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Abstract. We rigorously prove results on spiky patterns for the Gierer-Meinhardt system [8] with a

jump discontinuity in the diffusion coefficient of the inhibitor. Using numerical computations in combi-

nation with a Turing-type instability analysis, this system has been investigated by Benson, Maini and

Sherratt [1], [3], [11].

Firstly, we show the existence of an interior spike located away from the jump discontinuity, deriving

a necessary condition for the position of the spike. In particular we show that the spike is located in

one-and-only-one of the two subintervals created by the jump discontinuity of the inhibitor diffusivity.

This localization principle for a spike is a new effect which does not occur for homogeneous diffusion

coefficients. Further, we show that this interior spike is stable.

Secondly, we establish the existence of a spike whose distance from the jump discontinuity is of the

same order as its spatial extent. The existence of such a spike near the jump discontinuity is the

second new effect presented in this paper.

To derive these new effects in a mathematically rigorous way, we use analytical tools like Liapunov-

Schmidt reduction and nonlocal eigenvalue problems which have been developed in our previous work

[24].

Finally, we confirm our results by numerical computations for the dynamical behavior of the system.

We observe a moving spike which converges to a stationary spike located in the interior of one of the

subintervals or near the jump discontinuity.
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1. Introduction

We consider a two-component reaction-diffusion system for which the first diffusion coefficient is

constant (independent of the spatial variable), whereas the second has a jump discontinuity.

The effect most studied for reaction-diffusion systems is the Turing instability [18] which is charac-

terized by the properties that a spatially homogeneous steady state is stable for spatially homogeneous

perturbations, but unstable for some inhomogeneous perturbations. The occurrence of unstable inho-

mogeneous perturbations explains the onset of spatial patterns.

Since the pioneering paper of Turing pattern-forming reaction-diffusion equations have been success-

fully used to model a huge variety of biological phenomena such as animal skin patterns, wound healing,

cancer growth, embryology, spread of epidemic diseases or even genetic signaling pathways. For a survey

we refer to Murray’s books [14].

While most of these models assume spatially homogeneous conditions (constant coefficients), in many

situations considering systems with spatially varying diffusion coefficients is more realistic. This spatial

inhomogeneity can be deduced by assuming that a control chemical regulates the diffusion process of

the morphogens (chemical concentration fields) in a reaction-diffusion system. One of the simplest

inhomogeneities of the diffusion coefficients are jump discontinuities. This is often a good modelling

assumption, for example when two different tissues such as cells of different determination meet at a

common border. It also plays a role as a caricature model for more complicated inhomogeneities. We

expect that many of the phenomena discovered for jump discontinuities occur also in the general case,

possibly in a slightly different fashion.

For systems with jump discontinuities of the diffusion coefficients, Turing instabilities have been

computed numerically and investigated analytically by Benson, Maini and Sherratt [1], [3], [11], and

results on dispersion relations and typical solution profiles have been obtained. In particular, the authors

showed that the spatial variation of diffusion coefficients may produce isolated patterns and asymmetric

spatially oscillating patterns which are not seen in standard homogeneous Turing systems. Biological

applications of these effects include explaining the anterior-posterior asymmetry of skeletal elements in

the limbs of vertebrates and experimental results on double anterior limbs [2], [11], [27].
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We give a rigorous mathematical proof of the influence of discontinuous diffusion coefficients on the

qualitative and quantitative properties of spiky patterns in a reaction-diffusion system.

In particular, in this paper we study the Gierer-Meinhardt system [8], which is one of the most

popular Turing systems [18] of activator-inhibitor type. Adapted to our situation, it reads as follows:




at = ε2axx − a +
a2

h
,

τht = (D(x)hx)x − h + a2.
(1.1)

Note that h acts as an inhibitor to a, whereas a acts as an activator to both a and h. This motivates

the name activator-inhibitor system. In this paper, we assume that 0 < ε << 1, τ ≥ 0 are constants

and

D(x) =





D1, −1 < x < xb,

D2, xb < x < 1,
(1.2)

where 0 < D1, 0 < D2, and D1 6= D2. In Section 6 we set τ = 0.1 and in Section 12 we assume that τ is

small enough. We study the equation (1.1) in the interval (−1, 1) with Neumann boundary conditions

ax(−1) = ax(1) = 0, hx(−1) = hx(1) = 0. (1.3)

We rigorously prove the existence of two classes of stationary spiky solutions to this system: first an

interior spike which is located far away from the jump discontinuity and second a spike whose distance

to the jump discontinuity is of the same order as its spatial extent.

A condition for the position of the interior spike will be derived, namely it can be located in one-and-

only-one of the two subintervals. This localization principle for spikes is a new effect which does

not occur for homogeneous diffusion coefficients. Further, we investigate the linearized stability of this

interior spiky steady state and we prove that it is always stable.

Concerning the spike near the jump discontinuity, we will show that generically there are two possible

locations or there is none. Further, our results imply that it occurs preferably if the discontinuity is

located near the center of the interval and if the two diffusion constants differ by a substantial amount.

Now we mention some previous works on spiky steady states for the Gierer-Meinhardt system with

constant coefficients. Existence and stability of spiky steady states have been studied for 1D in [9] and

their instabilities have been investigated in [20]. For 2D the existence and stability of multiple spikes

has been investigated in [22], [23], [24].
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Works with spatially varying coefficients include [16], [17] where 1D and 2D complex patterns are

investigated, [19] where the 1D and 2D motion of a spike and pinning effects are studied and [15] where

the varied behavior of traveling pulses is shown.

The structure of the paper is as follows: in Section 2 we provide some preliminaries. In Section 3 we

present the main results of the paper. In Section 4 we introduce and analyze a suitable approximate

interior spike steady state. In Section 5 we show the existence of a steady state with a spike near the jump

in the diffusion coefficient of the inhibitor. In Section 6 we confirm our analytical results by numerical

computations. In Section 7 we discuss our results. In Appendix A (Section 8) we introduce and analyze

the Green’s function. In Appendix B (Section 9) we derive some estimates for the approximate interior

spike steady state. In Appendix C (Section 10) we apply the method of Liapunov-Schmidt reduction

to the system. In Appendix D (Section 11) we solve the reduced problem. In Appendix E (Section 12)

we show the stability of the steady state with an interior spike.

2. Preliminaries

Before stating our main results in Section 3, in this section we introduce some notation and perform

some preliminary analysis.

Throughout this paper, we always assume that Ω = (−1, 1). With L2(Ω) and H2(Ω) we denote the

usual Sobolev spaces.

Since we consider (1.1) – (1.3) for a discontinuous diffusion coefficient D(x) of the inhibitor h, which

has a jump at a point xb, the smoothness of h at xb is lost. More precisely, for classical solutions

D(x)hx(x) is continuous at x = xb and therefore hx(x) has a jump discontinuity at x = xb. To account

for this jump discontinuity of h the function spaces have to be chosen very carefully.

We assume that

(a, h) ∈ H2
N(−1, 1)×H2,∗

N (−1, 1),

where

H2
N(−1, 1) :=

{
a ∈ H2(−1, 1) : ax(−1) = ax(1) = 0

}
,

H2,∗(−1, 1) :=
{
h ∈ H1(−1, 1) : (D(x)hx)x ∈ L2(−1, 1)

}
,
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H2,∗
N (−1, 1) :=

{
h ∈ H2,∗(−1, 1) : hx(−1) = hx(1) = 0

}
,

endowed with the norm

‖(a, h)‖2
2,∗ := ‖a‖2

H2(−1,1) + ‖h‖2
2,∗, where ‖h‖2

2,∗ := ‖h‖2
H1(−1,1) + ‖(D(x)hx)x‖L2(−1,1).

The variable w denotes the unique homoclinic solution of the following problem:




w
′′ − w + w2 = 0 in R1,

w > 0, w(0) = maxy∈R w(y), w(y) → 0 as |y| → ∞.
(2.1)

Note that w is an even function and w
′
(y) < 0 if y > 0. An explicit representation is

w(y) =
3

2
cosh−2 y

2
.

We set

ρ(y) :=
∫ y

0
w2(z) dz. (2.2)

Elementary calculations give

α :=
∫ ∞

0
w2(y) dy =

∫ ∞

0
w(y) dy = 3,

∫ ∞

0
w3(y) dy = 3.6,

ρ(y) =
9

2
tanh

y

2
− 3

2
tanh3 y

2
,

∫ ∞

0
w3(y)ρ(y) dy =

297

64
= 4.640625,

∫ ∞

0
(w′)2 dy =

∫ ∞

0
w3 dy −

∫ ∞

0
w2 dy = 0.6. (2.3)

To conclude this section, we study a nonlocal linear operator. We first recall the following result.

Theorem 2.1. [21] Consider the nonlocal eigenvalue problem

Lφ := ∆φ− φ + 2wφ− γ

∫
R wφ dy∫
R w2 dy

w2 = λφ, φ ∈ H1(R). (2.4)

(1) If γ < 1, then there is a positive eigenvalue to (2.4).

(2) If γ > 1, then for any nonzero eigenvalue λ of (2.4) we have

Re(λ) ≤ −c0 < 0 for some c0 > 0.

