bank stock for placing

orders to the NBS PTI is checked only every simulated hour. Likewise, the blood stocks which

are ready to be delivered from the NBS PTI centre to the hospital(s) are also checked only

once every simulated hour. Blood products are perishable by nature and it is important to

keep an account of their remaining shelf-life. The shelf-life of a blood product is therefore

decreased by the minute. Thus, it is likely that Simul8 schedules a ―bound‖ event for each unit

of RBC or platelet present in the system at every simulated minute, which brings down the

shelf life of the blood product by one minute.

The conventional model contains the processes of the NBS PTI Centre, from the collection of

blood to the delivery of blood products, and the processes of a single medium-volume

hospital. The model captures physicians’ requests for blood and the processes whereby the

hospital blood bank checks its stock levels and places orders. The order entities and item

Chapter 5: Case studies 175

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

entities are represented as information flow (hospital orders) and material flow (blood

products) respectively. A single supply centre and hospital is shown in figure 45. Figure 46

shows a simplified diagram showing the relationship between four hospitals and one supply

centre, all of which are being executed by a single running instance of Simul8 on a single PC.

Figure 45: Simplified model of the NBS supply chain with NBS PTI (left) and one hospital

Figure 46: Conventional simulation approach with NBS PTI and four hospitals

The runtimes recorded during the execution of the conventional models (i.e., model with NBS

PTI and one hospital, model with NBS PTI and two hospitals, etc.) were as follows. A single

NBS supply centre with a single hospital, as shown in figure 45, took approximately 14

minutes to run for a whole simulated year on a 1.7GHz processor desktop PC with 1GB RAM.

However, the runtime increased dramatically as more hospitals were added to the model. For

a model with a single supply centre and two hospitals the execution time was 78 minutes, with

three hospitals it was 17.5 hours and for a single supply centre and four hospitals, as

represented in figure 46, the execution time was 35.8 hours (even after considerable help and

NBS PTI

HOSPITAL 1 HOSPITAL 2

HOSPITAL 4 HOSPITAL 3

Information Flow Material Flow

Model running on single PC

Chapter 5: Case studies 176

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

advice from the package vendor on model profiling). There are around 16 hospitals in the

Southampton area, and the observation that the execution time dramatically increases with

the addition of every new hospital to the model may mean that modelling the entire NBS

simulation using one model is infeasible.

As has been discussed in chapter two, distributed simulation is a technique that can use the

resources of many computers to execute a simulation model and can potentially reduce

simulation runtime (Fujimoto, 2003). The distributed simulation service, which can be

potentially provided through the use of grid computing, may make it possible to reduce the

execution time through access to multiple grid resources. For faster execution of the NBS

models over the grid, the processes modelled by the conventional NBS model will have to

split into individual well-defined models. For example, it may be possible to split the

conventional model of PTI and two hospitals into three separate models, where one model

executes the PTI and two other models simulate one hospital each. These models may be

able to run over three separate dedicated grid nodes to realize a distributed simulation

federation. This further requires the use of a distributed simulation middleware like HLA-RTI

because Simul8 does not presently support distributed simulation (refer to table 14 in chapter

two). However, it does offer a set of interfaces that can be called upon by an external program

to control the Simul8 simulation engine (refer to table 10 in chapter two). Using these Simul8

open interfaces together with the WinGrid middleware (that has earlier been shown to offer

potential support for HLA-RTI based distributed simulation service) and the WinGrid-CSP

integration technology (presented in section 4.4), it is considered worthwhile to investigate the

distributed simulation service in the context of NBS distributed supply chain simulation.

5.8.3 Distributed approach to modelling the NBS supply chain

For the benefit of the reader, a short overview of HLA-based distributed simulation and CSPI-

PDG is presented next. For a more thorough discussion the reader is referred to section

2.6.3.1. A distributed simulation generally requires the use of a distributed simulation

middleware to synchronize the simulation time of the individual simulations and to transfer

messages between them. HLA is an IEEE 1516 standard for distributed simulation. HLA-RTI

is a distributed simulation middleware that implements the HLA standards. The two frequently

used HLA terminologies are federation and federate. A federation is defined as a HLA-based

distributed simulation. Each individual simulation, usually running on a separate computer, is

a federate and together they make up a federation. CSPI-PDG is a SISO product

development group that has proposed standards for the interoperation of CSPs with HLA. It is

thus considered appropriate to use the CSPI/HLA standards for implementing a distributed

simulation with Simul8 and the HLA-RTI middleware.

The NBS distributed simulation that is meant to execute over WinGrid nodes is modelled by

dividing the conventional NBS model into individual models of the Southampton NBS PTI and

hospitals. Each model is simulated by a Simul8 federate. Each federate is a combination of

Chapter 5: Case studies 177

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

DES CSP Simul8, the Simul8 model and the associated WinGrid-CSP integration code

(Simul8 adapter). The Simul8 federates, running over multiple WinGrid nodes, together form

the NBS federation. The interaction between federates is through messages that represent

the interaction of one model part with another (e.g., messages are sent when an entity leaves

one part of a model and arrives at another). The HLA-RTI middleware is responsible for

transporting these messages between federates (and therefore between different computers)

and to synchronize their simulation time. The reader is reminded that the HLA-RTI does not

use the underlying communication channels that have been opened by the grid middleware.

Furthermore, the NBS distributed simulation uses the application integration approach to

provide distributed simulation service over the grid (section 3.3.5.2). In this approach WinGrid

is only responsible for starting simulations over the WinGrid nodes; the management of the

distributed simulation itself is the responsibility of the code that is associated with the

individual models. The HLA-RTI middleware that has been used in this research is the DMSO

HLA-RTI 1.3-NG middleware (US Department of Defense Modelling and Simulation Office,

1999). The NBS supply chain federation consisting of the individual Simul8 federates and the

HLA-RTI middleware is shown below (figure 47). The Simul8 federates are executed over the

WinGrid nodes and the DMSO HLA-RTI 1.3-NG process (rtiexec) is executed on a separate

computer.

Figure 47: NBS distributed simulation with NBS PTI and four hospitals

In the distributed NBS simulation the HLA-RTI is presented as a black box. Each Simul8

federate running over a different WinGrid node executes the model of either the NBS PTI

supply centre or a hospital. In this investigation the communication between the Simul8

models is achieved through HLA interactions (Kuhl et al., 1999). Interactions are HLA defined

NBS PTI

HOSPITAL 1 HOSPITAL 2

HOSPITAL 4 HOSPITAL 3

Information Flow Material Flow

Model running over WinGrid nodes

DMSO

HLA-RTI

1.3-NG

RTI-mediated Message Flow

betwee

rtiexec running on a separate computer

Chapter 5: Case studies 178

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

transport mechanism for communication between federates. The reader can think of

interactions as messages that are passed between two or more federates. Interactions can be

time-stamped and may carry parameters. These parameters can be used to exchange

information between federates. All interactions are routed through the HLA-RTI and this

ensures that messages are received by federates in proper time-stamped order. In the NBS

distributed simulation the interaction parameters are read from an Excel file. For example,

entities representing orders are written into the file by Simul8 during the execution of hospital

models. The HLA-RTI then correctly transfers this information to the NBS PTI model in the

form of HLA interactions. The incoming orders from each hospital are collected into their

corresponding queues in the NBS PTI model and the orders are matched with the available

stock of blood. The resultant matched units are written into an Excel spreadsheet in the NBS

PTI federate. This information is then sent to the different hospital models in a similar manner.

The interactions between the hospitals and the NBS PTI centre are sent every 60 minutes of

simulated time, provided orders/deliveries exist. Thus, although the DES generates orders

and deliveries as the model progresses in time, these are only released at specific time-steps.

It is to be noted here that this time-stepped information exchange behaviour occurs as a

result of the blood ordering and delivery policies in place with NBS.

The next two sections (5.8.4 and 5.8.5) will focus on HLA time management mechanisms

employed for the grid-enabled NBS simulation and the Simul8-DMSO RTI integration work

respectively. These discussions are important because they attempt to highlight the following:

(1) The model characteristics are important while selecting HLA time management strategies

as it bears a direct effect on the model execution speed. For the evaluation of grid-

facilitated distributed simulation service, the HLA time management scheme that

executes the distributed NBS simulation in the shortest time will be used for comparison

with the conventional NBS model.

(2) The complexity involved in integrating CSPs with distributed simulation middleware. This

discussion complements the earlier discussion on WinGrid-CSP integration technology

(section 4.4). This, in turn, has a direct bearing on the practicality of implementing CSP-

based distributed simulation over the grid.

5.8.4 HLA time management mechanisms used in NBS distributed simulation

As with most distributed simulations, the NBS models being executed on different WinGrid

nodes need a mechanism to synchronize their simulation time and to ensure the current

ordering of events. In a standalone simulation the event list consists only of events generated

internally by the ―single‖ running instance of the model. These events are termed as internal

events. In a distributed simulation each federate also receives events from other federates.

These events are termed as external events. The event list of a distributed federate,

therefore, has to correctly time order both the internal events and the external events and

execute them without any error. However, due to (1) latencies in the network, (2) different

Chapter 5: Case studies 179

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

processing requirements for different models, and (3) different hardware configurations of

machines (which may mean that simulations are being executed at different speeds), it is not

possible to guarantee when external events will arrive at a federate.

In order to ensure that in a federation events arrive at each federate at the causally correct

order, the time management services of the HLA are employed. The HLA defines at least two

variants of the conservative time synchronization mechanism that can be invoked by a

federate to request a simulation time advance from HLA-RTI – the Next Event Request (NER)

and the Time Advance Request (TAR) (Kuhl et al., 1999). Both these mechanisms are

implemented by the HLA-RTI middleware in the form of HLA service calls.

NER and TAR service calls are invoked by a federate with a time component that represents

the logical time the federate wishes to move to. Depending on whether NER or TAR is called

by the simulating federate, the time granted to it by the HLA-RTI can be different. NER will

grant the federate a time that is either less than or equal to the requested time depending on

whether external events are present, and if yes, their timestamps. If an external event with a

timestamp less than the requested time exists, then the time granted by the HLA-RTI will be

equal to the timestamp of the external event. If no external events exist or an external event

with timestamp equal to the requested time is received, then the HLA-RTI will grant the

federate the requested time. TAR, on the other hand, will grant the simulation federate a time

that is exactly equal to the time requested by a federate. Until the requested time can be

safely granted to the federate (i.e., it can be assured that no causality error will occur), the

HLA-RTI will not send the time grant message.

This research has implemented both NER and TAR versions of NBS distributed simulation

over the grid. This has been done in order to demonstrate that the selection of an appropriate

HLA conservative time management mechanism should be made not only based on the

internal characteristics of the simulation, but consideration should also be given to the

characteristics of the message flow between models. A further motivation has been to use the

time management method that would give better performance results in terms of execution

speed. Irrespective of the time management mechanism used, the simulation results are

identical in case of the NBS distributed simulation.

5.8.5 Grid-enabling NBS distributed simulation

This section of the thesis builds on the WinGrid-CSP integration architecture (presented

earlier in section 4.4) with the objective of enabling distributed simulation over the grid. This is

subsequently referred to as WinGrid-DMSO_HLA_RTI-Simul8 integration architecture. The

software component that implements this architecture is referred to as CSP Controller

Middleware (CCM). The CCM interacts with both the Simul8 Professional Edition and the

DMSO HLA-RTI to realize a Simul8-based distributed simulation. Each of these two tasks is

performed by two distinct components of the CCM: the Simul8 adapter and the RTI adapter.

Chapter 5: Case studies 180

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

The communication between these adapters is via Java Native Interface (JNI) and Jacob

technologies. The Simul8 adapter utilizes the Simul8 Professional COM interface to access

the Simul8 simulation engine. The interaction of the RTI adapter with DMSO HLA-RTI is

through java-defined HLA interface bindings. The CCM has a separate implementation for

TAR and NER time advance mechanisms, referred to as CCM-TAR and CCM-NER

respectively. The architecture of the CSP Controller Middleware is shown in figure 48. The

message exchange protocol followed by CCM-TAR and CCM-NER can be found in

Appendix B.

Figure 48: CSP Controller Middleware (CCM) architecture

5.8.6 Experiments

To investigate the performance of the NBS standalone simulation with (1) NBS distributed

simulation over WinGrid using the NER time management service (implemented by CCM-

NER) and, (2) NBS distributed simulation over WinGrid using the TAR time management

service (implemented by CCM-TAR), four different scenarios were designed. Each scenario

was represented by one NBS PTI centre serving one, two, three or four hospitals respectively.

The name of the scenario reflects the number of hospitals that the NBS PTI caters for. For

example, scenario 2Hospital implies that 2 hospitals are being served by one NBS PTI centre.

In case of distributed NBS simulation, scenario 2Hospital implies three separate Simul8

models, each modelling either the NBS PTI centre, Hospital1 or Hospital2 and running on

three separate WinGrid nodes. In case of standalone NBS simulation, scenario 2Hospital

Simul8 PTI Federate

HLA Run Time Infrastructure

Simul8 CSP

NBS PTI

Model

COM Interface

Simul8 Adapter

RTI Adapter

Simul8 Hospital Federate

Simul8 CSP

Hospital

Model...

COM Interface

Simul8 Adapter

RTI Adapter

Time synchronized

Entity Transfer

between models

CSP Controller

Middleware

CSP Controller

Middleware

JNI Calls JNI Calls

W
in

G
ri

d
 n

o
d

e

W
in

G
ri

d
 n

o
d

e

Chapter 5: Case studies 181

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

suggests that a single Simul8 model, running on a single PC, has modelled the behaviour of

the NBS PTI centre and two hospitals.

Experiments were conducted over dedicated WinGrid nodes. The nodes comprised of Dell

Inspiron laptop computers running the Microsoft Windows XP operating system with 1.73GHz

processors and 1GB RAM. The test bed also included a medium specification desktop PC to

host the DMSO RTI rtiexec software. These computers were connected through a 100Mbps

CISCO switch. The results of the execution times for each of the scenarios are based on the

average of five runs.

5.8.7 Results

Graph 6: Execution time of NBS distributed simulation and NBS standalone simulation

Graph 6 above shows the execution time (in seconds) using both standalone and distributed

approaches for all the four scenarios. The results show that the conventional model with one

hospital takes approximately 14 minutes to run for a whole simulated year. The run time rises

to 78 minutes when the model runs with two hospitals and to approximately 17.5 hours with

three hospitals. The addition of the fourth hospital increases the execution time to 35.8 hours.

The NER version of the distributed model with one NBS supply centre and one hospital runs

in approximately 8.4 hours, with two hospitals in 9.8 hours, with three hospitals in 12.7 hours

and with four hospitals in 16.5 hours. The execution time for the TAR version of the

0

20000

40000

60000

80000

100000

120000

140000

1
H

o
s
p
ita

l

2
H

o
s
p
ita

l

3
H

o
s
p
ita

l

4
H

o
s
p
ita

l

Models

T
im

e
 i
n

 S
e
c
o

n
d

s

Standalone Model Distributed Model-NER

Distributed Model-TAR

Chapter 5: Case studies 182

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

distributed model is 7.2, 7.8, 10.3 and 15.5 hours for the 1Hospital, 2Hospital, 3Hospital and

4Hospital scenarios respectively.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1
m

on
th

2
m

on
th

s

3
m

on
th

s

4
m

on
th

s

5
m

on
th

s

6
m

on
th

s

7
m

on
th

s

8
m

on
th

s

9
m

on
th

s

10
 m

on
th

s

11
 m

on
th

s

12
 m

on
th

s

Months

Ti
m

e
in

 s
ec

on
ds

1Hospital (s) 2Hospital (s)
3 Hospital (s) 4 Hospital (s)
1Hospital - NER (d) 2Hospital - NER (d)
3 Hospital - NER (d) 4 Hospital - NER (d)
1Hospital - TAR (d) 2Hospital - TAR (d)
3 Hospital - TAR (d) 4 Hospital - TAR (d)

Graph 7: Monthly execution time of NBS distributed and standalone simulations

Graph 7 compares the time taken to execute the three versions of the NBS simulation

(standalone, distributed-NER [implemented by CCM-NER] and distributed-TAR [implemented

by CCM-TAR]), for every consecutive month of the year (1month to 12months) and for each

of the four scenarios (1Hospital, 2Hospital, 3Hospital and 4Hospital). The results obtained

from scenarios 1Hospital and 2Hospital show that the conventional (standalone) version

executes much faster compared to its distributed counterparts. In case of scenarios 3Hospital

Chapter 5: Case studies 183

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

and 4Hospital both the distributed versions outperform the execution of the standalone model.

However, in all the 4 scenarios the TAR-based simulation executes faster compared to the

NER-based simulation. There also appears to be a large increase in the runtime for the

conventional version while increasing the number of hospitals in the model. This is quite a

contrast to the substantially smaller and smoother rise in the runtime in case of both NER and

TAR versions of the distributed model.

5.8.8 Evaluation of distributed simulation service

The evaluation criteria for this case study were the following:

 The WinGrid-CSP integration solution for supporting distributed simulation service can be

implemented in practice. This would also mean that the CSP-specific task farming service

is realizable using WinGrid.

 The execution speed of running the NBS distributed simulation using dedicated WinGrid

nodes is faster compared to its standalone counterpart.

This investigation has shown that criteria one can be met by extending the WinGrid-CSP

integration solution to include application code that invokes DMSO RTI defined Java bindings.

In this case study this has been made possible through the implementation of the CCM

(section 5.8.5). The CCM includes a RTI adapter that enables two-way communication with

the DMSO RTI – it invokes HLA-defined services on the DMSO RTI and receives callback

messages from it. The Simul8 adapter, also a part of the CCM, is invoked by both the WTC

and the RTI adapter to execute a grid enabled version of the NBS simulation. The result of

the case study has shown that criterion two has also been met. This is because the time

taken to execute the distributed versions of the NBS simulation for one year of simulation time

is less than its standalone counterpart.

From the results it can also be concluded that, in the case of large and complicated CSP-

based models (like scenario 3Hospital and 4Hospital), using distributed simulation service

over dedicated nodes has the potential to achieve faster performance compared to running a

standalone version of the model that encapsulates all the modelling logic into one model.

However, if the model is not very large or complicated then a standalone simulation should

suffice for the requirements of most simulation modellers. This is aptly demonstrated by

scenarios 1Hospital and 2Hospital where the execution of the standalone simulation is faster

than its distributed counterparts, so much so that there is hardly any room for comparison.

The results of the experiments have further shown that the choice of the time management

mechanism is important in the case of HLA-based distributed simulation. This is highlighted

by the fact that the NBS model that implements the TAR time advance mechanism executes

faster than its NER counterpart. A more detailed discussion of the results is presented in

Appendix B. The appendix also discusses the performance results of running the standalone

NBS simulation over two high specification computers. The first computer that was used had

Chapter 5: Case studies 184

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

one 3.2GHz Hyper-threaded processor with 2GB RAM. The configuration of the second

computer was even higher – two dual core 2.8GHz processors, i.e., four processors, with

12GB RAM. The results concluded that, in the case of the NBS standalone simulation a

higher configuration machine does not speed up the execution of the simulation. Thus,

distributed simulation appears to be the only viable solution for executing even larger NBS

simulations which model even more number of hospitals.

The discussions in this section have shown that both the case study evaluation criteria can be

met by WinGrid and therefore it can be said that WinGrid can offer distributed simulation

service to CSPs using the HLA-RTI middleware. However, it has to be added that it is not a

trivial task for a simulation practitioner to effectively utilize the multiple grid nodes, made

available through the use of a grid middleware like WinGrid, for running HLA-based

distributed simulations. This is mainly because of the lack of integrated distributed simulation

support in DES CSPs. The important prerequisites for implementing a CSP-based distributed

solution over the grid are as follows:

 Knowledge of distributed simulation theory.

 Knowledge of HLA-RTI defined interfaces and time advance mechanisms.

 Knowledge of Java or C++ is essential because DMSO HLA-RTI presently provides

bindings for only these two languages. These bindings can be invoked by user application

code to create and join a simulation federation, to request time advance from DMSO

HLA-RTI, to transfer entities, to resign and destroy a simulation federation, etc.

 Knowledge of CSP-defined interfaces (and their purpose) that could be invoked through

the CSP adapter.

5.9 Chapter summary

This chapter has used both real-world and hypothetical case studies to examine the potential

of grid middleware to support three different grid-facilitated CSP-specific services. These

services were among the six CSP-specific services that have been proposed by the CSP-GC

framework. Chapters 3 and 4 have identified grid middleware that can be potentially used to

support some of these services. A subset of these middleware solutions has been used

together with DES or MCS CSPs, in the context of different case studies, to examine their

viability in relation to the realization of these services.

The case studies have been evaluated based on different evaluation criteria. These criteria

are derived from the hypothesis evaluation criteria for CSP-specific services that are

presented in section 5.2. Section 5.3 has then outlined the five case studies that have been

used in this chapter to investigate different grid middleware in relation to CSP-specific

services. The first case study (BOINC case study) has investigated PRC middleware BOINC

in relation to SMMD task farming service (section 5.4). This is arguably the first attempt to use

a PRC middleware in an enterprise setting. EDGC middleware Condor has been examined in

Chapter 5: Case studies 185

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

the context of MMMD task farming service in the second case study (section 5.5). The third

case study (Ford case study) is presented in section 5.6 where WinGrid was successfully

used to grid-enable a propriety simulation tool used by the Ford Motor Company at their

Dunton Technical Centre in Essex. The investment bank case study is the fourth case study

where WinGrid was used to successfully provide workflow service and task farming service to

a MCS CSP Analytics-based simulation application (section 5.7). In the fifth and the final case

study (NBS case study) WinGrid has been used together with DES CSP Simul8 Professional

to facilitate realization of a distributed blood supply chain simulation (section 5.8). In

summary, the case studies described in this chapter have shown that the case study

evaluation criteria for the different CSP-specific services have been met.

These case studies have demonstrated the following:

 Grid middleware can be used with unmodified MCS and DES CSPs, which expose

package functionalities through well-defined interfaces, to provide CSP-specific services.

 All the case studies have followed a common approach with regards to the use of grid

technology together with the CSPs, namely, interfacing of grid middleware with MCS and

DES CSPs was done using the CSP-grid integration technology. It has been shown that

this approach not only works with WinGrid, a middleware that has been developed by the

author, but also with two other widely used grid middleware (BOINC and Condor).

 The CSP-grid integration technology allows GUI programs, which are installed on local

grid resources, to be executed over the grid. It can be argued that the use of grid

technology has primarily been associated with the execution of non-interactive and non-

GUI applications, wherein the entire application code is transferred over to the grid node

responsible for its execution. In case of CSP-grid integration technology, only the trigger

code which interfaces the grid middleware with the MCS or DES CSP is transferred.

 Functionalities that are not presently supported by MCS or DES CSPs, for example, DES

CSP Witness does not support task farming, MCS CSP Analytics does not support

workflows, DES CSP Simul8 does not support distributed simulation, etc., can be

potentially provided by grid middleware through the use of CSP-specific services (as has

been shown in the case studies).

The next chapter evaluates the CSP-GC framework based on earlier discussions pertaining to

the suitability of BOINC (chapter 3), Condor (chapter 3), WinGrid (chapter 4) and WinGrid-WS

(chapter 4) in providing the CSP-specific services, and complemented by the results of the

experimental evaluation of some of the grid-facilitated services that are presented in this

chapter.

Chapter 6: Revisiting the CSP-GC Framework 186

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

6 REVISITING THE CSP-GC FRAMEWORK

6.1 Introduction

The previous chapter has used case study experimentation to evaluate how some of the

CSP-specific services can be supported through grid middleware. Five real-world and

hypothetical case studies were used to assess the following three services – SMMD and

MMMD task farming service, workflow service and distributed simulation service. The case

studies experimented with a total of three different grid middleware (BOINC, Condor and

WinGrid), two MCS CSPs (Excel and Analytics) and two DES CSPs (Witness and Simul8).

Finally, they were evaluated using case study evaluation criteria.

This chapter evaluates the CSP-GC framework. The purpose of this evaluation is to examine,

based on the grid-CSP specific discussions and case studies presented in the earlier

chapters, whether the six CSP-specific services that were identified by this framework could

be supported by the existing grid computing middleware. The evaluation of the framework, in

turn, tests the hypothesis of this research. This chapter is structured as follows. Section 6.2

identifies a potential new CSP-specific service that is a combination of distributed simulation

service and SMMD / MMMD task farming service, and investigates grid middleware in relation

to this service. A case study is presented in section 6.3 to evaluate whether it is technically

feasible for grid middleware to support this new service. Section 6.4 then evaluates the CSP-

GC framework based on (1) middleware support for CSP-specific services that were

discussed in chapter 3 (BOINC and Condor) and chapter 4 (WinGrid and WinGrid-WS), (2)

middleware support for the new CSP-specific service, identified in section 6.2 of this chapter,

and (3) the results of the case studies presented in chapters 5 and 6. Finally, the modified

CSP-GC framework is presented in this section. The existing CSPs that support some of the

CSP-specific services through custom solutions are outlined next in section 6.5. The chapter

concludes with the chapter summary in section 6.6.

6.2 Distributed simulation with SMMD and MMMD task farming service

The case studies in chapter 5 of this thesis have shown that grid middleware can provide task

farming service and distributed simulation service. Combining both these services could

enable a simulation practitioner to run multiple instances of a distributed simulation over the

available grid nodes. Federates taking part in each such distributed simulation federation

could run separate sets of experiments. Although it could be argued that using the distributed

simulation service together with the task farming service would implicitly enable the

distributed simulation with task farming service, further investigation is needed because the

grid middleware being used should be able to schedule the execution of multiple instances of

groups of distributed models concurrently. Furthermore, the HLA-RTI middleware for

distributed simulation should allow simultaneous execution of more than one distributed

Chapter 6: Revisiting the CSP-GC Framework 187

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

simulation federation. SMMD and MMMD variants of task farming in relation to distributed

simulation are discussed next.

In the context of distributed simulation, SMMD task farming refers to the execution of multiple

instances of the same distributed model, where each distributed model comprises of two or

more individual models, over the desktop grid. Figure 49 below shows an example of this.

The distributed simulation consists of three different federates, A, B and C. There are three

federations, X, Y and Z, running three different instances of the same distributed model over

the desktop grid. The names of these federates are appended with the federation they belong

to (X.A, X.B, Y.A, Z.A and so on.).

Figure 49: Distributed simulation with SMMD task farming

Figure 50: Distributed simulation with MMMD task farming

Active desktop grid nodes

Idle desktop grid nodes

HLA-RTI communication

Desktop grid

 HLA rtiexec process

PC without desktop grid

middleware

Node 1 (HLA Federate X.A)

Node 2 (HLA Federate X.B)

Node 3 (HLA Federate X.C)

Node 4 (HLA Federate Y.A)

Node 5 (HLA Federate Y.B)

Node 6 (HLA Federate Y.C)

Node 7 (HLA Federate Z.E)

Node 8 (HLA Federate Z.F)

Node 9 (HLA Federate Z.G)

Node 10 (HLA Federate Z.H)

Active desktop grid nodes

Idle desktop grid nodes

HLA-RTI communication

Desktop grid

 HLA rtiexec process

PC without desktop grid

middleware

Node 1 (HLA Federate X.A)

Node 2 (HLA Federate X.B)

Node 3 (HLA Federate X.C)

Node 4 (HLA Federate Y.A)

Node 5 (HLA Federate Y.B)

Node 6 (HLA Federate Y.C)

Node 7 (HLA Federate Z.A)

Node 8 (HLA Federate Z.B)

Node 9 (HLA Federate Z.C)

Node 10

Chapter 6: Revisiting the CSP-GC Framework 188

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

In the context of distributed simulation, MMMD task farming refers to the execution of multiple

instances of different distributed models, where each distributed model comprises of two or

more individual models, over the desktop grid. Figure 50 shows an example of this. The first

set of the distributed simulation model comprises of federates A, B and C. Two instances of

this model are being executed under HLA federations X and Y. Federation Z is executing the

second set of the distributed simulation model that comprises of federates E, F, G and H.

Previous investigations of BOINC, Condor and WinGrid have shown that distributed

simulation service can be potentially provided by all three middleware (section 5.3). In the

case of WinGrid it has also been demonstrated through the NBS case study (section 5.8) that

this solution is implementable. Since all three middleware can support both distributed

simulation and task farming services, it is important to examine all of them in relation to this

new service. The discussion is limited to the SMMD form of task farming. However, it can be

argued that a middleware that supports execution of ―groups of separate models‖ concurrently

may equally be able to support MMMD task farming.

6.2.1 Investigation of distributed simulation with task farming using Condor

Jobs submitted to a grid by users are generally held in a queue and scheduled for execution

on available desktop nodes on First In First Out (FIFO) basis. In this case the only

consideration for execution of a user job is its order in the job queue.

Condor provides a command (condor_ prio –p [+|- priority value] [job number]) to assign

priorities to each submitted job in order to control the order of execution (Condor Version

6.9.1 Manual, 2007c). The default priority of a submitted job is 0. The priority of a job,

identified by a job number, can be set to a value between -20 and +20 using the –p switch of

the condor_prio command. Once a job has been submitted the job number can be known

using the command condor_q (see screenshot 16 in section 5.5.4). This allows the Condor

job scheduler to schedule a job based on both its order in the job queue and its priority, i.e.,

jobs with same priority are usually scheduled in FIFO order. However, this can only happen if

the Condor matchmaking agent has successfully matched jobs to compute resources (section

2.10.1).

