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Chapter VI
Leveraging Simulation
Practice in Industry through Use
of Desktop Grid Middleware

Navonil Mustafee
University of Warwick, UK

Simon J. E. Taylor
Brunel University, UK

ABSTRACT

This chapter focuses on the collaborative use of computing resources to support decision making in
industry. Through the use of middleware for desktop grid computing, the idle CPU cycles available on
existing computing resources can be harvested and used for speeding-up the execution of applications
that have “non-trivial” processing requirements. This chapter focuses on the desktop grid middleware
BOINC and Condor, and discusses the integration of commercial simulation software together with
free-to-download grid middleware so as to offer competitive advantage to organizations that opt for
this technology. It is expected that the low-intervention integration approach presented in this chapter
(meaning no changes to source code required) will appeal to both simulation practitioners (as simulations
can be executed faster, which in turn would mean that more replications and optimization are possible
in the same amount of time) and management (as it can potentially increase the return on investment
on existing resources).

INTRODUCTION AND MOTIVATION ing power, just as power grids provide users with

consistent, pervasive, dependable and transparent
Grid computing has the potential to provide users access to electricity, irrespective of its source
“on-demand” access to large amounts of comput- (Baker et al., 2002). Simulation in industry can

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.
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potentially benefit from this as computing power
canbeanissuein the time taken to getresults from
a simulation (Robinson, 2005a). This is further
supported by the observation that the use of grid
computing in scientific simulation has certainly
proved beneficial in disciplines such as particle
physics, climatology, astrophysics and medicine,
among others. Thus, our first motivation is to
inform simulation users in industry as to how
the practice of simulation can benefit from grid
computing.

Another motivation is the low adoption rate of
grid computing outside of academic and research
domains. Atpresentamajor proportion of grid us-
ers comprise of researchers (physicists, biologists,
climatologists, etc. who are the primary stake-
holder ofthe applications running on the grid) and
computer specialists with programming skills (the
providers of I'T support to the stakeholders). This
is not unexpected as the majority of applications
using grid computing are research applications.
The adoption of grid computing technologies by

Figure 1. Chapter motivations

Simulation in industry

employees in industry has so far been relatively
modest. One importantreason for this is, although
the employees are experts in their own discipline
they generally do not have the necessary techni-
cal skills that are required to work with present
generation grid technologies. A possible means to
increase adoption is to incorporate grid support
in software applications that require non-trivial
amounts of computation power and which are
used by the end-users to perform their day-to-
day jobs. The commercial, off-the-shelf (COTS)
Simulation Packages (CSPs) used in industry to
model simulations are an ideal candidate for such
type of integration. This chapter, thus, focuses on
leveraging the practice of CSP-based simulation
inindustry through use of grid computing. Figure
1 shows the motivations of this research.

The remainder of this chapter is organised as
follows. The second section gives an overview of
the practice of simulation in industry and the CSPs
used to model such simulations. The following
two sections are devoted to grid computing and
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desktop grid computing respectively. The CSP-
grid integration approaches are proposed in the
subsequent section, followed by two CSP-grid
integration case studies. The last section presents
asummary of this research and brings the chapter
to a close.

SIMULATION PRACTICE IN
INDUSTRY

Defining Computer Simulation

A computer simulation uses the power of com-
puters to conduct experiments with models that
represent systems of interest (Pidd, 2004). Experi-
menting with the computer model enables us to
know more about the system under scrutiny and
to evaluate various strategies for the operation of
the system (Shannon, 1998). Computer simula-
tions are generally used for experimentation as
they are cheaper than building (and discarding)
real systems; they assist in the identification of
problems in the underlying system and allow test-
ing of different scenarios in an attempt to resolve
them; allow faster than real-time experimentation;
provide ameansto depict the behaviour of systems
under development; involve lower costs compared
to experimenting with real systems; facilitate the
replication of experiments; and provide a safe en-
vironment for studying dangerous situations like
combat scenarios, natural disasters and evacuation
strategies (Brooks et al., 2001; Pidd, 2004).

Application of Simulation in Industry

Various simulation techniques are applied to a
wide range of application domains for a variety
of purposes. For example, System Dynamics
(SD) is used in industry for strategy development
and supply chain management; Discrete Event
Simulation (DES) is used to estimate availabil-
ity of weapons systems in the military, in the
manufacturing industry DES is used for inven-

tory management, scheduling and optimization;
Parallel and Distributed Simulation (PADS) is
used in the military for conducting large-scale
simulation-based training; Agent-Based Simula-
tion (ABS) has been used in defence to examine
dynamic teaming and task allocation problems,
in industry the possible applications of ABS in-
clude supply chain management, organizational
design and process improvement (Eldabi et al.,
2008). In healthcare, Monte-Carlo Simulation
(MCS) has been used to evaluate the cost-ef-
fectiveness of competing technologies, SD has
assisted in designing healthcare policies, ABS has
been used to study problems such as the spread
of epidemics, DES has been used to forecast the
impact of changes in patient flow, to examine
resource needs, to manage patient scheduling
and admissions, etc.

This chapter focuses on DES and MCS per-
formed for the purposes of (1) optimization of
resources in the manufacturing industry and (2)
risk analysis in the banking, insurance and finance
sector. Simulations associated with both optimiza-
tionandrisk analysis canusually benefit from more
computing power, since optimization generally
involves conducting several sets of DES experi-
ments with varying resource parameters and MCS
involves executing thousands of Monte Carlo
iterations. Although manufacturing and finance
remain the focus of this chapter, the reader should
note that the case study exemplars presented in
this chapter could easily be generalized to other
areas of use. The grid computing technologies
that are subsequently proposed are ideally suited
to SMEs who have a requirement for additional
computing power to run optimization and credit
risk simulations, but may not be willing to invest
in additional computer hardware (like Beowulf
clusters, computers with multi-core processors,
etc.) or commercial “black-box™ software (like
Digipede Network, MathLab Parallel Computing
Toolbox, etc.), but would instead be interested
in increasing their Return on Investment (ROI)
on existing hardware, software and technical
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resources. The proposed grid solutions are suit-
able for SMEs because they can be downloaded
free of cost; they present an opportunity to har-
ness idle CPU cycles from computing resources
that already exist in an organization; they have
the potential to increase the ROI on simulation
software through their integration with the grid
solutions; and finally, these grid solutions could
increase the utilization of technical resources like
IT staff and subscription to specialized online IT
helpdesks, references and forums.

DES and MCS

DES and MCS are two simulation techniques
that are widely used in industry. In DES the be-
haviour of a model, and hence the system state,
changes at an instant of time (Brooks et al.,
2001). DES is arguably the most frequently used
classical Operational Research (OR) technique
that is applied across a range of industries like
manufacturing, travel, healthcare, among others
(Hollocks, 2006).

MCS is yet another OR technique that is ex-
tensively used in application areas like finance
and insurance (Herzog & Lord, 2002). MCS
uses a sequence of random numbers according
to probabilities assumed to be associated with a
source of uncertainty, for example, stock prices,
interestrates, exchange rates or commodity prices
(Chance, 2004).

In the context of simulation practice in indus-
try, although programming languages may be used
to build simulations in certain circumstances,
models are generally created using commercially
available simulation packages (Robinson, 2005b).
Inthis chapterthe term Commercial Off-The-Shelf
(COTS) Simulation Packages (CSPs) are used to
refer to software used for modelling both DES
and MCS. CSPs are described next.

COTS Simulation Packages

Visual interactive modelling systems usually refer
to DES software that enable users to create models
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in a graphical environment through an interac-
tive “click-and-drag” selection of pre-defined
simulation objects (entry points, queues, worksta-
tions, resources, etc.) and linking them together
to represent the underlying logical interactions
between the entities they represent (Pidd, 2004).
Examples of such software include DES packages
like Witness (Lanner group) and Simul8 (Simul8
corporation). Similarly, MCS may be modelled
in a visual environment using spreadsheet soft-
ware like Excel (Microsoft), Lotus 1-2-3 (IBM,
formerly Lotus Software); spreadsheet add-ins, for
example @Risk (Palisade Corporation), Crystal
Ball (Decisioneering); or through MC-specific
simulation packages such as Analytica (Lumina
Decision Systems) and Analytics (SunGard).
Swain (2005) has made a comprehensive sur-
vey of commercially available simulation tools
based on the information provided by vendors in
response to a questionnaire requesting product
information. This list presently consists of 56 tools
and features the most well known CSP vendors
and their products (Swain, 2007). All the 45 CSPs
(12 MCS CSPs and 33 DES CSPs) that have been
identified from Swain’s survey are supported
in the Windows platform, 15.56% (approx.) are
supported in UNIX and Linux platforms, and
only 13.33% (approx.) are supported on Apple
Macintosh Operating System (Mustafee, 2007).
Aswillbediscussed later in this chapter, platform
support for CSPs is important when considering
different grid technologies that can be potentially
be used with existing CSPs. A discussion on grid
computing is presented in the next section.