(3) If γ 6= 1 and λ = 0, then

φ = c0
dw

dy

for some constant c0.
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The conjugate operator of L under the scalar product in L2(R) is

L∗ψ = ∆ψ − ψ + 2wψ − γ

∫
R w2ψ dy∫
R w2 dy

w, H2(R) → L2(R). (2.5)

Then we have the following result.

Lemma 2.2. (Lemma 3.2 of [25].) If γ 6= 1, then

X0 := Ker(L∗) = span

{
dw

dy

}
. (2.6)

As a consequence, we have

Lemma 2.3. The operator

L : H2(R) → L2(R),

restricted to the spaces

L : X⊥
0 ∩H2(R) → X⊥

0 ∩ L2(R),

where the X⊥
0 denotes the orthogonal projection with respect to the scalar product of L2(R), is invertible.

Moreover, L−1 : X⊥
0 ∩ L2(R) → X⊥

0 ∩H2(R) is bounded.

Proof: This follows from the Fredholm Alternative Theorem and Lemma 2.2.

¤

3. Main Results: interior spike and spike near the jump discontinuity of the

diffusion coefficient

We consider the case when the inhibitor diffusivity is discontinuous with a single jump, and derive

two types of one-spike steady states:

1. an interior spike located far away from the jump discontinuity of the inhibitor diffusivity (see

Theorem 3.1). For this interior spike we derive a new localization principle, which states that the

spike can exist in one-and-only-one of the two sub-intervals divided by the jump discontinuity. Further,

we show that this solution is stable (Theorem 3.3).

2. a spike near the jump discontinuity whose center has a distance of order ε from the jump

discontinuity, which means that its distance from the jump discontinuity is of the same order as the

spatial extent of the spike (Theorem 3.4).
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We re-scale Ωε = (−1
ε
, 1

ε
) and define u(x) ∈ H2

ε (Ω) if and only if u
(

x
ε

)
∈ H2(Ωε), where the norm of

the former space is defined by the norm of the latter, i.e.

‖u‖H2
ε (Ω) := ‖u(·/ε)‖H2(Ωε).

In the same way we introduce this re-scaling to the other function spaces introduced at the beginning

of the previous section.

Now we state our first main theorem.

Theorem 3.1. (Existence of an interior-spike solution.) Suppose that the condition

1

θ1

tanh θ1(1 + xb) >
1

θ2

tanh θ2(1− xb) (3.1)

holds, where θi = D
−1/2
i . Then there exists a steady state of (1.1) – (1.3) with an interior spike for the

activator which is located in the subinterval (−1, xb). More precisely, we have

aε(x) ∼ ξ0w
(

x− tε

ε

)
+ o(1) in H2

ε (Ω), (3.2)

where tε → t0 ∈ (−1, xb) and ξ0/h(tε) → 1 as ε → 0. The limit position t0 is given by

1

θ1

tanh (θ1(2t0 + 1− xb)) =
1

θ2

tanh (θ2(1− xb)) . (3.3)

If (3.1) holds then there do not exist any steady states of (1.1) – (1.3) with an interior spike for the

activator in the subinterval (xb, 1).

Remark 3.2. (i) Condition (3.1) of Theorem 3.1 implies that in the case xb = 0, i.e. if the jump

discontinuity is located at the center of the interval, there exists a spike in the subinterval with the

larger diffusion constant D1 (and the smaller θ1) but not in the other subinterval. This follows from the

fact that the function tanh α/α is strictly monotone decreasing for α > 0.

(ii) Condition (3.1) combines the effects of sub-domain size and diffusion constant. Hence the local-

ization effect is due jointly, and favorably, to relatively large subinterval and large diffusion constant.

(iii) Note that existence of a single spike occurs in one-and-only-one of the subintervals.

(iv) The reverse sign of (3.1) does not have to be studied separately. It follows by reflection about

the center x = 0 of the interval. By this transformation θ1 and θ2 are exchanged and the sign of xb is
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reversed. An easy calculation shows that the inequality resulting from this transformation is equivalent

to (3.1) with reversed sign.

(v) The localization principle proved in Theorem 3.1 which has been established here for a reaction-

diffusion system with a jump discontinuity of the inhibitor diffusivity is expected to play a general role

for reaction-diffusion systems with varying diffusion coefficients. We expect that further investigations

of this phenomenon in the general context will show important new effects which are not observed in

the classical case of Turing systems with constant diffusion coefficients. This should have important

implications for the prediction of localization and asymmetry of patterns in many areas of biology.

We now give a result for the linear stability of the interior spike.

Theorem 3.3. (Stability of an interior-spike solution.) The interior spike established in Theorem 3.1

is linearly stable.

In our second main theorem we establish the existence of spikes near the jump discontinuity of the

inhibitor diffusivity, more precisely at a distance of order ε from this discontinuity.

Theorem 3.4. (Existence of spikes near the jump discontinuity xb of the inhibitor diffusivity.)

(i) If




θ1 < θ2 and

0 <
θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)
<

θ2
2 − θ2

1

2θ2
1

I(L0)

10.8
,

(3.4)

there exist exactly two spikes near the jump discontinuity xb. They are given by (3.2) with tε = xb − εL

for two possible values of L which are solutions of (5.7).

(ii) If condition (3.1) holds and θ1 > θ2, or if




θ1 < θ2 and

θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)
>

θ2
2 − θ2

1

2θ2
1

I(L0)

10.8
> 0,

(3.5)

there is no spike near the jump discontinuity xb. More precisely, there is no spike given by (3.2) with

|tε − xb| = O(ε).
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In Theorem 3.4 we have used

I(L) :=
∫ ∞

L
w3(y)(ρ(y)− β) dy, (3.6)

where

β = α
θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(xb + 1) + θ1 tanh θ2(1− xb)
, (3.7)

ρ(y) is given by (2.2), L0 is uniquely determined by ρ(L0) = β, and α = 3.

Remark 3.5. (i) We have the following results for the positions of the two spikes given by Theorem

3.4 (i) with respect to the jump discontinuity:

both are positive if

θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)
> 0.4296875

θ2
2 − θ2

1

θ2
2 + θ2

1

;

one is positive and the other is negative if

0 <
θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)
< 0.4296875

θ2
2 − θ2

1

θ2
2 + θ2

1

.

Note that positive position (L > 0) means that the spike is located to the left of the jump discontinuity,

and negative position (L < 0) means that it lies to the right of the jump discontinuity.

(ii) We do not prove stability of the spike near the jump. However, our conjecture is that the spike

at the left position is unstable and the spike at the right position is stable.

We have the following simple nonexistence result for spikes near the jump discontinuity.

Corollary 3.6. Suppose that θ1 < θ2 and
∣∣∣∣∣
θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)

∣∣∣∣∣ > 0.4296875
θ2
2 − θ2

1

2θ2
1

.

Then there is no spike near the jump discontinuity, i.e. a spike with the center satisfying |tε−xb| = O(ε).

Remark 3.7. The criterion given in Corollary 3.6 for nonexistence is satisfied if θ1 and θ2 are fixed

constants which satisfy θ1 < θ2 < 2.37793 θ1 and the jump location xb is sufficiently close to +1 or -1.

This means that we have non-existence if the diffusion constants are sufficiently close to each other and

the jump discontinuity is located sufficiently close to either end of the interval.
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4. The approximate interior spike

We now construct an approximate steady state of (1.1) – (1.3) which has a spike of the acti-

vator a(x) concentrating at a point t0 ∈ (−1, 1) \ {xb}. For t0 ∈ (−1, 1), let t ∈ Bε3/4(t0) :=
{
t ∈ (−1, 1) : |t− t0| < ε3/4

}
. Set

w0(x) = w
(

x− t

ε

)
, (4.1)

where w(y) is given by (2.1). Let r0 be such that

r0 =
1

10
(min (t0 + 1, 1− t0)) . (4.2)

Introduce a smooth cut-off function χ : R → [0, 1] such that

χ(x) = 1 for |x| < 1 and χ(x) = 0 for |x| > 2. (4.3)

Setting

w̃0(x) = w0(x)χ
(

x− t

r0

)
, (4.4)

then w̃0(x) satisfies

ε2∆w̃0 − w̃0 + w̃2
0 + e.s.t. = 0 in (−1, 1), w̃′

0(−1) = w̃′
0(1) = 0, (4.5)

where “e.s.t.” denotes exponentially small terms. For t ∈ (−1, 1), let

ξ̂0(t) =
1

G(t, t)
, (4.6)

where G(x, y) is the Green’s function, defined in (8.1). It can be used to represent a steady state of the

second equation of (1.1) and plays a major role throughout the paper. This Green’s function will be

analyzed in detail in Appendix A. We will mostly drop the argument of ξ̂0(t) and write ξ̂0 instead. Set

ξ0 := ξ̂0ξε, (4.7)

where

ξε :=
(
ε

∫

R
w2(z) dz

)−1

=
1

6ε
. (4.8)

Then, finally, we choose the first component of our approximate steady state for (1.1) to be

wε,t(x) = ξ0w̃0(x). (4.9)
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For a function A ∈ L2(−1, 1), we define T [A] to be the solution in H2,∗
N (−1, 1) of

(D(x)(T [A])x)x − T [A] + A2 = 0. (4.10)

By standard elliptic theory, the solution T [A] is positive and unique.