It has been discussed earlier in section 3.4.5.2 that Condor Java universe (together with HLA-

RTI) can potentially provide distributed simulation service to CSPs. It is therefore important to

investigate whether SMMD task farming capabilities can be layered on top of it. SMMD task

farming of distributed models requires that multiple distributed simulation federations are

executed over desktop grids with varying experiment parameters. This necessitates the

submission of multiple sets of work, wherein each set comprises of the different models that

make up a distributed simulation. For example, model-A and model-B are two distributed

models that are considered as one set of work. For running three federations over a desktop

grid, three such sets of work will have to be submitted by the user. The models that logically

Chapter 6: Revisiting the CSP-GC Framework 189

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

constitute each set of work can be executed as separate condor jobs. Thus, model-A and

model-B (and associated code) are submitted as job-A and job-B respectively. For running

three distributed simulation federations over Condor, three instances each of job-A and job-B

will have to be submitted along with different experiment parameters.

A user can submit multiple instances of the same job by providing a value for the Condor

defined queue variable in the job’s ―job description file‖ (section 5.5.4). The value assigned to

this variable determines the number of instances of a particular job. For example, if the job

description file for job-A specifies a value of 3, then 3 instances of job-A are created and

placed in the queue. Similarly, three instances of job-B can be appended to the queue

(screenshot 24 below). All the 6 jobs now have default priority and jobs will be scheduled on

the available resources on FIFO basis (if matchmaking is successful). In this case, FIFO job

scheduling can present problems if less than four machines are available over the grid. This is

because the first three jobs in the queue are instances of job-A and they will be scheduled on

the first three idle resources (say, R1, R2, R3) after successful matchmaking. But the

distributed simulation cannot run without execution of job-B. However if a fourth resource

(say, R4) becomes available, then the first instance of job-B (which is now the first job in the

queue because the job-A instances have already been assigned) will be scheduled on it. This

will start the execution of the first simulation federation over R1 and R4. At this point

resources R2 and R3 are still waiting for execution of the two remaining instances of job-B

over other desktop nodes.

Screenshot 24: Condor queue after submission of multiple instances of job-A and job-B

By using the condor_prio command it may be possible to assign priorities to the submitted

jobs, such that sets of jobs (in our example job-A and job-B are one set) are scheduled on a

FIFO basis. Thus, instance one of job-A (first position in queue) and job-B (fourth position in

queue) can be assigned a priority of +20. The second instance of job-A (second position in

queue) and job-B (fifth position in queue) can be assigned a priority + 15, and so on. The

Condor scheduler will then try to assign the jobs with the highest priorities first. In our

example, resource R1 and R2 will be assigned job-A and job-B with priority +20, resource R3

and R4 will be assigned jobs with priority +15 and so on.

Chapter 6: Revisiting the CSP-GC Framework 190

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

In SMMD task farming the number of experiments to be performed can be in their tens or

hundreds, and each experiment will involve at least two distributed models. Manually

changing the priorities of such a large number of submitted jobs is not practical. Furthermore,

the condor_prio command only attempts to change the job priority. Finally, any priority change

is only compared to the priority of other jobs owned by the same user and submitted from the

same machine (Condor Version 6.9.1 Manual, 2007c). Owing to these limitations, the use of

Condor Java universe for providing distributed simulation with task farming service to CSPs is

not considered appropriate.

6.2.2 Investigation of distributed simulation with task farming using BOINC

Investigation of BOINC has previously shown that it can potentially provide distributed

simulation service to CSPs using HLA-RTI (section 3.4.5.1). A BOINC project usually consists

of one application client that is downloaded along with associate files (initialization files, CSP

models, DLLs, etc.) by the client computers. In the context of distributed simulation, BOINC

workunits can be created such that they pass different CSP model names and experiment

parameters as arguments to the application client for execution.

In the case of BOINC, layering SMMD task farming over distributed simulation support will

usually involve the creation of multiple sets of BOINC workunits, each set comprising of (1)

the individual models and associated code that make up the distributed simulation, and (2)

the simulation parameters. For example, with 10 SMMD experiments to be conducted on two

distributed models (model-A and model-B), a total of 20 BOINC workunits will be required.

Logically, they can be thought of as 10 sets of workunits for model-A and model-B

respectively. Unlike Condor there is no easy way to change the priorities of these workunits

and therefore FIFO scheduling of sets of BOINC workunits may not be possible. Thus, the

BOINC core clients running on multiple PCs will generally ―pull‖ the workunits from the server

without any consideration to the underlying simulation models that the workunits represent.

The user may therefore be presented with a situation wherein the different desktop grid nodes

attempt to execute different instances of the same simulation model, i.e., all clients try to

execute model-A. Because of this limitation BOINC is considered unsuitable to effectively

implement distributed simulation with SMMD task farming.

6.2.3 Investigation of distributed simulation with task farming using WinGrid

Investigation of BOINC and Condor in the previous sections has shown the limitations of a

general purpose desktop grid middleware in running multiple sets of distributed simulation

experiments. This research has learned from these shortcomings and has implemented a

version of WinGrid that schedules jobs taking into consideration the individual distributed

simulation models that the jobs represent. Thus, it there are 10 SMMD task farming

experiments to be performed on a 3-federate distributed simulation, WinGrid places 30 jobs in

the WinGrid job queue based on sets of job (each set of job comprises of 3 individual jobs,

Chapter 6: Revisiting the CSP-GC Framework 191

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

wherein each job represents one distributed simulation model) and schedules them on

available resources on a FIFO basis. This is shown in screenshot 29 (section 6.3.3).

The discussion in this section have shown that WinGrid middleware can be potentially used to

provide distributed simulation with SMMD task farming support to CSPs. As indicated in table

40 below, HLA-RTI will have to be used for providing this service.

Table 40: Grid middleware support for distributed simulation with task farming service

CSP-specific service Grid Middleware Comments

Distributed simulation with task
farming service

 WinGrid with HLA-RTI

HLA-RTI distributed simulation
middleware will also have to be
used

The next section presents the last case study (Manufacturing Unit [MU] case study) in this

thesis. The purpose of this case study is to determine whether WinGrid can be used with a

DES CSP to facilitate the running of multiple distributed simulation federations over a grid.

6.3 MU case study for evaluation of distributed simulation with task farming service

The MU (manufacturing unit) case study investigates WinGrid in relation to distributed

simulation with SMMD task farming service. It is a hypothetical case study. DES CSP Simul8

Professional will be used in this case study. The case study evaluation criterion is that the

solution is implementable and the service is realizable (table 41).

Table 41: Manufacturing unit case study

CSP-specific service Grid Middleware MCS / DES CSP
used

Case study evaluation criteria

Distributed simulation
with task farming
service

WinGrid with HLA-
RTI

Simul8
Professional
(DES CSP)

(1) Solution is implementable
and the service is realizable

Section 6.3.1 presents an overview of the manufacturing unit case study. This is followed by a

description of the distributed production line (DPL) application that would be investigated

(section 6.3.2) and the technology used to grid-enable it (section 6.3.3). The section

concludes with an evaluation of WinGrid in relation to distributed simulation with task farming

service (section 6.3.4).

6.3.1 Overview

It has been shown earlier in the NBS case study that distributed simulation can potentially

execute faster compared to a standalone simulation if the models being simulated are large

and complex. The results have indicated that the opposite is also true. Thus, a standalone

simulation model will generally execute many times faster compared to a distributed

execution if the model being simulated is simple and comparatively small. However, faster

model execution through the use of multiple processors is only one of the reasons for using

distributed simulation. Another reason could be model reuse (section 2.6). This would allow

previously created models to be linked together through the use of distributed simulation. This

case study is aimed at model reuse.

Chapter 6: Revisiting the CSP-GC Framework 192

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

6.3.2 Distributed production line (DPL) application

The Distributed Production Line (DPL) application consists of three separate models. It is

assumed that these models were created using DES CSP Simul8 Professional by different

modellers at different times. Each simulation models one manufacturing production line. The

models have been named sourceA, sourceB and destC respectively. Models sourceA and

sourceB feed entities (parts) into model destC. Model destC also feeds back entities

(damaged parts) into models sourceA and sourceB. This interaction between the models

represents a hypothetical production line, which comprises of three individual production lines

that are geographically apart, where two different parts are manufactured separately for

assembly into one final product. Screenshots of all the three Simul8 models are shown below

(screenshots 25, 26 and 27).

Screenshot 25: DES CSP Simul8 model “sourceA” (DPL application)

Screenshot 26: DES CSP Simul8 model “sourceB” (DPL application)

Chapter 6: Revisiting the CSP-GC Framework 193

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 27: DES CSP Simul8 model “destC” (DPL application)

6.3.3 Grid-enabling DPL application

Like the other case studies, the CSP-grid integration technology (section 4.4) has been used

for implementing distributed simulation with task farming service with WinGrid and DES CSP

Simul8 Professional. More specifically, the TAR version of the CSP Controller Middleware

(CCM-TAR), presented earlier in section 5.8.5 in the context of NBS distributed simulation,

has been used. The DPL application consists of three Simul8 models and the CCM-TAR. The

CCM-TAR consists of two separate components – the Simul8 adapter and the HLA-RTI

adapter. The Java-based HLA-RTI adapter communicates with HLA-RTI for operations

associated with distributed simulation (for example, creating a federation, joining a federation,

time advance request, etc.). The VB DLL-based Simul8 adapter is used to control the

simulation package. The communication between the Simul8 adapter and the HLA-adapter is

through JNI. The DPL application is the WA that executes on different WinGrid nodes

(WTCs). An Excel-based application called Distributed Production Line – Experimentation

Tool (DPL-ET) has been created to provide experiment parameters for the different simulation

experiments. After a distributed simulation run has completed, the results of the simulation

are also sent back to this application. The DPL-ET application is presented in Screenshot 28

Chapter 6: Revisiting the CSP-GC Framework 194

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

below. It shows that the experiment parameters for each model have been entered in the top

half of the spreadsheet; and the results being returned are displayed in the bottom half.

Screenshot 28: Excel-based Distributed Production Line-Experimentation Tool (DPL-ET)

In the WinGrid architecture, the DPL-ET is the MA. It communicates with the WJD running on

the WinGrid master node through the DPL-ET adapter. Through the adapter it passes the

experiment parameters to the WJD and receives the simulation results back from it. The

integration architecture of WinGrid and DPL is shown in figure 51 below.

Figure 51: Integration architecture of WinGrid and DPL

DPL-ET Adapter

Excel-based

DPL-ET

Experiment

Parameters

WinGrid Job

Dispatcher

JNI calls

COM Interface

Worker

Application

(WA)

Manager

Application

(MA)

Simul8 Adapter

Simul8 Professional

DPL

(destA ..)

WinGrid Thin Client

JNI calls

CSP Controller

Middleware

COM Interface

WinGrid

Network

Communication

HLA Run Time Infrastructure

RTI Adapter

HLA-RTI Network

Communication

Chapter 6: Revisiting the CSP-GC Framework 195

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

The execution of multiple distributed simulation federations using WinGrid is shown in

screenshot 29 below. The WinGrid console displays the jobs that have been executed, are

running or are in the queue; the WTCs over which jobs had been previously executed or are

currently running, etc. It shows that the first job set (Experiment 1), comprising of three

different jobs (sourceA, sourceB and destinC) is placed first in the WinGrid queue, followed by

the other sets. It also shows that the first job set has been cooperatively executed by three

computers (192.168.0.213, 192.168.0.212 and 192.168.0.216) under HLA federation EXP2,

and so on. The two experiments that are shown currently running are experiment 6 and

experiment 7, under HLA federations EXP2 and EXP2 respectively. The experiment test bed

had used a total of six computers, and therefore only two HLA federations were created (each

federation has three federates running on individual WTCs).

Screenshot 29: WinGrid console showing execution of distributed simulation federations

Screenshot 30 (next page) shows the HLA-RTI process (rtiexec.exe) during the execution of

the DPL application over WinGrid. It shows that two different HLA federations, EXP1 and

EXP2, were first created (message: federation EXP1 / EXP2 finished initialization with

process id ….) and then individual federates joined either of the two federations (message:

Federate sourceA / sourceB / destC is JOINING federation EXP1 / EXP2 at ….). After the

simulation is completed, the federates resigned (message: Federate sourceA / sourceB /

destC is RESIGNING federation EXP1 / EXP2 at ….) and the federation was subsequently

destroyed (message: Removed federation EXP1 / EXP2 at ..). The intra-federation messages

that are routed through the HLA-RTI are not displayed by the rtiexec process. Each

distributed simulation starts with the creation of a federation and ends with destroying the

federation.

Chapter 6: Revisiting the CSP-GC Framework 196

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 30: HLA-RTI executive process executing federations EXP1 and EXP2

The next section evaluates the manufacturing unit case study based on the case study

evaluation criteria.

6.3.4 Evaluation of distributed simulation with SMMD task farming service

The evaluation criterion for the case study was that the distributed simulation with SMMD task

farming service was practically implementable, and thus the service realizable, through the

use of WinGrid middleware. The discussions presented in this section have shown that

WinGrid can support this service through the use of HLA-RTI middleware. It can therefore be

concluded that the case study evaluation criterion has been met and WinGrid can be used to

support the CSP-specific distributed simulation with SMMD task farming service.

The next section evaluates the CSP-GC framework, which is proposed in chapter 3 of this

thesis, based on discussions in chapters 3, 4 and 6 and case study experimentation results

presented in chapters 5 and 6.

Chapter 6: Revisiting the CSP-GC Framework 197

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

6.4 CSP-GC framework revisited

Chapter three of this thesis has proposed the CSP-GC framework. This framework has

identified six potential services that could be provided to CSPs through the use of grid

computing technologies. The six services are parallel computing service, task farming service,

workflow service, collaboration service, distributed simulation service and web-based

simulation service. In this section, the six services are evaluated based on earlier discussions

pertaining to the suitability of grid middleware in providing these services and the results of

the case studies. The hypothesis presented in this thesis is either supported or rejected

based on the evaluation of this framework, since the CSP-GC framework was proposed to

provide a logical structure for the evaluation of the hypothesis. The six services are discussed

below.

6.4.1 Parallel computing service

Parallel computing service is the first CSP-specific service identified by the framework. This

service has the potential of speeding up the execution of one CSP-based simulation using

multiple processors. The discussion in section 3.3.1 have shown that a grid middleware that

supports parallel computing environments like MPICH, PVM, etc. can potentially offer this

service. Of the four grid computing middleware that have been discussed in this thesis,

Condor is the only middleware that may support this through its parallel universe execution

environment (section 3.4.1). However, only CSPs than have a MPI or PVM-based parallel

implementation may possibly be able use this service. The survey of simulation packages

have shown that presently none of the CSPs have a parallel MPI/PVM implementation

(section 2.5.1), and consequently parallel computing service cannot be utilized by the present

generation of CSPs. This service is therefore omitted from the original CSP-GC framework,

as this thesis focuses on solutions which are implementable in practice. The modified CSP-

GC framework is presented in figure 52.

6.4.2 Task farming service

Task farming service has the potential to speed up the execution of a batch of simulation

experiments by running multiple copies of the CSPs, each simulating a separate set of

experiments, over different grid nodes. Four case studies have been used to experimentally

show that both SMMD and MMMD variants of task farming are possible using grid

middleware. In the BOINC case study, the MCS CSP Excel was grid-enabled using PRC

middleware BOINC to facilitate SMMD task farming (section 5.4). EDGC middleware Condor

was used with two separate MCS CSP Excel-based applications to enable MMMD task

farming (section 5.5). DES CSP Witness was used together with WinGrid in the Ford Motors

case study to enable SMMD task farming (section 5.6). Finally, in the investment bank case

study WinGrid was again used to provide SMMD task farming service to MCS CSP Analytics

(section 5.7). The results from all four case studies have shown that the evaluation criteria

have been met. It is therefore concluded that task farming service can be used by CSPs

through the use of grid middleware. As shown in the modified CSP-GC evaluation framework

Chapter 6: Revisiting the CSP-GC Framework 198

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

(figure 52), interfacing the CSPs with grid middleware can be made possible through use of

CSP-grid integration technology.

6.4.3 Workflow service

The grid-facilitated work flow service enables the phased execution of applications that have

data dependency among them. The investment bank case study has used Analytics and

Excel to implement workflows (section 5.7). The results of the case study experimentation

have shown that the case study evaluation criterion with regards to workflows has been met.

It can therefore be said that grid computing can support the CSP-specific workflow service.

The modified CSP-GC framework identifies the workflow service as one of the CSP-specific

services and shows that the CSP-grid integration technology will be required to interface

CSPs to grid middleware.

6.4.4 Collaboration service

The two forms of collaboration service that have been identified in this research are, (1)

search and download of CSP-based model components, and (2) support for virtual meetings

(section 3.3.4). It has been discussed earlier that user-developed web services, which may be

hosted by an OGSA-compliant grid middleware, can facilitate the search and download of

model components created using MCS and DES CSPs. However, unless such middleware is

available for PRC and EDGC forms of grid computing, collaboration service through the use

of web services is considered infeasible. Providing virtual meeting support using grid

middleware would generally require the integration of audio, video and messaging capability

with the grid middleware. None of the middleware that have been examined in this thesis

presently has such capabilities. The only grid middleware that is known to have such

integrated collaboration support is the Access Grid Collaboration System (discussed in

section 2.2.2).

Access Grid is for group-to-group collaboration. In this thesis, CSP-based collaboration

service in the form of virtual meeting is primarily seen as a one-to-one collaboration between

various modellers and problem stake holders using their desktop resources. Such a one-to-

one collaboration can be achieved using groupware like Microsoft NetMeeting, which has

support for audio, video, messaging, virtual whiteboards and can provide remote access to

PCs and applications running on them (Taylor, 2000). It is difficult to argue for a grid

middleware like Access Grid that supports group-to-group collaboration and provides

computational services only through the use of other grid middleware, when the requirement

is primarily for one-to-one collaboration that can be achieved using groupware. Access Grid

has therefore not been investigated in this research.

The original CSP-GC framework had identified a collaboration service. The modified CSP-GC

framework omits this service as the discussions have shown that collaboration service

through the use of web services to enable search and download of models, or through virtual

Chapter 6: Revisiting the CSP-GC Framework 199

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

meetings may not be adequately supported by existing grid middleware. However, in the case

of virtual meetings at least, there exist groupware tools that a simulation modeller would

possibly find quite effective. The groupware tools are not shown in the modified framework.

6.4.5 Distributed simulation service

Distributed simulation service can be used together with a distributed simulation middleware

like HLA-RTI to facilitate a co-ordinated execution of individual CSP-based models over the

grid. The NBS case study has shown that distributed model execution is possible over the

grid (section 5.8). The results of the case study have also shown that the evaluation criterion

has been met. Thus, it can be concluded that distributed simulation service can be supported

through the use of grid middleware. The CSP-grid integration technology will, however, be

required to interface the CSP to the grid middleware. The original CSP-GC framework is

modified to show that distributed simulation service requires use of both the HLA-RTI

middleware for distributed simulation and the CSP-grid integration technology.

6.4.6 Web-based simulation service

Web-based simulation service involves access to CSPs using either web services or through

grid portals (section 3.3.6). It has been pointed out earlier that a middleware based on the

OGSA architecture may be able to host user-developed web services, which can in turn

access the open interfaces that are presently made available by many CSPs. However, the

middleware for the two forms of grid computing that have been identified as suitable for this

research, namely PRC and EDGC, are generally implemented using custom protocols.

Furthermore, they do not implement custom web service hosting environments. This may

change in the future with the development of PRC/EDGC middleware that is based on OGSA

and that implements a sub-set of the services defined by it. Until such time grid-facilitated

web-based simulation using web services is considered infeasible.

The second mechanism that can be used to access CSPs, in the context of web-based

simulation service, is through the use of grid portals. Grid portals provide a web browser-

based front-end that could be used to load simulation experiments for execution over different

grid nodes using the CSPs locally installed on them. The grid portal usually interfaces with the

grid middleware to submit jobs, monitor job execution and to retrieve the results. WinGrid-WS

is one middleware which supports the use of grid portals for running simulation experiments

(section 4.5.6). Although an EDGC middleware like Condor does not include a grid portal at

present, such a web-based front that interacts with Condor using specific Condor-defined

commands could be implemented by the user. Thus, it can be concluded that web-based

simulation service in the form of grid portals can be provided using grid middleware.

The original CSP-GC framework (figure 29) shows grid portals as one of the two grid

middleware access mechanisms (the other mechanism is through the use of middleware-

specific Command Line Interface [CLI] commands). However, use of grid portals is

Chapter 6: Revisiting the CSP-GC Framework 200

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

considered as an optional grid access mechanism because, unlike the core grid mechanisms

like resource discovery, job scheduling, job monitoring, etc. that are generally an integral part

of most middleware, grid portals usually only provide a web-based front-end to some of the

basic grid services (for example, computation service, data service, etc.) for the benefit of the

user. Since web-based simulation service also involves the use of grid portals and this service

can potentially support other CSP-specific services (in other words, simulation models and

experiment parameters for distributed simulation, task farming, etc. can be uploaded through

grid portal), the original CSP-GC framework is modified to indicate that web-based simulation

service can be provided using the grid portal middleware access mechanism.

Finally, the manufacturing unit case study (section 6.3) has shown that the CSP-specific

distributed simulation with task farming service can also be supported through the use of grid

middleware. The result of this case study has shown that the evaluation criterion has been

met. Thus, the modified CSP-GC framework identifies the distributed simulation with task

farming service as a new service. This service was not identified in the original CSP-GC

framework. The modified framework also shows that this new service requires the use of both

HLA-RTI middleware for distributed simulation and the CSP-grid integration technology. The

modified CSP-GC framework is shown in figure 52 below. The service descriptions of the five

CSP-specific services presented in the modified CSP-GC framework are shown in table 42.

Figure 52: CSP-GC framework (modified)

Desktop PCs

Grid Middleware

Commercial Off-The-Shelf Simulation Packages (CSPs)

Basic grid services (computation service, data

service, etc.) and core grid mechanisms (resource

discovery, job submission, job scheduling, job

monitoring, etc.) provided by grid middleware

Enterprise hardware and software resources

CSP-specific services that can be provided

through the use of grid computing

Technology required to implement

“distributed simulation” and

“distributed simulation with task

farming” services

Legend

Technology required to implement

“task farming” and “workflow”

services

Workflow

Service

Task

Farming

Service

CSP-grid integration technology

Distributed

Simulation

Service

Distributed

Simulation with

Task Farming

Service

CSP-grid integration technology

and HLA-RTI

Access to grid middleware

 CLI / Grid Portal Web-based Simulation Service (through grid portals)

Chapter 6: Revisiting the CSP-GC Framework 201

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Table 42: Modified CSP-GC framework defined services and their descriptions

Modified CSP-GC
framework defined services

Service description

Task farming service Task farming service can reduce the time taken to execute batch
simulation experiments by distributing the execution of multiple CSP-
based DES and MCS experiments over different grid nodes. This
service supports concurrent execution of multiple instances of the
same simulation model (SMMD task farming) or different simulation
models (MMMD task farming). This service requires the use of CSP-
grid integration technology.

Workflow service Workflow service can enable phased execution of different CSP-based
DES/MCS models and other external applications based on the
underlying data dependencies. This service requires the use of CSP-
grid integration technology.

Distributed simulation service Distributed simulation service can enable execution of DES CSP-based
distributed simulations using the HLA-RTI middleware for distributed
simulation. This service requires the use of CSP-grid integration
technology and HLA-RTI middleware for distributed simulation.

Web-based simulation service Through the use of grid portals, web-based simulation service can
provide simulation users with web-based access to grid middleware.
This service can be used by other CSP-specific services to upload
simulation models and experiment parameters, to monitor simulation
execution, to retrieve the results of the simulation, etc. The web-based
simulation service interfaces with grid middleware and not with MCS
and DES CSPs (as is the case with the other services).

Distributed simulation with
task farming service

Distributed simulation with task farming service can enable execution
of multiple instances of DES CSP-based distributed simulations
concurrently over the grid. This service requires the use of CSP-grid
integration technology and HLA-RTI middleware for distributed
simulation.

6.4.7 Evaluation of hypothesis

Section 6.4 has evaluated the original CSP-GC framework that was presented in chapter 3.

Based on this evaluation a modified CSP-GC framework has been proposed which shows

that four of the six original CSP-specific services can be supported through the use of grid

middleware. In addition, one new CSP-specific service (that was not identified in the original

framework) can also be supported. Thus, the modified CSP-GC framework identifies five

CSP-specific services that can be provided through the use of grid middleware. These

services are (1) task farming service (both SMMD and MMMD variants), (2) workflow service,

(3) distributed simulation service (relevant only to DES CSPs), (4) web-based simulation

service through use of grid portals, and (5) distributed simulation with task farming service

(relevant only to DES CSPs).

The hypothesis that ―grid computing will benefit CSP-based simulation practice in industry‖

can therefore be considered true because it has been shown that grid computing can support

some of the CSP-specific services with the present generation of grid and CSP technology.

However, it is also possible to criticize this conclusion based on the following (for each

criticism, an argument is presented in italics).

 The middleware support for CSP services vary. In other words, not all middleware

can support all five services. For example, it has been discussed that using BOINC

Chapter 6: Revisiting the CSP-GC Framework 202

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

to support workflows may be technically difficult to achieve (section 3.4.3); web-

based simulation is not supported by BOINC, Condor or WinGrid, etc.

The hypothesis does not state that one particular middleware should be able to address

all the requirements of the simulation practitioner. Although it is accepted that one

middleware for all five services would be desirable, the evaluation of the middleware has

shown that it is not presently possible.

 Not all the middleware that have been identified as potential candidates for

supporting CSP-specific services, through discussions and arguments, have been

experimentally evaluated.

The reader should note that in the case of task farming service, where all the

investigated grid middleware were found to be suitable candidates, a total of four case

studies have been devoted to experimental evaluation using BOINC, Condor and

WinGrid. Thus, the service which was found to be widely supported was experimented

more.

In the case of workflow service, experiments could not be conducted using Condor

DAGMan (with Java universe execution environment). This is because the IT department

in the investment bank in which the real-world investment bank case study was

conducted, and which required the use of workflows, were concerned with network

security. As has been discussed earlier, Condor middleware, on which both Condor

DAGMan and Condor Java universe execution environment are dependent, uses

multiple, bi-directional, static and dynamic ports for communication. The network

administrators are usually reluctant to use software that opens up too many non-standard

ports for communication.

In the case of distributed simulation service, although experiments were conducted

only using WinGrid, the results can largely be applied to Condor and BOINC because the

approach that has been taken in the case of distributed simulation using HLA-RTI is that

the user application will implement the logic required with managing the federation.

WinGrid, Condor and BOINC would need to only execute these simulations on different

nodes – which is possible, as has been experimentally shown using case studies dealing

with task farming service. However, as has been discussed in section 6.2, in the case of

distributed simulation with task farming service, only WinGrid can be used.

In the case of web-based simulation service, WinGrid-WS was not experimented

because it only provides a web-based front end to the underlying grid middleware.

Furthermore, this service requires interfacing with grid middleware (which is not the

primary research issue being addressed in this thesis) and not with the MCS and DES

CSPs.

Chapter 6: Revisiting the CSP-GC Framework 203

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

 It has been shown in this research that the level of grid support for CSP-specific

services is very much dependent on the actual grid middleware being used to

implement a solution. Thus, how far can these results be generalised to apply to

different middleware implementations of PRC and EDGC forms of grid computing?

A grid middleware generally has mechanisms to execute user programs on different grid

nodes. The user program is written in a programming language, which when compiled

can be executed natively by the operating system (for example, C and C++ code) or can

be executed at runtime by an interpreter (for example, Java). In the case of the latter the

executing grid node should have the interpreter installed locally. Thus, if programs are

written in Java then the grid nodes should have Java Virtual Machine (JVM) installed on

them. BOINC, Condor standard universe and Condor vanilla universe support user

applications that are written using C/C++. Condor Java universe and WinGrid support

execution of Java programs and consequently the grid nodes require JVM to be installed

locally.

It is the responsibility of the user program to invoke the MCS or DES CSPs and perform

operations using them. The CSP-grid integration technology that has been presented in

this thesis uses an adapter-based approach to communicate between C++/Java code and

the CSPs. This adapter is a Visual Basic dynamic link library (VB dll). Thus, the

application logic itself is contained within the user C++/Java code and the VB dll. Grid

middleware is only responsible for executing the application on different grid nodes.

Therefore it is very likely that any PRC or EDGC middleware would provide support for

task farming service and distributed simulation service, wherein the application logic

is contained in the user code and the middleware is only responsible for distributing the

executing of the user program over different grid nodes. In the case of distributed

simulation service, however, the user code will have to interface with HLA-RTI

middleware for executing a DES CSP-based distributed simulation on the grid.

In the case of workflow service, only those middleware that can support the execution of

user applications in phases, and transfer data between them (through middleware-defined

mechanisms or through the use of shared network drives), will generally be able to

provide this service. However, it may also be possible for a user to write a program which

invokes operations on different external applications (like CSPs, visualization

applications, data analysis software, etc.) in a phased manner, thereby implementing a

basic workflow, and then execute it over the grid. The limitation of this approach is that all

the external applications that may be used will usually have to be locally installed on all

the grid nodes (because the user job which accesses all these applications can be

executed on any grid node). However, in the case of grid-facilitated workflow service the

different applications may be installed on different grid nodes.

Web-based simulation service through the use of web-portals can be supported by

middleware which have a web-based front-end. However, it may be possible for the user

Chapter 6: Revisiting the CSP-GC Framework 204

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

to create a web application which invokes middleware-defined operations for job

submission, monitoring, result retrieval, etc.

Finally, in the case of distributed simulation with task farming service, grid

middleware that provide mechanisms to schedule jobs taking into consideration the

individual distributed simulation models (the distributed simulation models together form

the distributed simulation federation) that the jobs represent, should ideally be able to

implement this service.