GRID COMPUTING
Defining Grid Computing

Grid computing (or Grids) was first defined by
Ian Foster and Carl Kesselman in their book
“The Grid: The Blueprint for a New Comput-
ing Infrastructure” as a hardware and software
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infrastructure that provides access to high-end
computational resources (Foster & Kesselman,
1998). This definition has since then been modi-
fied twice by the grid veterans over a period of
nearly 5 years. However, all the three definitions
are consistentin terms of their focus on large-scale
computing. Thus, Foster and Kesselman (1998)
mention “access to high-end computational re-
sources”, Foster et al. (2001) refer to “large-scale
resource sharing” and, finally, Foster and Kes-
selman (2004) highlight “delivery of nontrivial
QoS”. This definition of grid computing, referred
tointhis chapter as cluster-based grid computing,
is generally geared towards dedicated high per-
formance clusters and super computers running
on UNIX and Linux flavour operating systems.
However, as will be discussed in the subsequent
section on desktop grid computing, cluster-based
grid computing can be contrasted with desktop-
based grid computing whichrefers to the aggrega-
tion of non-dedicated, de-centralized, commodity
PCs connected through a network and running

Table 1. Examples of middleware for grid computing

(mostly) the Microsoft Windows operating system.
The following two sub-sections pertain only to
cluster-based grid computing.

Grid Middleware

A grid middleware is a distributed computing
software that integrates network-connected com-
puting resources (computer clusters, data serv-
ers, standalone PCs, sensor networks, etc.), that
may span multiple administrative domains, with
the objective of making the combined resource
pool available to user applications for number
crunching, remote data access, remote applica-
tion access, among others (Mustafee & Taylor,
2008). A grid middleware is what makes grid
computing possible. Table 1 presents an overview
of grid middleware that are commonly installed
on distributed computing resources to create an
underlying infrastructure for grid computing. The
operating system support for each middleware is
also highlighted.

mazximizes the vtilization of collections of
networked PCs through identification of 1dle
resources and scheduling background user
jobs onthem (Litzkow et al, 1988}

Nddleware Description Operating System support
Globus Globus middleware 15 an open arc.hitecture TG,  Linux and Windows.
and an open source set of services and | Howewver, the W3EF- GEAM, the
(GT4) software libraries which supports grids and | non-web services implementations for
grid applications (Foster et al., 20023 GEAM, MyProxy, etc. can only be
run on UM and Linux platforms
{Globus Alliance, 2005).
Conder Conder 15 a job scheduling system that | UNIE, Linuz  and  Windows

platforms. Howewer, several Condor
execution environments like standard
universe, PV universe, etc. are neot
supported  on  Windows  (Condor
Wersion .91 Manual, 2007).

several other grid projects like Globus and
Condor. gLlite 15 primarily being developed
for the THC Computation Grid (LC3) and
the EGEE grids (see section 3.3,

Virtual Data | It 15 a combined package of various grnid | VDT (wersion 1.6.1) supports only

Toolkit middleware components, including Globus | Linuz-based platforms like Debian

VDT and Condor, and other utilities. The goal of | Linux, Fedora Core Limux, FRedHai
WDT is to provide users with a middleware | Enierprise  Linux, FRocks Linux,
that 1z thoroughly tested, simple to install | Skiemiific Lismwx and STUSE  Liswx
and maintain, and easy to use. (WVirtual Data Teollt, 2007

GLite glite uszez components developed from | GLite-3 middleware 1z presently

supported only on the Scisntific Linux
operating system (Burke etal, 2007
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Production Grids

Production grids can be defined as grid comput-
ing infrastructures that have transitioned from
being “research and development” test beds to
being fully-functional grid environments, offer-
ingusers round-the-clock availability at sustained
throughput levels. Production grids are usually
supported by ateam thatis responsible for the day-
to-day maintenance of the grid, solving technical
problems associated with the grid, helping users
through help-desk support, creating user docu-
ments, conducting training courses for knowledge
dissemination purposes, among others. Table 2
lists some of the large production grids and the
grid middleware running on them.

As can be seen from Table 2, most of these
production grids have a resource base spanning
multiple virtual organizations (VOs). These pro-

duction grids are mainly being used for e-Science
projects. There are very few examples of multiple
VO-based grid computing being used in industry.
However, it is also true that grid computing mid-
dleware like Globus is gradually being introduced
within enterprises for processing enterprise-re-
lated applications. In this scheme the organiza-
tions seek to leverage their existing computing
resources using grid middleware. Collaborations,
ifany, are limited to intra-organizational resource
sharing and problem solving. Organizations that
use grid computing middleware for their day-
to-day operations or integrate these middleware
within their ownapplications include SAP (Foster,
2005), GlobeXplorer (Gentzsch,2004) and Planet
Earth (Levine & Wirt, 2004).

It has to be said here that there is little agree-
ment over what the term grid computing actually
means and there is not one, all-accepted, defini-

Table 2. Examples of production grids

Grid Name Purpose Infrastructure Grid Reference
MW
LZG (LHC The purpose of LOG 15 | At present the LOG grid spans | LCG-2 {Lamanna,
Computing to provide computation | over 200 sites around the fgLite 2004%,  and
Grid), Eurepe | and storage resources world and has access to more (Burke et
for four LHC particle than 30,000 CPUs and 20 FB al., 20077
physics experiments at | of data storage capacity.
CEEM, Geneva.
EGEE EGEE Grid The EGEE project invelves LCG-2 (EGEE,
{Enabling infrastructure is ideal over 90 partner institutions fgLite 2007
Grids for E- for any scientific across Europe, Asia and the
sciencE) Grid, | research TTnited States and provides
Europe access to over 20,000 CPTT and
o Petabytes of storage.
NGS Production use of IGS provides access to over Globus {Yang et al.,
{Mational computational and data | 2,000 processors and ower 36 2005
Grid Service), | grid resources in all TE storage capacities. These
TE branches of academic resources are provided by the
research. TUniversities of Manchester,
Leeds, Oxford and AL,
among others.
TeraGrid, Eesearch in genomics, A5 of 2003, the TeraGnid Globus {Eeed,
US4 earthquake studies, infrastructure consists of the 20033
cosmology, NCE4A, SD3C, ANL, among
clitnate and others,
atmospheric
simulations, bielogy,
etc.
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tion of grid computing. For example, Baker et al.
(2002, p. 1437) mention that the “cooperative use
of geographically distributed resources unified
to act as a single powerful computer” is known
by several names such as “meta-computing,
scalable computing, global computing, Internet
computing, and more recently peer-to-peer or
Grid computing” and Luther et al. (2005) refer
to enterprise desktop grid computing, public dis-
tributed computing and peer-to-peer computing as
different names for Internet computing. However,
as will be seen from the discussion presented in
the next sub-section, grid computing, enterprise
desktop grid computing and Internet / peer-to-
peer / public resource computing generally have
a different set of objectives that determine the
design architecture of their underlying middle-
ware technologies.

Different Forms of Grid Computing

Thediscussion on grid computing, until this point,
has shown that grid infrastructures and middle-
ware applications have traditionally been geared
towards dedicated, centralized, high performance
clusters and super-computers running on UNIX
and Linux operating systems. This form of grid
computing will henceforth be referred to as c/us-
ter-based grid computing. It canbe contrasted with
desktop-based grid computing which refers to
theaggregation of non-dedicated, de-centralized,
commodity PCs connected through anetwork and
running (mostly) the Microsoft Windows operat-
ing system. Studies have shown that desktop PCs
canbeunderutilized by as much as 75% ofthe time
(Mutka, 1992). This coupled with the widespread
availability of desktop computers and the fact that
the power of network, storage and computing re-
sources is projected to double every 9, 12, and 18
monthsrespectively (Casanova, 2002), represents
an enormous computing resource.

In this chapter the use of a desktop grid within
the enterprise is termed as Enterprise-wide Desk-
top Grid Computing (EDGC). Thus, EDGCrefers

to a grid infrastructure that is confined to an
institutional boundary, where the spare process-
ing capacities of an enterprise’s desktop PCs are
used to support the execution of the enterprise’s
applications (Chien et al., 2003). User participa-
tion in such a grid is not usually voluntary and is
governed by enterprise policy. Applications like
Condor, Entropia DCGrid, and Digipede Network
are all examples of EDGC.