For A = wε,t, where t ∈ Bε3/4(t0), we choose the function T [A](x) to be the second component of our

approximate steady state for (1.1).

Some error estimates for the approximate steady state (wε,t, T [wε,t]) are required. They will be

derived in Appendix B and form the basis of the existence proof. In Appendix C we will reduce the

problem to finite dimensions by Liapunov-Schmidt reduction. In Appendix D we will solve the resulting

finite-dimensional problem.

We now discuss some observations about the limit positions of the interior spike by analyzing (3.3).

For the solution of (3.3) we have t0 → 0 in either of the limits

(i) θ2 → θ1 (for θ1 = const.) (the system approaches the standard GM system with constant

diffusivities).

(ii) θ1 → 0 and θ2 → 0 (the system approaches the shadow system with D = ∞).

The spike connects to the spike in the center of the domain, which is the unique spiky steady state

for constant diffusivities or the shadow system.

(iii) In the limit θ2 → ∞ (for θ1 = const.) we get t0 → (xb − 1)/2 ∈ (−1, xb). Note that −1 <

(xb − 1)/2 < 0. The spikes moves to the center of the subinterval with finite diffusion constant D1 of

the inhibitor if the other diffusion constant D2 tends to zero.

(iv) Finally, if θ1 and θ2 are such that the inequality (3.1) approaches equality, the limit position t0

approaches xb.

Note that we always have t0 ≥ (xb − 1)/2 since otherwise (3.3) can not hold (t0 < (xb − 1)/2 implies

l.h.s. of (3.3) is negative while r.h.s. is positive).

By the above, we observe that we can obtain a single spike steady state centered at any point of the

open interval ((xb − 1)/2, xb) by varying the diffusion constants D1 and D2. This is a new effect which

does not occur for constant diffusivities, where the interior spike is always located at the center of the

interval. This shows that for discontinuous diffusion coefficients asymmetric instead of symmetric spike
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positions are the commonplace. This has some important consequences for biological applications, e.g.

for understanding limb development.

In Appendix E we will show that this interior spike steady state is linearly stable.

It turns out that there are small (o(1)) and large (O(1)) eigenvalues as ε → 0 which are studied

separately. It is easy to see that there are no eigenvalues which tend to infinity – we omit the proof of

this statement, see e.g. [24].

For large eigenvalues one has to study nonlocal eigenvalue problems. For small eigenvalues one has

to apply a projection to a finite-dimensional space similar to Liapunov-Schmidt reduction.

5. Spike near the jump discontinuity of the inhibitor diffusivity

We prove Theorem 3.4 on the existence of spikes near the jump discontinuity xb of the inhibitor

diffusivity.

Proof of Theorem 3.4: Let

aε(x) = ξ0w
(

x− tε

ε

)
χ

(
x− tε

ε

)
+ O(ε) in H2(Ωε),

where tε is the center of the spike, xb − tε = εL and ξ0 is given by (4.7). Then we compute an

approximation to the second component hε(x). We decompose hε into two parts:

hε(x) = ξ0

(
εh1

(
x− tε

ε

)
+ h2(x)

)
+ O(ε) in H2,∗(Ωε), (5.1)

where the inner expansion h1(y) for y = (x− tε)/ε satisfies




(D(tε + εy)h1,y(y))y + w2(y) = 0,

h1(0) = 0, h1,y(0) = 0
(5.2)

and the outer expansion h2(x) is given by




(D(x)h2,x(x))x − h2(x)− εh1(x) = 0,

h2,x(±1) = −h1,y(±∞).
(5.3)

Integrating (5.2) yields

h1,y(y) =





−θ2
1ρ(y), −∞ < y < L,

−θ2
2ρ(y), L < y < ∞,

(5.4)

where θi = D
−1/2
i and ρ(y) has been defined in (2.2).
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Recalling from (2.3) that

α =
∫ ∞

0
w2(z) dz = 3

we have

h1,y(−∞) = θ2
1α, h1,y(∞) = −θ2

2α.

Note that (2.3) implies
∫∞
0 w3(y)ρ(y) dy

α
∫∞
0 w3(y)

= 0.4296875.

Integrating (5.4) again, we have (up to order O(ε) which is included into the error term in (5.1))

εh1

(
x− tε

ε

)
=





θ2
1α(x− xb), −1 < x < xb,

−θ2
2α(x− xb), xb < x < 1.

(5.5)

Hence h2 satisfies (up to order O(ε) which is included into the error term in (5.1))




(D(x)h2,x(x))x − h2(x)− εh1(x) = 0,

h2,x(−1) = −θ2
1α, h2,x(1) = θ2

2α.
(5.6)

Solving (5.6), using (5.5), we get

h2(x) =





−θ2
1α(x− xb) + Aθ1

cosh θ1(x + 1)

cosh θ1(xb + 1)
, −1 < x < xb,

θ2
2α(x− xb) + Bθ1

cosh θ2(x− 1)

cosh θ2(xb − 1)
, xb < x < 1,

Continuity of the function h2(x) at x = xb gives A = B and continuity of D(x)h2,x(x) at x = xb implies

0 = D1h2,x(x
−
b )−D2h2,x(x

+
b ) = A

(
tanh θ1(xb + 1) +

θ1

θ2

tanh θ2(1− xb)

)
− 2α

and so we have

A =
2αθ2

θ2 tanh θ1(xb + 1) + θ1 tanh θ2(1− xb)
.

(Note that (3.1) implies

A >
α

tanh θ1(xb + 1)
.)

Hence

D1h2,x(x
−
b ) = D2h2,x(x

+
b ) = A tanh θ1(xb + 1)− α = α

θ2 tanh θ1(xb + 1)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(xb + 1) + θ1 tanh θ2(1− xb)

which implies

h2,x(x
−
b ) = θ2

1β, h2,x(x
+
b ) = θ2

2β,
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where

β = α
θ2 tanh θ1(xb + 1)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(xb + 1) + θ1 tanh θ2(1− xb)
.

Finally, we apply Liapunov-Schmidt reduction as in Appendix C to reduce the problem to one dimension.

Following the argument in Appendix D to solve this reduced problem and determine the position of the

spike we get the following solvability condition:

0 = ξ−1
ε

∫ ∞

−∞
w3(y)hx(t

ε + εy) dy + O(ε)

=
∫ ∞

−∞
w3(y)(h1,y(y) + h2,x(t

ε + εy)) dy + O(ε)

=
∫ L

−∞
w3(y)(−θ2

1ρ(y) + h2,x(x
−
b )) dy +

∫ ∞

L
w3(y)(−θ2

2ρ(y) + h2,x(x
+
b )) dy + O(ε)

= θ2
1

(∫ L

−∞
w3(y)(−ρ(y) + β) dy

)
+ θ2

2

(∫ ∞

L
w3(y)(−ρ(y) + β) dy

)
+ O(ε)

= θ2
1

(∫ ∞

−∞
w3(y)(−ρ(y) + β) dy −

∫ ∞

L
w3(y)(−ρ(y) + β) dy

)
+ θ2

2

(∫ ∞

L
w3(y)(−ρ(y) + β) dy

)
+ O(ε)

= βθ2
1

∫ ∞

−∞
w3(y) dy + (θ2

2 − θ2
1)

∫ ∞

L
w3(y)(−ρ(y) + β) dy + O(ε)

since ρ(y) is an odd function.

Hence, for given θ1, θ2, β, we need to find L such that

βθ2
1

∫ ∞

−∞
w3(y) dy + (θ2

2 − θ2
1)

∫ ∞

L
w3(y)(−ρ(y) + β) dy = 0. (5.7)

We recall and summarize that

β = α
θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)
, α = 3, ρ(y) =

∫ y

0
w2(z) dz =

9

2
tanh

y

2
− 3

2
tanh3 y

2
.

We now check when condition (5.7) can be satisfied. We need to consider only the case β > 0 which

is equivalent to (3.1). Note that for β = 0 (5.7) is not possible if θ1 6= θ2 and so we do not consider that

case any further.

The case β < 0 can be reduced to the case β > 0 by reflection about the center x = 0 of the domain.

This can be seen as follows: by this reflection θ1 and θ2 are exchanged, xb, t
ε, β all change sign. Note

that the order of the locations of the jump discontinuity and the spike are reversed so that the equation

xb = tε + εy with y = L changes to −xb = −tε + εy with y = −L. As a result, (5.7) is transformed to

−βθ2
2

∫ ∞

−∞
w3(y) dy + (θ2

1 − θ2
2)

∫ ∞

−L
w3(y)(−ρ(y) + β) dy = 0

which is equivalent to (5.7).
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We know from Theorem 3.1 that the interior spike solution must be located to the left of the jump

discontinuity. Now we show that generically for the spike near the jump discontinuity there are two

possible locations or there is none.

A necessary condition is

θ2
1 < θ2

2.

Otherwise (5.7) implies

βθ2
1

∫ L

−∞
w3(y) dy + θ2

1

∫ ∞

L
w3(y)ρ(y) dy = θ2

2

∫ ∞

L
w3(y)(ρ(y)− β) dy.