 The CSP-grid integration technology has been shown to work with only a few

CSPs. Can it work with all CSPs?

The CSP-grid integration technology has been used in six case studies. Apart from the

BOINC case study which uses C++ user code to invoke operations on MCS CSP Excel

through the VB dll, the rest of the case studies have used code written in Java that call

methods defined in the VB dll through JNI. Thus, it has been shown using two different

programming languages that integration with VB dll is possible. Interfacing VB dll with

CSPs is, however, only possible if the CSPs have well-defined interfaces that can be

invoked by external applications. Furthermore, only those operations can be performed

on the CSP that have been exposed by the package. Table 10 lists the CSPs that have

open interfaces.

6.5 Evaluation of CSPs based on CSP-GC framework defined services

This thesis has, in total, identified seven CSP-specific services. These are parallel

computation service, task farming service, workflow service, collaboration service, distributed

simulation service, web-based simulation service and distributed simulation with task farming

service. Of these seven services, the modified CSP-GC framework only shows five services

which can be potentially provided using grid middleware that have been examined in this

thesis. Thus, parallel computation service and collaboration service are omitted from the

modified CSP-GC framework. Parallel computation service is not considered, although it may

be possible for Condor to support this service using parallel universe execution environment,

because the MCS and DES CSPs will generally need a MPI/PVM implementation to execute

over a set of distributed processors (the CSPs at present do not have such parallel

implementations). Similarly, collaboration service is omitted from the modified framework

because it is not supported by Condor, BOINC, WinGrid or WinGrid-WS.

Some of the CSPs also have inbuilt support for certain CSP-specific services. However, such

support is provided through custom solutions. These solutions only work for the packages for

which they are implemented. Table 43 lists the CSPs that support some of the CSP-specific

services through custom vendor implementations. The reader is reminded that data pertaining

to the CSPs have been collected from the product information published by the vendors of the

CSPs on their websites. As such, there may be some error in the CSP-related information

Chapter 6: Revisiting the CSP-GC Framework 205

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

presented below, as product descriptions in the vendor websites may be incomplete, vague or

exaggerated. Furthermore, an inadvertent error on the part of the author could be another

reason for this error. Table 43 also lists the grid middleware that can support these services.

The case studies, wherein grid middleware are experimentally evaluated with regards to CSP-

specific services, are also indicated. The description of the columns of the table follows next.

Column one: column [All CSP-specific services] lists all seven CSP-specific services that

have been discussed in this thesis, irrespective of whether the modified CSP-GC framework

identifies it as a service or not.

Column two: column [MCS / DES CSP] identifies whether a CSP-specific service is being

discussed in relation to MCS CSPs, DES CSPs or both.

Column three: column [CSP support on multiple processor machines] lists CSPs that support

CSP-specific services over multi-processor machines using custom solutions. Although this

research is mainly concerned with running CSP-based services over distributed processors,

CSP support on multiple processors is included for reference purposes.

Column four: column [CSP support over distributed processors] lists CSPs that support

CSP-specific services over distributed processors using custom solutions.

Column five: column [Grid middleware] lists grid middleware (including specific middleware

components like Condor DAGMan, Condor MW, etc.) that have been identified as potential

candidates for grid-enabling CSPs with respect to specific services.

Column six: column [Comments] is for general comments. The case studies that have been

used in this research to experiment with grid middleware in context to different CSP-specific

services are indicated in this column. This column also lists the middleware and specific

middleware components (presented in column five) that has been identified for future

investigations. Those middleware/middleware components that could not be experimentally

evaluated due to unsupported CSP implementations (like Condor parallel university execution

environment), etc. have been marked for future investigation.

Table 43: Custom CSP support and grid middleware support for CSP-specific services

All CSP-
specific
services

MCS
/

DES
CSP

CSP
support on

multiple
processor
machines

CSP
support

over
distributed
processors

Grid Middleware Comments

Parallel
computation
service

MCS
CSP

2
(@Risk
Industrial
and
TreeAge Pro
- Refer to
table 6)

0 (1) Condor parallel
universe

 MCS and DES CSPs
may need to have
MPI/PVM–based
implementation

 (1) is for future
investigation

DES
CSP

0 0 (1) Condor parallel
universe

Chapter 6: Revisiting the CSP-GC Framework 206

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

All CSP-
specific
services

MCS
/

DES
CSP

CSP
support on

multiple
processor
machines

CSP
support

over
distributed
processors

Grid Middleware Comments

Task farming
service

MCS
CSP

0 2
(Vanguard
Studio and
GoldSim –
Refer to
table 7)

(1) BOINC
(2) Condor Java

universe
(3) Condor MW
(4) WinGrid
(5) WinGrid-WS

 BOINC case study
[MCS CSP Excel with
(1)]

 Condor case study
[MCS CSP Excel with
(2)]

 Investment bank case
study

 [MCS CSP Analytics
 with (4)]
 Ford case study [DES

CSP Witness with (4)]
 [DES CSP Witness

with (5)] Investigated in
(Alders, 2006) and
(Mustafee et al.,
2006a)

 (3) is for future
investigation

DES
CSP

1
(Simul8 –
Refer to
table 6)

2
(Simprocess
and Simul8–
Refer to
table 7)

(1) BOINC
(2) Condor Java

universe
(3) Condor MW
(4) WinGrid
(5) WinGrid-WS

Workflow
service

MCS
and
DES
CSP

0 0 (1) Condor
DAGMan

(2) WinGrid

 Investment bank case
study
[MCS CSP Analytics
and Excel with (2)]

 (1) is for future
investigation

Collaboration
service
(virtual
meetings)

MCS
and
DES
CSP

N/A 0 (1) Access Grid

 (1) is for future
investigation

Distributed
simulation
service

MCS
CSP

N/A N/A N/A Distributed simulation
is not applicable to
MCS CSPs

DES
CSP

0 1
(AutoMod -
Refer to
table 14)

(1) BOINC with
HLA-RTI

(2) Condor Java
universe with
HLA-RTI

(3) WinGrid with
HLA-RTI

 NBS case study [DES
CSP Simul8 with (3)]

Web-based
simulation
service

MCS
and
DES
CSP

N/A 8
(QMS,
MineSim,
Vanguard
Studio,
AnyLogic,
AgenaRisk,
Witness,
Analytica,
Simprocess
– Refer to
table 15)

(1) WinGrid-WS
(grid portal)

 [DES CSP Witness
with (1)] Investigated in
(Alders, 2006) and
(Mustafee et al.,
2006a)

Distributed
simulation
with task
farming
service

MCS
CSP

N/A N/A N/A Distributed simulation
is not applicable to
MCS CSPs

DES
CSP

0 0 (1) WinGrid with
HLA-RTI

 Manufacturing works
case study

 [DES CSP Simul8 with
 (1)]

Chapter 6: Revisiting the CSP-GC Framework 207

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

6.6 Chapter summary

This chapter has evaluated the CSP GC framework. It has identified a new CSP-specific

service called distributed simulation with task farming service (section 6.2). This service is a

combination of task farming service and distributed simulation service, both of which had

been identified in the original CSP-GC framework (chapter 3). Section 6.2 then investigates

BOINC, Condor and WinGrid middleware in relation to this new service. WinGrid support for

distributed simulation with task farming service is examined through case study

experimentation in section 6.3. This is followed by an evaluation of the original CSP-GC

framework based on the results of the case study experimentations and the discussions

presented in the earlier chapters of this thesis (section 6.4). This evaluation has shown that

only four of the original six CSP-specific services can be potentially supported through the

use of existing grid technology. Based on the evaluation of the original CSP-GC framework, a

modified CSP-GC framework is then presented. The modified framework includes the four

previously identified and ―realizable‖ services and the new distributed simulation with task

farming service. The technology that is required to provide these services are also identified

in the modified framework. The evaluation of the framework has shown that the hypothesis

presented in the thesis is acceptable because some of the CSP-specific services identified in

the original CSP-GC evaluation framework (and all services in the modified framework) can

be provided through use of grid middleware. Finally, CSPs that support some of the CSP-

specific services through custom solutions are listed in section 6.5.

The next chapter summarizes the research that has been presented in this thesis. It revisits

the aim and the objectives that were outlined in chapter one, discusses the contribution of this

work and future research that can be conducted on the basis of this work.

Chapter 7: Summary and conclusion 208

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

7 SUMMARY AND CONCLUSION

7.1 Introduction

Chapter six has evaluated the original CSP-GC framework based on middleware-specific

discussions presented earlier in this thesis and case study experimentation results. Based on

this evaluation, the original CSP-GC framework is modified to show only those services that

can be potentially supported with exiting grid middleware and unmodified CSP packages. The

evaluation of this framework has shown that the hypothesis presented in this work, namely

―grid computing will benefit CSP-based simulation practice in industry‖, is valid.

Chapter seven is the last chapter of this thesis. Section 7.2 summarizes the research that has

been presented in this thesis. Section 7.3 then revisits the aim and objectives that were

outlined in chapter one. The purpose of this is to show how the different objectives were met

in the various chapters. The contribution of this research is discussed next in section 7.4.

Section 7.5 is the final section of this thesis and it discusses future research in the area of grid

computing and CSP-based simulation modelling.

7.2 Research summary

This research has been motivated by the advances being made in the field of grid computing

and the realization that simulation in industry could potentially benefit through the use of grid

computing technologies. This research recognises that end-user adoption of grids could be

facilitated by focusing on software tools that are commonly used by employees at their

workplace. In the context of simulation in industry, the end-users are the simulation

practitioners and the tools that are generally used to model simulations are the Commercial

Off-The-Shelf (COTS) Simulation Packages (CSPs). Thus, this research investigates how grid

computing can further the field of CSP-based simulation practice and, thereby, offer some

benefits to simulation end-users.

Empirical research is conducted in this study and it followed four distinct stages, namely, it

proposed a hypothesis, identified methods to progressively evaluate the hypothesis, compiled

the results obtained by applying the identified methods, and finally, evaluated the hypothesis

based on these results and discussions. The research has led to the development of a grid

middleware called WinGrid, and certain aspects of design research have been used during

the development of this artefact.

This research has proposed the hypothesis that grid computing will benefit CSP-based

simulation practice in industry. In order to evaluate this hypothesis, a literature review was

first conducted to investigate how grid computing technologies could potentially support CSP-

based simulations in industry. To this end, six higher level grid services were identified along

with two forms of grid computing, namely, Public Resource Computing (PRC) in an enterprise

Chapter 7: Summary and conclusion 209

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

context, and Enterprise Desktop Grid Computing (EDGC). Furthermore, two specific grid

computing middleware were chosen as representative middleware for either PRC or EDGC

forms of grid computing. This was done in order to enable further investigation of the two

different forms of grid computing in relation to CSP-based simulation in industry. BOINC was

selected as a representative middleware for the PRC form of grid computing because it is

presently the most popular PRC middleware, it is available free of charge, and finally because

it allows users to create their own BOINC-based projects. Condor was selected as a

representative middleware for the EDGC form of grid computing owing to its large deployment

base and its free availability.

The COTS Simulation Package-Grid Computing (CSP-GC) framework was proposed to

provide a logical structure for the evaluation of the hypothesis. This framework identified six

grid-facilitated CSP-specific services. These services were in turn based on the higher level

grid services that were identified previously from the literature review. The six services were

parallel computing service, task farming service, workflow service, collaboration service

distributed simulation service and web-based simulation service. BOINC and Condor were

then evaluated in relation to the CSP-specific services.

The evaluation of BOINC and Condor has shown that some of the CSP-GC framework

defined services could be potentially provided by these middleware. For example, both

middleware may be able to offer task farming service and distributed simulation service.

However, in the case of the latter, a distributed simulation middleware (HLA-RTI) would be

required. It has been argued that Condor may also be able to potentially provide parallel

simulation service and workflow service through the use of the Condor parallel universe

execution environment and Condor DAGMan respectively. However, the examination of the

middleware has also indicated that web-based simulation service (through the use of grid

portals and web services) and collaboration service (through enabling search and download

of CSP models, and integrated support for virtual meetings) were not currently supported by

either of the two middleware.

The research then expressed the need for an ―ideal‖ grid middleware that was specifically

implemented to support CSP-based simulation in industry. It was argued that the ideal

middleware would be the one which is supported on Windows, which uses only one

communication channel, implements the ―push‖ job scheduling mechanism, supports task-

parallel task farming applications and would support Java-based user applications. The

EDGC middleware that was implemented based on these ―ideal‖ middleware requirements

was called WinGrid.

This research then presented a discussion on WinGrid and the web services extension of

WinGrid called WinGrid-WS. WinGrid was evaluated in respect to the six CSP-GC framework

Chapter 7: Summary and conclusion 210

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

identified services. The discussion on WinGrid-WS was limited to task farming service and

web-based simulation service since this middleware was explicitly implemented to support

these two services. It has been shown that WinGrid can potentially support task farming

service, workflow service and distributed simulation service. WinGrid-WS, on the other hand,

supports task farming service and web-based simulation service. The latter is supported

through the use of grid portals.

To experimentally evaluate three CSP specific services, namely, task farming service,

workflow service and distributed simulation service, five hypothetical and real-world case

studies were conducted in this research. BOINC, Condor and WinGrid have been used in

three different case studies to implement CSP-based task farming service. The BOINC case

study used MCS CSP Excel; the Condor case study used two different MCS CSP Excel-

based applications to implement the MMMD form of task farming; and the real-world Ford

case study integrated WinGrid and a proprietary DES CSP Witness-based application called

FIRST; The workflow service was evaluated using WinGrid and an MCS CSP Analytics-based

application in the context of the real-world investment bank case study. The NBS case study

has used WinGrid and DES CSP Simul8 Professional to evaluate the distributed simulation

service.

The results of these case studies showed that some of the CSP-specific services can be

provided through the use of grid middleware. The hypothesis presented in this thesis was

therefore validated as it was shown that simulation practitioners can potentially derive some

benefit from using these grid-facilitated CSP-specific services. The evaluation of the CSP-GC

framework has also identified a new service – distributed simulation with task farming service.

The original framework was finally modified to represent only those services that can be

provided using existing PRC and EDGC grid computing middleware. These services are task

farming service, workflow service, web-based simulation service through the use of grid

portals, distributed simulation service and distributed simulation with task farming service. The

modified CSP-GC framework also shows the technology (CSP-grid integration technology

and the HLA-RTI) that would be required to implement these services.

Summing up, this research has proposed the CSP-GC framework that has outlined five CSP-

specific services and has recognised the form of grid computing and specific grid middleware

which could be used to provide some of these services for the benefit of CSP-based

simulation practice in industry.

7.3 Aims and objectives revisited

The aim of this thesis was to investigate how grid computing technologies might benefit CSP-

based simulation practice in industry. Towards the realization of this aim, four objectives

were identified. Figure 53 shows the chapters in which the different objectives have been met.

Chapter 7: Summary and conclusion 211

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Figure 53: Chapters that meet the different objectives outlined in this thesis

 Objective 1: State the hypothesis and identify what grid computing has to offer

Chapter one of this thesis presented the hypothesis that ―grid computing will benefit CSP-

based simulation practice in industry‖. A literature review of grid computing in chapter two

identified higher level grid services that could potentially support the DES and the MCS

CSPs.

 Objective 2: Propose the CSP-GC framework and identify grid computing middleware

that can potentially support the framework

Chapter two identified existing grid computing middleware, namely PRC middleware

BOINC and EDGC middleware Condor, which could potentially be used together with the

CSPs. Chapter three proposed the CSP-GC framework and evaluated BOINC and

Condor in relation to the CSP-specific services that were outlined in the CSP-GC

framework. Similarly, chapter four examined WinGrid and WinGrid-WS in relation to the

CSP-specific services. It was identified that these middleware could support some of the

CSP-GC framework defined services.

Chapter 1: Introduction

Objective 1: Stated the hypothesis.

Chapter 2: Grid computing and simulation packages

Objective 1: Reviewed the subject area of grid computing and
identified what grid computing has to offer.

Objective 2: Identified existing grid computing middleware.

Chapter 3: Proposing the CSP-GC framework

Objective 2: Proposed the CSP-GC framework.

Objective 2: Examined how BOINC and Condor can potentially
support the CSP-GC framework.

Chapter 4: Development of desktop grids for Windows

Objective 2: Examined how WinGrid and WinGrid-WS middleware
can potentially support the CSP-GC framework.

Chapter 5: Case studies

Objective 3: Experimentally tested the CSP-GC framework with
BOINC, Condor and WinGrid.

Chapter 6: Revisiting the CSP-GC framework

Objective 3: Experimentally tested the new CSP-GC service
(distributed simulation with task farming) with WinGrid.

Objective 4: Evaluated the CSP-GC framework and tested the
hypothesis

Chapter 7: Summary and conclusion

Chapter 7: Summary and conclusion 212

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

 Objective 3: Experimentally test the CSP-GC framework

Using a total of six hypothetical and real-world case studies, chapters five and six

presented experimental evaluation of some of the CSP-GC framework defined services

using grid middleware and unmodified MCS and DES CSPs.

 Objective 4: Evaluate CSP-GC framework and test the hypothesis

Chapter six evaluated the CSP-GC framework based on the results of the case study

experimentation and the grid-specific discussions presented in this thesis.

7.4 Contribution of this research

This research is arguably the first attempt to undertake a study of CSPs in the context of grid

computing. The contribution of this research is the modified CSP-GC framework, presented in

chapter six, which identifies five grid-facilitated CSP-specific services that can be potentially

provided through the use of grid technologies. This framework further shows that the CSP-

grid integration technology and the HLA-RTI distributed simulation middleware will have to be

used to implement some of the CSP-specific services. The CSP-grid integration technology

can be potentially used with any CSP that exposes package functionality and any grid

middleware that supports the execution of Java programs. A HLA-RTI is only required to run a

CSP-based distributed simulation over the grid.

A further contribution is the recognition of the form of grid computing, namely Public-Resource

Computing (PRC) in an enterprise context and Enterprise Desktop Grid Computing (EDGC),

which can be used to grid-enable existing CSPs. This research has shown that cluster-based

grid computing is generally unsuitable for integration with Windows-based end-user

applications like the CSPs. Using PRC and EDGC forms of grid computing for CSP-based

simulation in industry can not only facilitate the execution of distributed models, speed up

simulation experimentation, etc., but it can also maximize the utilization of hardware

resources (PCs and network infrastructure) and software resources (CSPs) within an

organization. The latter is achieved through making use of under utilized desktop computers

and the software installed on them.

Yet another contribution is the identification of specific grid computing middleware, namely

BOINC, Condor, WinGrid and WinGrid-WS, which can be used to interface with CSPs to

provide some of the CSP-specific services identified by the modified CSP-GC framework. Of

the four middleware that have been examined in this thesis, BOINC and Condor may be more

suitable for use by simulation users, since they are available for download free of charge,

include installation manuals and user guides, and are supported by user forums and training

programs (for example, Condor Week is an annual training program conducted by the

University of Wisconsin, Madison). WinGrid and WinGrid-WS middleware, on the other hand,

are primarily research software and the intervention of the system developer will generally be

required to implement new CSP-based solutions.

Chapter 7: Summary and conclusion 213

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

7.5 Further research

This research has investigated how simulation users could potentially benefit from the use of

grid technologies at their workplace. The focus of this thesis was on end-users who were

considered experts in modelling and simulation but were not expected to be IT specialists.

However, the CSP-grid integration technology that has been proposed in this work requires

some knowledge of Java and Visual Basic programming. Furthermore, the end-users will also

need to know the middleware-specific mechanisms to create jobs, submit jobs, retrieve

results, etc. Some of this knowledge could be acquired through self-study and imparted

through training. However, for the wider adoption of grid technology for CSP-based

simulation, it may be necessary to develop higher-level tools that would hide the complexity of

the CSP-grid integration technology and middleware specific mechanisms, and provide end-

users with easy to use graphical interfaces through which they could possibly integrate CSPs

with grid middleware.

Two CSP-specific services identified by the modified CSP-GC framework relate to distributed

simulation. Although it has been shown that grid computing could facilitate the execution of

distributed models (through the use of HLA-RTI distributed simulation middleware),

implementing a distributed simulation federation is not a trivial task using CSPs that do not

have inbuilt support for it. More research is needed in the area of CSP-based distributed

simulation, so that in future it will ideally be possible for end-users to implement distributed

models using the CSPs themselves and then to execute the models over the grid.

Condor MW, Condor DAGMan and Condor parallel universe are specific Condor components

which have been identified to potentially support CSP-specific task farming service, work flow

service and parallel computation service respectively. Condor MW and Condor DAGMan

could not be evaluated in context to task farming service and workflow service because the

investment bank case study (section 5.7) has used WinGrid. Condor parallel universe

execution environment could not be experimentally tested to examine the support for parallel

computation service because the existing MCS and DES CSPs do not presently have

MPI/PVM implementations. These are all future areas of research.

Future research could also involve extending WinGrid to support web services. This would

allow the evaluation of collaboration service through facilitating search and download of CSP

model components (section 3.3.4) and evaluation of web-based simulation service through

use of web services (section 3.3.6). Future research in WinGrid could also involve

implementing a WinGrid workflow component on top of the WinGrid Job Dispatcher (WJD).

The application workflow logic can then be input into the WinGrid Workflow component and

which will thereafter be responsible for submitting jobs to WJD based on the underlying

workflow logic.

 List of references 214

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

LIST OF REFERENCES

Alder, D. (2004). The Jacob project: a Java–COM bridge, Version 1.8, 1999-2004. Website

http://danadler.com/jacob/. Last accessed 15th February 2007.

Alfieri, R., Cecchini, R., Ciaschini, V., Dell’Agnello, L., Frohner, A´, Lo˝rentey, K. and Spataro,

F. (2005). From gridmap-file to VOMS: managing authorization in a grid environment. Future

Generation Computer Systems, 21(4): 549–558.

Almond, J. and Snelling, D. (1999). UNICORE: uniform access to supercomputing as an

element of electronic commerce. Future Generation Computer Systems, 15(5-6): 539-548.

Alstad, A. (2006). Grid system for performance transparency with COTS simulation packages.

Masters thesis. School of Information Systems, Computing and Mathematics Brunel

University, UK. Available online http://people.brunel.ac.uk/~cspgnnm/MSc_anders.doc. Last

accessed 3rd April 2007.

Anderson, D. P. (2004). BOINC: a system for public-resource computing and storage. In

Proceedings of the 5th International Workshop on Grid Computing, pp.4-10. IEEE Computer

Society, Washington, DC, USA.

Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M. and Werthimer, D. (2002). SETI@home:

an experiment in public-resource computing. Communications of the ACM, 45(11): 56-61.

Anderson, D. P., Christensen, C. and Allen, B. (2006). Designing a runtime system for

volunteer computing. In Proceedings of the 2006 International Conference on High

Performance Computing, Networking, Storage, and Analysis (Supercomputing, 2006). Article

No. 126. ACM Press, New York, NY, USA.

Antonioletti, M., Atkinson, M., Baxter, R., Borley, A., Chue Hong, N. P., Collins, B., Hardman,

N., Hume, A. C., Knox, A., Jackson, M., Krause, A., Laws, S., Magowan, J., Paton, N. W.,

Pearson, D., Sugden, T., Watson, P. and Westhead, M. (2005). The design and

implementation of grid database services in OGSA-DAI. Concurrency and Computation:

Practice and Experience, 17(2–4): 357–376.

Argonne National Laboratory. (2006). MPICH2 user’s guide, Version 1.0.5. Available online

http://www-unix.mcs.anl.gov/mpi/mpich/downloads/mpich2-doc-user.pdf. Last accessed 20th

March 2007.

Argonne National Laboratory. (2007). The message passing interface (MPI) standard.

Website http://www-unix.mcs.anl.gov/mpi. Last accessed 9th February 2007.

 List of references 215

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Atkinson, M., DeRoure, D., Dunlop, A., Fox, G., Henderson, P., Hey, T., Paton, N.,

Newhouse, S., Parastatidis, S., Trefethen, A., Watson, P. and Webber, J. (2005). Web

service grids: an evolutionary approach. Concurrency and Computation: Practice and

Experience, 17(2-4): 377-389.

Aubanel, E. (2000). Introduction to MPI. Advanced computational research laboratory,

University of New Brunswick, Canada. Available online

http://acrl.cs.unb.ca/php/training/mpi/aubanel-intro_to_mpi.ppt#256,1,Introduction to MPI.

Last accessed 2nd March 2007.

Ayani, R. and Rajaei, H. (1992). Parallel simulation using conservative time windows. In

Proceedings of the 24th Winter Simulation Conference, Swain J. J., Goldsman, D., Crain, R.

C. and Wilson, J. R. (eds.), pp. 709-717. ACM Press, New York, NY, USA.

Baker, M., Buyya, R. and Laforenza, D. (2002). Grids and grid technologies for wide-area

distributed computing. Software - Practice and Experience, 32(15): 1437-1466.

Barbera, R., Falzone, A. and Rodolico, A. (2003). The GENIUS Grid Portal. In Proceedings of

Computing in High Energy and Nuclear Physics. Available online

http://web.oapd.inaf.it/wp10/portals/TUCT001.pdf. Last accessed 29th April 2007.

Barney, B. (2006). Introduction to parallel computing. Available online

http://www.llnl.gov/computing/tutorials/parallel_comp/. Last accessed 2nd March 2007

Basel Committee on Banking Supervision (1999). Principles for the management of credit

risk. Available online http://www.bis.org/publ/bcbs54.pdf. Last accessed 23rd February 2007.

Basney, J. and Livny, M. (1999). Deploying a high throughput computing cluster. In Buyya, R.

(ed.), High Performance Cluster Computing, Volume 1 (chapter 5). NJ, USA: Prentice Hall

PTR.

Basney, J., Raman, R. and Livny, M. (1999). High throughput monte carlo. In Proceedings of

the 9th SIAM Conference on Parallel Processing for Scientific Computing. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, USA. Available online

www.cs.wisc.edu/condor/doc/htmc-siam9.ps. Last accessed 4th April 2007.

Bayucan, A., Henderson, R. L., Lesiak, C., Mann, B., Proett, T. and Tweten, D. (1999).

Portable batch system: external reference specification. MRJ technology solutions. Available

online http://www.jlab.org/hpc/PBS/v2_2_ers.pdf. Last accessed 16th March 2007.

 List of references 216

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Beckles, B., Se-Chang, S. and Kewley, J. (2005). Current methods for negotiating firewalls for

the Condor system. In Proceedings of the 4th UK e-Science All Hands Meeting. Available

online http://www.cs.wisc.edu/condor/doc/CondorandFirewalls.pdf. Last accessed 10th May

2007.

Bell, D., Mustafee, N., Taylor, S. J. E., de Cesare, S. and Lycett, M. (2006). A web services

component discovery and deployment architecture for simulation model reuse. In

Proceedings of the 2006 European Simulation Interoperability Workshop (EURO SIW). 06E-

SIW-047. Simulation Interoperability Standards Organization, Orlando, Florida, USA.

Beowulf.org. (2007). What makes a cluster a Beowulf? Website

http://www.beowulf.org/overview/index.html. Last accessed 9th February 2007.

Berlich, R., Kunze, M. and Schwarz, K. (2005). Grid computing in Europe: from research to

deployment. In Proceedings of the 2005 Australasian Workshop on Grid Computing and e-

Research, pp. 21-27. Australian Computer Society, Darlinghurst, Australia.

Berman, F., Wolski, R., Casanova, H., Cirne, W., Dail, H., Faerman, M., Figueira, S., Hayes,

J., Obertelli, G., Schopf, J., Shao, G., Smallen, S., Spring, N., Su, A. and Zagorodnov, D.

(2003). Adaptive computing on the grid using AppLeS. IEEE transactions on parallel and

distributed systems, 14(4): 369-382.

Bernholdt, D., Bharathi, S., Brown, D., Chancio, K., Chen, M., Chervenak, A., Cinquini, L.,

Drach, B., Foster, I., Fox, P., Garcia, J., Kesselman, C., Markel, R., Middleton, D., Nefedova

V., Pouchard, L., Shoshani, A., Sim, A., Strand, G. and Williams, D. (2005). The earth system

grid: supporting the next generation of climate modelling research. Proceedings of the IEEE,

93(3): 485-495.

Berry, D., Usmani, A., Torero, J., Tate, A., McLaughlin, S., Potter, S., Trew, A., Baxter, R.,

Bull, M. and Atkinson, M. (2005). FireGrid: integrated emergency response and fire safety

engineering for the future built environment. In Proceedings of the 2005 UK e-Science All

Hands Meeting, pp. 1034–1041. Available online http://www.allhands.org.uk/2005/proceeding

s/papers/384.pdf. Last accessed 29th April 2007.

Bhaskar, R., Lee, H. S., Levas, A., Pétrakian, R., Tsai, F. and Tulskie, B. (1994). Analyzing

and re-engineering business processes using simulation. In Proceedings of the 26th Winter

Simulation Conference, Tew, J. D., Manivannan, S., Sadowski, D. A. and Seila, A. F. (eds.),

pp. 1206-1213. Society for Computer Simulation International, San Diego, CA, USA.

 List of references 217

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Boer, C. A. (2005). Distributed simulation in industry. PhD thesis. Erasmus Research Institute

of Management (ERIM), Erasmus University Rotterdam, The Netherlands. Available online

https://ep.eur.nl/handle/1765/6925. Last accessed 4th April 2007.

Boer, C. A., Saanen, Y., Veeke, H. and Verbraeck, A. (2002). Simulation backbone

Famas.MV2. Project 0.2 technical design (final report). Onderzoekschool voor Transport,

Infrastructuur en Logistiek (TRAIL), Technical University of Delft, Delft, The Netherlands.