Like EDGC, Internet computing seeks to
provide resource virtualization through the ag-
gregation of idle CPU cycles of desktop PCs. But
unlike EDGC, where the desktop resources are
generally connected to the corporate LAN and
used to process enterprise applications, Internet
computing infrastructure consists of volunteer
resources connected over the Internet and is
used either for scientific computation or for the
execution of applications from which the user can
derive some benefit (for example, sharing music
files). This research distinguishes between two
forms of Internet computing - Public Resource
Computing (PRC) and Peer-to-Peer Computing
(P2P) - based on whether the underlying desktop
grid infrastructure is used for solving scientific
problems or for deriving some user benefit respec-
tively. The different forms of grid computing are
shown in Figure 2.

Grid Middleware and CSPs

Discussions presented earlier in the chapter have
highlighted that all CSPs are supported on the
Windows platform, 15.56% on both UNIX and
Linux operating systems and only 13.33% CSPs
are supported on Macintosh. This shows the
prevalence of Windows-based CSPs in industry.
It is therefore arguable that for this research to
be widely relevant to the practice of CSP-based
simulation in industry, it should, first and fore-
most, focus on Windows-based grid computing
solutions. Discussion on cluster-based UNIX and
Linux grid solutions for CSP-based simulation
modelling is thus outside the scope of this chapter.
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Figure 2. Forms of grid computing
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P2P computing is also not investigated further
because it generally supports only file sharingand
as such P2P networks cannot be used to execute
programs (like CSPs) on the peerresources. Thus,
the next section focuses only on PRC and EDGC
forms of grid computing.

DESKTOP GRID COMPUTING

BOINC is an open source PRC middleware that
allows users to create new BOINC-based projects
to cater to their computational needs. Condor is
an EDGC middleware that is used for both e-
Science research and for enterprise application
processing. Both BOINC and Condor are cycle
stealing systems that can run on non-dedicated
Windows PCs.

The rationale for choosing BOINC as a
representative form of PRC middleware is as
follows:

e Itisarguably the most popular PRC middle-
ware. “BOINC is currently used by about 20
projects, to which over 600,000 volunteers
and 1,000,000 computers supply 350 Tera-
FLOPS of processing power” (Anderson et
al., 2006, p. 33).

. Itis presently the only PRC middleware that
allows users to create their own projects.

. It is available free of cost.
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The rationale for choosing Condor as a rep-
resentative form of EDGC middleware is as
follows:

. It has the largest EDGC deployment base.
More than 80,000 Condor hosts around the
world make up approximately 160 produc-
tion-level Condor pools (see <http:/www.
cs.wisc.edu/condor/map/> forupdated Con-
dor statistics).

. It is available free of cost.

PRC Middleware BOINC

The BOINC system (see Figure 3) contains several
server-side components, which may execute on
separate machines if required. Most of the server
side components can only be installed over a
UNIX or Linux flavour operating system. The
database holds all the metadata associated with
the project and lifecycle information for each
work unit. A client’s command channel operates
via the scheduling server, using an XML-based
protocol. Results are transferred using HTTP
via the data servers. In addition to work units
and results, other files may be transferred be-
tween server and client, including application
executables and any other interim data the ap-
plication may require during the operation. The
database also has a web-based front-end that is
used for displaying project information specific
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to volunteers, for example, how many computers
have been contributed by the user, the number of
work units processed, etc. On the client side, the
BOINC core client manages interaction with the
server, while optional components (like screen-
saver and manager) provide graphical control
and display elements for the benefit of the user.
The core client can be installed in the Windows
operating system. The BOINC client API provides
the interface between the user-created application
client and the BOINC core client. The APl is a
set of C++ functions and the application client is
compiled with it. All communication between
the BOINC core client and the BOINC project
servers take place through HTTP on port 80. The
BOINC core client can therefore operate behind
firewalls and proxies.

The widespread availability of desktop PCs
in organizations makes the deployment of an en-
terprise-wide BOINC infrastructure an attractive
option. Thus, it may be possible to implement and
deploy BOINC-based projects for use exclusively

Figure 3. The BOINC system. (©2007 [EEE. Used
with permission.)
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within an enterprise, such that it is geared up to
support the execution of the enterprises’ appli-
cations. The participants of such an enterprise-
wide BOINC setup can be the employees of the
organization who contribute their work PCs. The
participation in such projects may notbe voluntary
and can be governed by the policy of the organiza-
tion. The computations being performed by the
BOINC clients will be in line with the needs of
the enterprise, and unlike PRC where volunteers
are encouraged to contribute theirresources, only
employees and other trusted sources will be al-
lowed to participate in the enterprise-wide BOINC
projects. BOINC features that are necessary in
the PRC context but may not be required in an
enterprise grid (for e.g., user rewards system,
anti-cheating measures, mechanisms to deal with
client failure or extended network non-connectiv-
ity, etc.) can be disabled.

EDGC Middleware Condor

Condor is an opportunistic job scheduling sys-
tem that is designed to maximize the utilization
of workstations through identification of idle
resources and scheduling background jobs on
them (Litzkow et al., 1988). A collection of such
workstations is referred to as a Condor pool. Two
fundamental concepts of Condor middleware,
which are also important in our discussions on
CSPs, are (a) Condor matchmaking and (b) Condor
universe. These are described next:

a.  Condorarchitecture defines resource provid-
ers and resource consumers. The resource
providers make their resources available
to Condor for the processing of jobs that
originate from the resource consumers.
Condor allows both resource consumers and
providers to advertise these requirements,
conditions and preferences by providing a
language called classified advertisements
(ClassAds) (Thain et al., 2004). The Cl-
assAdsarescanned by aCondor matchmaker
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Figure 4. Condor resource management architec-
ture - adapted from Basney and Livney (1999)
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Protocol

agent, running on only one computer in a
Condor Pool, to find a match between the
requirements advertised by the resource
consumer agents and the resources adver-
tised by the resource provider agents. Once
a match has been found by the matchmaker
agent, it notifies both the resource consumer
and the resource provider agents. Upon
receiving this notification, the resource con-
sumer agent claims the resource advertised
by the resource provider agent through a
claiming protocol. The job is executed by
the resource provider agent and the results
of the computation are returned back to the
resource consumer agent. The matchmaking
process is illustrated in Figure 4. The figure
has been adapted from Basney and Livney
(1999).

Thus, in order to execute CSP-based simula-
tions using Condor, PCs acting as resource
provideragents will have to be installed with
CSPs (Simul8, Excel, etc.) and will need to
advertise this using ClassAds mechanism.
The resource consumer agents will also be
required to advertise their requirement (for
example, 10 PCs required) with the condi-
tion that the resource providers will have
the appropriate CSPs installed on them.
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b.  Condor universe is an execution environ-
ment for jobs that are submitted by the us-
ers. Depending upon the type of job to be
executed and itsrequirements, the userneeds
to select an appropriate Condor universe.
Javauniverse supports the execution of java
programs and is appropriate for executing
CSP-based simulations over Condor.

Three differentapproaches tointegrating CSPs
with grid computing middleware are discussed
next.

CSP-GRID INTEGRATION
APPROACHES

Three possible approaches for using desktop grids
with CSPs are the CSP-middleware integration
approach,the CSP-runtimeinstallation approach
and the CSP-preinstalled approach (Mustafee &
Taylor, 2008).

CSP-Grid Middleware Integration
Approach

One possible approach to using desktop grid
middleware together with CSPs is to “bundle” the
latter along with the former. When a desktop grid
middleware is installed on a PC, the CSP is also
installed on it. The problem with this approach
is that it will require changes to the enterprise
desktop grid middleware as a CSP will have to
be integrated with it. Furthermore, an enterprise
desktop grid is a general purpose distributed
computing environment that allows the execu-
tion of various user applications (not limited to
simulation alone). This approach is therefore not
considered feasible.

CSP-Runtime Installation Approach

The second approach involves the installation
of a CSP package at runtime, i.e. just before the
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simulation experiment is conducted. In this case
the CSP itself is transferred to the desktop grid
nodes, along with the data files associated with
the simulation and the trigger code (executable
code which starts the CSP-based simulation on
a grid node). This approach may not be feasible
for a number of reasons. (1) the size of CSPs
frequently exceed 100s of MBs and it may not
be feasible to transfer such large amounts of data
to multiple clients over the network, (2) the CSP
will first need to be installed on the desktop grid
node before the simulation can start, (3) such an
installation is normally an interactive process
requiring human intervention, (4) an installation
normally requires administrative privileges on the
client computers, (5) transferring CSPs may lead
to a violation of the software licence agreement
that may be in place between the CSP vendor and
the organization (if the number of desktop grid
nodes executing simulations exceed the number
of licences purchased).

CSP-Preinstalled Approach

The third CSP-grid integration approach is to
install the CSP in the desktop grid resource, just
like any other applicationisinstalled ona PC. The
drawback with this approach is that the sandbox
security mechanism implemented by most en-
terprise desktop grids may have to be forfeited.
However, as simulations are created by trusted
employees running trusted software within the
bounds of a fire-walled network, security in this
open access scheme could be argued as being
irrelevant (i.e. if it were an issue then it is an is-
sue with the wider security system and not the
desktop grid).