If θ2
1 ≥ θ2

2 in the last equation we have l.h.s is greater than r.h.s. which gives a contradiction.

We now study (5.7) in detail.

An important observation is that the integrand of

∫ ∞

L
w3(y)(−ρ(y) + β) dy

changes sign at ρ(y) = β.

The function ρ has the following properties:

ρ(0) = 0, ρ
′
(y) = w2(y) > 0, ρ(−y) = −ρ(y),

ρ(y) →
∫ ∞

0
w2 dy = α(= 3) as y →∞ (5.8)

and β satisfies the inequality

0 < β = α
θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(xb + 1) + θ1 tanh θ2(1− xb)
< α.

Thus for all 0 < β < α there is exactly one positive y =: L0 > 0 such that ρ(L0) − β = 0. Further,

ρ(y)− β < 0 if 0 < y < L0 and ρ(y)− β > 0 if y > L0.

To give an explicit formula for L0, using (2.3) we compute

ρ(L0) =
9

2
tanh

L0

2
− 3

2
tanh3 L0

2
= β.

From this equation L0 can be uniquely calculated.

Recall from (3.6) that for any real number L we have defined

I(L) :=
∫ ∞

L
w3(y)(ρ(y)− β) dy.

Then
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(i) I(L) → 0 as L →∞, I(L) → −7.2β < 0 as L → −∞,

(ii) I(L) achieves its unique maximum among all real L at L = L0 > 0, where I(L0) > 0,

(iii) I(L) is monotone increasing on (−∞, L0),

(iv) I(L) is monotone decreasing on (L0,∞),

(v) I(L) = 0 for a unique L = L1 < 0.

Therefore the equation I(L) = c has




two solutions if 0 < c < I(L0),

one solution if c = I(L0) or − 7.2β < c ≤ 0,

no solution if c > I(L0) or c ≤ −7.2β.

(5.9)

Since we assume θ1 < θ2, for (5.7) only the case c > 0 is relevant. Combining (5.9) with (5.7) and

putting c = θ2 tanh θ1(1+xb)−θ1 tanh θ2(1−xb)
θ2 tanh θ1(1+xb)+θ1 tanh θ2(1−xb)

10.8·2θ2
1

θ2
2−θ2

1
, we have

(i) two solutions for (5.7) if

0 <
θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)
<

θ2
2 − θ2

1

2θ2
1

I(L0)

10.8
.

(ii) no solution for (5.7) if

θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)
>

θ2
2 − θ2

1

2θ2
1

I(L0)

10.8
.

The proof of Theorem 3.4 is completed.

¤

Proof of Remark 3.5: We compute

I(0) = 10.8

(
0.4296875− θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)

)
.

Therefore (5.7) implies that in Case (i) both solutions are positive if c > I(0), which implies

θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)
> 0.4296875

θ2
2 − θ2

1

θ2
2 + θ2

1

,

one is positive, the other negative if c < I(0), which implies

0 <
θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)
< 0.4296875

θ2
2 − θ2

1

θ2
2 + θ2

1

.

¤

Proof of Corollary 3.6: We consider the following two limits. As β → 0 we have L0 → 0 and

I(L0) →
∫ ∞

0
w3(y)ρ(y) dy = 4.640625.
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As β → α = 3 we have L0 → ∞ and I(L0) → 0. For β varying between these two extreme values the

change of I(L0) is strictly monotone.

As a consequence we get 0 ≤I(L0) ≤ 4.640625 which implies the following necessary condition for

existence:

0 <
θ2 tanh θ1(1 + xb)− θ1 tanh θ2(1− xb)

θ2 tanh θ1(1 + xb) + θ1 tanh θ2(1− xb)
< 0.4296875

θ2
2 − θ2

1

2θ2
1

. (5.10)

Again, for β < 0, we can use the reflection argument mentioned before. Then with the assumption

θ1 > θ2, we get the formula in Corollary 3.6.

¤

Proof of Remark 3.7: There are cases when (5.10) is not true. For example, given θ1, θ2 such that

0 < θ1 < θ2 <
(

2.4296875

0.4296875

)1/2

θ1 ≈ 2.37793 θ1,

then

0 < 0.4296875
θ2
2 − θ2

1

2θ2
1

< 1

and so by choosing xb close enough to 1 or -1 (5.10) fails to hold. So in this case there are no spikes in

order ε distance from the jump discontinuity. The proof is finished.

¤

We now discuss the behavior of spikes near the jump in certain limits.

(i) If θ2 →∞ (and θ1 = const.), we have β → 3. We can re-write (5.7) as

7.2β
θ2
1

θ2
2 − θ2

1

= I(L).

Solutions to (5.7) exist iff

7.2β
θ2
1

θ2
2 − θ2

1

< I(L0). (5.11)

An asymptotic analysis reveals that

e−2L0 ∼ c(3− β), I(L0) ∼ c(3− β)5/2

and

θ1

θ2

∼ c(3− β)
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as β → 3. Therefore in (5.11) we have

l.h.s. ∼ c(3− β)2 and r.h.s. ∼ c(3− β)5/2

and so (5.11) does not hold if β is sufficiently close to 3. For increasing β at some threshold β0 with

0 < β < 3 both spike locations L approach the same positive limit which is given by L0 evaluated at

β0. For β0 < β < 3 the spikes near the jump cease to exist.

(ii) If xb → 1, we get tanh θ2(1 − xb) → 0. This implies that we also have β → 3. Repeating the

previous analysis, we get

e−2L0 ∼ c(3− β), I(L0) ∼ c(3− β)5/2

and

θ1

θ2

∼ c

as β → 3. Arguing similarly as in Case (i), we see that spikes near the jump cease to exist. In Corollary

3.6 and Remark 3.7 this argument has been made quantitative and explicit bounds for nonexistence

have been derived.

(iii) If β → 0, from (5.7) we get

(θ2
2 − θ2

1)
∫ ∞

L
w3(y)ρ(y) dy → 0.

For θ2
2 − θ2

1 6= 0, this implies that L → −∞ or L →∞. In this limit, the spikes at the jump connect to

the interior spikes, which converge to the jump.

(iv) The case when β → 0 and simultaneously θ2 → θ1 := θ requires further investigation. An

example for this coincidence is given by xb = 0. Then (5.7) implies

5.4 [1 + θ(tanh θ − coth θ)] =
∫ ∞

L
w3(y)ρ(y) dy.

This equation has a solution iff

5.4 [1 + θ(tanh θ − coth θ)] <
∫ ∞

0
w3(y)ρ(y) dy = 4.640625. (5.12)

It is an elementary computation to show that l.h.s. in (5.12) has the limit zero as θ → 0, is strictly

monotone increasing in θ and has the limit 5.4 as θ →∞. This implies that (5.7) has a solution iff θ is

small enough. Then (5.7) has two solutions L1 and L2 with L1 = −L2. These solutions are symmetric

with respect to the jump discontinuity.
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6. Numerical computations

We now show some numerical computations for the time-dependent behavior of system (1.1). We

choose Ω = (−1, 1), τ = 0.1 and varying diffusion coefficients ε2. We divide Ω at either xb = 0 or

xb = 0.5 and choose different constants for D(x) on each of the resulting subintervals.

In each situation we present the solution for t = 105. By this time the computation has come

to a standstill in all cases, and this steady state is numerically stable (long-time limit). For the 1D

computations, the first component, a, is shown on the left and the second component, h, is displayed

on the right.

We first plot the initial conditions which are the same for all computations. We study the following

two examples:

 0
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a
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Figure 1. Initial condition for a at t = 0: in the first example we take a = 2− sin(xπ/2), i.e. the maximum

is located at the left boundary. In the second example we take a = 2 + sin(xπ/2), i.e. the maximum is located

at the right boundary. Initial condition for h at t = 0: h = 1 for both examples. Both examples of initial

conditions are investigated for all 1D computations which follow.

We now show a computation of a spike which either reaches a position near the jump discontinuity

of the inhibitor diffusion (moving in from the left) or an interior position (moving in from the right) at

t = 105. The spike near the jump discontinuity is located slightly left of it which corresponds to the

stable spike location having L > 0.
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Figure 2. Long-time limit of the solution to (1.1) – (1.3) with ε2 = 0.0001 and D(x) = 1 for −1 < x < 0,

D(x) = 5 for 0 < x < 1. The initial conditions are given in Figure 1. We observe a spike near the jump

discontinuity of the inhibitor diffusivity and a spike in the right subinterval. The conditions (3.1) and (3.4),

respectively, are satisfied. Equation (3.3) implies t0 ≈ 0.10336 for the position of the interior spike in the

second example, which is in good agreement with the figure.