BOINC. (2007a). Desktop grid computing with BOINC. Website http://boinc.berkeley.edu/dg.

php. Last accessed 17th February 2007.

BOINC. (2007b). Overview of BOINC. Website http://boinc.berkeley.edu/intro.php. Last

accessed 17th February 2007.

BOINC (2007c). The BOINC application programming interface (API). Website

http://boinc.berkeley.edu/trac/wiki/BasicApi. Last accessed 10th May 2007.

BOINC (2007d). BOINC network communication overview. Website http://boinc.berkeley.edu/

comm.php. Last accessed 10th May 2007.

Borshchev, A., Karpov, Y. and Kharitonov, V. (2002) Distributed simulation of hybrid systems

with AnyLogic and HLA. Future Generation Computer Systems, 18(6): 829–839.

Bortscheller, B. J. and Saulnier, E. T. (1992). Model reusability in a graphical simulation

package. In Proceedings of the 24th Conference on Winter Simulation, Swain, J. J.,

Goldsman, D., Crain, R. C. and Wilson, J. R. (eds.), pp. 764-772. ACM Press, New York, NY,

USA.

Brodlie, K., Wood, J., Duce, D. and Sagar, M. (2004). gViz: visualization and computational

steering on the grid. In Proceedings of the UK e-Science All Hands Meeting 2004, pp. 54-60.

Available online http://www.comp.leeds.ac.uk/vvr/gViz/publications/AHM04_wshop_paper.pdf.

Last accessed 28th April 2007.

Brooke, J. M., Coveney, P. V., Harting, J., Jha, S., Pickles, S. M., Pinning, R. L. and Porter, A.

R. (2003). Computational steering in RealityGrid. In Proceedings of the UK e-Science All

Hands Meeting 2003, pp. 885-888. Available online http://www.nesc.ac.uk/events/ahm2003/

AHMCD/pdf/179.pdf. Last accessed 28th April 2007.

Brooks, R., Robinson, S. and Lewis, C. (2001). Simulation and inventory control. Operational

Research Series. Hampshire, UK: Palgrave.

 List of references 218

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Bryant, R. E. (1977). Simulation of packet communication architecture computer systems,

MIT/LCS/TR-188, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Available online http://www.lcs.mit.edu/publications/pubs/pdf/MIT-LCS-TR-188.pdf. Last

accessed 4th April 2007.

Burke, S., Campana, S., Peris, A. D., Donno, F., Lorenzo, P. M., Santinelli, R. and Sciaba, A.

(2007). gLite 3 user guide, manuals series. Document identifier CERN-LCG-GDEIS-722398.

Available online https://edms.cern.ch/file/722398//gLite-3-UserGuide.pdf. Last accessed 15th

March 2007.

Buyya, R., Abramson, D. and Giddy, J. (2000). Nimrod/G: an architecture for a resource

management and scheduling system in a global computational grid. In Proceedings of the 4th

international conference on High Performance Computing in the Asia-Pacific Region, pp. 283-

289. IEEE Computer Society, Washington, DC, USA.

Calder, B., Chien, A., Wang, J. and Yang, D. (2005). The entropia virtual machine for desktop

grids. In Proceedings of the 1
st
 ACM/USENIX international conference on Virtual execution

environments, pp.186-196. ACM Press, New York, NY, USA.

Canabarro, E. and Duffie, D. (2003). Measuring and marking counterparty risk. In Tilman,

L.M. (ed.), Asset/Liability Management of Financial Institutions (chapter 9). London, UK:

Euromoney books. Available online http://www.stanford.edu/~duffie/Chapter_09.pdf. Last

accessed 26th March 2007.

Casanova, H. (2002). Distributed computing research issues in grid computing. ACM SIGACT

News, 33(3): 50-70. ACM Press, New York, NY, USA.

Chance, D. M. (2004). Monte carlo simulation, teaching note 96-03. Available online

http://www.bus.lsu.edu/academics/finance/faculty/dchance/Instructional/TN96-03.pdf. Last

accessed 8th March 2007.

Chandra, A., Trivedi, R. and Weissman, J. (2005). Hosting services on the grid: challenges

and opportunities. University of Minnesota - Computer Science and Engineering Technical

Report. Report number 05-026. Available online http://www.cs.umn.edu/research/technical_re

ports.php?page=report&report_id=05-026. Last accessed 7th May, 2007.

Chandy, K. M. and Misra, J. (1979). Distributed simulation: a case study in design and

verification of distributed programs. IEEE Transactions on Software Engineering, 5(5): 440-

452.

 List of references 219

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Chandy, K. M. and Misra, J. (1981). Asynchronous distributed simulation via a sequence of

parallel computations. Communications of the ACM, 24(11): 198 - 206.

Cheriton, D. R. (1988). The V distributed system. Communications of the ACM, 31(3): 314-

333.

Chetty, M. and Buyya, R. (2002). Weaving computational grids: how analogous are they with

electrical grids? Computing in Science and Engineering, 4(4): 61-71.

Chien, A., Calder, B., Elbert, S. and Bhatia, K. (2003). Entropia: architecture and performance

of an enterprise desktop grid system. Journal of Parallel and Distributed Computing, 63(5):

597-610.

Choi, S., Baik, M., Hwang, C., Gil, J. and Yu, H. (2004). Volunteer availability based fault

tolerant scheduling mechanism in desktop grid computing environment. In Proceedings of the

3rd IEEE International Symposium on Network Computing and Applications, pp. 366-371.

IEEE Computer Society, Washington, DC, USA.

Christensen, C., Aina, T. and Stainforth, D. (2005). The challenge of volunteer computing with

lengthy climate model simulations. In Proceedings of the First International Conference on e-

Science and Grid Computing (E-SCIENCE '05), pp.8-15. IEEE Computer Society,

Washington, DC, USA.

Condor. (2007). Condor high throughput computing: top five myths about Condor. Available

online http://www.cs.wisc.edu/Condor/myths.html. Last accessed 16th February 2007.

Condor DAGMan. (2007). Condor DAGMan. Website http://www.cs.wisc.edu/condor/dagman.

Last accessed 27th February 2007.

Condor MW. (2005). User’s guide to MW: a guide to using MW. Available online

http://www.cs.wisc.edu/condor/mw/usersguide.pdf. Last accessed 19th February 2007.

Condor MW. (2007). What is Condor MW? Website http://www.cs.wisc.edu/condor/mw/index.

html. Last accessed 19th February 2007.

Condor Version 6.9.1 Manual. (2007a). Platform-specific information on Microsoft Windows,

Condor 6.9.2 manual. Website http://www.cs.wisc.edu/condor/manual/v6.9/6_2Micro soft_

Windows.html. Last accessed 27th February 2007.

 List of references 220

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Condor Version 6.9.1 Manual. (2007b). Road-map for running jobs, Condor 6.9.2 manual.

Website http://www.cs.wisc.edu/condor/manual/v6.9/2_4Road_map_Running.html. Last

accessed 27th February 2007.

Condor Version 6.9.1 Manual. (2007c). Command reference manual: condor_prio, Condor

6.9.2 manual. Website http://www.cs.wisc.edu/condor/manual/v6.9/condor_prio.html. Last

accessed 4th March 2007.

Contingency Analysis. (2003). Credit risk glossary. Website http://www.riskglossary.com/link/

credit_risk.htm. Last accessed 22nd February 2007.

Corbato, F. J. and Vyssotsky, V. A. (1965). Introduction and overview of the Multics system.

In Proceedings of the AFIPS Fall Joint Computer Conference, pp. 185–196. IEEE Educational

Activities Department, Piscataway, NJ, USA. Available online http://www.multicians.org/fjcc1.

html. Last accessed 17th March 2007.

Credient Analytics. (2007). Credit risk management system - Credient Analytics 2.3 user

guide. SunGard Corporation [http://www3.sungard.com/financial/].

Cygwin. (2007). What is cygwin? Website http://cygwin.com/. Last accessed 3rd March 2007.

Czajkowski, K., Fitzgerald, S., Foster, I. and Kesselman, C. (2001). Grid information services

for distributed resource sharing. In Proceedings of the 10th IEEE International Symposium on

High Performance Distributed Computing, pp. 181-194. IEEE Computer Society, Washington,

DC, USA.

Dahmann, J. S., Fujimoto, R. M. and Weatherly, R. M. (1997). The department of defense

high level architecture. In Proceedings of the 29th Winter Simulation Conference, Andradottir,

S., Healy, K. J., Withers, D. H. and Nelson, B. L. (eds.), pp 142 – 149. ACM Press, New York,

NY, USA.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M., Vahi, K. and

Livny, M. (2004). Pegasus: mapping scientific workflows onto the grid. In Proceedings of

Across Grids Conference 2004, pp. 11-20. In Dikaiakos, M. (ed.), Lecture notes in Computer

Science, volume 3165, Springer-Verlag, Germany.

Digipede Technologies. (2006). The digipede network. Website

http://www.digipede.net/products/digipede-network.html. Last accessed 13th February 2007.

 List of references 221

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

EDG WP6 Integration Team. (2003). Data grid installation guide. Document identifier:

DataGrid-06-TED-0105-2-0. Available online http://marianne.in2p3.fr/datagrid/documentation/

EDG-Installation-Guide-2.0.pdf. Last accessed 16th March 2007.

EGEE. (2007). Enabling grids for e-science project. Website http://www.eu-egee.org/. Last

accessed 12th February 2007.

Ellisman, M. and Peltier, S. (2004). Medical data federation: the biomedical informatics

research network. In Foster, I. and Kesselman, C. (eds.), The Grid: Blueprint for a New

Computing Infrastructure (2nd Edition), chapter 8. San Francisco, CA: Morgan Kaufmann.

Elmroth, E., Ding, C., Wu, Y. and Pruess, K. (1999). A parallel implementation of the

TOUGH2 software package for large scale multiphase fluid and heat flow simulations. In

Proceedings of the 1999 Conference on Supercomputing, article no. 52. ACM Press, New

York, NY, USA.

Elts, E. and Komolkin, A. V. (2004). Comparative analysis of PVM and MPI for the

development of physical applications on parallel clusters. In Proceedings of the 2004 Joint

Advanced Student School (JASS 2004). Available online http://wwwmayr.informatik.tu-

muenchen.de/konferenzen/Jass04/courses/2/Papers/Comparison.pdf. Last accessed 12th

March 2007.

EU-DataGrid. (2004).The data grid project. Website http://eu-datagrid.web.cern.ch/eu-

datagrid/. Last accessed 12th February 2007.

Fischer, M. C., Adams, A. and Miller, G. (1994). Aggregate level simulation protocol (ALSP) -

training for the future. In Proceedings of the 1994 Military Operations Research Symposium.

Military Operations Research Society (MORS), USA. Available online

http://ms.ie.org/alsp/biblio/mors_94_fischer/mors_94_fischer.html. Last accessed 15th

February 2007.

Fishwick, P. A. (1997). Web-based simulation. In Proceedings of the 29th Winter Simulation

Conference, Andradottir, S., Healy, K. J., Withers, D. H. and Nelson, B. L. (eds.), pp. 100-102.

ACM Press, New York, NY, USA.

Flynn, M. J. (1966). Very high-speed computing systems. Proceedings of the IEEE, 54(12):

1901-1909.

Forsdick, H. C., Schantz, R. E. and Thomas, R. H. (1978). Operating systems for computer

networks. Computer, 11(1): 48-57.

 List of references 222

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Foster, I. (1995). Designing and building parallel programs: concepts and tools for parallel

software engineering. Reading, Mass.: Addison-Wesley.

Foster, I. (2002). What is the grid? A three point checklist. Grid Today, July 2002. Available

online http://www.gridtoday.com/02/0722/100136.html. Last accessed 18th March’ 2007.

Foster, I. (2005). A globus primer (draft version). Available online http://www.globus.org/toolkit

/docs/4.0/key/. Last accessed 13th February 2007.

Foster, I. (2006). Globus toolkit version 4: software for service-oriented systems. Journal of

Computer Science and Technology, 21(4): 513-520.

Foster, I. and Kesselman, C. (1998). The grid: blueprint for a new computing infrastructure.

San Francisco, CA: Morgan Kaufmann.

Foster, I. and Kesselman, C. (2004). Concepts and architecture. In Foster, I. and Kesselman,

C. (eds.), The Grid: Blueprint for a New Computing Infrastructure (2nd Edition), chapter 4.

San Francisco, CA: Morgan Kaufmann.

Foster, I. and Lamnitchi, A. (2003). On death, taxes, and the convergence of peer-to-peer and

grid computing. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems

(IPTPS‟03), pp.118–128. In Kaashoek, F. and Stoica, I. (eds.), Lecture notes in Computer

Science, volume 2735, Springer-Verlag, Germany.

Foster, I., Geisler, J., Nickless, B., Smith, W. and Tuecke, S. (1996). Software infrastructure

for the I-WAY high-performance distributed computing experiment. In Proceedings of the 5th

IEEE Symposium on High Performance Distributed Computing (HPDC'96), pp. 562-571. IEEE

Computer Society, Washington, DC, USA.

Foster, I., Kesselman, C. and Tuecke, S. (2001). The anatomy of the grid: enabling scalable

virtual organizations. International Journal of High Performance Computing Applications,

15(3): 200-222.

Foster, I., Kesselman, C., Nick, J. M. and Tuecke, S. (2002). Grid services for distributed

system integration. IEEE Computer, 35(6): 37-46.

Frey, J. (2002). Condor DAGMan: handling inter-job dependencies. Available online

http://www.bo.infn.it/calcolo/condor/dagman/. Last accessed 27th February 2007.

Fujimoto, R. M. (1990). Parallel discrete event simulation. Communications of the ACM,

33(10): 30-53.

 List of references 223

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Fujimoto, R. M. (1999a). Parallel and distributed simulation. In Proceedings of the 31st Winter

Simulation Conference, Farrington, P. A., Nembhard, H. B., Sturrock, D. T. and Evans, G. W.

(eds.), pp. 122– 131. ACM Press, New York, NY, USA.

Fujimoto, R. M. (1999b). Parallel and distributed simulation systems. New York, NY: John

Wiley & Sons.

Fujimoto, R. M. (2001). Parallel and distributed simulation systems. In Proceedings of the

33rd Winter Simulation Conference, Peters, B. A., Smith, J. S., Medeiros, D. J. and Rohrer,

M. W. (eds.), pp. 147-157. IEEE Computer Society, Washington, DC, USA.

Fujimoto, R. M. (2003). Distributed simulation systems. In Proceedings of the 35th Winter

Simulation Conference, Chick, S., Sánchez, P. J., Ferrin, D. and Morrice, D. J. (eds.), pp.

124-134. Winter Simulation Conference, USA.

Fujimoto, R. M. and Weatherly, R. M. (1996). Time management in the DoD high level

architecture. In Proceedings of the 10th Workshop on Parallel and Distributed Simulation

Workshop, pp. 60-67. IEEE Computer Society, Washington, DC, USA.

Gan, B. P., Liu, L., Jain, S., Turner, S. J., Cai, W. and Hsu, W. (2000). Distributed supply

chain simulation across enterprise boundaries. In Proceedings of the 32nd Winter Simulation

Conference, Joines, J. A., Barton, R. R., Kang, K. and Fishwick, P. A. (eds.), pp. 1245-1251.

Society for Computer Simulation International, San Diego, CA, USA.

Gan, B. P., Lendermann, P., Low, M. Y. H., Turner, S. J., Wang, X. and Taylor, S. J. E.

(2005). Interoperating Autosched AP using the high level architecture. In Proceedings of the

37th Winter Simulation Conference, Kuhl, M. E., Steiger, N. M., Armstrong, F. B. and Joines,

J. A. (eds.), pp. 394-401. Winter Simulation Conference, USA.

Gani, S. and Picuri, P. (1995). The object revolution: how COM technology is changing the

way we do business. Computing & Control Engineering Journal, 6(3): 108-112.

Garonne, V., Tsaregorodtsev, A. and Stokes-Rees, I. (2004). DIRAC: workload management

system. In Proceedings of Computing in High Energy and Nuclear Physics (CHEP2004).

Available online https://twiki.cern.ch/twiki/bin/viewfile/LHCb/DiracReview?rev=1.1;filename=

diracWMS.pdf. Last accessed 7th May 2007.

 List of references 224

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Garonne, V., Tsaregorodtsev, A. and Caron, E. (2005). A study of meta-scheduling

architectures for high throughput computing: pull versus push. In Proceedings of the 4th

International Symposium on Parallel and Distributed Computing (ISPDC‟05), pp. 226-233.

IEEE Computer Society, Washington, DC, USA.

Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R. and Sunderam. V. (1994). PVM:

parallel virtual machine: a users' guide and tutorial for networked parallel computing.

Cambridge, MA: MIT Press. Available online http://www.netlib.org/pvm3/book/pvm

-book.html. Last accessed 27th February 2007.

Gentzsch, W. (2004). Enterprise resource management: applications in research and

industry. In Foster, I. and Kesselman, C. (eds.), The Grid: Blueprint for a New Computing

Infrastructure (2nd Edition), chapter 12. San Francisco, CA: Morgan Kaufmann.

Giesler, M. and Pohlmann, M. (2003). The anthropology of file sharing: consuming Napster as

a gift. Advances in Consumer Research, volume 30, pp 273-279. Available online

http://www.acrwebsite.org/volumes/display.asp?id=8790. Last accessed 4th March 2007.

Globus Alliance. (2005). GT4 administration guide. Available online http://www.globus.org/tool

kit/docs/4.0/admin/docbook/index.html. Last accessed 15th March 2007.

Globus Alliance. (2007a). GT 4.0 common runtime components: key concepts. Website

http://www.globus.org/toolkit/docs/4.0/common/key/. Last accessed 29th April 2007.

Globus Alliance. (2007b). Research papers from globus alliance members. Website

http://www.globus.org/alliance/publications/papers.php#Applications. Last accessed 13th

February 2007.

Goldchleger, A., Queiroz, C. A., Kon, F., Goldman, A. (2004). Running highly-coupled parallel

applications in a computational grid. In Proceedings of the 22nd Brazilian Symposium on

Computer Networks (SBRC'2004). Available online http://gsd.ime.usp.br/publications/InteGra

deBSPSBRC04.pdf. Last accessed 29th April 2007.

Good, N. S. and Krekelberg, A. (2003). Usability and privacy: a study of kazaa P2P file-

sharing. In Proceedings of the SIGCHI conference on human factors in computing systems,

pp. 137-144. ACM Press, New York, NY, USA.

 List of references 225

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Goux, J.-P., Kulkarni, S., Linderoth, J. and Yoder, M. (2000). An enabling framework for

master-worker applications on the Computational grid. In Proceedings of the 9th International

Symposium on High Performance Distributed Computing (HPDC'00), pp. 43-50.IEEE

Computer Society, Washington, DC, USA.

Gray, N. D., Hotchkiss, J., LaForge, S., Shalit, A. and Weinberg, T. (1998). Modern languages

and Microsoft's component object model. Communications of the ACM, 41(5): 55-65.

Grid3. (2007). An application grid laboratory for science. Website

http://www.ivdgl.org/grid2003/. Last accessed 12th February 2007.

Grimshaw, A. S. and Wulf, W. A. (1996). Legion - a view from 50,000 feet. In Proceedings of

the 5th IEEE International Symposium on High Performance Distributed Computing

(HPDC‟96), pp. 89-100. IEEE Computer Society, Washington, DC, USA.

Hantz, F. and Guyennet, H. (2005). HiPoP: highly distributed platform of computing. In

Proceedings of the Joint International Conference on Autonomic and Autonomous Systems

and International Conference on Networking and Services, pp. 91-96. IEEE Computer

Society, Washington, DC, USA.

Herzog, T. N. and Lord, G. (2002). Applications of monte carlo methods to finance and

insurance. Winstead, Conn: ACTEX Publications. Available online http://books.google.com.

Last accessed 11th March 2007.

Herzog, T. N. and Lord, G. (2003). Applications of simulation models in finance and

insurance. In Proceedings of the 35th Winter Simulation Conference, Chick, S., Sánchez, P.

J., Ferrin, D. and Morrice, D. J. (eds.), pp. 249-257. Winter Simulation Conference, USA.

Hey, T. and Trefethen A. E. (2002). The UK e-science core programme and the grid. Future

Generation Computer Systems, 18(8): 1017-1031.

Heymann, E., Senar, M. A., Luque, E. and Livny, M. (2000). Adaptive scheduling for master-

worker applications on the computational grid. In Proceedings of the 1st International

Workshop on Grid Computing, pp. 214–227. In Buyya, R. and Baker, M. (eds.), Lecture Notes

in Computer Science, volume 1971, Springer-Verlag, UK.

Hibino, H., Fukuda, Y., Yura, Y., Mitsuyuki, K. and Kaneda, K. (2002). Manufacturing adapter

of distributed simulation systems using HLA. In Proceedings of the 34th Winter Simulation

Conference, Yücesan, E., Chen, C. H., Snowdon, J. L. and Charnes, J. M. (eds.), pp. 1099-

1107. Winter Simulation Conference, USA.

 List of references 226

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Hollocks, B. W. (2006). Forty years of discrete-event simulation - a personal reflection.

Journal of the Operational Research Society, 57(12): 1383-1399.

Huang, Z., Song, G. and Zheng, Y. (2006). Proxy-based parallel visualization in a grid

environment with PC clusters. In Proceedings of the first International Multi-Symposiums on

Computer and Computational Sciences (IMSCC'06), pp. 683 - 687. IEEE Computer Society

Press, Los Alamitos, CA, USA.

IEEE 1516 (2000). IEEE standard for modelling and simulation (M&S) high level architecture

(HLA). New York, NY: Institute of Electrical and Electronics Engineers.

IEEE 1516.0. (2000). IEEE standard for modelling and simulation (M&S) high level

architecture (HLA) – rules. New York, NY: Institute of Electrical and Electronics Engineers.

IEEE 1516.1. (2000). IEEE standard for modelling and simulation (M&S) high level

architecture (HLA) - federate interface specification (FIS). New York, NY: Institute of Electrical

and Electronics Engineers.

IEEE 1516.2. (2000). IEEE standard for modelling and simulation (M&S) high level

architecture (HLA) - object model template (OMT) specification. New York, NY: Institute of

Electrical and Electronics Engineers.

IEEE 1516.3. (2003). IEEE standard for modelling and simulation (M&S) high level

architecture (HLA) - federate development process (FEDEP). New York, NY: Institute of

Electrical and Electronics Engineers.

Jackson, T., Austin, J., Fletcher M. and Jessop, M. (2003). Delivering a grid enabled

distributed aircraft maintenance environment (DAME). In Proceedings of the 2003 UK e-

Science All Hands Meeting, pp. 420-427. Available online

http://www.nesc.ac.uk/events/ahm2003/AHMCD/. Last accessed 13th February 2007.

Jefferson, D. R. (1985). Virtual Time. ACM Transactions on Programming Languages and

Systems, 7(3): 404 – 425.

Johnson, C. (2003). What is research in computing science? Teaching notes, Department of

Computer Science, University of Glasgow. Available online http://www.dcs.gla.ac.uk/~johnson

/teaching/research_skills/research.html. Last accessed 28th March 2007.

 List of references 227

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Johnson, G. D. (1999). Networked simulation with HLA and MODSIM III. In Proceedings of

the 31st Winter Simulation Conference, Farrington, P. A., Nembhard, H. B., Sturrock, D. T.

and Evans, G. W. (eds.), pp. 1065-1070. ACM Press, New York, NY, USA.

Johnston, W. E., Gannon, D. and Nitzberg, B. (1999). Grids as production computing

environments: the engineering aspects of NASA's information power grid. In Proceedings of

the 8th International Symposium on High Performance Distributed Computing, pp. 197 - 204.

IEEE Computer Society, Washington, DC, USA.

Johnston, W. E., Bair, R., Foster, I., Geist, A., Kramer, W. and Simon, H. D. (2001). Science

grid: enabling and deploying the SciDAC collaboratory software environment. U.S.

Department of Energy Office of Science. Available online http://www.doesciencegrid.org/Grid

/Grid/papers/DOE_Science_Grid_Collaboratory_Pilot_Proposal_03_14.nobudget.pdf. Last

accessed 12th February 2007.

Kannan S., Roberts, M., Mayes, P., Brelsford, D. and Skovira, J. F. (2001). Workload

management with LoadLeveler. IBM Redbooks. Available online

http://www.redbooks.ibm.com/abstracts/sg246038.html. Last accessed 16th March 2007.

Karlsson, M. and Olsson, L. (2001). pRTI 1516 - rationale and design. In Proceedings of the

2001 Fall Simulation Interoperability Workshop. 01F-SIW-038. Simulation Interoperability

Standards Organization, Orlando, Florida, USA.

Karonis, N. T., Toonen, B. and Foster, I. (2003). MPICH-G2: A grid-enabled implementation

of the Message Passing Interface. Journal of Parallel and Distributed Computing, 63(5): 551-

563.

Katsaliaki, K. (2007). Analysing the supply chain of blood in the U.K. using simulation. PhD

thesis. Department of Management, University of Southampton, U.K.

Katsaliaki, K. and Brailsford, S. (2007). Using simulation to improve the blood supply chain,

Journal of the Operational Research Society, 58(2): 219-227.

Kilgore, R. A. (2000). Silk, Java and object-oriented simulation. In Proceedings of the 32nd

Winter Simulation Conference, Joines, J. A., Barton, R. R., Kang, K. and Fishwick, P. A.

(eds.). Society for Computer Simulation International, San Diego, CA, USA.

 List of references 228

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Kiss, T. (2007). GEMLCA / P-GRADE: a workflow-oriented portal and application hosting

environment. Presentation: Induction to Grid Computing and the National Grid Service, Brunel

University, 19th April 2007. Available online http://indico.cern.ch/materialDisplay.py?contribId

=12&sessionId=5&materialId=slides&confId=13902. Last accessed 5th May

2007.

Kondo, D., Chien, A. and Casanova, H. (2004). Resource management for rapid application

turnaround on enterprise desktop grids. In Proceedings of the 2004 Conference on

Supercomputing (SC‟04), paper 17. IEEE Computer Society, Washington, DC, USA.

Kuhl F., Weatherly R. and Dahmann J. (1999). Creating computer simulation systems: an

introduction to the high level architecture. Upper Saddle River, NJ: Prentice Hall PTR.

Kuljis, J. and Paul, R. J. (2000). A review of web based simulation: whither we wander? In

Proceedings of the 32nd Winter Simulation Conference, Joines, J. A., Barton, R. R., Kang, K.

and Fishwick, P. A. (eds.), pp.1872-1881. Society for Computer Simulation International, San

Diego, CA, USA.

Kurose, J. F. and Ross, K. W. (2003). Computer networking: a top-down approach featuring

the Internet (2nd edition). Reading, MA: Addison Wesley.

Ladbrook, J. and Janusszczak, A. (2001). Ford’s power train operations – changing the

simulation environment. In Proceedings of the 33rd Winter Simulation Conference, Peters, B.

A., Smith, J. S., Medeiros, D. J. and Rohrer, M. W. (eds.), pp.863-869. IEEE Computer

Society, Washington, DC, USA.

Lamanna, M. (2004).The LHC computing grid project at CERN. Nuclear Instruments and

Methods in Physics Research (Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment), 534(1-2): 1-6.

Laughery, R. (1998). Computer simulation as tool for studying human-centered systems. In

Proceedings of the 30th Winter Simulation Conference, Medeiros, D. J., Watson, E. F.,

Carson, J. S. and Manivannan, M. S. (eds.), pp. 61 - 66. IEEE Computer Society Press, Los

Alamitos, CA, USA.

LCG. (2007a). LCG project overview. Website http://lcg.web.cern.ch/LCG/overview.html. Last

accessed 12th February 2007.

LCG. (2007b). LCG middleware overview. Website http://lcg.web.cern.ch/LCG/activities/

middleware.html. Last accessed 12th February 2007.

 List of references 229

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Lendermann, P., Low, M. Y. H., Gan, B. P., Julka, N., Peng, C. L., Lee, L. H., Taylor, S. J. E

Turner, S. J., Cai, W., Wang, X., Hung, T., McGinnis, L. F. and Buckley, S. (2005). An

integrated and adaptive decision-support framework for high-tech manufacturing and service

networks. In Proceedings of the. 37th Winter Simulation Conference, Kuhl, M. E., Steiger, N.

M., Armstrong, F. B. and Joines, J. A. (eds.), pp. 2052-2062. Winter Simulation Conference,

USA.

Levine, D. and Wirt, M. (2004). Interactivity with scalability: infrastructure for multiplayer

games. In Foster, I. and Kesselman, C. (eds.), The Grid: Blueprint for a New Computing

Infrastructure (2nd Edition), chapter 13. San Francisco, CA: Morgan Kaufmann.

LHC@home. (2007). What is LHC@home? Website http://athome.web.cern.ch/athome/LHC

athome/whatis.html. Last accessed 17th February 2007.

Linden Research. (2007). Second Life. Website http://secondlife.com/. Last accessed 9th

February 2007.

Litzkow, M., Livny, M. and Mutka, M. (1988). Condor - a hunter of idle workstations. In

Proceedings of the 8th International Conference of Distributed Computing Systems, pp.104-

111. IEEE Computer Society, Washington, DC, USA.

Litzkow, M., Tannenbaum, T., Basney, J. and Livny, M. (1997). Checkpoint and migration of

UNIX processes in the Condor distributed processing system. University of Wisconsin-

Madison Computer Sciences Technical Report 1346. Available online

http://www.cs.wisc.edu/Condor/doc/ckpt97.pdf. Last accessed 16th February 2007.