Of'the three CSP-grid integration approaches
discussed in this section, the CSP-preinstalled
approach is considered the most appropriate
because (1) it does not require any modification
to the CSPs — thus, CSPs that expose package
functionality can be grid-enabled, (2) it does not
require any modification to the grid middleware

—thus, existing Windows-supported grid middle-
ware like BOINC and Condor can be used, and
(3) CSPs that are installed on the user PCs can
be utilized for running simulation experiments
from other users.

The procedure to execute CSP-based simula-
tion experiments over desktop grids following
the CSP-preinstalled approach is as follows (see
Figure 5):

1. The simulation user writes an executable
“trigger” code in C++, Java, Visual Basic
(VB), etc. that accesses the CSP functional-
ity through exposed interfaces. The trigger
code should generally invoke the CSP, load
the model file, transfer experiment param-
eters into the model, execute the model, etc.
Mustafee (2007) provides a list of CSPs that
expose package functionality using well-
defined interfaces.

2. Thesimulationuser makes available the data
files associated with the simulation (simula-
tion model files, experiment parameter files,

Figure 5. Executing CSP-based simulation
over grid resources using CSP-preinstalled ap-
proach

Grid node 1 Gridnode 2, 3,4, ...
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etc.) and the executable file containing the
trigger code to the desktop grid nodes where
the experiment will be executed. Two pos-
sible ways of accomplishing this are (1) by
providing a shared grid access to a network
drive, or (2) by transferring the required files
using the desktop grid middleware.

3. The desktop grid middleware invokes the
executable trigger code on a remote desk-
top node. The simulation starts and results
are saved into a file. The user retrieves
the results by (1) accessing them from the
shared network drive, or (2) the result files
are transferred back to the user through the
grid middleware.

The nextsection of this chapteruses Microsoft
Excel together with BOINC and Condor middle-
ware to execute Monte Carlo simulations over
the grid. Although Excel has been used here as
an example, the CSP-preinstalled approach can
generally be used with other DES and MCS CSPs
that expose package functionality.

INTERFACING BOINC AND
CONDOR WITH CSPs

Interfacing BOINC with Excel

This section is structured as follows. Following
an overview, the next sub-section describes the
Excel-based MCS application (Range Accrual
Swap [RAS]) that is used as an example. This
is followed by a technical discussion on how the
RAS application is grid-enabled.

Overview

BOINC middleware is primarily used for sci-
entific computing using millions of volunteer
PCs. However, it should also be possible to use
the PRC middleware within an organization for
the processing of enterprise applications. Using
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the Excel-based RAS application, this research
now investigates how BOINC can be used in a
desktop grid environment to provide task farm-
ing service to the CSPs. Arguably, this is the first
attempt to use a PRC middleware in an enterprise
environment. There are no existing examples of
enterprise application processing using BOINC
in literature.

Range Accrual Swap (RAS) Application

The application that is used to implement task
farmingusing BOINC is a Microsoft Excel-based
spreadsheet application used for financial model-
ling by a leading European financial institution.
The financial model calculates the risk of a Range
Accrual Swap at various points in time until the
maturity of the transactions. Range Accrual
Swap is a type of financial derivative instrument
in which certain fixed cash flows are exchanged
for an uncertain stream of cash flows based on
the movement of interest rates in the future. A
screenshot of the RAS application is shown in
Figure 6.

The successful and accurate calculation of
risk using the RAS application requires a large
number of MCS and takes a significant amount of
time. Each simulation run (iteration) is indepen-
dent of previous runs and is characterized by the
generation of random values for various defined
variables and by solving equations containing
these variables. The conventional approach of
using only one instance of Excel is not feasible
in situations where the business desires a quick
turnaround (answer). One solution to this is to
distribute the processing of the MCS model over
a grid and utilize the spare processing power of
the grid nodes and the Excel software installed
on them. This grid-facilitated execution of the
RAS model has the potential of speeding up
the simulation of the financial models manifold,
depending on the number of grid nodes available
and whether they are dedicated or non-dedicated
resources.
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Figure 6. Range Accrual Swap (RAS) application (created by the credit risk division of a leading Eu-

ropean investment bank)

A | 8 | ¢ | b | E | F |G| H I | a | k| L | m | N o P |
1 |Range Accrual Swap PFE model | Simulate Fixed Rate || Results |
= J
3 Inputs/ Ter 1 1 df curve
4| Time step {(ys) 0 1 2 3 4 5 [} i
5 |Number of Monte-Carlo Simulation iterations | 10 Yit) -0.692 -2651 -0.483 0907 1194 -0.245 -1188
4}
ICurrency UsD 0.000 | 1.0000 1.00001.0000 1.0000 1.00001.0000 1.0000 1.0000
8 |Notional Amount 10,000,000 0.003 | 0.9989 1.0000 1.0000 09999 09999 09959 09999 09999
9 |Start Date -Jul-06 0.005 | 0.9999 0.9995 1.0000 09998 09997 09957 09995 09995
10 |Tenor {yrs) 13 0.008 | 0.9995 0.9998 0.9995 09998 09996 09996 09957 09997
11 |Reset/P: it freq (3 it 0.011 0.9958 09958 09999 0.9997 09995 09994 0.9995 099596
12 |Fixed Rate 6.7% 0.014 | 0.9987 0.9997 0.9995 09996 09994 09953 09994 09995
13 |PayReceive Fixed Fay 0.016 | 0.9987 0.9997 0.9995 09995 09992 09951 09993 09994
14 |Underlying Libor 4] it 0.019 | 0.9996 0.9996 0.9995 09594 09991 09950 09952 09994
15 |M=total number of calender days in the interest period 0022 09996 09996 09993 09993 09990 09983 09991 09993
16 |n=the number of calender days in the interest period that the 12 maonth 0025  0.9995 09995 09993 09992 09983 09987 09990 09992
17 |USD LIBOR rate is within the following ranges at Fixing {inclusive) 0.027 | 0.9995 0.9994 09993 09992 09987 09985 09989 09991
18 |Day Count Act ! 365 0.030 | 0.9994 0.9994 09998 09991 0.9956 09984 09985 09930
18 Year Range Coupon 0.033 | 0.9993 0.9993 0.9997 09990 0.9954 09983 09986 099849
20 1 0% - 7.00% 7.0% 0.036 | 0.9993 0.9993 0.9997 09939 09953 09981 09985 0.9985
il 2 0% - 7.00% 7.0% 0.038 | 0.9992 0.9992 0.9997 09938 09952 049980 099384 09987
22 3 0% - 7.00% 7.0% 0.041 0.9952 09952 09997 0.9987 09980 09578 0.9953 09986
23 4 0% - 7.00% 7.0% 0.044 | 0.9991 0.9991 0.9997 09986 09979 09977 09982 0.9985
24 a 0% - 7.00% 7.0% 0.047 [ 0.9991 0.9990 0.9996 09986 0.9978 09975 09981 0.9984
25 4] 0% - 7.00% 7.0% 0.045 09990 0.9990 0.9996 09935 09977 09974 09980 0.9983
26 7 0% - 7.00% 7.0% 0.052 099890 0.9985 09996 09934 09975 09972 09975 09983
27 g 0% - 7.00% 7.0% 0.055 | 0.9989 0.9985 09996 09983 09974 09971 09977 0.9982
28 9 0% - 7.00% 7.0% 0.058 09989 09988 09995 0.9982 09973 09970 09976 0.9931
28 10 0% 7.00% 7.0% 0.060 | 0.9985 0.9988 0.9995 09931 09971 09968 09975 0.9980
30 11 0% 7.00% 7.0% 0.063 | 0.9985 0.9987 0.9995 09930 0.9970 09967 09974 09974
kil 12 0% 7.00% 7.0% 0.066 | 09987 0.9987 09995 09930 0.9969 09965 09973 09978
32 13 0% 7.00% 7.0% 0.068 | 0.9986 0.9986 09995 09579 0.9967 09964 09972 09977
33 14 0.071 0.9986 0.9985 09994 09978 0.9966 09962 0.9970 0.9976
34 15 0.074 | 0.9985 0.9985 0.9994 09577 0.9965 09961 09969 09975
35| 0.077 09985 0.9984 09994 09576 0.9963 09959 09968 09974
36 |Term Structure HW parameters 0079 09984 09984 09994 094975 09962 09958 09967 094973
37 Tenor f alpha 0.082 09984 09983 09993 09574 0.9961 09956 09966 09972
38 0.00 1.000 0.0650 0.085 | 0.9983 0.9983 0.9993 09574 0.9960 09955 09965 09972
38 0.08 0.995 sigma 0.088 09983 0.9982 09993 0.9973 0.9958 09954 09964 09971
40 0.24 0.995 1.00% 0.090 09982 0.9981 0.9993 09572 09957 09952 09963 0.9970
4 4 ¢ w4 Input {Data /£ Simulation Results £ RESULTS 4] |

Grid-Enabling RAS Application

A BOINC-based project requires application
specific implementation on both the client side
and the server side. The client side implementa-
tion usually consists of writing a C++ application
client that uses BOINC client library and APIs to
integrate with the BOINC core client. The core
client is downloaded from the BOINC website,
installed on individual PCs and is attached to a
BOINC project. Once successfully attached the
core client downloads the project specific appli-
cation client and work units for processing. The
core client, which is in effect the manager of a
compute resource, makes available CPU cycles
to the attached project based on the user’s prefer-
ences. These preferences can be set using either

Figure 7. Setting user preference using menu
provided by BOINC core client

Open BOINC Manager...