Doing the computation with the same two initial conditions but changing the jump discontinuity of

the diffusion coefficient of the inhibitor from xb = 0 to xb = 0.5 the result is similar. However, the limit

position changes. In both examples the spike moves to the same interior spike which is located near

the center x = 0.
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Figure 3. Long-time limit of the solution to (1.1) – (1.3) with ε2 = 0.0001 and D(x) = 1 for −1 < x < 0.5,

D(x) = 5 for 0.5 < x < 1. The initial conditions are given in Figure 1. We observe an interior spike in the

left subinterval. The condition (3.1) is satisfied. Equation (3.3) implies t0 ≈ 0.01556 for the position of the

interior spike, which is in good agreement with the figure.
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Now we show the computations for some effects not analyzed in this paper. The initial conditions

are again the two examples shown in Figure 1. We compute the following situation: ε2 = 0.0001,

D(x) = 0.1 for −1 < x < xb, D(x) = 0.5 for xb < x < 1 for varying xb. If we decrease D(x) we expect

solutions with multiple spikes. Some examples of this are shown in the following two figures.
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Figure 4. Long-time limit of the solution to (1.1) – (1.3) with ε2 = 0.0001 and D(x) = 0.1 for −1 < x < 0,

D(x) = 0.5 for 0 < x < 1. The initial conditions are given in Figure 1. We observe an interior spike in the

right subinterval or two interior spikes in different subintervals. Equation (3.3) implies t0 ≈ 0.33057 for the

position of the interior spike in the first example, which is in good agreement with the figure.
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Figure 5. Long-time limit of the solution to (1.1) – (1.3) with ε2 = 0.0001 and D(x) = 0.1 for −1 < x < 0.5,

D(x) = 0.5 for 0.5 < x < 1. The initial conditions are given in Figure 1. We observe an interior spike in the left

subinterval combined with a spike near the jump discontinuity or two interior spikes in different subintervals.

We conclude the computations by showing the results of some two-dimensional computations. The

domain is a disc and the diffusion coefficient of the inhibitor jumps along a circle: it is smaller on a
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small inner disc and larger on an outer annulus. We observe multiple spikes which are denser and have

smaller amplitude in the region with smaller diffusion coefficient.

In this figure, we display only the activator, a. We give a 2D and a 3D representation of the solution

at t = 105.

Figure 6. Long-time limit of the solution to (1.1) – (1.3) in the disc |x| < 2, where ε2 = 0.001 and

D(x) = 0.01 for |x| < 1, D(x) = 0.05 for 1 < |x| < 2. The maximum value for a is about 10.158. In the inner

disc of the domain, where the diffusion coefficient is smaller than in the outer annulus, we observe multiple

spikes which are denser and have smaller amplitude.

7. Discussion

It is seen in the numerical computations given in the previous section that dynamically, if a spike

moves away from the left or right boundary, driven by the gradient of the regular part of the Green’s

function, it converges to the closest stationary stable spike, either an interior spike or a spike near

the jump discontinuity. This includes the possibility that the spike crosses the jump discontinuity and

moves from one subinterval into the other if there is no stable spike at the jump discontinuity.

The numerical computations support the conjecture that one of spikes near the jump discontinuity

given in Theorem 3.4 is stable while the other one is unstable. The dynamical system seems to select

this stable position in the long-time limit. The spike does not stop at the unstable position.

This dynamical behavior is simpler than in [15]. In that work traveling pulses for heterogeneous

systems close to bifurcation points such as drift instability or splitting instability are considered. Many
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different types of dynamical behavior occur such as pinning, splitting, rebound, penetration or oscilla-

tion. The system studied in the current paper is far from any bifurcation point and the movement of

the spike is driven by the gradient of the regular part of the Green’s function. Therefore the direction

and the speed of the spike at each point are uniquely defined. Penetration or pinning are possible but

we do not get splitting, rebound or oscillation.

Steady states with two spikes (which are possible for smaller diffusion constants) display several

interesting phenomena. Numerical computations show that there are many possible combinations such

as two interior spikes in the same subinterval, two interior spikes in different subintervals or a spike near

the jump discontinuity and an interior spike. In these solutions the two spikes in general have different

amplitudes unless they are both located in the same subinterval.

Boundaries are frequently formed as a result of varying genetic expressions. The following situations

are well understood [4], [5], [10]. The A-P and D-V boundaries in the Drosophila wing imaginal disc and

the compartments in the vertebrate hindbrain are examples of lineage boundaries: they are established

because of varying gene expressions in different compartments, and due to varying adhesion effects only

a small percentage of cells cross the boundary to move into the neighboring compartment. The imaginal

disc consists of a group of cells which form adult structures during metamorphosis. Investigating the

mechanisms of their interaction is crucial in understanding how a larva develops into a fly. After

establishment of the compartments often special border cells are created. They play an important role

for morphogenesis by acting as a signaling center which determines the further progress of patterning.

A model which explains the role of boundaries as organizing regions for secondary embryonic fields has

been introduced by Meinhardt [12] following the concept of positional information due to Wolpert [26].

Within this framework it is postulated that near a sharp border a spike for the morphogen concentration

appears. We support this postulate by showing that in a simple activator-inhibitor system it is possible

to have a stable spike for one of the morphogens near a jump of the inhibitor diffusivity which models

this sharp border. Using this postulate, various biological examples have been explained such as the

formation of duplicated and triplicated insect legs and the regeneration-duplication phenomenon of

imaginal disc fragments.
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A phenomenon similar to the one discussed in this paper is the well known distinction between

so-called body modes (states localized away from boundaries) and wall modes (states localized near

boundaries) which play a role in various branches of physics such as fluid mechanics [13] or plasma

physics [6].

To conclude, the effects explored in this paper such as asymmetric positions or amplitudes of spikes

as well as localization of patterns to a sub-domain play an important role in biological modeling,

for example in the development of skeletal patterns in growing vertebrate limbs or for compartment

boundaries of differently determined cell types. We plan to shed further light on these issues in the

future, combining analysis with computation and applying the outcomes to various biological models.

8. Appendix A: introduction and analysis of the Green’s function

Let G(x, t0) be the Green’s function which is defined as the unique solution of the problem




(D(x)G(x, t0)x)x −G(x, t0) + δt0 = 0, Gx(−1, t0) = Gx(1, t0) = 0,

D(t0)Gx(t
−
0 , t0)−D(t0)Gx(t

+
0 , t0) = 1, G(t−0 , t0)−G(t+0 , t0) = 0,

D(x−b )Gx(x
−
b , t0)−D(x+

b )Gx(x
+
b , t0) = 0, G(x−b , t0)−G(x+

b , t0) = 0,

(8.1)

where δt0 is the Dirac delta distribution located at t0.

Setting

G(x, t0) =





A
cosh θ1(x + 1)

cosh θ1(t0 + 1)
, −1 < x < t0,

B
sinh θ1(x− t0)

sinh θ1(xb − t0)
+ A

sinh θ1(x− xb)

sinh θ1(t0 − xb)
, t0 < x < xb,

B
cosh θ2(x− 1)

cosh θ2(xb − 1)
, xb < x < 1

(8.2)

then G(x, t0) is continuous at both x = t0 and x = xb. Using the conditions that D(x)Gx(x, t0) jumps

by −1 at x = t0 and is continuous at x = xb, we get

A

θ1

(tanh θ1(t0 + 1) + coth θ1(xb − t0))− B

θ1

1

sinh θ1(xb − t0)
= 1,

B
(

1

θ1

coth θ1(xb − t0) +
1

θ2

tanh θ2(1− xb)
)
− A

θ1

1

sinh θ1(xb − t0)
= 0. (8.3)
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From (8.3) we compute

G(t0, t0)
−1 = A−1 = θ−1

1


 tanh θ1(t0 + 1) + coth θ1(xb − t0) (8.4)

−
(

sinh θ1(xb − t0) cosh θ1(xb − t0) +
θ1

θ2

sinh2 θ1(xb − t0) tanh θ2(1− xb)

)−1



= θ−1
1


 tanh θ1(t0 + 1) +

θ2 sinh θ1(xb − t0) + θ1 cosh θ1(xb − t0) tanh θ2(1− xb)

θ2 cosh θ1(xb − t0) + θ1 sinh θ1(xb − t0) tanh θ2(1− xb)


 =: θ−1

1 u(t0).

Setting v(t0) = θ2 cosh θ1(xb − t0) + θ1 sinh θ1(xb − t0) tanh θ2(1− xb), we have

u(t0) = tanh θ1(t0 + 1)− θ−1
1

v′(t0)
v(t0)

.

Note that θ−2
1 v′′(t0) = v(t0). This implies for u′(t0) = d

dt0
u(t0) that

θ−1
1 u′(t0) = 1− tanh2 θ1(t0 + 1)− θ−2

1

v′′(t0)v(t0)− (v′(t0))2

(v(t0))2

= − tanh2 θ1(t0 + 1) + θ−2
1

(v′(t0))2

(v(t0))2
. (8.5)

Note that d
dt0

G(t0, t0) = 0 iff u′(t0) = 0 and u(t0) 6= 0, since

d

dt0
G(t0, t0) = −θ1

u′(t0)
(u(t0))2

. (8.6)

Next we compute

θ−2
1 u′′(t0) = −2 tanh θ1(t0 + 1)(1− tanh2 θ1(t0 + 1))

+2θ−3
1

v(t0)v
′(t0)v′′(t0)− v(t0)(v

′(t0))3

(v(t0))3

= −2 tanh θ1(t0 + 1)(1− tanh2 θ1(t0 + 1))

+2θ−3
1

v′(t0)[θ2
1(v(t0))

2 − (v′(t0))2]

(v(t0))3
.