Livny, M. and Beck, A. (1997). High throughput computing: an interview with Miron Livney.

HPCWire, June 1997. Available online http://www.cs.wisc.edu/Condor/HPCwire.1. Last

accessed 16th February 2007.

Lorenz, P., Schriber, T. J., Dorwarth, H. and Ritter, K. (1997). Towards a web based

simulation environment. In Proceedings of the 29th Winter Simulation Conference,

Andradottir, S., Healy, K. J., Withers, D. H. and Nelson, B. L. (eds.), pp.1338-1344. ACM

Press, New York, NY, USA.

Low, M. Y. H., Lye, K. W., Lendermann, P., Turner, S. J., Chim, R. T. W and Leo, S. H.

(2005). An agent-based approach for managing symbiotic simulation of semiconductor

assembly and test operation. In Proceedings of the 4th International Joint Conference on

Autonomous Agents and Multiagent Systems (AAMAS'05), pp. 85-92. ACM Press, New York,

NY, USA.

 List of references 230

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Lowery, J. C. (1998). Getting started in simulation in healthcare. In Proceedings of the 30th

Winter Simulation Conference, Medeiros, D. J., Watson, E. F., Carson, J. S. and Manivannan,

M. S. (eds.), pp. 31-35. IEEE Computer Society Press, Los Alamitos, CA, USA.

Luther, A., Buyya, R., Ranjan, R. and Venugopal, S. (2005). Alchemi: a .NET-based

enterprise grid computing system. In Proceedings of the 6th International Conference on

Internet Computing (ICOMP'05), pp. 269-278. CSREA Press, USA. Available online

http://gridbus.csse.unimelb.edu.au/papers/alchemi_icomp05.pdf. Last accessed 4th April

2007.

Lüthi, J. and Großmann, S. (2001). The resource sharing system: dynamic federate mapping

for HLA-based distributed simulation. In Proceedings of the 15th Workshop on Parallel and

Distributed Simulation, pp. 91-98. IEEE Computer Society, Washington, DC, USA.

Mahmoud, Q. H. (2005). Service-Oriented Architecture (SOA) and web services: the road to

Enterprise Application Integration (EAI). Available online http://java.sun.com/developer/techni

calArticles/WebServices/soa/. Last accessed 4th May 2007.

Marins, J. T. M, Santos J. F. and Saliby, E. (2004). Variance reduction techniques applied to

monte carlo simulation of asian calls. In Proceedings of the 2004 Business Association of

Latin American Studies (BALAS) Conference.

Marr, C., Storey, C., Biles, W. E. and Kleijnen, J. P. C. (2000). A Java-based simulation

manager for web-based simulation. In Proceedings of the 32nd Winter Simulation

Conference, Joines, J. A., Barton, R. R., Kang, K. and Fishwick, P. A. (eds.), pp. 1815–1822.

Society for Computer Simulation International, San Diego, CA, USA.

Marr, D. T., Binns, F., Hill, D. L., Hinton, G., Koufaty, D. A., Miller, J. A. and Upton, M. (2002).

Hyper-threading technology architecture and micro-architecture. Intel Technology Journal,

6(1): 4-15.

Matsuoka, S., Shinjo, S., Aoyagi, M., Sekiguchi, S., Usami, H. and Miura, K. (2005).

Japanese computational grid research project: NAREGI. Proceedings of the IEEE, 93(3): 522-

533.

Mccoy, R. A. and Deng, Y. (1999). Parallel particle simulations of thin-film deposition.

International Journal of High Performance Computing Applications, 13(1): 16-32. Sage

Publications, Thousand Oaks, CA, USA.

 List of references 231

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

McLean, C. and Riddick, F. (2000). The IMS mission architecture for distributed

manufacturing simulation. In Proceedings of the 32nd Winter Simulation Conference, Joines,

J. A., Barton, R. R., Kang, K. and Fishwick, P. A. (eds.), pp. 1539-1548. Society for Computer

Simulation International, San Diego, CA, USA.

Microsoft Support. (2007). How to automate Microsoft Excel from Visual Basic (knowledge

base article KB219151, version 5). Available online http://support.microsoft.com/kb/219151.

Last accessed 6th April, 2007.

Microsoft WCCS. (2007). Windows compute cluster server 2003 product overview. Website

http://www.microsoft.com/windowsserver2003/ccs/overview.mspx. Last accessed 15th March

2007.

Miller, D. C. and Thorpe, J. A. (1995). SIMNET: the advent of simulator networking.

Proceedings of the IEEE, 83(8): 1114-1123.

Mustafee, N. (2004). Performance evaluation of interoperability methods for distributed

simulation. MSc. thesis. Department of Information Systems, Computing and Mathematics,

Brunel University, UK.

Mustafee, N. and Taylor, S. J. E. (2006a). Investigating distributed simulation with COTS

simulation packages: experiences with Simul8 and the HLA. In Proceedings of the 2006

Operational Research Society Simulation Workshop (SW06), Garnett, J., Brailsford, S.,

Robinson, S. and Taylor, S. (eds.), pp. 33-42. Operational Research Society, Birmingham,

UK.

Mustafee, N. and Taylor, S. J. E. (2006b). Using a desktop grid to support simulation

modelling. In Proceedings of the 28th Information Technology Interfaces Conference (ITI

2006), Stiffler, V.L. and Dobric, V. H. (eds.), pp. 557-562. IEEE Computer Society,

Washington, DC, USA.

Mustafee, N., Alstad, A., Larsen, B., Taylor, S. J. E. and Ladbrook, J. (2006a). Grid-enabling

FIRST: speeding up simulation applications using WinGrid. In Proceedings of the 10th

International Symposium on Distributed Simulation and Real-Time Applications (DSRT 2006),

Alba, E., Turner, S. J., Roberts, D. and Taylor, S. J. E. (eds.), pp. 157-164. IEEE Computer

Society, Washington, DC, USA.

 List of references 232

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Mustafee, N., Taylor, S. J. E., Katsaliaki, K. and Brailsford, S. (2006b). Distributed simulation

with COTS simulation packages: a case study in health care supply chain simulation. In

Proceedings of the 37th Winter Simulation Conference, Perrone, L. F., Wieland, F. P., Liu, J.,

Lawson, B. G., Nicol, D. M. and Fujimoto, R. M. (eds.), pp. 1136-1142. Winter Simulation

Conference, USA.

Mutalik, P. P., Knight, L. R., Blanton, J. L. and Wainwright, R. L. (1992). Solving combinatorial

optimization problems using parallel simulated annealing and parallel genetic algorithms. In

Proceedings of the 1992 ACM/SIGAPP symposium on Applied computing, pp. 1031- 1038.

ACM Press, New York, NY, USA.

Mutka, M. W. (1992) . Estimating capacity for sharing in a privately owned workstation

environment. IEEE Transactions on Software Engineering, 18(4): 319-328.

National e-Science Centre. (2001). Defining e-Science. Website http://www.nesc.ac.uk/nesc/

define.html. Last accessed 12th February 2007.

Natrajan, A., Nguyen-Tuong, A., Humphrey, M. A., Herrick, M., Clarke, B. P. and Grimshaw,

A. S. (2002). The Legion Grid Portal. Concurrency and computation: practice and experience,

14(13-15): 1365-1394.

Nelson, B. L. (1987). Variance reduction for simulation practitioners. In Proceedings of the

19th Winter Simulation Conference, Thesen, A., Grant, H. and Kelton, W. D. (eds.), pp. 43-51.

ACM Press, New York, NY, USA.

Németh, C., Dózsa, G., Lovas, R. and Kacsuk, P. (2004). The P-GRADE Grid Portal. In

Proceedings of the International Conference on Computational Science and its Applications

(ICCSA 2004), pp. 10-19. In Laganá et al. (eds.), Lecture notes in Computer Science, volume

3044, Springer-Verlag, Germany.

NHS Blood and Transplant. (2006). NHS Blood and Transplant (NHSBT). Website

http://www.nhsbt.nhs.uk. Last accessed 14th February 2007.

Nicol, D. and Heidelberger, P. (1996). Parallel execution for serial simulators. ACM

Transactions on Modelling and Computer Simulation, 6(3): 210-242.

NLR (2007). National LambdaRail network: infrastructure. Website http://www.nlr.net/services

/infrastructure.php. Last accessed 13th February 2007.

Novotny, J. (2002). The grid portal development kit. Concurrency and Computation: Practice

and Experience, 14(13-15): 1129-1144.

 List of references 233

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K.,

Pocock, M. R., Wipat, A. and Li, P. (2004). Taverna: a tool for the composition and enactment

of bioinformatics workflows. Bioinformatics, 20(17): 3045-3054.

OMII. (2006a). Installation and setup guide for the OMII middleware, release 3.2.0. Available

online http://www.omii.ac.uk/docs/3.2.0/installation_guide/omii_3_installation_and_setup_

guide.htm. Last accessed 15th March 2007.

OMII. (2006b). User guide for the OMII middleware, release 3.2.0. Accessible online

http://www.omii.ac.uk/docs/3.2.0/user_guide/omii_user_guide.htm. Last accessed 15th March

2007.

Open Grid Forum. (2007). Overview of open grid forum (OGF). Website

http://www.ogf.org/About/abt_overview.php. Last accessed 15th March 2007.

Open Science Grid. (2007). What is the open science grid (OSG)? Website

http://www.opensciencegrid.org/. Last accessed 12th February 2007.

Page, E. H. and Nance, R. E. (1994). Parallel discrete event simulation: a modelling

methodological perspective. In Proceedings of the 8th Workshop on Parallel and Distributed

Simulation, pp. 88-93. ACM Press, New York, NY, USA.

Page, E. H. and Smith, R. (1998). Introduction to military training simulation: a guide for

discrete event simulationists. In Proceedings of the 30th Winter Simulation Conference,

Medeiros, D. J., Watson, E. F., Carson, J. S. and Manivannan, M. S. (eds.), pp. 53 - 60. IEEE

Computer Society Press, Los Alamitos, CA, USA.

Page, E. H., Buss, A., Fishwick, P. A., Healy, K. J., Nance, R. E. and Paul, R. J. (2000). Web-

based simulation: revolution or evolution? ACM Transactions on Modelling and Computer

Simulation, 10(1): 3-17.

Pande, V. (2007). About Folding@Home. Website http://folding. stanford.edu/. Last accessed

17th February 2007.

Parabon computation. (2007). Compute against cancer. Website http://www.computeagainst

cancer.org/learnMore.jsp. Last accessed 17th February 2007.

 List of references 234

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Paul, R. J., and Taylor, S. J. E. (2002). What use is model reuse: is there a crook at the end

of the rainbow? In Proceedings of the 34th Winter Simulation Conference, Yücesan, E., Chen,

C. H., Snowdon, J. L. and Charnes, J. M. (eds.), pp. 648-652. Winter Simulation Conference,

USA.

Perez, J. A. L. (2005). BOINC architecture and basic principles, CERN presentation. Website

https://twiki.cern.ch/twiki/pub/LHCAtHome/LinksAndDocs/boincciemat06.pdf. Last accessed

17th February 2007.

Peris, A. D., Lorenzo, P. M., Donno, F., Sciaba, A., Campana, S. and Santinelli, R. (2005).

LCG-2 user guide, manuals series. Document identifier: CERN-LCG-GDEIS-454439.

Available online https://edms.cern.ch/file/454439//LCG-2-UserGuide.pdf. Last accessed 15th

March 2007.

Pidd, M. (2002). Simulation software and model reuse: a polemic. In Proceedings of the 34th

Winter Simulation Conference, Yücesan, E., Chen, C. H., Snowdon, J. L. and Charnes, J. M.

(eds.), pp. 772-775. Winter Simulation Conference, USA.

Pidd, M. (2004a). Computer simulation in management science (5th edition). Chichester, UK:

John Wiley & Sons.

Pidd, M. (2004b). Simulation worldviews: so what? In Proceedings of the 36th Winter

Simulation Conference, Ingalls, R. G., Rossetti, M. D., Smith, J. S. and Peters, B. A. (eds.),

pp. 288-292. Winter Simulation Conference, USA.

Pidd, M. and Carvalho, M. A. (2006). Simulation software: not the same yesterday, today or

forever. Journal of Simulation, 1(1): 7-20.

Pidd, M., Oses, N. and Brooks, R. J. (1999). Component–based simulation on the web. In

Proceedings of the 31st Winter Simulation Conference, Farrington, P. A., Nembhard, H. B.,

Sturrock, D. T. and Evans, G. W. (eds.), pp. 1438-1444. ACM Press, New York, NY, USA.

Quinn, K., Turner, V. and Yang, J. (2005). The next evolution in enterprise computing: the

convergence of multicore x86 processing and 64-bit operating systems. IDC Whitepaper no.

05C4442. Available online http://multicore.amd.com/Resources/IDC_Convergence_en.pdf.

Last accessed 13th April 2007.

Rajaei, H., Ayani, R. and Thorelli, L. (1993). The local time warp approach to parallel

simulation. In Proceedings of the 7th Workshop on Parallel and Distributed Simulation, pp.

119 – 126. ACM Press, New York, NY, USA.

 List of references 235

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Reed, D. A. (2003). Grids, the teragrid and beyond. IEEE Computer, 36(1): 62-68. IEEE

Computer Society Press, Los Alamitos, CA, USA.

Reynolds, P. F. (1988). A spectrum of options for parallel simulation. In Proceedings of the

20th Winter Simulation Conference, Abrams, M., Haigh, P. and Comfort, J. (eds.), pp. 325 –

332. ACM Press, New York, NY, USA.

Robinson, E. and DeWitt, D. J. (2007). Turning cluster management into data management: a

system overview. In Proceedings of 3rd Biennial Conference on Innovative Data Systems

Research (CIDR). Available online http://www-db.cs.wisc.edu/cidr/cidr2007/papers/cidr07p14

.pdf. Last accessed 10th May 2007.

Robinson, S. (2005a). Discrete-event simulation: from the pioneers to the present, what next?

Journal of the Operational Research Society, 56 (6): 619-629.

Robinson, S. (2005b). Distributed simulation and simulation practice. Simulation, 81(5): 5-13.

Robinson, S. and Pidd, M. (1998). Provider and customer expectations of successful

simulation projects. Journal of the Operational Research Society, 49(3): 200-209.

Robinson, S., Nance, R. E., Paul, R. J., Pidd, M. and Taylor, S. J. E. (2004). Simulation model

reuse: definitions, benefits and obstacles. Simulation Modelling Practice and Theory, 12(7-8):

479-494.

Ryde M. (2005). A high usability transparency framework for model interoperability using

COTS distributed simulation. PhD thesis. School of Information Systems, Computing and

Mathematics, Brunel University, UK.

Saiz, P., Aphecetche, L., Buncic, P., Piskac, R., Revsbech, J.-E. and Sego, V. (2003).

AliEn—ALICE environment on the grid. Nuclear Instruments and Methods in Physics

Research (Section A: Accelerators, Spectrometers, Detectors and Associated Equipment),

502(2-3): 437-440.

Saliby, E. (1997). Descriptive sampling: an improvement over latin hypercube sampling. In

Proceedings of the 29th Winter Simulation Conference, Andradottir, S., Healy, K. J., Withers,

D. H. and Nelson, B. L. (eds.), pp.230-233. ACM Press, New York, NY, USA.

 List of references 236

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Saroiu, S., Gummadi, P. K. and Gribble, S. D. (2002). A measurement study of peer-to-peer

file sharing systems. In Proceedings of the Multimedia Computing and Networking (MMCN).

Available online http://www.cs.toronto.edu/~stefan/publications/mmcn/2002/mmcn.html. Last

accessed 18th March 2007.

Schopf, J. M. and Nitzberg, B. (2002). Grids: the top ten questions. Scientific Programming,

10(2): 103-111.

Segal, B. (2000). Grid computing: the European data grid project. In Proceedings of the 2000

IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 15–20. IEEE

Computer Society, Washington, DC, USA. Available online http://edg-wp2.web.cern.ch/edg-

wp2/docs/NSS_Paper.pdf. Last accessed 4th April 2007.

Shannon, R. E. (1998). Introduction to the art and science of simulation. In Proceedings of the

30th Winter Simulation Conference, Medeiros, D. J., Watson, E. F., Carson, J. S. and

Manivannan, M. S. (eds.), pp. 7-14. IEEE Computer Society Press, Los Alamitos, CA, USA.

Simul8 Corporation (2002). Simul8 COM professional edition documentation. Available online

http://people.brunel.ac.uk/~cspgnnm/Simul8COMDocumentation.pdf. Last accessed 6th April

2007.

Smarr, L. and Catlett, C. E. (1992). Metacomputing. Communications of the ACM, 35(6): 44-

52.

Spencer, B., Finholt, T. A., Foster, I., Kesselman, C., Beldica, C., Futrelle, J., Gullapalli, S.,

Hubbard, P., Liming, L., Marcusiu, D., Pearlman, L., Severance, C. and Yang, G. (2004).

NEESgrid: A distributed collaboratory for advanced earthquake engineering experiment and

simulation. In Proceedings of the 13th World Conference on Earthquake Engineering, paper

No. 1674. Available online http://www.globus.org/alliance/publications/papers/13worldconfere

nceonEarthquakeEngineering-rad8A451.pdf. Last accessed 4th April 2007.

Stainforth, D., Kettleborough, J., Allen, M., Collins, M., Heaps, A. and Murphy, J. (2002).

Distributed computing for public interest climate modelling research. Computing in Science

and Engineering, 4(3): 82-89.

Stevens, R. and Futures Lab Group. (2004). Group-oriented collaboration: the access grid

collaboration system. In Foster, I. and Kesselman, C. (eds.), The Grid: Blueprint for a New

Computing Infrastructure (2nd Edition), chapter 15. San Francisco, CA: Morgan Kaufmann.

 List of references 237

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Strassburger, S., Schulze, T., Klein, U. and Henriksen, J. O. (1998). Internet-based

simulation using off-the-shelf simulation tools and HLA. In Proceedings of the 30th Winter

Simulation Conference, Medeiros, D. J., Watson, E. F., Carson, J. S. and Manivannan, M. S.

(eds.), pp. 1669-1676. IEEE Computer Society Press, Los Alamitos, CA, USA.

Sudra, R., Taylor, S. J. E. and Janahan, T. (2000). Distributed supply chain simulation in

grids. In Proceedings of the 32nd Winter Simulation Conference, Joines, J. A., Barton, R. R.,

Kang, K. and Fishwick, P. A. (eds.), pp. 356-361. Society for Computer Simulation

International, San Diego, CA, USA.

Sun Microsystems Limited. (2000). Java native interface (JNI). Website

http://java.sun.com/j2se/1.3/docs/guide/jni/. Last accessed 15th February 2007.

Sun, Q., Daswani, N. and Garcia-Molina, H. (2006). Maximizing remote work in flooding-

based peer-to-peer systems. Computer Networks, 50(10): 1583-1598.

Swain, J. J. (2003). Simulation reloaded: sixth biennial survey of discrete-event software

tools. OR/MS Today, 30(4): 46-57. Institute for Operations Research and the Management

Sciences (INFORMS), USA. Available online http://www.lionhrtpub.com/orms/orms-8-

03/frsurvey.html. Last accessed 4th April 2007.

Swain J. J. (2005). Gaming reality: biennial survey of discrete-event simulation software tools.

OR/MS Today (December 2005). Institute for Operations Research and the Management

Sciences (INFORMS), USA. Available online http://www.lionhrtpub.com/orms/orms-12-

05/frsurvey.html. Last accessed 4th April 2007.

Swain J. J. (2007). INFORMS simulation software survey. OR/MS Today. Institute for

Operations Research and the Management Sciences (INFORMS), USA. Available online

http://www.lionhrtpub.com/orms/surveys/Simulation/Simulation.html. Last accessed 4th April

2007.

Systemflow Simulations. (2006). Systemflow 3D animator (S3DA). Website

http://www.systemflow.com/s3d.php. Last accessed 12th March 2007.

Tanenbaum, A. S., Renesse, R. V., Staveren, H. V., Sharp, G. J. and Mullender, S. J. (1990).

Experiences with the amoeba distributed operating system. Communications of the ACM,

33(12): 46-63.

 List of references 238

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Taufer, M., An,C., Kerstens, A. and Brooks, C. L. (2006). Predictor@home: a protein structure

prediction supercomputer based on global computing. IEEE Transactions on Parallel and

Distributed Systems, 17(8): 786-796.

Taylor, S. J. E. (2000). Groupware and the simulation consultant. In Proceedings of the 32nd

Winter Simulation Conference, Joines, J. A., Barton, R. R., Kang, K. and Fishwick, P. A.

(eds.), pp.83-89. Society for Computer Simulation International, San Diego, CA, USA.

Taylor, S. J. E. and Robinson, S. (2006). So where to next? A survey of the future for

discrete-event simulation. Journal of Simulation, 1(1): 1-6.

Taylor, S. J. E., Saville, J. and Sudra, R. (1999). Developing interest management techniques

in distributed interactive simulation using java. In Proceedings of the 31st Winter Simulation

Conference, Farrington, P. A., Nembhard, H. B., Sturrock, D. T. and Evans, G. W. (eds.), pp.

518 – 523. ACM Press, New York, NY, USA.

Taylor, S. J. E., Sudra, R., Janahan, T., Tan, G. and Ladbrook, J. (2001). Towards COTS

distributed simulation using grids. In Proceedings of the 33rd Winter Simulation Conference,

Smith, J. S., Medeiros, D. J. and Rohrer, M. W. (eds.), pp. 1372-1379. IEEE Computer

Society, Washington, DC, USA.

Taylor, S. J. E., Sudra, R., Janahan, T., Tan, G. and Ladbrook, J. (2002). GRIDS-SCF: an

infrastructure for distributed supply chain simulation. Simulation, 78(5): 312-320.

Taylor, S. J. E, Sharpe, J. and Ladbrook, J. (2003). Time management issues in COTS

distributed simulation: a case study. In Proceedings of the 35th Winter Simulation

Conference, Chick, S., Sánchez, P. J., Ferrin, D. and Morrice, D. J. (eds.), pp.838-846. Winter

Simulation Conference, USA.

Taylor, S. J. E., Bohli, L., Wang, X., Turner, S. J and Ladbrook, J. (2005a). Investigating

distributed simulation at the ford motor company. In Proceedings of the 9th International

Symposium on Distributed Simulation and Real-Time Applications (DSRT 2005), pp. 139-147.

IEEE Computer Society, Washington, DC, USA.

Taylor, S. J. E, Turner, S. J., Mustafee, N., Ahlander, H. and Ayani, R. (2005b). COTS

distributed simulation: a comparison of CMB and HLA interoperability approaches to type I

interoperability reference model problems. Simulation, 81(1): 33–43.

 List of references 239

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Taylor, S. J. E, Turner, S. J., Low, M. Y. H., Wang, X., Strassburger, S. and Ladbrook, J.

(2006a). Developing interoperability standards for distributed simulation and COTS simulation

packages with the CSPI PDG. In Proceedings of the 37th Winter Simulation Conference,

Perrone, L. F., Wieland, F. P., Liu, J., Lawson, B. G., Nicol, D. M. and Fujimoto, R. M. (eds.),

pp. 1101-1110. Winter Simulation Conference, USA.

Taylor, S. J. E., Wang, X., Turner, S. J. and Low, M. Y. H. (2006b). Integrating heterogeneous

distributed COTS discrete-event simulation packages: an emerging standards-based

approach. IEEE Transactions on Systems, Man and Cybernetics: Part A, 36(1): 109-122.

Tewoldeberhan, T. W., Verbraeck, A., Valentin, E. C. and Bardonnet, G. (2002). An

evaluation and selection methodology for discrete-event simulation software. In Proceedings

of the 34th Winter Simulation Conference, Yücesan, E., Chen, C. H., Snowdon, J. L. and

Charnes, J. M. (eds.), pp. 67-75. Winter Simulation Conference, USA.

Thain, D., Tannenbaum, T. and Livny, M. (2004). Distributed computing in practice: the

Condor experience. Concurrency and Computation: Practice and Experience, 17(2–4): 323–

356.

United Devices. (2007). Grid MP: The technology for enterprise application virtualization.

Website http://www.ud.com/products/gridmp.php. Last accessed 18th March 2007.

US Department of Defense Modelling and Simulation Office. (1999). High level architecture

run-time infrastructure RTI 1.3-next generation programmer’s guide. US Department of

Defence Modelling and Simulation Office, USA.

Vaishnavi, V. and Kuechler, W. (2006). Design research in information systems. Available

online http://www.isworld.org/Researchdesign/drisISworld.htm. Last accessed 28th March

2007.

Veeke, H., Saanen, Y., Rengelink, W., Verbraeck, A. and Ham, R. (2002). Simulation

backbone Famas.MV2. Project 0.2 (final report). Onderzoekschool voor Transport,

Infrastructuur en Logistiek (TRAIL), Technical University of Delft, Delft, The Netherlands.

Virtual Data Toolkit. (2007). What is in VDT 1.6.1 (supporting platforms)? Website

http://vdt.cs.wisc.edu/releases/1.6.1/contents.html. Last accessed 16th March 2007.

Walli, S. R. (1995). The posix family of standards. StandardView, 3(1): 11-17.

 List of references 240

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Wang, X., Turner, S. J., Low, M. Y. H. and Gan, B. P. (2004). Optimistic synchronization in

HLA based distributed simulation. In Proceedings of the 18th Workshop on Parallel and

Distributed Simulation, pp. 123-130. ACM Press, New York, NY, USA.

Wang, X., Turner, S. J., Low, M. Y. H and Taylor, S. J. E. (2006). COTS simulation package

(CSP) interoperability – a solution to synchronous entity passing. In Proceedings of the 20th

Workshop on Principles of Advanced and Distributed Simulation, pp. 201-210. IEEE

Computer Society, Washington, DC, USA.

Welch, V., Siebenlist, F., Foster, I., Bresnahan, J., Czajkowski, K., Gawor, J., Kesselman, C.,

Meder, S., Pearlman, L. and Tuecke, S. (2003). Security for grid services. In Proceedings of

the 12th IEEE International Symposium on High Performance Distributed Computing

(HPDC'03), pp.48-57. IEEE Computer Society, Washington, DC, USA.

Whitman, L., Huff, B. and Palaniswamy, S. (1998). Commercial simulation over the web. In

Proceedings of the 30th Winter Simulation Conference, Medeiros, D. J., Watson, E. F.,

Carson, J. S. and Manivannan, M. S. (eds.), pp.335-339. IEEE Computer Society Press, Los

Alamitos, CA, USA.

Woltman, G. (2007). GIMPS: how it works. Website http://www.mersenne.org/works.htm. Last

accessed 3rd March 2007.

World Wide Web Consortium (W3C). (2000). Simple object access protocol (SOAP) 1.1. W3C

working group note 8 May 2000. Available online http://www.w3.org/TR/2000/NOTE-SOAP-

20000508/. Last accessed 16th March 2007.

World Wide Web Consortium (W3C). (2004). Web service architecture. W3C working group

note 11 February 2004. Available online http://www.w3.org/TR/ws-arch/. Last accessed 15th

March 2007.

Yang, X., Chohan, D., Wang, X. D. and Allan, R. (2005). A web portal for the national grid

service. In Proceedings of the 2005 UK e-Science All Hands Meeting, pp. 1156–1162.

Available online http://epubs.cclrc.ac.uk/bitstream/1084/paper05C.pdf. Last accessed 4th

April 2007.

Yau, V. (1999). Automating parallel simulation Using parallel time streams. ACM Transactions

on Modeling and Computer Simulation (TOMACS), 9(2): 171- 201.

 List of references 241

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Yu, J. and Buyya, R. (2004). A novel architecture for realizing grid workflow using tuple

spaces. In Proceedings of the 5th International Workshop on Grid Computing (Grid 2004), pp.

119- 128. IEEE Computer Society, Washington, DC, USA.

Yu, J. and Buyya, R. (2006). A taxonomy of workflow management systems for grid

computing. Journal of Grid Computing, 3(3-4): 171-200.

Yücesan, E., Chen, C. H. and Lee, I. (1998). Web-based simulation experiments. In

Proceedings of the 30th Winter Simulation Conference, Medeiros, D. J., Watson, E. F.,

Carson, J. S. and Manivannan, M. S. (eds.), pp. 1649-1654. IEEE Computer Society Press,

Los Alamitos, CA, USA.

Zhang, J. (2006). Investigation of the use of BOINC in organizations. MSc. thesis. School of

Information Systems, Computing and Mathematics, Brunel University, UK. Available online

http://people.brunel.ac.uk/~cspgnnm/MSc_Jingri.doc. Last accessed 3rd April 2007.

Zhou, S. (1992). LSF: Load sharing in large-scale heterogeneous distributed systems. In

Proceedings of the 1992 Workshop on Cluster Computing. Supercomputing Computations

Research Institute, Florida State University, Florida, USA.

Zimmers, E. W. and Brinker, T. W. (1978). The application of computer simulation techniques

to industrial packaging lines. In Proceedings of the 10th Winter Simulation Conference,

Highland H. J (ed.), pp. 721-725. IEEE Computer Society Press, Los Alamitos, CA, USA.