Run always
& Run based on preferences
Suspend

Metwaork activity always available
& Network activity based on preferences
Metwork activity suspended

About BOINC Manager...

| Exit

the menu provided by the core client (Figure 7)
or through a web interface (Figure 8). The latter
offers the user more flexibility in specifying CPU,
memory, disk and network usage. The core client
can support multiple BOINC-based projects, but
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Figure 8. Setting user preference using web interface

General preferences

HOME PARTICIPATE ABOUT COMMUNITY

YOUR ACCOUNT STATISTICS

These apply to all BOINC projects in which you participate.
On computers attached to multiple projects, the most recently modified preferences will be used.

Preferences last modified: 6 Feb 2006 12:31:35 UTC

Primary (default) preferences (switch view)

Processor usage
Do work while computer is running no
on batteries?
(matters only for portable computers)

Do work while computer is in use? no

Do work only after computer is idle 3 minutes

for

Do work only between the hours of  {no restriction)

Leave applications in memaory while no
suspended?
(suspended applications will consume
swap space if 'ves')

Switch between applications every 60 minutes

(recommended: 60 minutes)

On multiprocessers, use at most 12 processors

Use at most 100 percent of CPU time

Enforced by version 5.6 and greater

Disk and memory usage

Use at most 5 GB disk space

Leave at least 0.1 GB disk space free

(values smaller than 0.001 are ignored)

Figure 9. BOINC core client attached to multiple projects

B BOINC Manager - (localhost)

File Commands Projects Options Help

2} Projects Work & Transfers =1 Messages @ Statistics & Disk
|| Project Account Total credit | Avg. credit | Resource s...  Status
Tasks BOINC @Brunel 100 (16.67%) Communication deferred 00:50:52
rosetta @home navonil 3043.36 20.88 100 {16.67%:)
[ Update ] —/'| dimateprediction.net navonil 61236.00 340.53 300 (50.00%:)
SETI@home Mavonil Mustafee  335169.92  1574.87 100 (16.67%) Scheduler request pending
[ Suspend ]
[ No new work ] v|£ | >

at any one time only one project can be executed.
Thisisillustrated in Figure 9 where four different
BOINC projects, viz, BOINC(@Brunel, Rosetta@
Home, ClimatePrediction.net and SETI@home,
are attached but only one project (SETI@home)
is communicating with the BOINC server side
scheduler.

In this chapter the software that has been de-
veloped to integrate BOINC with Excel isreferred
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& Connected to localhost

toas BOINC Proxy Application Client or BOINC-
PAC for short. It assumes that Microsoft Excel is
installed on all the BOINC client computers.
BOINC-PAC is implemented in Visual C++.
The VC++ code invokes CSP-specific operations
(through interfaces exposed by the CSPs) defined
by a Visual Basic DLL adapter. BOINC-PAC uses
the BOINC client library and APIs to interface
with the BOINC core client. It interacts with the
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Figure 10. Execution of RAS application using
BOINC

BOINC core client

=
=

Iy

Wi
; Results
Conﬁﬂgl]uratmn v uploaded
a5 o server
xcel adapter {DLL
F Y
COM calls
r
m COM interface
Downloaded
to client RAS application
Pre-installed Microsoft Excel

Excel adapter to execute operations on the RAS
Excel-based spreadsheet. The Excel adapter, in
turn, uses the COM interface of Excel to perform
basic operations like opening and closing the
simulation file, setting the number of iterations,
executing the simulation and writing the results of
the simulation to a text file (out.zx?). The textfile is
subsequently uploaded to the BOINC server. The
number of Monte Carlo iterations to be performed
by the RAS application is not hard-coded and is
read by BOINC-PAC from a parameter file (pa-
rameter.txt in Figure 10). The interaction of the
different program components is shown in Figure
10. Once the BOINC-PAC is downloaded by the
core client onto a PC it triggers the execution of
the RAS MCS by utilizing the Excel software
installed on the local resource.

The discussion that follows mainly concerns
the BOINC server side implementation for the
RAS application. When the BOINC core client
first attaches itself with the RAS project it down-
loads the BOINC-PAC from the BOINC server.
This application consists of a VC++ executable
andaclientinitialization filecalled init data.xml.
Subsequently, the core client downloads the project
workunits. In BOINC one unit of computation is

represented as a workunit. These workunits are
created using the BOINC create_work command
and then placed in the download directory of the
BOINC server. The arguments supplied to the
create_work command include, among others,
(1) the workunit template filename, (2) the result
template filename and (3) the command_line
parameter. The template files are XML files that
describe the workunit (work _unit template.xml)
and its corresponding results (result template.
xml). The workunits are created by running a
program that invokes the create work command
in a loop to generate the required number of
workunits. The arguments to the create work
command are described next:

. The “workunit template file” lists the input
files that are packed together as a workunit.
In the RAS BOINC project the input files
are the RAS Excel-based spreadsheet,
the Excel adapter, and the parameter file.
The workunit template file also mentions
the quorum (XML tag <min_ quorum>)
and the maximum total results (XML tag
<max_total results>). However, since
BOINC is being used in an enterprise grid
environment that assumes some form of
centralized control over the computing re-
sources, the value for both <min_guorum>
and <max_total results> are set to one. In
other words, itis expected that all the results
that are returned are valid and therefore the
same workunit will not be sent to more than
one BOINC node.

. The “result template file” lists the files that
will be uploaded to the BOINC server af-
ter the results have been computed by the
BOINC-PAC. Inthe RAS application, thefile
that is uploaded from each BOINC client is
called out.txt. As has been said earlier, this
file contains the results of the RAS simula-
tion.

. The optional command _line argument in
the create work command is used to pass
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a position value to the BOINC-PAC ap-
plication. This position value represents an
experiment number and BOINC-PAC reads
the parameter file parameter.txt to extract
the value at this position. This value, in our
case, represents the number of Monte Carlo
iterations that have to be performed on a
simulation experiment being run on the cli-
ent. Theuse of the command_line argument
is specific to the BOINC-PAC application
being developed.

200 MCS experiments (each with 300 itera-
tions) were conducted in this study. A Javaprogram
wasused to iteratively create these 200 work units
by invoking create work with command_line
argument. These workunits were downloaded by
different BOINC nodes and the RAS application
executed using the locally installed MCS CSP
Excel. The results of the simulation were then
automatically uploaded to the BOINC project
server.

Interfacing Condor with CSPs

In this section EDGC middleware Condor is used
to execute two different Excel-based Monte Carlo
simulations simultaneously on different grid
nodes. Anoverview ofthe case study is presented.
The two applications being grid-enabled with the
objective of executing them concurrently using
Condor middleware are — the Asian Option ap-
plication and the Range Accrual Swap application.
The last section then discusses the technology
used to grid-enable these applications.

Overview

Having the capability to run two or more simula-
tion applications concurrently has the potential to
execute different CSP models, which may belong
to different simulation users, simultaneously over
the grid. Furthermore, these models may be cre-
ated and executed using different CSPs. However,
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in this hypothetical case study, models created
using the same MCS CSP (Microsoft Excel) are
used. The first model is called the Asian Option
application which has been created by Profes-
sor Eduardo Saliby (Federal University of Rio
de Janeiro, Brazil; visiting professor at Brunel
University, UK). The second model is the RAS
application that has been previously used in the
BOINC case study. The RAS model has been
created by the credit risk division of a major
investment bank.

Asian Options (AQO) Application

The Asian Options Application uses Descriptive
Sampling, which can be seen as a variance reduc-
tion technique, to calculate options whose payoffs
are path-dependent on the underlying asset prices
during the life of the option (Marins et al., 2004).
The AO application estimates the value of the
Asian options by simulating the model a number
of times and then calculating the average of the
results of the individual iterations. Onasingle PC,
executing multiple iterations of the AO application
takes a significant amount of time. CSP-specific
task farming service has the potential to reduce
the time taken to process the AO application by
distributing its processing over multiple grid
nodes. An average of the results returned from
each node can then be calculated to determine
the value of the options. Figure 11 shows the
Microsoft Excel-based AO application.