Using the relations

θ2
1(v(t0))

2 − (v′(t0))2 = θ2
1θ

2
2


1−

(
θ1

θ2

tanh θ2(1− xb)

)2

 > 0

(by (3.1)) and v′(t0) < 0, we get u′′(t0) < 0. To determine the sign of d2

dt20
G(t0, t0), we compute

d2

dt20
G(t0, t0) = θ1

−u′′(t0)u(t0) + 2(u′(t0))2

(u(t0))3
.

Noting that u′(t0) = 0 and u′′(t0) < 0, we get

d2

dt20
G(t0, t0) > 0. (8.7)
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This will imply that the interior spike is linearly stable. The proof of this statement will be given in

Appendix E.

Now we study further properties of the Green’s function G. For t0 ∈ (−1, 1) we consider G(t0, t0).

We define the regular part of the Green’s function as

H(x, y) :=
θi

2
e−θi|x−y| −G(x, y).

Then we compute

d

dt0
G(t0, t0) =

d

dt0

θi

2
− d

dt0
H(t0, t0) = − 2∇x|x=t0

H(x, t0) =: −2∇t0H(t0, t0), (8.8)

where i = 1 if t0 < xb and i = 2 if t0 > xb. Here we have used the symmetry of H(x, y) and the notation

∇x|x=t0H(x, t0) :=
∂

∂x
|x=t0H(x, t0).

Further, we compute

d2

dt20
G(t0, t0) = −2(∇x∇y)x=y=t0H(x, y)− 2(∇2

x)x=t0H(x, t0) =: −2∇2
t0
H(t0, t0). (8.9)

Note that ξ̂(t), which has been defined in (4.6), is in C1(−1, 1). We now compute ∇tξ̂(t):

∇tξ̂(t) =
d

dt
(G(t, t))−1 = 2∇t(G(t, t))−1 = −2(∇tG(t, t))ξ̂(t)2.

We also need to know the derivative of the function

F (t) := (−2∇tG(t, t)) ξ̂2(t) = ∇tξ̂(t).

We compute

∇tF (t) = ∇t
−2∇tG(t, t)

G2(t, t)
=
−2G(t, t)∇2

t G(t, t) + 4 (∇tG(t, t))2

G3(t, t)
,

which implies that

∇t0F (t0) =
−2G(t0, t0)∇2

t0
G(t0, t0)

G3(t0, t0)
(8.10)

if ∇t0G(t0, t0) = 0 which will be assumed in (11.7) below.

9. Appendix B: estimates for the approximate steady state

For A = wε,t, where wε,t is defined in (4.9), let us compute

τ := T [A](t0). (9.1)
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From (4.10), we have

τ = T [A](t0) =
∫ 1

−1
G(t0, z)A2(z) dz

= ξ2
0

∫ 1

−1
G(t0, z)w̃2

0(z) dz

= ξ2
0ε

[
G(t0, t0)

∫ +∞

−∞
w2(y) dy + O(ε)

]

= ξε

[
G(t0, t0)ξ̂

2
0 + O(ε)

]
(by (4.8))

= ξε[ξ̂0 + O(ε)] (by (4.6)). (9.2)

Let x = t0 + εy, z = t0 + εz̃, where x, z ∈ Bε3/4(t0). We calculate

T [A](x)− T [A](t0) =

=
∫ 1

−1
[G(x, z)−G(t0, z)]A2(z) dz

= ξ2
0

∫ 1

−1
[G(x, z)−G(t0, z)]w̃2

0(z) dz

= ξ2
0

∫ 1

−1
[K(|x− z|)−K(|t0 − z|)]w̃2

0(z) dz − ξ2
0

∫ 1

−1
[H(x, z)−H(t0, z)]w̃2

0(z) dz

= ε2ξ2
0

[∫ +∞

−∞

[
θ2

i

2
|z̃| − θ2

i

2
|y − z̃|

]
w2(z̃) dz̃ + O(εy2 + ε2)

]

+ε2ξ2
0

[
−∇xH(x, t0)|x=t0 y

∫ +∞

−∞
w2(z) dz + O(εy2 + ε2)

]

= ε2ξ2
0P0(y) + ε2ξ2

0

∫ +∞

−∞
w2(z) dz [−∇xH(x, t0)|x=t0 ] y + O(εy2 + ε2)

= εξε



ξ̂2

0

P0(y)∫∞
−∞ w2(z) dz

+ ξ̂2
0 [−∇xH(x, t0)|x=t0 ] y + O(εy2 + ε2)



 (9.3)

by (4.8), where

P0(y) =
∫ +∞

−∞

[
θ2

i

2
|z| − θ2

i

2
|y − z|

]
w2(z) dz (9.4)

Note that the function P0(y) is even in y.

For a function A ∈ L2(−1, 1), let

Sε[A] = ε2∆A− A +
A2

T [A]
, (9.5)

where T [A] is given by (4.10). We now set A = wε,t and compute Sε[wε,t].
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In fact,

Sε[wε,t] = ε2∆wε,t − wε,t +
w2

ε,t

T [wε,t]

= ξ0(ε
2∆w̃0 − w̃0) +

w2
ε,t

T [wε,t]
+ e.s.t.

=
ξ2
0w̃

2
0

T [wε,t]
− ξ0w̃

2
0 + e.s.t.

= E1 + e.s.t., (9.6)

where

E1 =
ξ2
0w̃

2
0

T [wε,t]
− ξ0w̃

2
0. (9.7)

Now we estimate E1, using (9.2), (9.3):

ξ−1
ε E1 =

ξ2
0w̃

2
0

T [wε,t]
ξ−1
ε − ξ̂0w̃

2
0 (9.8)

=
(ξ0w̃0)

2

T [wε,t](t0)
ξ−1
ε − ξ̂0w̃

2
0 −

(ξ0w̃0)
2

(T [wε,t](t0))2
(T [wε,t]− T [wε,t](t0))ξ

−1
ε

+O
(
|T [wε,t]− T [wε,t](t0)|2εw̃2

0

)

= w̃2
0

(
ξ̂2
0

ξ̂0

− ξ̂0

)
− ξ̂0w̃

2
0

T [wε,t]− T [wε,t](t0)

T [wε,t](t0)
+ O

(
ε2y2w̃2

0

)

= −εw̃2
0



ξ̂2

0

P0(y)∫∞
−∞ w2(z) dz

+ ξ̂2
0 [−∇xH(x, t0)|x=t0 ] y



 + O

(
ε2y2w̃2

0

)
.

This implies that

ξ−1
ε ‖E1‖L2(R) = O(ε). (9.9)

From (9.6), we conclude that

ξ−1
ε ‖Sε[wε,t]‖L2(R) = O(ε). (9.10)

10. Appendix C: the Liapunov-Schmidt reduction

In this appendix we study the linear operator defined by

L̃ε,tφ := S ′ε[A]φ = ε2∆φ− φ +
2Aφ

T [A]
− A2

(T [A])2
(T ′[A]φ), H2

N(Ω) → L2(Ω),

where A = wε,t and for φ ∈ L2(Ω) the function T ′[A]φ is defined as the unique solution in H2,∗
N (Ω) of

(D(x)(T ′[A]φ)x)x − (T ′[A]φ) + 2Aφ = 0, −1 < x < 1. (10.1)
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We define the approximate kernel and co-kernel of the operator L̃ε,t as follows:

Kε,t := span

{
dw̃0

dx

}
⊂ H2

N(Ω),

Cε,t := span

{
dw̃0

dx

}
⊂ L2(Ω).

We also introduce the orthogonal projection π⊥ε,t : L2(Ω) → C⊥ε,t and study the operator Lε,t := π⊥ε,t◦L̃ε,t.

By letting ε → 0, we will show that Lε,t : K⊥ε,t → C⊥ε,t is invertible with a uniformly bounded inverse

provided ε is sufficiently small. This statement is contained in the following proposition.

Proposition 10.1. There exist positive constants ε̄, λ such that for all ε ∈ (0, ε̄) and all t ∈ Bε3/4(t0)

we have

‖Lε,tφε‖L2(Ωε) ≥ λ‖φε‖H2(Ωε). (10.2)

Further, the map

Lε,t = π⊥ε,t ◦ L̃ε,t : K⊥ε,t → C⊥ε,t

is surjective.

Proof: The proof is given in Proposition 5.1 of [25].

¤

Now we are in a position to solve the equation

π⊥ε,t ◦ Sε(wε,t + φ) = 0, φ ∈ K⊥ε,t. (10.3)

Since by Proposition 10.1 Lε,t : K⊥ε,t → C⊥ε,t is invertible (call the inverse L−1
ε,t ), this is equivalent to

φ = −(L−1
ε,t ◦ π⊥ε,t)(Sε[wε,t])− (L−1

ε,t ◦ π⊥ε,t)(Nε,t[φ]) =: Mε,t[φ], φ ∈ K⊥ε,t, (10.4)

where

Nε,t[φ] = Sε[wε,t + φ]− Sε[wε,t]− S ′ε[wε,t]φ.