Appendix A: Vendor URL’s 242

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

APPENDIX A: Vendor URLs

Appendix A.1: Vendor URLs – parallel computing support

Table 44: Vendor URLs – support for parallel computing

Software Vendor URL
Date

Accessed

"@Risk Industrial"
Palisade
Corporation

http://www.palisade.com/risk/
10th February
2007

TreeAge Pro
TreeAge
Software, Inc.

http://www.treeage.com/products/proNew.html
9th February
2007

Appendix A: Vendor URL’s 243

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Appendix A.2: Vendor URLs – task farming support

Table 45: Vendor URLs – task farming support in CSPs

Software Vendor URL
Date

Accessed

GoldSim Monte Carlo
GoldSim
Technology
Group

http://www.goldsim.com/Content.asp?PageID=43
9th
February
2007

SIMPROCESS
CACI Products
Company

http://www.simscript.com/products/simprocess31.cfm
9th
February
2007

Simul8 Professional
and Standard
Editions

Simul8
Corporation

http://www.simul8.com/support/newsletter/Parallel_Proc
essing.htm

3rd May
2007

Vanguard Studio
(DecisionPro)

Vanguard
Software
Corporation

http://www.vanguardsw.com/products/add-ins/grid-
computing/

11th
February
2007

Appendix A: Vendor URL’s 244

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Appendix A.3: Vendor URLs – data source access support

Table 46: Vendor URLs – data source access support in CSPs

Software Vendor URL
Date

Accessed

AnyLogic 6.0
XJ
Technologies

http://www.xjtek.com/anylogic/features/
12th March
2007

Arena
Rockwell
Automation

http://www.arenasimulation.com/products/feature_matri
x.asp

12th March
2007

Enterprise Dynamics
Studio

Incontrol
Enterprise
Dynamics

http://incontrol.nl/?to=features
12th March
2007

GoldSim Monte Carlo
GoldSim
Technology
Group

http://www.goldsim.com/Content.asp?PageID=258
12th March
2007

Simprocess
CACI Products
Company

http://www.simprocess.com/pdf/SOA-
SimulationOnDemand-Simprocess.pdf

11th
February
2007

Vanguard Studio
(DecisionPro)

Vanguard
Software
Corporation

http://www.vanguardsw.com/products/add-ins/web-
services/

11th
February
2007

WITNESS 2006 Lanner Group
http://www.lanner.com/en/simulation_professionals/witn
ess_suite.php

12th March
2007

Appendix A: Vendor URL’s 245

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Appendix A.4: Vendor URLs – CSPs that expose package functionality

Table 47: Vendor URLs – CSPs that expose package functionality

Software Vendor URL
Date

Accessed

AgenaRisk
Enterprise Edition

AgenaRisk http://www.agenarisk.com/newsletters/
9th February
2007

Simprocess
CACI Products
Company

http://www.simprocess.com/products/simprocessKFTP.c
fm

9th February
2007

Simcad Pro CreateASoft, Inc.
http://www.createasoft.com/processImprovementSimulat
or/leanProcessSimulationSoftware/SimcadProProcessSi
mulator7.2.html

9th February
2007

Crystal Ball
Professional and
Premium Editions

Decisioneering http://www.crystalball.com/cbpro/devkit.html
9th February
2007

GoldSim
GoldSim
Technology
Group

http://www.goldsim.com/Content.asp?PageID=474
9th February
2007

Extend Industry,
Extend OR and
Extend Suite

Imagine That,
Inc.

http://www.imaginethatinc.com/sols_advantage.html
9th February
2007

Enterprise
Dynamics Studio

Incontrol
Enterprise
Dynamics

http://incontrol.nl/?to=product_falcon
9th February
2007

Analytica
Lumina Decision
Systems, Inc

http://www.lumina.com/ana/newtoana3.1.htm
9th February
2007

Witness Lanner
http://www.lanner.com/en/simulation_professionals/simu
lation_developer_kit.php

11th
February
2007

@RiskProfessional
Palisade
Corporation

http://www.palisade-europe.com/risk/
10th
February
2007

Enterprise
Dynamics

Production
Modelling
Corporation

http://www.pmcorp.com/ed/index.shtm
10th
February
2007

ProModel
ProModel
Corporation

http://www.promodel.com/products/promodel/features.as
p

10th
February
2007

Arena
Rockwell
Automation

http://www.arenasimulation.com/products/feature_matrix
.asp

10th
February
2007

Simul8 Standard
and Professional
Editions

Simul8 Corp http://www.simul8.com/products/features/index.htm
10th
February
2007

eM-Plant UGS
http://www.ugs.com/products/tecnomatix/docs/fs_tecno
matix_em_plant.pdf

10th
February
2007

AnyLogic XJ Technologies http://www.xjtek.com/anylogic/features/
11th
February
2007

Appendix A: Vendor URL’s 246

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Appendix A.5: Vendor URLs – support for reusable modelling components

Table 48: Vendor URLs – reusable model components support in CSPs

Software Vendor URL
Date

Accessed

Crystal Ball
Standard and
Professional
Editions

Decisioneering http://www.crystalball.com/crystal_ball/index.html
9th February
2007

Extend Industry,
Extend OR and
Extend Suite

Imagine That,
Inc.

http://www.imaginethatinc.com/sols_advantage.html
9th February
2007

Extend Industry,
Extend OR and
Extend Suite

Imagine That,
Inc.

http://www.imaginethatinc.com/prods_modules.html
9th February
2007

Micro Saint Sharp
Version 2.1

Micro Analysis
& Design

http://www.maad.com/index.pl/micro_saint
10th
February
2007

Visual Simulation
Environment (VSE)

Orca Computer,
Inc.

http://www.orcacomputer.com/vse/VSEBrochure/VSEBro
chureSet.html

10th
February
2007

Arena
Rockwell
Automation

http://www.arenasimulation.com/products/professional_e
dition.asp

10th
February
2007

eM-Plant UGS
http://www.ugs.com/products/tecnomatix/docs/fs_tecnom
atix_em_plant.pdf

10th
February
2007

Vanguard Studio
(DecisionPro)

Vanguard
Software
Corporation

http://www.vanguardsw.com/products/application-server/
11th
February
2007

Vanguard Studio
(DecisionPro)

Vanguard
Software
Corporation

http://www.vanguardsw.com/products/vanguard-studio/
11th
February
2007

AnyLogic XJ
Technologies

http://www.xjtek.com/anylogic/why-purchase/
13th March
2007

Appendix A: Vendor URL’s 247

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Appendix A.6: Vendor URLs – support for sharing model

Table 49: Vendor URLs – support for sharing models in CSPs

Software Vendor URL
Date

Accessed

AnyLogic
XJ
Technologies

http://www.xjtek.com/anylogic/beta6/features/
11th
February
2007

Appendix A: Vendor URL’s 248

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Appendix A.7: Vendor URLs – distributed simulation support

Table 50: Vendor URLs - distributed simulation support in CSPs

Software Vendor URL
Date

Accessed

Arena
Rockwell
Automation

http://www.arenasimulation.com/products/feature_matri
x.asp

10th
February
2007

AutoMod Brooks Software
http://www.brookssoftware.com/download/27_disc_amo
d_1106.pdf

9th February
2007

Simprocess
CACI Products
Company

http://www.caci.com/asl/simprocess_func_tech.shtml
9th February
2007

Appendix A: Vendor URL’s 249

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Appendix A.8: Vendor URLs – support for web-based simulation

Table 51: Vendor URLs – support for web-based simulation

Software Vendor URL
Date

Accessed

Quantitative
Methods Software
(QMS)

QuantMethods http://www.quantmethods.com/FAQ.html
11th
February
2007

MineSim™
Systemflow
Simulations, Inc.

http://www.systemflow.com/minesim/index.html
11th
February
2007

Vanguard Studio
(DecisionPro)

Vanguard
Software
Corporation

http://www.vanguardsw.com/products/application-
server/

11th
February
2007

AnyLogic XJ Technologies http://www.xjtek.com/anylogic/features/
11th
February
2007

AgenaRisk
Enterprise Edition

AgenaRisk http://www.agenarisk.com/newsletters/
9th February
2007

Witness Lanner
http://www.lanner.com/en/simulation_professionals/witn
ess_server.php

11th
February
2007

Analytica

Lumina Decision
Systems, Inc

http://www.lumina.com/ana/ADE.htm

11th
February
2007

Vanguard Studio
(DecisionPro)

Vanguard
Software
Corporation

http://www.vanguardsw.com/products/add-ins/web-
services/

11th
February
2007

Simprocess
CACI Products
Company

http://www.simprocess.com/pdf/SOA-
SimulationOnDemand-Simprocess.pdf

11th
February
2007

Appendix B: NBS case study: further discussion 250

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

APPENDIX B: NBS case study - further discussion

This appendix is intended to be read in conjunction with section 5.8 of this thesis. The NBS

case study has investigated the CSP-specific distributed simulation service using DES CSP

Simul8 Professional, High Level Architecture-Run Time Infrastructure (HLA-RTI) middleware

for distributed simulation and enterprise desktop grid middleware WinGrid. The integration

technology that has been used to integrate the three separate programs is referred to as the

WinGrid-DMSO_HLA_RTI-Simul8 integration architecture. It builds on the WinGrid-CSP

integration architecture which is presented in section 4.4 of this thesis.

1. CSP Controller Middleware (CCM) architecture

The software component that has been developed to implement the WinGrid-

DMSO_HLA_RTI-Simul8 architecture is referred to as the CSP Controller Middleware (CCM).

The CCM has two separate implementations for the HLA-defined Time Advance Request

(TAR) and Next Event Request (NER) mechanisms, which are used to request advancement

of simulation time from the HLA-RTI. These implementations of CCM are referred to as

CCM-TAR and CCM-NER respectively. The CCM has two distinct components, namely

Simul8 adapter and DMSO HLA-RTI adapter, which interact with DES CSP Simul8

Professional and the DMSO HLA-RTI respectively. The architecture of the CSP Controller

Middleware is shown in figure 54.

The Simul8 adapter defines methods like OpenSim(modelFile), RunSimulation(time),

getBloodOrdersFromHospital(hospital) and introduceEntitiesToHospital(hospital, bloodUnit)

that are invoked by the DMSO RTI adapter to open a Simul8 modelFile, run the model to the

time specified, get blood orders from hospital and to introduce entities into the hospital

respectively. These methods encapsulate both the application logic and the Simul8 COM

method calls. For example, method getBloodOrdersFromHospital(hospital) has application

logic that reads hospital order details being output by Simul8 into an Excel file and method

introduceEntitiesToHospital(hospital, bloodUnit) invokes Simul8 COM method ExecVL to set

various bloodUnit parameters into the running hospital model and to schedule events. The

Simul8 adapter also calls methods defined in the DMSO RTI adapter like

tellSimulationTimeEnd(time) and sendOrderToNBS(hospital, bloodOrder) to convey to the

DMSO RTI adapter that Simul8 has completed processing a model till a defined ―safe‖ time

(see discussion below) and to transfer the bloodOrder collected from the hospital. The DMSO

RTI adapter methods contain application logic and invoke HLA defined service calls. For

example, the method tellSimulationTimeEnd(time) has application logic which sets the logical

time of the federation to the time returned by the method call and sendOrderToNBS(hospital,

bloodOrder) invokes HLA defined method sendInteraction to pass the bloodOrder details from

respective hospital federates to the NBS PTI federate in the form of HLA interactions. It is

Appendix B: NBS case study: further discussion 251

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

worthwhile here to mention that it is the RTI adapter that has separate federate logic for NER

and TAR implementations (referred subsequently as CCM-NER and CCM-TAR).

Figure 54: CSP Controller Middleware (CCM) architecture

Figure 55: CCM-Next Event Request (NER) protocol

NextEventRequest(timeRequested)

timeRequested*

RTI RTI Adaptor Simul8 Adaptor Simul8 CSP

receiveInteraction*

timeAdvanceGrant(timeGranted)

sendInteraction*

Input(…)*

newSimulationTime(timeGranted)

logicalTime = timeGranted

Output(…)*

advanceTime

Simul8 COM Calls

Simul8 COM Calls

NOTE: timeRequested = logicaltime+ 60 (if, logicaltime = timePreviouslyRequested) OR
 timeRequested = timePreviouslyRequested (if, logicaltime < timePreviouslyRequested)

Simul8 PTI Federate

HLA Run Time Infrastructure

Simul8 CSP

NBS PTI

Model

COM Interface

Simul8 Adapter

RTI Adapter

Simul8 Hospital Federate

Simul8 CSP

Hospital

Model...

COM Interface

Simul8 Adapter

RTI Adapter

Time synchronized

Entity Transfer

between models

CSP Controller

Middleware

CSP Controller

Middleware

JNI Calls JNI Calls

W
in

G
ri

d
 n

o
d

e

W
in

G
ri

d
 n

o
d

e

Appendix B: NBS case study: further discussion 252

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Figure 56: CCM-Time Advance Request (TAR) protocol

2. CCM-NER and CCM-TAR protocols

To introduce the CCM-NER and CCM-TAR protocols, discussions on HLA NER and HLA

TAR time advance mechanisms are first presented. Both NER and TAR service calls, defined

by the HLA standard and implemented by the HLA-RTI middleware, are invoked with a time

component which represents the logical time the federate wishes to move to. Depending on

whether NER or TAR is called by the simulating federate, the time granted to it by the RTI can

be different. NER will grant the federate a time that is either less than or equal to the

requested time depending on whether external events are present and if so, then their

timestamps. If an external event exists for the federate with timestamp less than the

requested time then the time granted by RTI will be equal to the timestamp of the external

event. If no external events exist or an external event with timestamp equal to the requested

time is received, then the RTI will grant the federate the requested time. TAR, on the other

hand, will grant the simulation federate a time that is exactly equal to the time requested by a

federate. The message exchange protocol followed by the CCM-TAR and CCM-NER variants

of CCM are shown in figures 55 and 56 respectively.

CCM-NER invokes the HLA defined NER method call (nextEventRequest[timeRequested])

and CCM-TAR invokes the HLA defined TAR method call

(timeAdvanceRequest[timeRequested]). Both these service calls have a time argument

(timeRequested) that specifies the simulation time to which the federate wants to move to.

The CCM-NER requests a time from the RTI that is equal to its current logical time + 60

(timeRequested=logicaltime+60) or a time that is equal to its previously requested time

timeAdvanceRequest(timeRequested)

timeRequested =

logicalTime + 60

RTI RTI Adaptor Simul8 Adaptor Simul8 CSP

receiveInteraction*

timeAdvanceGrant(timeGranted)

sendInteraction*

Input(…)*

newSimulationTime(timeGranted)

logicalTime = timeGranted

Output(…)*

advanceTime

Simul8 COM Calls

Simul8 COM Calls

Appendix B: NBS case study: further discussion 253

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

(timeRequested=timePreviouslyRequested) depending on whether the RTI had granted the

timeRequested by the federate in the preceding NER call or it had granted a time less than

the timeRequested. CCM-TAR, on the other hand, requests a time from the RTI that is always

equal to its current logical time + 60 (timeRequested=logicaltime+60). The NBS PTI centre

and the hospitals exchange information at every 60 units of simulation time and therefore both

CCM-NER (incase timeRequested had been granted in preceding HLA NER call) and CCM-

TAR request a time equal to the current logical time of the federate + 60 simulation units. The

difference with regards to timeRequested by CCM-NER and CCM-TAR protocols is because

they implement two different HLA synchronization strategies, viz. NER and TAR.

In case of both CCM-TAR and CCM-NER, the new time granted to the federate by the RTI is

conveyed using HLA TIME ADVANCE GRANT callback (timeAdvanceGrant[timeGranted]).

This callback, invoked by the RTI on the federate RTI adapter, carries the time (timeGranted)

that has been granted by the RTI and is a guarantee that there will be no external events from

the rest of the federation before this time. This new ―safe‖ time is conveyed by the RTI

adapter to the Simul8 adapter (newSimulationTime[timeGranted]) and the simulating federate

processes the Simul8 model to this time. This may, in turn, generate other internal or external

events. Subsequently, the logical time of the federate becomes equal to this new time

(logicalTime=timeGranted) and the process of requesting time advancement using NER or

TAR starts all over again.

This discussion now looks at how external events are sent across federates in the NBS

simulation. HLA interactions are used to achieve this. Interactions are an HLA defined

transport mechanism for intra-federation communication (i.e., communication between the

running models that together form the distributed simulation). When a federate generates an

external event the Simul8 adapter of CCM conveys this to the DMSO RTI adapter, which in

turn invokes the HLA defined service SEND INTERACTION (sendInteraction*). Each

interaction contains a time stamp and associated data. These interactions are sent to the RTI

to be delivered to the respective federates in the causally correct order. On the receiving end,

the RTI delivers the interactions to the DMSO RTI adapter though the RTI callback RECEIVE

INTERACTION (receiveInteraction*). The DMSO RTI adapter of the CCM then forwards the

received data to the Simul8 adapter for introduction into the model. The data being

exchanged in the federation relate to blood orders and deliveries. In both sendInteraction*

and receiveInteraction*, the superscript ―*‖ indicates that multiple interactions can be sent or

received.

3. Experiments

To investigate the performance of NBS standalone simulation with (1) NBS distributed

simulation over WinGrid using NER time management service (implemented by CCM-NER)

and, (2) NBS distributed simulation over WinGrid using TAR time management service

Appendix B: NBS case study: further discussion 254

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

(implemented by CCM-TAR), four different scenarios were designed. Each scenario was

represented by one NBS PTI centre serving one, two, three or four hospitals respectively. The

name of the scenario reflects the number of hospitals that the NBS PTI caters for. For

example, scenario 2Hospital implies that 2 hospitals are being served by one NBS PTI centre.

In case of distributed NBS simulation, scenario 2Hospital implies three separate Simul8

models, each modelling either the NBS PTI centre, Hospital1 or Hospital2 and running on

three separate WinGrid nodes. In case of standalone NBS simulation, scenario 2Hospital

suggests that a single Simul8 model, running on a single PC, has modelled the behaviour of

the NBS PTI centre and two hospitals.

The results of the experiments have already presented in section 5.8.7 of this thesis. Graph

one shows the time taken to execute the standalone and the distributed versions of the NBS

simulation. Graph two shows the monthly execution time of the NBS standalone and

distributed simulations.

4. Discussion

From the results the following observations can be made:

 (A) For scenarios 1Hospital and 2Hospital the standalone NBS simulation executes faster

than its distributed counterparts and for scenarios 3Hospital and 4Hospital the distributed

versions out perform the conventional simulation.

 (B) Comparing the performance of the distributed versions we see that for each

consecutive month of the year and for each of the four scenarios (except months 2 and 7

in scenario 4Hospital), the simulation using TAR time management executes between

3.5-23.9% faster than its NER counterpart (see table 52 below).

 (C) The average performance gain by using TAR over NER for scenarios 1Hospital,

2Hospital, 3Hospital and 4Hospital is approximately 13.7%, 21%, 19% and 6%

respectively.

Table 52: Percentage performance increase of TAR over NER

Performance gain of TAR
over NER (%)

Scenario
1Hospital

Scenario
2Hospital

Scenario
3Hospital

Scenario
4Hospital

1 month 16.84 23.01 20.19 5.62

2 months 13.12 21.13 17.68 -7.89

3 months 12.83 21.88 19.28 6.46

4 months 15.19 22.48 18.97 11.73

5 months 14.33 20.92 19.81 8.56

6 months 13.12 19.40 17.07 6.82

7 months 11.76 20.40 18.98 -2.28

8 months 13.59 20.32 18.99 8.98

9 months 15.17 21.35 18.22 15.28

10 months 14.15 21.61 17.69 8.87

11 months 13.86 20.21 23.86 7.35

12 months 10.94 19.72 17.40 3.54

Average performance gain
(%)

13.74 21.04 19.01 6.09

The implications of these observations are now considered.

Appendix B: NBS case study: further discussion 255

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

A. Comparing Standalone and Distributed Implementations

By applying the principles of distributed simulation and the HLA, the time taken to execute the

NBS simulation is reduced significantly when the model becomes larger. When compared

with the conventional NBS model, both the distributed versions recorded a negative

performance improvement for scenarios 1Hospital and 2Hospital. However, as more

complicated models were introduced in scenarios 3Hospital and 4Hospital the distributed

models executed faster compared to their standalone counterparts. The results (section 5.8.7)

show that the conventional model with one hospital takes approximately 14 minutes to run for

a whole simulated year. The run time rises to 78 minutes when the model runs with two

hospitals and to approximately 17.5 hours with three hospitals. The addition of the fourth

hospital increases the execution time to 35.8 hours. The NER version of the distributed model

with one NBS supply centre and one hospital runs in approximately 8.4 hours, with two

hospitals in 9.8 hours, with three hospitals in 12.7 hours and with four hospitals in 16.5 hours.

The execution time for the TAR version of the distributed model is 7.2, 7.8, 10.3 and 15.5

hours for the 1Hospital, 2Hospital, 3Hospital and 4Hospital scenarios respectively.

These findings indicate that for the conventional method an expansion in model size will be

accompanied by an increase in the total runtime. On the other hand, for the distributed

methods an increase in the number of hospitals (and therefore of computers) will be followed

by a much smaller increase in total runtime. Therefore, if more than two hospitals are added

to any model, the distributed method would be a better platform in which to develop and run

the simulation experiments. Overall, the distinctive trend that the two methods follow

concerning runtimes seems to be continuous; in other words, the more hospitals that are

added to the model, the more the differences in the runtimes between the two methods favour

the distributed approach. The increase in runtime appears to be primarily due to a large event

list caused by a combination of the volume of entities and the ―counting down‖ of the shelf life

of blood products in minutes. The large event list in turn possibly causes swapping between

RAM and virtual memory which further causes long runtimes. The results suggest that the

distributed approach allows the processing and memory demands made by large event lists

to be shared over several computers. Note that eliminating the ―counting down‖ model feature

with a different approach to blood product shelf life would most likely give an increase in

performance. However, this would invalidate the model.

It may be argued that a machine with more processing power and with more RAM (compared

to the 1.73GHz processor and 1GB RAM laptops that were used for the NBS experiments)

could execute the standalone 3Hospital and 4Hospital scenarios of NBS model much faster,

such that it outperforms its distributed 3Hospital and 4Hospital counterparts. Thus the

negative performance improvement recorded by using the distributed models, as against

using the conventional standalone models, for scenario 1Hospital and 2Hospital may also

Appendix B: NBS case study: further discussion 256

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

occur in scenarios 3Hospital and 4Hospital through the use of better hardware. This would

possibly make the distributed simulation infeasible.

Although there is some merit to this line of reasoning, two specific arguments are presented

to show the feasibility of using the distributed approach.

First argument: Having more CPUs and more memory does always equate to faster

performance. This is especially true in case of machines having multiple CPUs (Dual-Core

and Quad-Core processors) or machines that have CPUs with Hyper-Threading Technology

(HTT) enabled. HTT is a new CPU technology and more elaboration is necessary for further

discussion later in this section. HTT makes a single physical processor appear as two logical

processors, wherein the physical execution resources are shared and the architecture state is

duplicated for the two logical processors (Marr et al., 2002). The operating system treats a

hyper-threaded CPU as two processors instead of one and a program can schedule

processes or threads on both the logical processors and the CPU will execute them

simultaneously, as if there were two physical processors present in the system.

One important factor that determines that a program executes faster on a higher configuration

machine is that the program itself has been implemented to make the best possible use of all

the available hardware in the system. Thus, it differs according to package implementation.

To test whether Simul8 gains from an even higher configuration machine, the 4Hospital

scenario was experimented on a standalone PC having 2GB RAM and 3.2GHz Hyper-

threaded Pentium 4 CPU. The time taken to run the simulation was around 38 hours (the time

taken to execute the 4Hospital scenario on a laptop having 1GB RAM and 1.73GHz Intel

Celeron processor was around 35.8 hours). The same 4Hospital model was run on an even

higher configuration machine to examine whether Simul8 would gain from using a computer

with two dual core 2.8GHz processor (i.e., four processors) with 12GB RAM. In this case, the

time taken to execute the simulation took even longer (approx. 42 hours).

Thus, the execution time was not reduced by using more hardware. One of the reasons for

this is that most of the processing in Simul8 takes place on one main thread that makes use

of one ―logical‖ processor (in case HTT is enabled) or one ―physical‖ processor (in case of

Dual-Core and Quad-Core machines). Thus, it can be argued that for a CSP to utilize

additional hardware effectively, the CSP vendor may have to modify the program itself. A

distributed approach to CSP simulation may alleviate the need for such technology-specific

changes.

Multiple processors in a system are a reality that program developers may have to face

sooner than later for the following reason. Moore’s law states that the number of transistors

on a chip, or transistor density, doubles every 24 months. However, as transistor size

Appendix B: NBS case study: further discussion 257

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

decreases and transistor density and computing power increases, the heat generated by the

chip becomes a major problem and multi-core processors become important (Quinn et al.,

2005). Consequently, the major chip manufacturers are now looking at doubling CPU

performance by increasing the number of CPU cores, as against doubling the clock-speed of

a single CPU. Until the time a CSP is implemented to utilize multiple CPU-cores, distributed

simulation of very large and complex models may remain feasible. Furthermore, the

performance gains which can be expected by implementing multiple-processor friendly CSPs

need to be investigated. Issues such as the division of the execution of a single instance of

the simulation executive onto two processors, distributing the event list over multiple CPUs,

etc. can be difficult and may require some synchronization of its own. As is the case with

distributed simulation, to achieve this synchronization some overheads may be generated.

Thus, whether standalone, multiple-processor CSP implementation outperforms distributed,

single-processor CSP implementation, or vice-versa, is a question which requires further

investigation.

Second argument: The second argument on the feasibility of distributed simulation for

modelling large CSP-based supply chain models is that it can provide an alternative to single

computer CSP simulation, in cases where the model to be simulated is so large and complex

that its execution cannot be completed in acceptable time even on the fastest machine

available for commercial purchase. In such cases, self-federating an existing CSP simulation

by dividing the model between multiple computers can help reduce run time.

B. Comparing NER and TAR

The distributed simulation using TAR time management service call performs better because

the discrete-event NBS simulation is modelled to exchange information at constant intervals

of simulation time (the NBS PTI centre and the hospitals exchange information at every 60

units of simulation time). Thus, it is possible to treat the NBS simulation as a time-stepped

simulation in the distributed sense and use TAR to request RTI for a time advance equal to

current logical time + 60 units of simulation time.

Using NER time management introduces the overhead of an extra NextEventRequest service

call being made by a federate (and the resultant invocation of TimeAdvanceGrant callback by

the RTI) whenever an interaction is received. Figures 55 and 56 outline the protocols followed

by NER and TAR versions of the CSP controller middleware (CCM) respectively.

The CCM-NER protocol represented in figure 55 shows that when a time-constrained

federate (a federate that receives timestamped messages from other federates) and time-

regulating federate (a federate that sends timestamped messages to other federates) is in

time granted state (see figure 57 below), the DMSO RTI Adapter of the CCM requests time

Appendix B: NBS case study: further discussion 258

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

advance (timeRequested) equal to either, (1) its logicaltime + 60, or (2) its previous time

request (timePreviouslyRequested). (1) is used if the federate had received a

timeAdvanceGrant equal to timeRequested during the preceding time advancing state. In

short, if timeGranted = timePreviouslyRequested then timeRequested for the next NER call

will be logicaltime + 60. This happens when no time stamped order (TSO) interactions are

received by the federate during the time advancing stage. However, if an interaction is

received then timeGranted by RTI will be equal to the timestamp of the interaction and

timeGranted will be less than timePreviouslyRequested. As the simulation executes in equal

timesteps, viz, 60, 120, 180, therefore timeRequested for the next NER call will be

timePreviouslyRequested (but which was not granted by RTI). Since the logicaltime of the

federate will be equal to timeGranted by RTI through the timeAdvaceGrant callback, we can

also say that (a) if logicaltime = timePreviouslyRequested then timeRequested for the next

NER call will be logicaltime + 60, and (b) logicaltime < timePreviouslyRequested then

timeRequested for the next NER call will be timePreviouslyRequested.

Figure 57: Time Management States of a Federate (adapted from Kuhl et al., 1999)

As previously discussed, the CCM-TAR protocol represented in figure 56 is different because

the DMSO RTI Adapter of the CCM always requests a time equal to its logicaltime + 60 when

invoking the next TAR request, irrespective of whether the federate has received an

interaction in the preceding time advancing state. In this case the timeGranted returned by

RTI through the timeAdvaceGrant callback will always be equal to timePreviouslyRequested.

Any TSO interactions are delivered to the federate before the timeAdvanceGrant callback.

Thus, using TAR time management mechanism in the NBS distributed simulation saves one

redundant message exchange between the federate and the RTI whenever the federate

receives an interaction.

C. Analyzing Performance Gains Achieved by Using TAR over NER

To further examine the performance gain achieved by using TAR over NER and to investigate

its gradual drop (from approx. 21% in scenario 2Hospital to approx. 6% in scenario

4Hospital), a discussion relating to the interactions being sent across the NBS federation is

presented below. As has been said earlier, the discrete-event NBS model can be perceived

Time Granted Time Advancing

Time Advance Grant

(callback from RTI)

Time advance invocation (TAR/

NER invocation by federate)

Appendix B: NBS case study: further discussion 259

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

as a time-stepped simulation because the exchange of information between federates take

place every 60 units of simulation time. The orders generated in the hospitals between two

distinct time steps (say, 60 and 120) are kept in buffer and only released to the NBS PTI

model in the subsequent time step (120 in this case). Similar is the case with NBS PTI model.

The successfully match blood units are kept ready for delivery but not released to the

hospitals until the next time step. In HLA-based simulation, a time-regulating federate in a

time granted state can send interactions with any timestamp at least equal to its logical time +

its lookahead. A lookahead value, expressed in terms of simulation time units, places a

restriction on the time-regulating federate; if the federate is at a logical time t and has a

lookahead value l, the RTI will not allow it to send timestamped messages with time less than

t+l (Kuhl et al., 1999). The NBS models operate with a look ahead of 1 unit of simulation time.