Range Accrual Swap (RAS) Application

The RAS application has already been described
inthe preceding pages. The applicationis the same
butthe technologies used forinterfacing RAS with
BOINC and RAS with Condor are different. The
integration of RAS with BOINC has been dis-
cussed earlier. The section that follows describes
how both RAS and AO are used with the Condor
Java universe execution environment.
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Figure 11. Asian Options (AO) application (created by Professor Eduardo Saliby, Federal University
of Rio de Janeiro, Brazil)

A | B [ © D E | F [ & T w [ 07 [T o T ® T L [ m [ w [ o [ P [ a R [ 8
| At
2 Asian Call Option 275364 | 20% 0% 40% 048779 20% 0% 40% K 2,500
=R 40 150937 | 149877 | 14.8933 40 10000 | 09943 09695 40 15,381
4 Inputs Black-Scholes 45 10,1754 | 1041730 | 10.3141 45 0.9536 | 05461 05754 45 1047
5| S0 5500 d_1 00919 50 54515 58785 | 64179 50 08345 | 07726 06340 50 6242
B [ 55.00 4.2 -0.0308 52 382097 44502 | 51372 52 07635 | OBES4  O.B052 52 4322
7| Sigrma W% 1 _1) 0.5366 54 24809 32635 | 4.0344 54 06005 | 05474 05143 54 3.22¢
=N T 126 h(d_2) 0.4878 55 18325 2783 | 35499 53 0.5122 | 04578 0.4695 58 3,302
5 R_f 3% CETD 27536 56 14714 23020 | 3.1090 56 04246 | 04295 04259 55 2861
0] a 0.0075 50 07947  1.5647 | 23520 56 0.2677 | 03212 0.3439 58 1,564

i sig_a 01732 &0 03902 10254 | 17478 60 01503 | 02293 027N &0 1184
2| 52 0.1742 06485 | 1.2766 62 0.0754 | 01565 0.2089 62 0,672
E) Run 54 00710 0.3863 | 0.9174 64 0.0340 | 01024 01575 &4 0,651
14 53 0.0265 02344 | 06491 (33 0.0133 | 00643 01164 &6 0377
15| 53] 00081 01344 | 04526 55} 0.0051 | 00383 0.0844 &8 0220
16| 70 0.0029 00749 | 03113 70 0.0017 | 00228 0.0602 7 0,054
%

19 Tral 0 1 2 3 4 5 3 7 3 9 10 " 12 13 14 15 15 17
@20 1 1 03719 | 09346 | 01383 02404 | 00239 10152 | 04261 | 04538 | 21701 04383 | 19600 | 05388 | 11031 04383 04530 09741 | 051
2 2 2 06586 | 00125 | 04891 0895 | 0.0125 10152 | 10152 19600 | 06586 06280 | 07554 | 03186 | 02924 02924 | 06200  0.2663 | 045
22 3 3 01831 | 07554 | 042601 02404 | 14335 07554 | 00627 04533 | 05335 14395 | 02404 | 03451 | 15141 00376 | 02924 05378 | 085
23 4 4 00878 | 03186 | 06903 01831 | 04817 00125 06903 06903 | 01130 1253 | 02663 | 16954  0B903 05383 | 09741 00125 | 1.10¢
2 5 5 05101 | 06588 | 03186 03719 | 05386 09637 | 06200 | 14395 | 05380 04891 | 08595 06239 | 03989 16119 21701 04261 | 053
] 6 0.6239 | 10152 | 02147 00627 | 1.2536 09741 | 19600 05978 | 05970 06580 | 16954 | 11503 | 12004 13106 18119 08596 | 013
2B 7 7 08965 | 02663 | 02663 07225 | 00875 01383 | 00376 | 00578 | 01333 03451 | 00125 | 08985 | 13722 -1.1503 10152 03186 | 1310
27 8 8 05101 | -01383 | 09346 13106 | 03989 15141 | 04261 01383 | 04251 05101 | 08346 | 12535 07225 03451 05631 07554 | 0510
] 9 03719 | 02924 | 01637 02663 | 05978 25750 | 14395 04891 | 15141 02663 | 13106 | 09346 12004 25758 13106 07892 | 105
28 1o 10 0130 | 04817 | 041383 01130 | 0.0627 18119 | 06903 11031 | 016891 09741 | 19500 | 0.2404 0E903 07892 | 25750 00627 | 105
ED L 11 09741 | 05741 | 05978 07554 | 03186 -0.2924 | 059741 | 19600 | 13106 25755 | -1.0152 | 05741 | 10581 19600 19600 05280 | 143
ENRE 12 08965 | 11503 | 02924 14335 | 09346 06583 | 02663 15982 | 25758 00125 | 14395 | 12536 03186 03451 08233 13106 | 045
32 13 13 07225 | 13722 | 11031 19600 | 18119 07225 | 09346 | 06583 | 01891 00376 | 02147 | 03719 | 21701 07554 -00FE 18119 | 016
33 14 14 0.2404 | 07225 | 00125 07225 | 0130 04891 | 09346 03719 | 08596 24701 | 02404 05101 | 08346 14395 18119 15882 | 024
34 15 15 11803 | 00376 | 18119 06280 | 04891 00376 | 02404 07554 | 02147 05389 | 11503 | 18119 | 19600 15982 11031 07554 | 257
ESR 16 00376 | 04261 | 14395 13722 | -12535 14395 | 02663 03451 | 03451 03989 | 15932 | 0B903 | 11031 03185 07554 03719 | 018
%17 17 -15141 | 05881 | 00878 13722 | 05338 13722 | 03451 | 009345 | 00627 05681 | 0974 | 14395 | 10152 05978 | 04817 25758 | 1150

Grid-Enabling AO and RAS Applications

The Condor Java universe execution environ-
ment is designed for the execution of Java pro-
grams. Different Java programs (AO.class and
RAS.class) and adapters (AO adapter and RAS
adapter) have been developed for AO and RAS
applications respectively. As shown in Figure
12, the AO.class/RAS.class communicates with
the AO/RAS adapter to control the Excel-based
AO/RAS application. Theresults of the simulation
are written back to their respective out.txt files,
which are then transferred back to the Condor
node from which the jobs were originally sub-
mitted. The figure also shows the files that have
been transferred to the remote Condor nodes from
the job submission node. Both the AO and RAS
applications are executed concurrently over the
Condor pool.

The discussion now focuses on the Condor
mechanism that allows the submission of multiple
jobs. There are two applications in this case study.

Figure 12. Execution of RAS and AO applications

on a Condor pool

Condor Condor
Sprea
/.ﬁ.D.I:Iass ;ﬂAS.:Iass e
2 7%
7 ok
ut ] AD RAS Fout. b
- /adaptar f,adapter/ E
# (DLL) <] (DLL)
COM callz COM calls
[ada) 1]
interface interface
A0 :// RAS
anplicalinn.x’f [~ application
1
Microsoft Excel Microsoft Excel
Pre- - Transfered
I:lmstalled m 16 client

For supporting multiple applicationsitis generally
required that it should be possible to submit mul-
tiple instances of each application over the Condor
pool. The job submission file is used to achieve
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this. Every Condor job has a corresponding job
submit file (.sub file) that defines variables that
control different aspects of job submission. The
mostimportant of these Condor-defined variables,
for the purpose of task farming, is the queue vari-
able. The integer value assigned to this variable
determines the number of replications of the same
job that are to be executed over the Condor pool.
Figures 13 and 14 show the .sub file for the AO
and the RAS applications respectively. The value
“50” assigned to the queue variable (the last vari-
able in the screenshots) suggests that both the AO
and the RAS applications will be executed for a
total of 50 times over different grid nodes. Some
of the other job submission variables shown in
the .sub file are discussed next.

The universe variable is assigned a value
“Java” because the Condor Java execution en-

Figure 13. Job submit file for AO application

vironment is being used to run the simulations.
The executable variable defines the name of the
Java class file that has the main() method. The
argument variable is used to pass a command
line argument to the Java program. For this hy-
pothetical case study, the number of iterations for
each simulation model has been set to a modest
value of “10” through the use of this argument
variable. The reader is however reminded that
both AO and RAS applications will be executed
50 times over, and therefore the total number of
simulation iterations for each application, taken
as a whole, will be 500 (50*10).