We are going to show that the operator Mε,t defined by (10.4) is a contraction mapping on

Bε,δ:={φ ∈ K⊥ε,t : ‖φ‖H2(Ωε) < δ}
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if δ and ε are sufficiently small. We have by (9.9) and Proposition 10.1

ξ−1
ε ‖Mε,t[φ]‖H2(Ωε) ≤ λ−1ξ−1

ε

(∥∥∥π⊥ε,t(Nε,t[φ])
∥∥∥

L2(Ωε)
+

∥∥∥π⊥ε,t(Sε[wε,t])
∥∥∥

L2(Ωε)

)

≤ λ−1C
(
ξ−1
ε δ2 + ε |∇tG(t, t)|

)
,

where λ > 0, C > 0 are independent of δ > 0, ε > 0. Similarly, it follows that

ξ−1
ε ‖Mε,t[φ]−Mε,t[φ

′]‖H2(Ωε)
≤ λ−1C

(
ξ−1
ε δ2 + ε |∇tG(t, t)|

)
‖φ− φ′‖H2(Ωε),

where λ > 0, C > 0 are independent of δ > 0, ε > 0.

By the previous two estimates, if we choose δ and ε sufficiently small, then Mε,t is a contraction

mapping on Bε,δ. The existence of a fixed point φε,t now follows from the contraction mapping principle

and φε,t is the unique solution of (10.4).

We have thus proved the following result.

Lemma 10.2. There exists ε > 0 such that for every pair of ε, t with 0 < ε < ε and t ∈ Bε3/4(t0) there

exists a unique φε,t ∈ K⊥ε,t satisfying Sε(wε,t + φε,t) ∈ Cε,t. Further, we have the estimate

ξ−1
ε ‖φε,t‖H2(Ωε) ≤ Cε. (10.5)

11. Appendix D: the reduced problem

In this appendix we derive a reduced problem which will be essential for the proof of the existence

results.

By Lemma 10.2, for every t ∈ Bε3/4(t0) there exists a unique solution φε,t ∈ K⊥ε,t such that

Sε[wε,t + φε,t] = vε,t ∈ Cε,t. (11.1)

Our idea is to find tε ∈ Bε3/4(t0) such that in addition

Sε[wε,tε + φε,tε ] ⊥ Cε,tε . (11.2)

Then from (11.1) and (11.2) we get that Sε[wε,tε + φε,tε ] = 0. To this end, we let

Wε(t) := ξ−1
ε ε−1

∫

Ω
S[wε,t + φε,t]

dw̃0

dx
dx, Bε3/4(t0) → R.
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Then the problem is reduced to finding a zero of the function Wε(t) in Bε3/4(t0).

Let us now calculate Wε(t). We have

ξ−1
ε ε−1

∫

Ω
S[wε,t + φε,t]

dw̃0

dx
dx = ξ−1

ε ε−1
∫

Ω
S[wε,t]

dw̃0

dx
dx

+ξ−1
ε ε−1

∫

Ω
S ′ε[wε,t]φε,t

dw̃0

dx
dx + ξ−1

ε ε−1
∫

Ω
Nε,t[φε,t]

dw̃0

dx
dx

= I1 + I2 + I3,

where I1, I2 and I3 are defined by the last equality.

The computation of I3 is the easiest: note that the first term in the expansion of Nε,t is quadratic in

φε,t and so

I3 = O(ε2). (11.3)

Now we compute I1 and I2. The result will be that I1 is the leading term and I2 = O(ε).

For I1, we have

I1 = ξ−1
ε ε−1

∫

Ω
E1

dw̃0

dx
dx + O(ε), (11.4)

where E1 has been defined in (9.7).

We calculate, using (9.8) and the fact that P0(y) is an even function

I1 = ξ−1
ε ε−1

∫

Ω
E1

dw̃0

dx
dx

= −
∫

R
w̃2

0


ξ̂2

0 [−∇xH(x, t0)|x=t0 ]y


w̃′

0 dy + O(ε)

= ξ̂2
0

∫

R

(
yw2w′) dy[∇xH(x, t0)|x=t0 ] + O(ε)

= −1

3
ξ̂2
0

∫

R
w3dy[∇xH(x, t0)|x=t0 ] + O(ε).

Then, by using (2.3), we have

I1 = −d00[∇xH(x, t0)|x=t0 ] + O(ε), (11.5)

where

d00 = 2.4ξ̂2
0 .
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For I2, we calculate

I2 = ξ−1
ε ε−1

∫

Ω
S ′ε[wε,t](φε,t)

dw̃0

dx
dx

= ξ−1
ε ε−1

∫

Ω

[
ε2∆φε,t − φε,t +

2wε,tφε,t

T [wε,t]
− w2

ε,t

(T [wε,t])2
(T ′[wε,t]φε,t)

]
dw̃0

dx
dx

= ξ−1
ε ε−1

∫

Ω

[
ε2∆

dw̃0

dx
− dw̃0

dx
+

2wε,t

T [wε,t](t0)

]
φε,t dx

+ξ−1
ε ε−1

∫

Ω

2wε,t

T [wε,t](t0)
φε,t

(
T [wε,t](t0)− T [wε,t]

T [wε,t]

)
dx

−ξ−1
ε ε−1

∫

Ω

w2
ε,t

(T [wε,t])2
(T ′[wε,t]φε,t)

dw̃0

dx
dx + O(ε2) = O(ε)

by (4.5), (9.2), (9.3) since

‖φε,t‖H2(Ωε) = O(ε).

Combining I1, I2 and I3, we have

Wε(t) = −d00[∇xH(x, t0)|x=t0 ] + O(ε), (11.6)

where

d00 = 2.4ξ̂2
0 .

Let us for the moment assume that

∇t0H(t0, t0) = 0 and ∇2
t0
H (t0) 6= 0. (11.7)

We will check the conditions in (11.7) at the end of this appendix.

Then the function Wε(t) satisfies Wε(t) = −c∇2
t0
H(t0, t0)(t− t0) + O(ε) for some c > 0.

Thus for ε small enough ∇tH(t, t) has exactly one zero in Bε3/4(t0). Further, it has opposite signs for

the endpoints of Bε3/4(t0). Since this property is also true for Wε(t), by the intermediate value theorem

it follows that, for ε small enough, there exists a tε ∈ Bε3/4(t0) such that Wε(t
ε) = 0 and tε → t0 as

ε → 0.

Thus we have proved the following proposition.

Proposition 11.1. For ε sufficiently small there exists a point tε ∈ Bε3/4(t0) with tε → t0 such that

Wε(t
ε) = 0.
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Finally, we prove Theorem 3.1.

Proof of Theorem 3.1: We mention the main steps. By Proposition 11.1, there exists a tε ∈ Bε3/4(t0)

such that tε → t0 and Wε(t
ε) = 0, or, expressed differently, Sε[wε,tε + φε,tε ] = 0. Let wε = wε,tε + φε,tε .

By the Maximum Principle, wε > 0. Moreover, by its construction, wε has all the properties required

in Theorem 3.1. The proof is finished.

¤

It remains to check the conditions in (11.7).

We assume that

− 1 < t0 < xb < 1 (11.8)

(This condition holds without loss of generality. The case −1 < xb < t0 < 1 follows by reflection about

x = 0 which reverses the signs of of xb and t0 and swaps the two diffusion constants θ1 and θ2.)

By (8.5), (8.6) together with (8.7), (8.8) and (8.9), we see that ∇t0H(t0, t0) = 0 and ∇2
t0
H(t0, t0) 6= 0

if and only if t0 is a solution of the equation

sinh θ1(t0 + 1)

cosh θ1(t0 + 1)
=

θ2 sinh θ1(xb − t0) + θ1 cosh θ1(xb − t0) tanh θ2(1− xb)

θ2 cosh θ1(xb − t0) + θ1 sinh θ1(xb − t0) tanh θ2(1− xb)
.

Using elementary algebra, including addition theorems, it is easy to see that this is equivalent to

1

θ1

tanh θ1(2t0 + 1− xb) +
1

θ2

tanh θ2(xb − 1) = 0,

which is equivalent to (3.3). From (11.8), we get

−1− xb < 2t0 + 1− xb < 1 + xb.

So a necessary condition for solvability of (3.3) is

1

θ1

tanh (θ1(1 + xb)) >
1

θ2

tanh (θ2(1− xb))

which is the same as inequality (3.1). Assuming condition (3.1), there exists a unique position t0

solving (3.3). This follows by elementary considerations, utilizing the continuity and monotonicity of

the respective functions.
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Now it can be shown rigorously that an interior spike located at tε with tε → t0 as ε → 0 does exist if

ε is small enough. The proof uses Liapunov-Schmidt reduction and follows the arguments given in [25].

We omit the technical details.

¤

12. Appendix E: the proof of stability of the interior spike

Proof of Theorem 3.3: In this appendix we prove the stability of the interior spike.