Thus, at time 120 the hospitals send interactions to NBS PTI with a time stamp of 121. These

interactions carry order information specifying the requirement of blood. Similarly, the NBS

PTI delivers interactions to the different hospitals at time 121 to inform the respective

hospitals of the quantity of blood delivered along with a host of attributes.

The timestamp of the interactions received by a federate in time advancing stage are

important. To find out why, the previous example is extended and it is supposed that at logical

time 120, hospital1, hospital2 and hospital3 send requests for blood. The timestamp of the

interactions being sent to NBS PTI will be 121. The NBS PTI receives all the interactions in

the time advancing stage when it requests the RTI to advance its simulation time to 180. The

messages that the federate exchanges with RTI to reach logical time 180 will depend upon

the time management service being used.

1. TAR: RTI delivers all three TSO interactions through receiveInteraction callback and then

grants time 180 through timeAdvanceGrant callback. The logical time of the federate is

therefore 180.

2. NER: RTI delivers the three TSO interactions to the NBS PTI federate using

receiveInteraction callback. The RTI will then grant time 121 through timeAdvanceGrant

and the federate will reach time granted state. The federate will then request time 180

from the RTI and in this occasion the time advance will be granted to 180. This is

because communication between federates can only take place at constant intervals of

time. At time 120, the set of orders were already released by the hospitals with a

timestamp 121. If orders are generated between 120 and 180 they would be released

when the hospitals are in the time granted state at logical time 180. The timestamp of the

interaction for the next set of orders will be 181.

The above discussion shows that a NER federate in the NBS simulation generates a

maximum of one extra pair of federate-RTI communication (when compared to a TAR

federate) for every 60 units of simulation time, irrespective of the number of interactions it

Appendix B: NBS case study: further discussion 260

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

receives. In the example above, the NBS PTI federate received three interactions with

timestamp 121 but generated only one extra NER call and received subsequent callback. The

NBS simulation was run for 524160 simulated minutes. Therefore, the total number of extra

federate-RTI communication that could be generated is 8736 (524160 / 60) for each NER

federate. The actual number is much less since orders are not placed every hour by the

hospitals and the NBS PTI delivers blood at pre-defined times (except for emergency cases).

From the discussions above it seems likely that the drop of average performance gain by

using TAR over NER (from approx. 21% in case of scenario 2Hospital to approx. 19% in

scenario 3Hospital and again to approx. 6% in scenario 4Hospital) cannot be attributed to an

increased number of extra federate-RTI communications taking place as the number of

hospitals are increased. As discussed above, when the number of hospitals increase from 3

to 4, for example, the NBS PTI federate may receive a maximum of 4 interactions (one from

each hospital placing an order). However, since the time stamps of the interactions received

will be the same therefore the NER generates only one extra pair of federate-RTI

communication in the form of one NER call and the subsequent callback received from RTI.

It seems likely that the drop in performance is because the NBS PTI model grows more

complicated as it starts serving more hospitals. The process of finding a match between

hospital orders and present blood stocks itself is complicated. As the number of hospitals

increase this process has to be repeated for orders for each hospital. The time gained by

applying TAR time management mechanism is primarily because of the reduction of

messages between federates. But as the NBS PTI model becomes more complex it takes

longer to execute it and this slowly erodes the time gained through reduction of messages

brought about through the application of TAR. A solution to this could be to divide the NBS

PTI centre into two or more separate models. However, this would require revalidation of the

model.

5. Conclusion

Using multiple sets of experiment results it has been shown that a Simul8-DMSO RTI

distributed simulation will run faster than its standalone counterpart when the model has

reached sufficient size. Thus, for the NBS model, distributed simulation appears to offer a

viable alternative to conventional simulation by sharing the processing and memory

requirements of the simulation across multiple computers. Since two specific software

applications have been used for this study (namely, Simul8 and DMSO RTI 1.3NG), it is

difficult to generalize the findings to encompass the entire range of CSPs and RTIs available

today.

It has been further argued that the selection of an appropriate conservative time advance

mechanism (NER or TAR) in HLA-based distributed simulation should be made not only

Appendix B: NBS case study: further discussion 261

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

based on the internal characteristics of the simulation, but consideration should also be given

to the characteristics of the message flow between models. As has been shown in the case of

NBS distributed simulation, a HLA federation comprising of DES federates (i.e., each federate

simulates a discrete-event model), designed to exchange messages only at constant intervals

of time, can be considered as a time-stepped simulation in the distributed sense. Thus, using

TAR time management service call is more appropriate in this case as compared to using

NER.

Appendix C: BOINC case study: experiments and results 262

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

APPENDIX C: BOINC case study - experiments and results

This appendix is intended to be read in conjunction with section 5.4 of this thesis. The BOINC

case study investigates the BOINC middleware in relation to CSP-specific SMMD task

farming service. The Range Accrual Swap application (section 5.4.2) based on MCS CSP

Excel is used together with BOINC middleware to experimentally evaluate whether the CSP-

grid solution is implementable in practice.

To experiment with BOINC and the RAS application, 200 work units were created on the

BOINC server side by running a java program which invoked the BOINC create_work

command (section 5.4.3). The experiment consisted of timing the execution of 50, 100, 150

and 200 work units of the Excel-based RAS financial model. The time taken to execute the

distributed BOINC implementation over eight computers was compared to the standalone

execution of the RAS model on a laptop equipped with a 1.73GHz Intel Celeron processor

and 1GB RAM.

The results are summarized in graph 8 below. It shows execution time per work unit,

averaged over five separate runs of the experiment. However, this graph only includes

experiments using the four BOINC clients running over the laptops for reasons outlined

below.

Graph 8: RAS application results

The graph shows that the speedup is approximately linear compared to standalone execution

for the range of workloads that were tested. This was expected for several reasons: client

computers were entirely dedicated to running the simulation; work units carried little data due

to the nature of the simulation; the BOINC client pre-fetched new work units from the server

so that it may continue uninterrupted. Under these circumstances BOINC imposed very little

overhead.

386 387 387 388

96 95 95 97

0

50

100

150

200

250

300

350

400

450

50 100 150 200

Workload (work units)

E
x
e
c
u

ti
o

n
 t

im
e
 p

e
r

w
o

rk
 u

n
it

 (
s
)

Standalone

Distributed

Appendix C: BOINC case study: experiments and results 263

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Pre-fetching of new work units by the BOINC client has both a positive and negative impact

on the operation of the system. By setting the work unit request interval sufficiently short, the

client ensures that it has work units in hand before the work unit currently being executed has

completed. However, when client computers of differing performance specifications are used

on the same application, a phenomenon was observed that has been termed as ―job

hoarding‖.

Essentially job hoarding occurs because the BOINC system currently provides no fine control

over how many work units are pre-fetched by each client, and thus ―fast‖ clients and ―slow‖

clients both pre-fetch multiple work units. If the work units are relatively large-grained, the fast

clients may complete execution of all their work units before the slow clients have finished

processing the first of their work units.

In the BOINC-RAS experiments, the faster laptops completed around 95% of the total

workload and became idle before the first work units had been completed by the slower

desktop computers. At this point the desktop machines were each hoarding further work units

which the laptops could not access, and the initial results showed a total distributed execution

time far in excess to the time taken to execute the standalone RAS application over a high

specification laptop. Thus, measurements from only the four laptops were taken until the

hoarding effect could be investigated in more detail.

Appendix D: WinGrid user documentation (version 1.0) 264

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

APPENDIX D: WinGrid user documentation (version 1.0)

WinGrid 0.2 User Documentation

WinGrid-Excel™-Analytics™ Integration for Speeding up IRS and

RBF Simulations at

Document Version 1.0

Author and Systems Developer:

Navonil Mustafee

Research Student

Centre for Applied Simulation Modelling (CASM)

School of Information Systems, Computing & Mathematics

Brunel University, Uxbridge, Middlesex UB8 3PH

Appendix D: WinGrid user documentation (version 1.0) 265

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

User Document Revision History

DATE Milestones Version Changes Made

by

16 January 2007
WinGrid User Documentation

completed
1.0 Navonil Mustafee

Appendix D: WinGrid user documentation (version 1.0) 266

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Index:

1. WINGRID – THE DESKTOP GRID FOR WINDOWS 267

1.1. WinGrid and Master-Workers Model

1.2. WinGrid Components

1.3. WinGrid integration with Microsoft Excel™ and Analytics™

2. RUNNING WINGRID ON YOUR PC 268

2.1. WinGrid Software Dependencies

2.2. Drive Mapping

2.3. Register Dynamic Link Library (DLL)

2.4. Execute Batch File

2.5. Mapping Drive, Installing JACOB + JDIC, Setting CLASSPATH,

Registering DLL and Including a new Computer as part of WinGrid

Computation Infrastructure

3. WTC – THE WINGRID THIN CLIENT 277

3.1. WinGrid Thin Client (WTC) Arguments

3.2. WTC_DEBUG Batch File

3.3. WTC Batch File

3.4. WinGrid Thin Client (WTC) Status

3.5. WinGrid Thin Client (WTC) Menu

4. WJD – The WINGRID JOB DISPATCHER 282

4.1. Configuring Parameter Files

4.2. Configuring WinGrid Job Dispatcher (WJD) Parameter File

4.3. Configuring WinGrid Job Dispatcher (WJD) Application Specific Parameter

File

4.4. WinGrid Job Dispatcher (WJD) Log File Directory

4.5. WinGrid Job Dispatcher (WJD) Execution

4.6. WinGrid Job Dispatcher (WJD) Execution Completion

5. PERFORMANCE RESULT COLLECTION 296

6. WTC AND WJD ERRORS 298

6.1. WinGrid Thin Client (WTC) Errors

6.2. WinGrid Job Dispatcher (WJD) Errors

7. MISCELLANEOUS 303

7.1. Acknowledgements

7.2. Contact Information

Appendix D: WinGrid user documentation (version 1.0) 267

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

1 WINGRID – THE DESKTOP GRID FOR WINDOWS

WinGrid is a program that utilizes multiple PCs over a network to perform

computation intensive jobs. The time taken to execute these jobs is inversely

proportional to the number of computers running the WinGrid software. The software

creates a computation infrastructure by pooling together multiple workstations (nodes)

and using the processor of each such workstation to execute a part of the job. Co-

ordination among the different nodes is maintained through exchange of protocol

messages.

1.1 WinGrid and Master-Workers Model

WinGrid implements the push-model of the Master-Workers distributed computing

architecture. In this architecture you have one Master program (think of this as your

line manager) running on one single computer that continuously monitors multiple

Worker programs (yourself and your colleagues) running on separate computers. All

jobs to be executed are with the Master program. You can think of jobs as

computationally intensive tasks like, say, adding 100 million randomly generated

numbers. The Master program shares this workload among several Worker programs,

sending each a subset of the calculations to perform. Each Worker program performs

its part of the computation and sends the Master the result. Finally, the Master

program has to assimilate all the results returned to it by the Workers to present the

final figure.

The computer that runs the Master process (process and program mean the same in

our context) can also execute some of the jobs. This it does by starting the Worker

process alongside the Master process. The Master process in WinGrid sends only one

job to each Worker for processing at any one time (your ideal line manager!). The

Master process can be started on any computer, but please remember that only one

computer can run this process at any given time. The Worker process, of course, will

have to be run on multiple computers for the distributed-run to execute faster than its

sequential counterpart.

1.2 WinGrid Components

The Master process of WinGrid is called the WinGrid Job Dispatcher (WJD) and the

Worker process is called the WinGrid Thin Client (WTC). The more the number of

WTCs in the network (read as, the more the number of computers in the network

which have the WinGrid Thin Client program running) the faster will be the execution

of jobs.

1.3 WinGrid Integration with Microsoft Excel™ and Analytics™

WinGrid is a multi-purpose program and can be used with different applications. At

XXX, WinGrid is used with Microsoft Excel™ spreadsheets. This spreadsheet, in

turn, invokes Analytics™ for computation of complex risk calculations. The WinGrid

software integrates with Microsoft Excel™ on both the Master side and the Worker

side using integrated program code. We call this integrated code the WinGrid Master

Application and the WinGrid Worker Application respectively.

Appendix D: WinGrid user documentation (version 1.0) 268

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

The WJD (WinGrid Master Process) calls the WinGrid Master Application to gather

details of the jobs that have to be processed. The WTC (WinGrid Worker process), on

the other hand, calls the WinGrid Worker Application to process the jobs which are

sent by the WJD. For our XXX application jobs are different currencies (GBP, USD,

INR etc) that serve as inputs for calculations of Interest Rate Swaps (IRS) and the

Risky Bond Forwards (RBF).

A basic architecture of WJD and WTC and how they communicate with each other is

presented in Figure 1 below.

Figure 1: WinGrid Architecture

The user submits a job by running the WJD process (1) on Computer A. The WJD

then interacts with the integrated WinGrid Master Application (2) to extract job

details. WJD then divides the work into individual work units and sends them for

processing (3) to the WTC processes (4) running on Computers B and C. The dots

represent that the system can handle more than 2 computers. The WTC pass this work

to their WinGrid Worker Application for processing (5) and returns the result to the

WJD (6). The results of all the sub jobs are collated and communicated back to the

WinGrid Master Application for presentation to the user.

Running only the WJD process on a computer is not compute intensive. This is

because most of the processing is done by the WTCs by invoking Analytics™ through

Excel™. However, after the WJD has received all the results from the WTCs the

WJD has to assimilate these individual results together. During this stage (which

roughly takes 1% or less of the total computation time) the WJD will require some

CPU time and the computer may appear to become less responsive.

2. RUNNING WINGRID ON YOUR PC

To run WinGrid on your desktop please check whether you have the required software

installed on you PC (section 2.1), map the drive (section 2.2), register a dynamic link

library (section 2.3) and execute the batch file (section 2.4).

.

WinGrid Job

Dispatcher

(1)

Manager

Application

(2)

Worker

Application

(5)

WinGrid

Thin Client

(4)
(6)

(3)

(6)

(3)

WinGrid

Thin Client

(4)

Worker

Application

(5)

.

Computer A

Computer B

Computer C

Appendix D: WinGrid user documentation (version 1.0) 269

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

 Section 2.1: Checking software dependencies and installing software is only a one

time process.

 Section 2.2: You have to map your drive to the shared location of WinGrid files.

This is only a one time process.

 Section 2.3: Registering the DLL is a one time process.

 Section 2.4: You have to execute a batch file whenever you want to run the WJD

and WTC processes. A batch file contains a series of commands that is intended to

be executed by the Operating System. There are two separate batch files to invoke

for WJD and WTC respectively.

2.1 WinGrid Software Dependencies

The term WinGrid software dependencies mean the programs and/or software

libraries that have to be installed on your computer for successfully running WinGrid.

2.1.1. Java Runtime Environment (for both WJD and WTC processes)

WinGrid is written in Java programming language. Unlike a program written in C or

C++, a Java program is dependent on another program called the Java Runtime

Environment (JRE) for execution. To find out whether you have JRE installed on

your desktop follow the following steps:

(1) Go to Start Run

(2) On the Run dialogue box enter cmd. This will open up a program called Command

Prompt.

(3) Now type java at the C:\> prompt and press enter (The prompt can be other than

C:\>).

If JRE is present then it will output the following message:

Screenshot 1: Output from java command

If JRE is not present then you will be echoed back with the following message:

'java' is not recognized as an internal or external command, operable program or

batch file

In this case you will need to contact the computer support to install the JRE program

on your computer.

Appendix D: WinGrid user documentation (version 1.0) 270

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

The version of JRE required to run WinGrid is version 1.5.0 or later. If you have JRE

installed then you can find the version number by entering the following command in

the Command Prompt program.

C:\> Java –version

You are prompted back with a version number similar to the following:

Screenshot 2: Output from java –version command

The version number returned in the example above indicates that WinGrid can run on

the machine as the version of JRE installed is higher than 1.5 (it is actually build

0_02). In case you are echoed back a version less than 1.5 then please contact the

computer support to get necessary updates.

Further information: JRE can be downloaded from the following URL:

http://www.java.com/en/download/index.jsp. This software can be downloaded for

free.

2.1.2 JACOB library (for both WJD and WTC processes)

You need a JAR file (Java Archive File) called jacob.jar (version 1.9 or later). If

jacob.jar is present on your machine then the location of this file should appear in the

CLASSPATH variable. The CLASSPATH variable is used by JRE (see above) to

find certain JAVA libraries required for executing an application. Follow these steps

to see the value of your CLASSPATH variable.

(1) Go to Start Setting Control Panel System

(2) Click on Advanced Tab and then click the Environment Variables button.

(3) This opens up another window called Environment Variables which has two

specific list boxes – namely, user variables and system variables.

(4) Scroll down both these list boxes and look for a variable called CLASSPATH.

(5) If you find the CLASSPATH variable the double click it to check its value.

(6) The Edit User Variable Window that opens up has two text boxes called variable

name and variable value respectively. You must now check the variable value text

box and try to locate whether you have a path (the location of a file with respect to

directories) that ends with jacob.jar. If yes, then you have the required JACOB

library.

Please contact the computer support in case you do not have the CLASSPATH

variable set or do not have the path to jacob.jar in you CLASSPATH.

Further Information: Refer to section 2.5.

2.1.3 JDIC library (for both WJD and WTC processes)

http://www.java.com/en/download/index.jsp

Appendix D: WinGrid user documentation (version 1.0) 271

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

You will need jdic.jar and jdic.dll to run WinGrid. You can find whether you have

jdic.jar by following steps 1 to 6 outlined in section 2.1.2 above. The only difference

now is that you are looking for jdic.jar inplace of jacob.jar in your CLASSPATH

variable.

You will find jdic.dll in your C:\Windows\System32 directory.

Please contact the computer support in case you do not have the CLASSPATH

variable set or do not have the path to jdic.jar in you CLASSPATH or Jdic.dll is

missing from your C:\Windows\System32 directory.

Further Information: Refer to section 2.5.

2.1.4 Microsoft Excel™ (for both WJD and WTC processes)

The WinGrid Master Application (WMA) interacts with Microsoft Excel™ to extract

job details. The file that WMA reads is called the

WinGridApplicationSpecific.properties.xls file. The WJD also uses Microsoft Excel™

to extract certain parameters required for creating the WinGrid computing

infrastructure (for example, parameters such as the addresses of the computers

running WTC are read from WinGridJobDispatcher.properties.xls file). It thus

follows that the computer which will run WJD (and the integrated WMA code) should

be installed with Microsoft Excel™.

Excel™ must also be installed on the computers running WTC because the WinGrid

Worker Application (WWA) interacts with Microsoft Excel™ to start processing the

work units.

2.1.5 Analytics™ (for WTC process only)

The WinGrid Worker Application (WWA) interacts with Analytics™, via Microsoft

Excel™, to process jobs sent to it by the WTD. Thus the computer on which WTC

will run should be installed with both Microsoft Excel™ and Analytics™. You can

find whether Analytics™ is installed in your machine from the start menu.

2.2 Drive Mapping

All the WinGrid software is stored in a shared directory. Each computer has to map

this shared directory as X: drive and check the “Reconnect at Logon” checkbox (see

the screenshot 3). Using a shared directory helps to rapidly deploy newer versions of

the software because the updated files are required to be placed only in one shared

location. The XXX shared directory to map X: is:

\\SPGBFAP20004\SharedData1\Group

Data\GRGB001702\Projects\Brunel_Grid_Computing\WinGridCommonFiles

Appendix D: WinGrid user documentation (version 1.0) 272

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 3: Map Network Drive dialogue box

On successful mapping the following directory structure will appear in Windows

Explorer.

Screenshot 4: WinGrid directory structure

Screenshot 4 shows that X: is mapped to a shared folder called “Ing noweb” that is

present in computer 192.168.0.210. In your case the share name will be different. But

once mapped to X: you will get to see the same directory structure.

The directories ExcelPF, ExcelPFDLL and WinGridJobDispatcher contain program

code and you need not interact with them. The folder Input and its subfolders IRS and

RBF contain input files for WinGrid. The folder Output and its subfolders IRS, Log

and RBF contain the output files generated by WinGrid. The folder Startupscripts

contain the batch files required to start the program.

2.3 Register Dynamic Link Library (DLL)

A Dynamic Link Library (DLL) is an external program code that is invoked by an

application dynamically at runtime. WinGrid is dependent on RegDLLProj.dll. This

DLL has to be registered using a command called regsvr32. This is only a one time

process. As shown in screenshot 5, the RegDLLProj.dll file that we have to register

will appear under X:\ExcelPFDLL.

Appendix D: WinGrid user documentation (version 1.0) 273

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 5: The RegDLLProj.dll is located in folder X:\ExcelPFDLL folder

In order to register this dll we have to navigate to Start Run. This pops up a small

window called Run and we have to enter the command regsvr32

“X:\ExcelPFDLL\RegDLLProj.dll” in the Open text box (screenshot 6).

Screenshot 6: Registering the RegDLLProj.dll

If the DLL registration is successful then we get the following message box

(screenshot 7).

Screenshot 7: Successful registration of RegDLLProj.dll

Appendix D: WinGrid user documentation (version 1.0) 274

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

On failure, the unwelcoming message is (screenshot 8):

Screenshot 8: Unsuccessful registration of RegDLLProj.dll

If you are unable to register the DLL successfully please check whether the X: drive is

mapped correctly and you are able to spot RegDLLProj.dll under X:\ExcelPFDLL.

Further Information: To un-register the already registered RegDLLProj.dll please

use the command regsvr32 –u “X:\ExcelPFDLL\RegDLLProj.dll”. This you need to

do if you decide that a PC previously a part of WinGrid infrastructure will not be

required for processing anymore.

2.4 Execute Batch File

The batch files to start the WTC and the WJD processes are in the folder

X:\Startupscripts (screenshot 9). In addition to the batch files (ending with .bat

extension) there will be some graphics files (ending with .gif extension). Please ignore

the .gif files. Clicking on a batch file may open a “Security Warning” prompting you

to click the Run button to continue (screenshot 10).

Screenshot 9: The startup scripts to execute the programs are located in X:\Startupscripts

Appendix D: WinGrid user documentation (version 1.0) 275

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 10: The Open File – Security Warning window

The WJD.bat will start the WinGrid Job Dispatcher (Master) process. This has to be

started in only one computer. You need not worry about starting the WinGrid Thin

Client (Worker) process from this location because in the current XXX configuration

WTC processes is already started after you logon (this happens because this batch file

is present in your startup folder “C:\Documents and Settings\XXXXXX\Start

Menu\Programs\Startup”, where XXXXXX. is your profile name.

If you have deleted the WTC batch file from your startup folder list (you can safely do

so!) then you need to start the WTC processes by clicking either WTC.bat or

WTC_Debug.bat in X:\Startupscripts.

In case you have not deleted the WTC batch file present in your profiles folder but

you have terminated the WTC program after logging in, then you need to restart WTC

by clicking,

Start All Programs Startup WTC.bat / WTC_Debug.bat, depending on which

batch file is currently present.

As per the current configuration the startup folder invokes the WTC_Debug.bat file.

You can replace WTC_Debug.bat with WTC.bat in the startup folder by deleting the

former and adding the latter to “C:\Documents and Settings\XXXXXX\Start

Menu\Programs\Startup”, where XXXXXX is your profile name.

But please remember:

(1) Both WTC.bat and WTC_Debug.bat cannot be present at startup.

(2) Do not include WJD.bat at startup.

(3) Do not delete WTC.bat, WTC_Debug.bat or WJD.bat from X:\Startupscripts. This

will make WinGrid non-functional until these files are replaced. You are allowed

to delete, replace or add the WTC batch files in your profiles startup only.

About WJD.bat

Unlike its WTC counterparts the WJD does not have a separate WJD window. It

only has a command window that cannot be ionized into the Windows System

Tray. Terminating this command window will end the WJD program.

Appendix D: WinGrid user documentation (version 1.0) 276

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

2.5 Mapping Drive, Installing JACOB + JDIC, Setting CLASSPATH,

Registering DLL and Including a new Computer as part of WinGrid

Computation Infrastructure

This section of the document is maintained by Robert Watson (XXX).

Background Information

 All files needed to carry out this installation are stored on the network in

…\Projects\Brunel_Grid_Computing\Software.

 Additional rights may have to be granted by IT in order to be able to do some of

this work.

 All files are being stored on the Credit_Risk_Measurement area of the network.

Choose and set up a master PC

 The master PC is the one from which the control program runs. It is used to

monitor the status of all the machines in the Grid. Being master PC is not a

computational burden. The master PC may also simultaneously be a client PC.

The master PC is whichever one runs the required batch file, WJD.bat. In the X:\

drive under Startupscripts.

 On all PCs (including the master) do the following.

Install client software

 Create a folder called C:\Credit_Risk_Measurement\BrunelGRID.

About WTC.bat and WTC_Debug.bat

The difference between WTC.bat and WTC_Debug.bat is how the program is

started using JRE. When both these files are clicked two separate windows open

up: (1) a command window, and (2) a white WinGrid Thin Client window. In case

of WTC.bat the command window can be terminated and the WTC window can be

iconified by clicking the minimize button (the program then appears only as an

icon in the Windows System Tray). However, in case of WTC_Debug.bat the

command window cannot be terminated as it will end the WinGrid program. It will

also not be possible to iconify this command window (unlike the WTC window).

This means that you will have an additional window open in your taskbar. More

details on WTC can be found in section 3.

So what is the purpose of this additional command window incase of

WJD_Debug.bat that cannot be terminated? As the name of the batch file suggests,

this window is for debug purposes. It outputs a lot of messages which shows the

current information exchanges taking place. It has to be reiterated that there is no

separate debug version of WinGrid and that both WTC.bat and WTC_Debug.bat

invoke the same program.

Appendix D: WinGrid user documentation (version 1.0) 277

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

 Map the shared drive on the network. The same drive letter must be used on all

client PCs. This will have to be done by the person who will be logged on to the

machine.

Map \\SPGBFAP20004\SharedData1\Group

Data\GRGB001702\Projects\Brunel_Grid_Computing\WinGridCommonFiles as X:\.

 Copy the folder Software from …\Projects\Brunel_Grid_Computing to C:\

Credit_Risk_Measurement\BrunelGRID.

 Create a system environment variable called CLASSPATH. Copy into it the

contents of

C:\Credit_Risk_Measurement\BrunelGRID\Software\ClassPathValue.txt.

 Copy Jacob.dll from

C:\Credit_Risk_Measurement\BrunelGRID\Software\jacob_1.9

to C:\WINDOWS\system32.

 Register RegDLLProj.dll by running the command given in

C:\Credit_Risk_Measurement\BrunelGRID\Software\RegsvrCommand.txt.

 Copy X:\WTC_Debug.bat to User profile startup (C:\Documents and

Settings\XXXXX\Start Menu\Programs\Startup). (where XXXX is the user name.)

 Add the name of the new client PC (and port number “60000” and an alias) to

X:\Input\WinGridJobDispatcher.properties.xls.

Usage

 On the machine which will be the master, run X:\Startupscripts\WJD.bat.

 On each machine which will be a client (possibly including the machine which is

the master), run Start – All Programs – Startup – WTC.bat.

 There also exists a debug version WTC_debug.bat.

3. WTC – THE WINGRID THIN CLIENT

The WinGrid Thin Client (WTC) is responsible for listening to the WinGrid Job

Dispatcher (WJD) for incoming job requests, accepting the job (or rejecting jobs

incase of failures), passing the job for processing to its Worker Application (see figure

1) and returning the results of the job to the WJD. The WTC process should ideally be

run on multiple computers. As discussed in section 2.4 above, the WTC process can

be started by either executing the WTC_debug.bat or WTC.bat file.

3.1 WinGrid Thin Client (WTC) Arguments

Batch files are standard text files that contain commands that are to be processed by

the Operating System. Let us take the example of WTC_Debug.bat. As seen from

Appendix D: WinGrid user documentation (version 1.0) 278

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

screenshot 11 below, once this file is opened in notepad we see commands like REM,

CD, JAVA, PAUSE etc (your batch file may contain additional commands). These

commands are known to the Command Processor program of the Operating System.

Screenshot 11: The WTC_Debug.bat file opened in notepad

REM is a command that stands for REMARKS. The command processor on

encountering a REM command will ignore whatever is written after it. The REM

command is used in this batch file to inform the user of the arguments to the WTC

program (think of arguments as variables in an equation). CD is a command to change

directory to the path mentioned (..\ExcelPF\classes => go back one directory and then

enter directory ExcelPF\classes). JAVA is the command to start the JRE and

excelpf.ExcelINGMain is the name of the program. Let us now discuss the arguments

to excelpf.ExcelINGMain. Please refer to the REM command also to see how the

argument matches the placeholders defined by REM.

B <federatename>

60000 <portnumber>

101 <maxMEM>

101 <maxCPU>

10000 <maxInterval>

Let us now discuss what these argument placeholders are:

<federatename> The logical name of the computer running the WTC. Here we

have assigned the name B. This argument is unimportant but should be present in the

argument list.

<portnumber> A port can be defined as an entry point for communication

between two computers. For example, a house has only one address but may have

multiple entrance doors. Similarly, a computer can have only one address

(IPADDRESS) but can have multiple channels (ports) over which it can

communicate. Each such channel will have a unique number which is commonly

referred to as the port number. An application will use one port number for all its

communication requirements. For example, all Internet communication is through

port 8080. In our case all WinGrid communication will be through port 60000. [Note:

we have taken a very simplistic view of inter-computer communication in this

document. In reality a computer can have multiple Internet Protocol Addresses and

Appendix D: WinGrid user documentation (version 1.0) 279

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

one application may utilize multiple ports to satisfy its communication requirements.

However, WinGrid only uses port 60000 presently].

<maxMEM> There is support in WinGrid to transparently start and stop job

processing based on “current memory load” of the computer running the WTC.