Each simulation experiment will have aunique
working directory associated with it. These di-
rectories should be present on the Condor node
from which jobs are submitted, or on a network
drive that can be accessed by the job submission

# asion Stock option Monte Carlo Simulation
# submit 10 Monte Carlo simulation jobs to CONDOR.

# author: Mavonil mustafee
# Date : 25th February' 2007

e

# submit jobs to CONDOR java universe
universe = jawva

# The jawva class class file which will be executed by the Jwm

executahle = ..%Asjanstockoption. class

# The number of Monte Carlo iterations
arguments = Asianstockoption 10

# setup so_each job has its own warking directory. The first will have
# a initial work1n%(direct0ry of dir.0, the second dir.l1, etc.

initialdir = dirl.$(Process)

# The Java-Com bridge
jar_files = ..%jacobh.jar

# The files that have to be transfered to execution directory of remote syste
transfer_input_files = ..%\asianstockoption.class, ..%jacob.jar, ..%asian Call

# The output has to be transfered from Tlocal execution directory to shared di

when_to_transfer_output = ON_EXIT

# The files will have to be transfered

should_transfer_file = yes

# The console output file name

output = ExcelMontecarloconso]eout put_ASD. out. TxT

# The error file name

error = ExcelMonteCar oErrordutput _ASD. err.txt

# The Tog file name

Tog = ExcelMontecCarloLogoutput_ASO. log. txt

# Sa¥_we Mever want to receive email about this job...
i

notification = MWever

# copy the user enwiromment into the job's environment

geteny = Trug

# submit 50 instances of this job!
gueue 50
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node. The working directories are represented by
the variable initialdir. In the case of the AO and
the RAS applications the values assigned to this
variableare “dirl.$(process)” and “dir.$(process)”
respectively. Sprocessis aCondor-defined integer
variable thatis incremented automatically depend-
ing on the number of instances of a particular job
that have been submitted. Thus, if gueue=50 then
the value of the $process variable will start from
1 and will end at 50. This in turn suggests that the
working directory for the first job will be “dirl.1”
and for the last job it will be “dirl.50” (in case of
AO application). These working directories are
important because they will contain the results
of the individual experiments and the log files
that are output by Condor during execution of
each experiment (Figure 15). The variables that
define the names of the three different Condor

Figure 14. Job submit file for RAS application

log files for console output, error information
and Condor-specific messages are output, error
and log respectively. It has to be added, however,
that a Condor job is in-effect executed under a
temporary directory that it created by Condor on
the grid node that is assigned the task of process-
ing the job (Figure 16 shows a temporary direc-
tory called “dir_3768” that has been created for
executing one instance of a simulation). Once
the simulation is complete, the results from the
temporary directory are transferred to the indi-
vidual working directories and the temporary
directory deleted.

Thefilesto be transferred to the execution host
areindicated by the transfer input filesvariable.
Thesefiles are transferred to the temporary execu-
tion directory created by the job executing node.
The variable when_ to transfer output and its

R e e e

# Range Accrual Swap Monte Carlo simulation

# submit 10 Monte Carlo simulation jobs to CONDOR.

# author: Mavonil Mustafee
# Date : 24th February' 2007

R

# submit jobs to COMDOR java uniwverse
universe = jawa

# The java class class file which will be executed b¥ the Jwvm
a

executahle = .. %Rangeaccrualswap_ExcelMontecarlosimu

# The number of Monte Carlo iterations

tion.class

arguments = RangeAccrualswap_ExcelMonteCarlosimulation 10

# setup so_each job has its own working directory. The first will have
# a initial working directory of dir.0, the second dir.1l, etc.

initialdir = dir.${Process)

# The JAVA-COM bridge
jar_files = ..%Jjacoh.jar

# The files that have to be transfered to execution directory of remote system
transfer_fnput_files = ..%\Rangeaccrualswap_ExcelMmontecarlosimulation. class, ..%jacob.jar,

# The output has to he transfered from Tocal execution directory to shared dir.

when_to_transfer_output = ON_EXIT

# The files will have to he transfered
should_transfer_file = yes

# The console output file name

output = ExcelMontecarloConsoleoutput. out. Txt

# The error file name
erraor = ExcelMonteCarloErroroutput. err. txt

# The log file name
log = ExcelmontecarToLogoutput. log. Txt

# Sa¥_we Mewver want to receive email about this job...
bl

notification = Newver

# copy the user environment into the job's emvironment

geteny = True

# submit 50 instances of this job!
gueue 50
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Figure 15. Results from the simulation experiments
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corresponding value “ON_EXIT” suggestthatthe
simulation results (and the Condor log files) are
transferred back from the temporary execution
directory to their respective working directories.
This concludes the discussion on the variables
defined in the Condor submit files.

Jobs are submitted for execution using the
Condor command condor_submit. The argu-
ment to this command is the job description file
associated with each job. Figure 17 shows that
.sub files for both the AO application (aso.sub)
and the RAS application (ras.sub) are submitted
using this command, and that 50 instances of each
application are created automatically by Condor
(see message: “50 jobs(s) submitted to cluster
109/110”). Once the jobs have been submitted the
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status of the Condor pool can be determined using
the command condor_status. Figure 17 shows that
atpresent three grid nodes (computers withnames
210-A,214-E and 215-F) are executing the jobs that
havebeen submitted (Activity="Busy”), while the
remaining are “Idle”. However, all the nodes have
been claimed by Condor (State="Claimed”) and
it is expected that these will soon start executing
the simulations.

The status of jobs that have been submitted
can be found using the command condor gq.
However, only jobs that are yet to be completed
or are presently running are displayed by this
command (Figure 18). The jobs that have been
completed are not shown.



Leveraging Simulation Practice in Industry through Use of Desktop Grid Middleware

Figure 17. AO and RAS applications execution over Condor pool
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Finally, it is possible to mark submitted jobs
for removal from the job queue. This is done us-
ing the command condor_rm. The job number
that represents the job to be deleted has to be
provided as an argument to this command. The
job number can be determined from the output of
the command condor g (field ID). The output of
condor_rm command is shown in Figure 19.

The concluding section discusses the con-
tribution of the research presented in this book
chapter and identifies future research that can be
conducted in this area.

DISCUSSION

The research presented in this chapter has been
motivated by the advances being made in the
field of grid computing and the realization that
simulation in industry could potentially benefit
through the use of grid computing technologies.
Thisresearchrecognises that end-user adoption of
grids could be facilitated by focusing on software
tools that are commonly used by employees at
their workplace. In the context of simulation in
industry, the end-users are the simulation prac-
titioners and the tools that are generally used to
model simulations are the CSPs. Thus, this re-
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Figure 19. Jobs removed from the queue using Condor command “condor_rm”

E=“>condor_qgq

—— Submitter: 218-A :
ID OWNER SUBMITTED

Admin 2,25 18:41 a+aa:

Admin 2,25
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Jobh 118.4%9 marked for removal

E:~>condor_g

—— Submitter: 218-A :
ID OWNER

118.32? Admin
118.42 Admin
118.43 Admin 8
118.45 Admin 2,25 18:41

4 jobhs; 1 idle, 3 running, B held

search has investigated how grid computing can
further the field of CSP-based simulation practice
and, thereby, offer some benefits to simulation
end-users.

This research has identified the form of grid
computing, namely PRC in an enterprise context
and EDGC, thatcan be used to grid-enable existing
CSPs. This research has shown that cluster-based
grid computing is generally unsuitable forintegra-
tion with Windows-based end-user applications
like the CSPs. Using PRC and EDGC forms of grid
computing for CSP-based simulation in industry
can not only speed up simulation experimenta-
tion, replication, optimization, etc., but it can also
maximize the utilization of hardware, software
and technical resources within an organization.

Yet another contribution of the research is the
identification of specific grid computing middle-
ware, namely BOINC and Condor, which can be
used to interface with CSPs. BOINC and Condor
are also considered appropriate for use by simula-
tion users since they are available for download
free of charge, include installation manuals and
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user guides, and are supported by user forums
andtraining programs (for example, Condor Week
is an annual training program conducted by the
University of Wisconsin, Madison).

Although this research had focused on end-
users who were considered experts in modeling
and simulation but were not expected to be IT
specialists, the CSP-grid integration technology
thathas been proposed in this work requires some
knowledge of Javaand Visual Basic programming.
Furthermore, the end-users will alsoneed to know
the middleware-specific mechanisms to create
jobs, submit jobs, retrieve results, etc. Some of this
knowledge could be acquired through self-study
and imparted through training. However, for the
wider adoption of grid technology for CSP-based
simulation, it may be necessary to develop higher-
level tools that would hide the complexity of the
CSP-gridintegration technology and middleware
specific mechanisms, and provide end users with
easy to use graphical interfaces through which
they could possibly integrate CSPs with grid
middleware. This is an area for future research.



Leveraging Simulation Practice in Industry through Use of Desktop Grid Middleware

ACKNOWLEDGMENT

In the course of this study we have collaborated
with fellow researchers and people in industry,
and we would like to express our gratitude to
Prof. Eduardo Saliby, Jingri Zhang, Jonathan
Berryman, Jon Saville, Rahul Talwalkar and
Robert Watson.

REFERENCES

Anderson, D. P. (2004). BOINC: a system for
public-resource computing and storage. 5th In-
ternational Workshop on Grid Computing (pp.
4-10). Washington, DC, USA: IEEE Computer
Society.

Anderson, D. P., Christensen, C., & Allen, B.
(2006). Designing a runtime system for volunteer
computing. In International Conference on High
Performance Computing, Networking, Storage,
and Analysis (Supercomputing, 2006). Article No.
126. New York, NY, USA: ACM Press.

Baker, M., Buyya, R., & Laforenza, D. (2002).
Grids and grid technologies for wide-area dis-
tributed computing. Software - Practice and
Experience, 32(15), 1437-1466.

Basney, J., & Livny, M. (1999). Deploying a high
throughput computing cluster. In R. Buyya (Ed.),
High Performance Cluster Computing, Volume 1
(chapter 5). NJ, USA: Prentice Hall PTR.

Brooks, R., Robinson, S., & Lewis, C. (2001).
Simulation and inventory control (Operational
Research Series). Hampshire, UK: Palgrave.

Burke, S., Campana, S., Peris, A. D., Donno,
F., Lorenzo, P. M., Santinelli, R., & Sciaba,
A. (2007). glite 3 user guide, manuals series.
Documentidentifier CERN-LCG-GDEIS-722398.
Retrieved June 28, 2008, from https://edms.cern.
ch/file/722398//gLite-3-UserGuide.pdf

Casanova, H. (2002). Distributed computing re-
search issues in grid computing. ACM SIGACT
News, 33(3), 50-70.

Chance, D. M. (2004). Monte Carlo simulation,
teaching note 96-03. Retrieved June 28, 2008,
from http://www.bus.lsu.edu/academics/finance/
faculty/dchance/Instructional/ TN96-03.pdf

Chien, A., Calder, B., Elbert, S., & Bhatia, K.
(2003). Entropia: architecture and performance
of an enterprise desktop grid system. Journal
of Parallel and Distributed Computing, 63(5),
597-610.

Condor Version 6.9.1 Manual. (2007). Platform-
specific information on Microsoft Windows,
Condor 6.9.2 manual. Retrieved June 28, 2008,
from http://www.cs.wisc.edu/condor/manual/
v6.9/6_2Microsoft Windows.html

EGEE. (2007). Enabling grids for e-science proj-
ect. Retrieved June 28, 2008, from http:/www.
eu-egee.org/

Eldabi, T, Jahangirian, M, Mustafee, N, Naseer,
A., & Stergioulas, L. (2008). Applications of
simulation techniques in commerce and defence:
A systematic survey. A paper presented at 4th
Simulation Workshop (SWOS) (pp. 275-284). OR
Society, UK.

Foster, 1. (2005). 4 globus primer (draft version).
Retrieved June 2008, from http:/www.globus.
org/toolkit/docs/4.0/key/

Foster, 1., & Kesselman, C. (1998). The grid:
blueprint for a new computing infrastructure.
San Francisco, CA: Morgan Kaufmann.

Foster, ., & Kesselman, C. (2004). Concepts and
architecture. In I. Foster, & C. Kesselman (Eds.),
The Grid: Blueprint for a New Computing Infra-
structure (2nd Edition), chapter 4. San Francisco,
CA: Morgan Kaufmann.

Foster, 1., Kesselman, C., & Tuecke, S. (2001).
The anatomy of the grid: enabling scalable vir-

127



Leveraging Simulation Practice in Industry through Use of Desktop Grid Middleware

tual organizations. International Journal of High
Performance Computing Applications, 15(3),
200-222.

Foster, 1., Kesselman, C., Nick, J. M., & Tuecke,
S. (2002). Grid services for distributed system
integration. IEEE Computer, 35(6), 37-46.

Gentzsch, W. (2004). Enterprise resource man-
agement: applications in research and industry.
In L. Foster, & C. Kesselman (Eds.), The Grid:
Blueprint for a New Computing Infrastructure
(2nd Edition), chapter 12. San Francisco, CA:
Morgan Kaufmann.

Globus Alliance. (2005). GT4 administration
guide. Retrieved June 28,2008, from http:/www.
globus.org/toolkit/docs/4.0/admin/docbook/in-
dex.html

Herzog, T. N., & Lord, G. (2002). Applications of
Monte Carlo methods to finance and insurance.
Winstead, Conn: ACTEX Publications. Retrieved
June 28, 2008, from http:/books.google.com/

Hollocks, B. W. (2006). Forty years of discrete-
event simulation - a personal reflection. Journal
of the Operational Research Society, 57(12),
1383-1399.

Lamanna, M. (2004).The LHC computing grid
projectat CERN. Nuclear Instruments and Meth-
odsin Physics Research (Section A: Accelerators,
Spectrometers, Detectors and Associated Equip-

ment), 534(1-2), 1-6.

Levine, D., & Wirt, M. (2004). Interactivity with
scalability: infrastructure for multiplayer games.
In L. Foster, & C. Kesselman (Eds.), The Grid:
Blueprint for a New Computing Infrastructure
(2nd Edition), chapter 13. San Francisco, CA:
Morgan Kaufmann.

Litzkow, M., Livny, M., & Mutka, M. (1988).
Condor - a hunter of idle workstations. 8th Inter-
national Conference of Distributed Computing
Systems (pp. 104-111). IEEE Computer Society,
Washington, DC, USA.

128

Luther, A., Buyya, R., Ranjan, R., & Venugopal,
S.(2005). Alchemi: a . NET-based enterprise grid
computing system. 6th International Conference
on Internet Computing (ICOMP’05) (pp.269-278).
CSREA Press, USA.

Marins, J. T. M., Santos J. F., & Saliby, E. (2004).
Variance reduction techniques applied to Monte
Carlo simulation of Asian calls. 2004 Business
Association of Latin American Studies (BALAS)
Conference. Business Association of Latin
American Studies.

Mustafee, N. (2007). 4 grid computing framework

Sforcommercial simulation packages. Unpublished
doctoral dissertation. School of Information
Systems, Computing and Mathematics, Brunel
University, UK.

Mustafee, N., & Taylor, S. J. E. (2008). Inves-
tigating grid computing technologies for use
with commercial simulation packages. Paper
presented at 2008 Operational Research Society
Simulation Workshop (SW08) (pp. 297-307). OR
Society, UK.

Mutka, M. W. (1992). Estimating capacity for
sharingina privately owned workstation environ-

ment. [EEE Transactions on Software Engineer-
ing, 18(4), 319-328.

Pidd, M. (2004). Computer simulation in manage-
ment science (5th edition). Chichester, UK: John
Wiley & Sons.

Reed, D. A. (2003). Grids, the teragrid and beyond.
IEEE Computer, 36(1), 62-68.

Robinson, S. (2005a). Discrete-event simulation:
from the pioneers to the present, what next?
Journal of the Operational Research Society,
56 (6), 619-629.

Robinson, S. (2005b). Distributed simulation and
simulation practice. Simulation, 81(5), 5-13.

Shannon, R. E. (1998). Introduction to the art and
science of simulation. 30th Winter Simulation



Leveraging Simulation Practice in Industry through Use of Desktop Grid Middleware

Conference (pp. 7-14). Los Alamitos, CA: IEEE
Computer Society Press.

Swain J. J. (2005). Gaming reality: biennial
survey of discrete-event simulation software
tools. OR/MS Today (December 2005). Institute
for Operations Research and the Management
Sciences (INFORMS), USA. Retrieved June 28,
2008, from http:/www.lionhrtpub.com/orms/
orms-12-05/frsurvey.html

SwainJ.J.(2007). INFORMS simulation software
survey. OR/MS Today. Institute for Operations
Research and the Management Sciences (IN-
FORMS), USA. Retrieved June 28, 2008, from
http://www.lionhrtpub.com/orms/surveys/Simu-
lation/Simulation.html

Thain, D., Tannenbaum, T., & Livny, M. (2004).
Distributed computing in practice: the Condor

experience. Concurrency and Computation:
Practice and Experience, 17(2-4), 323-356.

Virtual Data Toolkit. (2007). What is in VDT
1.6.1 (supporting platforms)? Retrieved June 28,
2008, from http://vdt.cs.wisc.edu/releases/1.6.1/
contents.html

Yang, X., Chohan, D., Wang, X. D., & Allan, R.
(2005). A web portal for the national grid service.
2005 UK e-Science All Hands Meeting, (pp. 1156-
1162). Retrieved June 28, 2008, from http://epubs.
cclre.ac.uk/bitstream/1084/paper05C.pdf

Zhang, J., Mustafee, N., Saville, J., & Taylor, S.
J. E. (2007). Integrating BOINC with Microsoft
Excel: a case study. 29th Information Technology
Interfaces Conference (pp. 733-738). Washington,
DC, USA: IEEE Computer Society.

129