WTC program continuously monitors the current memory load of the system to

decide whether jobs should be accepted or rejected, and also whether jobs under

processing should be stopped. This is an optional feature. It has also not been

thoroughly tested (as of January 2006) and may have a few bugs. The <maxMEM>

value in the argument list is the memory load over which the processing would stop.

Currently we see that <maxMEM> value is 101. This means that this feature is

currently disabled as memory load can never be above 100. A value equal to or less

than 100 will enable this feature.

<maxCPU> There is support in WinGrid to transparently start and stop job

processing based on “current processor load” of the computer running the WTC.

This is possible because WTC continuously monitors the CPU load. Like

<maxMEM> this too is an optional feature and has not been thoroughly tested (As

of January 2006). The useage of <maxCPU> value is similar to <maxMEM>.

<maxInterval> This argument is related to <maxMEM> and <maxCPU>

arguments. As has been said earlier, the WTC continuously monitors the memory and

CPU load of the computer running WTC. The time interval (in milliseconds) between

two such measurements is defined by the place holder <maxInterval>. Thus a value

10000 means that the CPU load and the memory load will be measured every 10

seconds.

3.2 WTC_DEBUG Batch File

WTC_Debug.bat file has been discussed previously in section 2.4. This part of the

document provides screenshots of the WTC process once the user clicks on

WTC_Debug.bat.

Screenshot 12 shows that the WTC process has started and is utilizing around 90%

CPU for processing the job. Running the WTC_Debug.bat opens up two separate

windows, viz., the command window (in black) and the WTC window (in white).

Furthermore you can see a “disc” icon in the Windows System Tray (more on this in

section 3.4).

The command window outputs a lot of data while WTC process is running. This

information is useful for (1) better user understanding of the system [A system that is

understood better by the users will have a greater adoption rate], and (2) for

debugging when things go wrong. It is not possible to iconize the command window

and terminating it will stop the WTC program. The user has to keep this command

window minimized at all time, implying an “extra” window in taskbar. The white

WTC window, on the other hand, can be iconified so that it exists only in the System

Tray.

Appendix D: WinGrid user documentation (version 1.0) 280

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 12: WTC process is started using WTC_Debug.bat and you see both the command

window (above right) and the WTC window (below right). None of these windows can be closed

3.3 WTC Batch File

Starting the WTC process by executing the WTC.bat file will enable the user to close

the black command window without affecting the execution of WTC. The white WTC

can be iconized to the Windows System Tray.

Screenshot 13: WTC process is started using WTC.bat and you see both the command window (in

the background) and the WTC window (in the foreground). The command window can be closed

Appendix D: WinGrid user documentation (version 1.0) 281

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

As is seen in screenshot 13, running the WTC.bat process will open two different

windows. However, in this case, the user can safely close the black command window

and the WTC program will still run.

3.4 WinGrid Thin Client (WTC) Status

Irrespective of the batch file used to invoke the WTC program, once the WTC process

starts there will appear an icon in the Windows System Tray (the right hand portion of

the task bar). This WinGrid icon is not static and will change depending on the state

of WTC.

Screenshot 14: WinGrid icon in Windows System Tray is circled in red

 : WTC is running but not connected to WJD (still waiting for connection- icon

is WHITE).

 : WTC is running and is connected to WJD (waiting for jobs- icon is GREEN).

 : WTC is running and is connected to WJD but an error has occurred in WTC

(icon is RED).

 : WTC is running and is processing a job sent by WJD (this icon actually

revolves).

Figure 2: Possible states of the WTC clients are represented by icons

3.5 WinGrid Thin Client (WTC) Menu

The WTC icons have a menu associated with them. The user can access this menu

through right-click over the WinGrid icon on the System Tray. The menu, shown in

screenshot 15, can be accessed irrespective of the state the WTC is in.

Screenshot 15: WTC menu can be accessed when the user right-clicks over the WinGrid icon

We will now describe the functionality provided by the WinGrid menu.

[Exit] Terminates WTC in 5 seconds.

[Hide Console] This will hide the open WinGrid WTC window

Appendix D: WinGrid user documentation (version 1.0) 282

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

[Show Console] This will display the WinGrid WTC window on the Task Bar

(screenshot 16). A click on the minimized WTC window will now maximize it. [Show

console] is also required when the user has minimized the WinGrid Thin Client

window using the minimize option (found on the upper right-hand side of the WTC

window) and now wants to make the window visible again.

Screenshot 16: WTC window minimized in the task bar

[Stop Processing] Clicking on [Stop Processing] will immediately terminate any

jobs running in WTC. This incomplete job will be pushed back to the WJD queue.

Unlike the [Exit] option the WTC will still be running.

[Start Processing] The user needs to click on [Start Processing] in order to make

available his computer for processing again. This is only needed if the user had

previously stopped processing jobs by selecting the [Stop Processing] option.

4. WJD – The WINGRID JOB DISPATCHER

The WJD process is started by the WJD.bat file. Opening the file in notepad we see

the three arguments required by the WJD program. Argument one is the location of

the WinGridJobDispatcher.properties.xls file (section 4.2), the second argument is the

location of WinGridApplicationSpecific.properties.xls file (section 4.3) and the third

argument is the directory that will contain the log files (section 4.4). The Excel™ files

mentioned in the first two arguments are parameter files which the WJD reads before

it starts dispatching work.

Screenshot 17: The WJD.bat file opened in notepad

4.1 Configuring Parameter Files

The WinGrid parameter files are WinGridJobDispatcher.properties.xls and

WinGridApplicationSpecific.properties.xls. These can be found under directory

X:\Input. As shown in screenshot 18, the Input folder also contains two other folders,

namely IRS and RBF. These folders contain the files that will be used by WTC to

process jobs sent by WJD.

Appendix D: WinGrid user documentation (version 1.0) 283

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 18: X:\Input is the location of the WinGrid parameter files

4.2 Configuring WinGrid Job Dispatcher (WJD) Parameter File

The WJD parameter file (WinGridJobDispatcher.properties.xls) contains a list of

computers which the WJD will attempt to communicate with (screenshot 20). These

computers should ideally have WTC running so that the WJD can reach it and

dispatch work immediately. This file (screenshot 19) contains the logical name of the

PC (computer name), the port number over which WTC is hearing for incoming WJD

requests (port number) and an alias name (computer alias) for the computer. Any new

computer that is assigned for WTC processing should have a corresponding entry in

this file.

Screenshot 19: The WJD Parameter File (WinGridJobDispatcher.properties.xls)

Appendix D: WinGrid user documentation (version 1.0) 284

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 20: WJD is trying to connect to WTCs based on connection information in

WinGridJobDispatcher.properties.xls file

4.3 Configuring WinGrid Job Dispatcher (WJD) Application Specific

Parameter File

The WJD application specific parameter file

(WinGridApplicationSpecific.properties.xls) contains application specific parameters

that are required for our specific XXX application. As shown in screenshot 21, it

requires five different inputs, viz., the name of the output directory, the name of the

product to simulate (IRS or RBF), the operation to perform (create table, create

profiles or both), the filename to simulate and, finally, whether the master has

crashed. All this information is in worksheet called “General”. The WJD Application

specific parameter file also has a further two worksheets, namely “RBF” and “IRS”,

which have data specific to RBF and IRS simulations respectively.

4.3.1 General Worksheet of WinGrid Application Specific Parameter File

We will now look at the parameters in the “General WorkSheet”.

 Output Directory: The purpose of the output directory is to store temporary

information generated during the simulation. This folder must be present in the X:

drive and be accessible to all WTC clients. Each client extensively reads and

writes to this directory. Currently the shared directory for output is X:\Output.

 Name of the Project: It can have a value of either 1 (for RBF) or 2 (for IRS).

 Name of the Operation: A value 1 indicates that both profiles + tables will be

created (for either RBS or IRS depending on the value of the previous field), value

2 is for profiles only and value 3 is for creating tables only. Options 2 and 3 have

not been rigorously tested because in most cases Option 1 is all that is needed.

Appendix D: WinGrid user documentation (version 1.0) 285

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

 Filename to Simulate: This is the name of the file that will be used to generate

the profiles. There are two different files which are used for creating IRS and RBF

profiles respectively. These files are kept in two different directories, viz.,

X:\Input\IRS and X:\Input\RBF respectively. In practice however, it is the same

file with the same name but kept under two directories.

Screenshot 21: The “General” worksheet of the WJD Application Specific Parameter File

(WinGridApplicationSpecific.properties.xls)

 Master Crash: This field can have a value of either 1 or 2. If WJD had crashed

during previous execution then set the value of this variable to 2. If the WJD had

completed successful processing during the previous run, then set the value to 1.

A new run of WJD with a master crash value of 1 will mean that the previously

generated files (kept in shared directory for output file: X:\Output) will be deleted (see

screenshot 22) and the WTC’s will create new files. However, if WJD is run with a

master crash value of 2 then the previous files in the output directory will not be

deleted. Thus, the computation will restart from a previous state.

Very Important:

If [Name of the Project] is 1 Then [Filename to Simulate] should point to

X:\Input\RBF

If [Name of the Project] is 2 Then [Filename to Simulate] should point to

X:\Input\IRS

Appendix D: WinGrid user documentation (version 1.0) 286

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 22: Temporary output files (generated by WTCs) will be deleted by WJD if the

Master Crash value is set to 1 in the WJD application specific parameter file

4.3.2 IRS and RBF Worksheets of WinGrid Application Specific Parameter

File

We will now focus our discussion on the “RBF” and “IRS” worksheets in the

WinGrid application specific parameters file. Each of these worksheets has a list of

currencies. Each currency is a separate unit of computation (job). The WJD reads this

list (it reads RBF worksheet if the name of product in “general” worksheet is 1, and

IRS if the name of product is 2) and allocates job (one currency name + other

parameters) to each connected WTC.

The WTCs will process the jobs it receives from WJD and return results (in our case it

is only a job completion message because results that are computed by WTC are

stored in the shared output folder that the WJD can also access). After one currency

has been successfully computed the WJD will send the next currency in its queue.

This process repeats until all the currencies have completed the three different phases

of processing.

Screenshot 23: The “IRS” worksheet of the WJD Application Specific Parameter File

(WinGridApplicationSpecific.properties.xls)

Appendix D: WinGrid user documentation (version 1.0) 287

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

4.3.3 Three Phases of IRS and RBF Simulation

There are three phases to both IRS and RBF simulations.

Phase 1: Create Profiles

Phase 2: Create EPE tables from the output files generated by WTCs

Phase 3: Create PFE tables from the output files generated by WTCs

The output files required by WTCs to create EPE and PFE tables for phase 2 and

phase 3 of the simulations are generated by WTCs themselves in phase 1. Thus there

exists a dependency between jobs. WJD has implemented an algorithm which only

allows second stage processing when the first stage processing is complete, and

allows third stage processing only if the second stage processing is complete.

For both IRS and RBF simulations, after the WTC processing has ended the WJD will

create two master files – one for EPE and another for PFE – with the objective of

presenting collective results to the user. The WJD does this by transferring data from

the temporary Excel™ files (created by each WTC client during phase 2 and phase 3

of the simulation) to the Master EPE and PFE files. Thus, if there are 8 WTCs then

the WJD will have to combine results generated by each of the WTCs. And it has to

do it twice - once for master EPE table generation and again for the master PFE table

generation.

The files required by both WTCs and the WJD for executing IRS and RBF

simulations can be found under X:\Input\IRS and X:\Input\RBF directories

respectively. As shown in screenshot 24 we need a total of 5 different files for both

IRS and RBF simulation (3 required by WTC and 2 by WJD). The files on which the

different IRS and RBF phases are dependent are listed below.

WTC requirement for IRS (see directory X:\Input\IRS):

 Phase 1: Generate_Profiles.xls

 Phase 2: Generate_Profiles_[IRS_Create_Table_EPE].xls

 Phase 3: Generate_Profiles_[IRS_Create_Table_PFE].xls

WTC requirement for RBF (see directory X:\Input\RBF):

 Phase 1: Generate_Profiles.xls

 Phase 2: Generate_Profiles_[RBF_Create_Table_EPE].xls

 Phase 3: Generate_Profiles_[RBF_Create_Table_PFE].xls

The files required by WJD for both IRS and RBF simulations are:

WJD requirement for IRS (see directory X:\Input\IRS):

 Generate_Profiles_[IRS_MASTER_EPE].xls

 Generate_Profiles_[IRS_MASTER_PFE].xls

WJD requirement for RBF (see directory X:\Input\RBF):

 Generate_Profiles_[RBF_MASTER_EPE].xls

 Generate_Profiles_[RBF_MASTER_PFE].xls

Appendix D: WinGrid user documentation (version 1.0) 288

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Further information on how these files are used during processing can be found under

section 4.6 (WinGrid Job Dispatcher (WJD) Execution Completion).

Screenshot 24: The files required for IRS and RBF simulations can be found under X:\Input\IRS

and X;\Input\RBF directories respectively

4.4 WinGrid Job Dispatcher (WJD) Log File Directory

The third argument to the WJD.bat file (screenshot 17) is the location of the directory

that will contain the log files. These log files are generated automatically during the

WinGrid-based simulation runs and record a variety of information that can be used

for debugging. The default location of this WJD log file directory is in X:\Output\Log.

The log files generated by WJD have filenames that include the system date and the

system time (e.g.: WJD_Logfile_10_January_2007_10_07_03.log). This allows the

previously generated log files to exist along side the newer logs. The log information

is written in XML (meaning there are well-defined tags that qualify the information

written) and it can be opened using either Notepad or Internet Explorer program, the

latter being the preferred option because it can render XML data. However, for

Internet Explorer to open this log file, another file called logger.dtd must exist in the

log folder. If it does not then Internet Explorer will throw you an error. In this case

simply create a new file with the name logger.dtd. This newly created file should be

empty (size 0KB).

Appendix D: WinGrid user documentation (version 1.0) 289

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 25: Opening the log file using Internet Explorer

As show in screenshot 25, the log file can be opened through right click on the file

name and then selecting option Open With and then selecting Internet Explorer. This

will display the log file information parsed according to XML tag hierarchy

(screenshot 26).

Screenshot 26: The Log file information displayed in Internet Explorer

Appendix D: WinGrid user documentation (version 1.0) 290

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

4.5 WinGrid Job Dispatcher (WJD) Execution

WJD process is started when the user executes the WJD.bat batchfile in folder

X:\Starupscripts. As noted earlier in section 2.4, the user may be prompted by a

“Security Warning” window to confirm whether the software should be run. Please

click Run to begin execution of the WJD process. Only one computer in the WinGrid

infrastructure will be allowed to run the WJD process at any one time. There are

checks in the system which enforces this.

Depending on the “Master Crash” parameter set in the WJD application specific

properties file WinGridApplicationSpecific.properties.xls file (see screenshot 21), the

WJD may either delete the contents of X:\Output\RBF or X:\Output\IRS (depending

on whether the system is configured for RBF or IRS simulation) or may decide to skip

the deletion process. It will then try to establish connection with WTC clients by

reading connection information from WinGridJobDispatcher.properties.xls file

(screenshot 19).

Screenshot 27: The WJD console showing running jobs

As the WJD establishes connection with the WTCs, the WJD job dispatching

algorithm assigns jobs to the WTCs for processing. This algorithm makes sure that the

dependencies between jobs are maintained through phases and incomplete jobs are

reassigned as long as there is even one waiting and functional WTC in the WinGrid

computation infrastructure.

#Job

WtcP1

WtcP2

WtcP3

StatusP1

StatusP2

StatusP3

Stages of

Processing

Appendix D: WinGrid user documentation (version 1.0) 291

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

The WJD console (screenshot 27) shows both the job status (StatusP1, StatusP2,

StatusP3) and the status of all the WTCs (WtcP1, WtcP2, WtcP3) across all the three

phases of processing. The jobs (#Job) that are to be processed are the foreign currency

values extracted from either the IRS or RBF worksheet of the WJD application

specific parameter file called WinGridApplicationSpecific.properties.xls file

(screenshot 23).

The job status (StatusP1, StatusP2, StatusP3) can have eight possible values (each

value is either 7 or 9 characters for formatting purposes), irrespective of whether it is

first stage of processing (STAGE1 [PROFILES]), the second stage of processing

(STAGE2 [EFE]) or the final stage of processing (STAGE3 [PFE]). These are:

InQueue Job is in the queue. The next available WTC will get the job.

Assignd Job has been assigned to a WTC.

Running Job is currently running in a WTC.

WorkDne Job is complete.

InQueue A previously failed job is again in the queue. The next available

WTC will get the job.

Assignd A previously failed job has been assigned to a WTC.

Running A previously failed job is running in a WTC.

WorkDne A previously failed job is now complete.

The status of a WTC (WTCs are identified in the WJD console by its alias names [see

screenshot 19]), can be determined by looking at columns that represent different

phases of processing (WtcP1 column for first stage processing, WtcP2 column for

second stage processing and WtcP3 column for the third phase processing). If the

WTC name cannot be found then the other messages displayed at regular interval by

WJD must be checked. These messages are self-explanatory and might indicate that

an WTC is not assigned work because the previous stage of work is not complete

(because of underlying job dependencies between phases) or because there is no more

work to be sent (all jobs are either assigned or running); the WTC computer could not

be found (unknown host exception); the WTC processes is not listening for WJD etc.

See screenshot 28. Being conversant with the details output by the WJD console will

take some time.

Appendix D: WinGrid user documentation (version 1.0) 292

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 28: The WJD console displaying messages pertaining to WTC (5 WTCs running on

WJN_PC, ROB_PC, RAH_PC, JTN_PC, SAM_PC are not listening for WJD and hostname

WPGBD3001855.UK.EUROPE.INTRANET cannot be found)

4.6 WinGrid Job Dispatcher (WJD) Execution Completion

The WJD stops communicating with the WTCs when all the jobs have been

completed successfully. For each WTC listed in the WinGrid parameter file

(screenshot 19) the WJD starts a separate process. The CPU time allotted to WJD is

shared between these different processes. In technical terms each such process is

called a thread. Just like a teacher in a classroom allots her stipulated lecture time

between multiple pupils, similarly the WJD shares CPU time between the different

threads (processes), wherein each thread is actually the communication channel to a

particular WTC running on a particular computer.

After all the three phases of processing ends the WJD stops interacting with the WTC

by closing these communication channels. It then waits for all these processes

(threads) to finish – just like a teacher may wait until all the students have left the

lecture room – before informing the user that it is now ready to assimilate all the

results returned by the different WTCs. This information is conveyed through a

message box that appears on the task bar (screenshot 29).

Appendix D: WinGrid user documentation (version 1.0) 293

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 29: A WJD message box informs the user that all processing is complete and it is now

ready to collate all the results returned by the WTCs

At this point all the processing is complete and all the data is in folder X:\Output\IRS

or X:\Output|RBS, depending on whether WinGrid-enabled IRS or RBS simulation

was executed. Both Phase 2 (creating EPE tables) and Phase 3 (creating PFE tables)

of processing are dependent on Phase 1 (creating profiles). Analytics™ is called only

in Phase 1. Phase 2 and Phase 3 of the processing actually imports data that is output

by Analytics™ in the form of 1000s of text files containing risk calculations. Because

there can be multiple WTC clients processing jobs in all the three phases therefore

each client makes a copy of the original input file stored in either X:\Input\IRS or

X:\Input\RBS (screenshot 30) and copies the same to either X:\Output\IRS or

X:\Output\RBS respectively (screenshot 31). Each of these temporary output files are

named by appending the WTC computer name (screenshot 19) to the original file

name.

Thus, a computer with the name WPGBD3001529.UK.EUROPE.INTRANET would

copy the file Generate_Profiles_[IRS_Create_Table_EPE].xls from X:\Input\IRS and

place it in X:\Output\IRS with the filename

Generate_Profiles_[IRS_Create_Table_EPE]_WPGBD3001529.UK.EUROPE.INTR

ANET.xls. This naming scheme allows each WTC to have its exclusive copy of the

input file for all the three stages of processing.

Appendix D: WinGrid user documentation (version 1.0) 294

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 30: The input files for the IRS and RBS simulations are stored in directory

X:\Input\IRS and X:\Input\RBS respectively

Screenshot 31: The output files for the IRS and RBS simulations are stored in directory

X:\Output\IRS and X:\Output\RBS respectively

Appendix D: WinGrid user documentation (version 1.0) 295

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

We now revert back to our earlier discussion on the procedure to start collecting

results. The user should click OK in the WJD message box (screenshot 29) to signal

WJD to start collating the individual

Generate_Profiles_[xxx_Create_Table_EPE]_yyy.xls and

Generate_Profiles_[xxx_Create_Table_PFE]_yyy.xls results returned by the WTC,

wherein xxx is either IRS or RBF and yyy is the computer name (see screenshot 31).

This process involves the WJD opening the

Generate_Profiles_[xxx_Master_EPE].xls and

Generate_Profiles_[xxx_Master_PFE].xls (see screenshot 30), wherein xxx is either

IRS or RBF, and copying results from the temporary WJD result files.

After WJD has completed this process the user is informed of the same through the

“Job Completed" message box (screenshot 32) that appears on the taskbar.

Screenshot 32: WJD informs the user that the result collection is over by displaying a “Job

Completed” message box.

The source MASTER_PFE and the MASTER_PFE files for both IRS and RBF

simulations are read only. The user will therefore have to save the file to a different

location. If the user tries to close these MASTER files without saving the contents

then Excel™ prompts the user with the “Save Changes?” dialogue box (screenshot

33).

Appendix D: WinGrid user documentation (version 1.0) 296

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 33: The “Save Changes?” dialogue box is displayed if the user tries to close the

MASTER files without first saving the data. The MASTER files are read only. Therefore these

files have to be saved at a different location

5. PERFORMANCE RESULT COLLECTION

How long does it take to run the IRS and RBS simulations? We can get an answer to

that by finding the performance results that are stored in directory X:\Output\Log

(screenshot 34). The results are stored in the Excel™ file format. The name of the file

is kept unique by appending the time the file was created (in milliseconds from 1
st

January 1970 – Unix concept of time) to the String “RESULTS_”.

The information recorded include the time when the program was started, time a work

unit was dispatched to a WTC and the time the results were returned, time of result

collection and the time the program finally completed execution. Using this data a lot

of useful information can be derived, for example, the total number of units processed

by different WTCs, the time taken to complete the different phases of processing, the

number of times the same work unit was sent before it was successfully processed

and so on. Screenshot 35 shows this tab-delimited results Excel™ file.

Appendix D: WinGrid user documentation (version 1.0) 297

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 34: All results are stored in directory X:\Output\Log. This directory also stores the

WJD log files (section 4.4)

Screenshot 35: The RESULTS file stores data collected by the WJD during processing

Appendix D: WinGrid user documentation (version 1.0) 298

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

6 WTC AND WJD ERRORS

6.1 WinGrid Thin Client (WTC) Errors

This section presents some of the error conditions encountered by WTC during

processing. Some of these errors can be easily overcome while others, unfortunately,

will require you to restart WTC.

WinGrid architecture is designed to interface with third party applications. These

third party applications have there own program code and are executed in a

separate part of the computer memory. WinGrid can only call COM functions /

methods (read as tasks) defined by these applications and expect them to be

executed properly. If there is a problem executing these COM methods then an

error occurs and the WTC will need to be restarted. However, this will not affect

processing of the WJD jobs as long as there is even one WTC running properly.

6.1.1 Multiple Instances of WTC Running

If the user runs more than one WTC process in one computer then an error condition

will occur and the new WTC process that was started will exit. The WTC process

running previously in the same computer will not be affected. The user will be shown

a JVM_Bind error before exit (screenshot 36).

Screenshot 36: More than one instance of WTC has been started in the same computer

6.1.2 WTC was Closed Forcibly

The normal procedure of closing a WTC is through the Exit option in the WinGrid

menu that is accessible from the System Tray (screenshot 15). Once this Exit option is

evoked the WTC takes 5 seconds to complete the necessary housekeeping (example,

closing Excel™ files that have been previously opened) before exiting.

If the WTC was forcibly closed by using the (X) option present in the top right-hand

corner of either the white WTC window or the black command window (this is incase

the WTC was started using WTC_Debug.bat), then an error may occur when the WTC

is restarted again. The error message is self-explanatory (screenshot 37). It tells you

that WTC is trying to open a file that had already been opened earlier, but not closed.

It is giving you 60 seconds to close this file using Windows Task Manager, after

which this job will be reassigned.

Appendix D: WinGrid user documentation (version 1.0) 299

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 37: More than one instance of WTC has been started in the same computer

During these 60 seconds you will see the red WTC error icon in the System

Tray. This suggests that WTC has encountered an error and is expecting user

intervention for rectification of the problem. After these 60 seconds have passed then

the job is again in the WJD queue. If other WTCs are not busy then this job is

allocated and processed elsewhere.

If you are busy with your work and you see the red WTC error icon then you need

not do anything. Processing of jobs will continue in other nodes. You may also

notice that the red icon disappears for 10-15 seconds and then reappears again. This is

because the same job (more specifically, a job in the “same phase” that requires the

same file to be opened –the file the WTC could not successfully open the previous

time around) has again been dispatched to your WTC. If you are busy with your work

pleas ignore this behavior too. However, when you get a chance do check the error

message and close any stray Excel™ processes running on your PC using the

Windows Task Manager (you need not close the WTC process to do this). This will

enable the WTC to again process jobs in your PC.

6.1.3 COM Failure

A COM failure (screenshot 38) occurs because the third-party software (Excel™ and

Analytics™ in our case) invoked by WinGrid using the third-party defined COM

interface had failed to do a job. Once a COM failure has occurred you will see the red

WTC icon on the Windows System Tray. If you are busy then you need not do

anything.

To again enable your PC to process jobs you may be required to do the following:

(1) Exit the WTC application.

Appendix D: WinGrid user documentation (version 1.0) 300

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

(2) Kill any stray Excel™ processes.

(3) Finally, restart the WTC.

Screenshot 38: WTC displaying COM error condition

During testing we have also observed that restarting WTC in this way does not always

alleviate COM error condition. In this case you have two options (other than ignoring

the error by exiting WTC all together or using the Stop Processing feature in the

WinGrid menu). Option 1 is to go for a system reboot. Option 2 is more drastic and

you must only do it if you see that the majority of the WTCs are flashing this COM

error condition.

This will require you to stop all WTCs showing the error and kill any stray Excel™

processes using Windows Task Manager. Then you have to kill the WJD process

running on the Master computer. Next, you have to open the WinGrid application

specific parameters file WinGridApplicationSpecific.properties.xls and set the Master

Crash value to 2 in the “General” worksheet (screenshot 21). You will then need to

start the WJD and the WTCs.

6.1.4 File Locked for Editing

If the WTC encounter a “File in Use” error (see screenshot 39) then please click the

Read Only button to continue. This error occurs very rarely.

Appendix D: WinGrid user documentation (version 1.0) 301

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 39: “File in Use” message displayed by the WTC

6.1.5 Automation Error

If you encounter a message similar to that shown in screenshot 40 below, then please

click the OK button to continue. If this error message continues appearing then please

exit WTC, kill stray Excel™ processes and restart WTC. This error occurs very

rarely.

Screenshot 40: WTC displaying automation error

Appendix D: WinGrid user documentation (version 1.0) 302

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

6.1.6 Multiple WinGrid Icons in Windows System Tray

Many a times you will notice multiple WinGrid icons in the System Tray area of

windows (see screenshot 41). Thankfully, only one of these icons is actually active.

The rest of the inactive icons are displayed probably because the System Tray has not

refreshed. The active icon is the one which allows the user to access the WinGrid

menu (screenshot 15) through right click.

Screenshot 41: Multiple WinGrid icons in System Tray

6.2 WinGrid Job Dispatcher (WJD) Errors

6.2.1 WJD already Running

This is not strictly an error. There are checks in the system which makes sure that only

one instance of WJD can be started any one time. This check is implemented by

creating a temporary file called WJD_LOCK in the X:\Output\Log directory

(screenshot 42) when the WJD is started. This file is again deleted when the WJD

process has completed execution.

When a WJD process is started in any computer it first checks to see whether

WJD_LOCK is present in X:\Output\Log directory. If yes, then the user encounters the

message shown in screenshot 43.

Screenshot 42: The WJD_LOCK file is created in X:\Output\Log directory

Appendix D: WinGrid user documentation (version 1.0) 303

A Grid Computing Framework for Commercial Simulation Packages
Navonil Mustafee

Screenshot 43: WJD informing user that one instance of WJD is already running

If the user is sure that it is not the case and no other WJD is presently running, and the

WJD_LOCK was not automatically deleted by the previous WJD execution because it

was forcibly closed, then the WJD_LOCK file may be safely deleted. Restarting

WJD.bat will now start the WinGrid Job Dispatcher without any error.

7. MISCELLANEOUS

7.1 Acknowledgements

The author would like to thank Robert Watson from XXX for his contribution in the

development of this new system. He has been most patient with the author and has

extended his help and support towards implementation, testing and installation of the

WinGrid software.

Thanks are also due to Jonathan Berryman (XXX), my PhD supervisor Dr. Simon

Taylor (Brunel University), Rahul Talwalkar (XXX, Singapore), Meeta Talwalkar

(Brunel University), Jasbir Singh Heer (XXX) and Andrew McFadyen (XXX).

7.2 Contact Information

Navonil Mustafee

Research Student

Centre for Applied Simulation Modelling (CASM)

School of Information Systems, Computing & Mathematics

Brunel University, Uxbridge, Middlesex UB8 3PH

Telephone : 01895265727

Email 1: navonil.mustafee@brunel.ac.uk

mailto:navonil.mustafee@brunel.ac.uk