We need to analyze the following eigenvalue problem

L̃ε,tεφε = ε2∆φε − φε +
2Aφε

T [A]
− A2

(T [A])2
(T ′[A]φε) = λεφε, (12.1)

where λε is some complex number, A = wε,tε +φε,tε with tε ∈ Bε3/4(t0) determined in the previous section

and

φε ∈ H2
N(Ω). (12.2)

(Recall that T [A] and T ′[A]φε have been defined in (4.10) and (10.1) respectively.)

We first study the eigenvalues with λε → λ0 6= 0 as ε → 0. The key ingredient is Theorem 2.1.

Because we study the large eigenvalues, there exists some small c > 0 such that |λε| ≥ c > 0 for ε

sufficiently small. We are looking for a condition under which Re (λε) < 0 for all eigenvalues λε of (12.1),

(12.2) if ε is sufficiently small. If Re(λε) ≤ −c, then λε is a stable large eigenvalue. Therefore, for the

rest of this section we assume that Re(λε) ≥ −c and study the stability properties of such eigenvalues.

In (12.1), (12.2) it is assumed that τ = 0. By a straight-forward perturbation argument all the results

also hold true for 0 < τ < τ0, for some sufficiently small τ0 > 0 which can be chosen independent of ε.

We first rigorously derive the limit problem of (12.1), (12.2) as ε → 0 which will be given by a system

of NLEPs. Let us assume that

‖φε‖H2(Ωε) = 1.

We cut off φε as follows: introduce

φε,0(y) = φε(y)χ
(

εy − tε

r0

)
, (12.3)

where y = x/ε for x ∈ Ω.
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From (12.1), (12.2), using Re(λε) ≥ −c and ‖φε,tε‖H2(Ωε) = O(ε), it follows that

φε = φε,0 + O(ε) in H2(Ωε). (12.4)

Then, by a standard procedure, we extend φε,0 to a function defined on R such that

‖φε,0‖H2(R) ≤ C‖φε,0‖H2(Ωε).

Since ‖φε‖H2(Ωε) = 1, ‖φε,0‖H2(Ωε) ≤ C. By taking a subsequence of ε, we may also assume that φε,0 → φ0

as ε → 0 in H2(R).

Sending ε → 0 with λε → λ0 and x ∈ Bε3/4(t0), (12.1) implies

∆φ0 − φ0 + 2wφ0 − 2

∫
R wφ0 dy∫
R w2 dy

w2 = λ0φ0. (12.5)

The following result states that the stability for ε small enough is the same as the stability for ε = 0.

Both directions are given by parts (1) and (2) of the theorem respectively. We have

Theorem 12.1. Let λε be an eigenvalue of (12.1) and (12.2) such that Re(λε) > −c for some c > 0.

(1) Suppose that (for suitable sequences εn → 0) we have λεn → λ0 6= 0. Then λ0 is an eigenvalue of

the problem (NLEP) given in (12.5).

(2) Let λ0 6= 0 with Re(λ0) > 0 be an eigenvalue of the problem (NLEP) given in (12.5). Then, for ε

sufficiently small, there is an eigenvalue λε of (12.1) and (12.2) such that λε → λ0 as ε → 0.

Proof: (1) of Theorem 12.1 follows by asymptotic analysis similar to Appendix C.

To prove (2) of Theorem 12.1, we use an argument of Dancer given in Section 2 of [7]. For details on

how to transfer his argument to the Gierer-Meinhardt system, we refer to [24] where it is applied to a

related problem.

¤

We now study the stability of (12.1), (12.2).

We can apply Theorem 2.1 (2) with γ = 2 to (12.5). This implies that

Re(λ0) ≤ c0 < 0 for some c0 > 0.

By Theorem 12.1 (1), all eigenvalues λε of (12.1), (12.2), for which |λε| ≥ c > 0 holds, satisfy Re(λε) ≤
−c < 0 for ε sufficiently small. This implies that A = wε,tε + φε,tε is linearly stable.
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¤

Now we investigate the small eigenvalues of the problem (12.1), (12.2), i.e. we assume that λε → 0

as ε → 0.

For ε small enough, let

w̄ε = ξ−1
ε [wε,tε + φε,tε ] , h̄ε = T [wε,tε + φε,tε ], (12.6)

where tε is the point which has been determined by Liapunov-Schmidt reduction.

After re-scaling, the eigenvalue problem (12.1), (12.2) becomes




ε2∆φε − φε + 2
w̄ε

h̄ε

φε − w̄2
ε

h̄2
ε

ψε = λεφε,

(D(x)ψε,x)x − ψε + 2ξεw̄εφε = λετψε,
(12.7)

where ξε = 1
6ε

is given by (4.8).

Our basic idea is the following: the eigenfunction φε can be represented as

aε
0

d

dt
(wε,t)

∣∣∣∣∣
t=tε

.

However, there is the following difficulty: note that wε,t ∼ ξ0(t)w
(

x−t
ε

)
χ

(
x−t
r0

)
. So when we differentiate

wε,t with respect to t, we also need to differentiate ξ0(t) with respect to t.

Let us define

w̃ε,0(x) = χ
(

x− tε

r0

)
w̄ε(x), (12.8)

where r0 and χ(x) are given in (4.2) and (4.3) respectively. Similar to Appendix C, we define

Knew
ε,tε := span {w̃′

ε,0} ⊂ H2(Ωε),

Cnew
ε,tε := span {w̃′

ε,0} ⊂ L2(Ωε).

Then it is easy to see that

w̄ε(x) = w̃ε,0(x) + e.s.t. (12.9)

and

h̄
′
ε(t0) = −ξε

∫ 1

−1
∇t0H(t0, z)w̄2

ε dz

= −[∇xH(x, t0)|x=t0 ]ξ̂
2
0 + O(ε) = O(ε) (12.10)

by (11.7).
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Note that w̃ε,0(x) = ξ̂0w̃0(x) + O(ε) in H2
ε (−1, 1) and w̃ε,0 satisfies

ε2∆w̃ε,0 − w̃ε,0 +
(w̃ε,0)

2

h̄ε

+ e.s.t. = 0.

Thus w̃
′
ε,0 := dw̃ε,0

dx
satisfies

ε2∆w̃
′
ε,0 − w̃

′
ε,0 +

2w̃ε,0

h̄ε

w̃
′
ε,0 −

w̃2
ε,0

(h̄ε)2
h̄
′
ε + e.s.t. = 0. (12.11)

Let us now decompose

φε = εaε
0w̃

′
ε,0 + φ⊥ε (12.12)

with complex numbers aε
0. (The scaling factor ε is introduced to ensure φε = O(1) in H2(Ωε)), where

φ⊥ε ⊥ Knew
ε,tε .

Suppose that ‖φε‖H2(Ωε) = 1. Then |aε
j| ≤ C.

The decomposition of φε implies the following decomposition of ψε:

ψε = εaε
0ψε,0 + ψ⊥ε , ψε,0, ψ⊥ε ∈ H2

N(Ωε) (12.13)

where ψε,0 satisfies

(D(x)ψε,0,x)x − ψε,0 + 2ξεw̄εw̃
′
ε,0 = 0 (12.14)

and ψ⊥ε is given by

(D(x)ψ⊥ε,x)x − ψ⊥ε + 2ξεw̄εφ
⊥
ε = 0. (12.15)

Substituting the decompositions of φε and ψε into (12.7), we have, using (12.11),

εaε
0

(
(w̃ε,0)

2

h̄2
ε

h̄
′
ε −

(w̄ε)
2

h̄2
ε

ψε,0

)

+ε2∆φ⊥ε − φ⊥ε + 2
w̄ε

h̄ε

φ⊥ε −
w̄2

ε

h̄2
ε

ψ⊥ε − λεφ
⊥
ε + e.s.t. = λεεa

ε
0w̃

′
ε,0. (12.16)

Let us first compute

I4 := εaε
0

(
(w̃ε,0)

2

h̄2
ε

h̄
′
ε −

(w̄ε)
2

h̄2
ε

ψε,0

)

= εaε
0

(w̃ε,0)
2

h̄2
ε

[
−ψε,0 + h̄

′
ε

]
+ e.s.t..

Let us also put

L̃εφ
⊥
ε := ε2∆φ⊥ε − φ⊥ε +

2w̄ε

h̄ε

φ⊥ε −
w̄2

ε

h̄2
ε

ψ⊥ε . (12.17)
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Multiplying both sides of (12.16) by w̃
′
ε,0 and integrating over (−1, 1), we obtain

r.h.s. = ελεa
ε
0

∫ 1

−1
w̃
′
ε,0w̃

′
ε,0 dx

= λεa
ε
0ξ̂

2
0

∫

R
(w

′
(y))2 dy (1 + O(ε)) (12.18)

and

l.h.s. = −εaε
0

∫ 1

−1

w̃2
ε,0

h̄2
ε

[
ψε,0 − h̄

′
ε

]
w̃
′
ε,0 dx +

∫ 1

−1

w̃2
ε,0

h̄2
ε

(h̄
′
εφ
⊥
ε ) dx−

∫ 1

−1

w̃2
ε,0

h̄2
ε

(ψ⊥ε w̃
′
ε,0) dx

= (J1 + J2 + J3)(1 + O(ε)) by (12.11),

where Ji, i = 1, 2, 3, are defined by the last equality.

For J3, we decompose

J3 = J4 + J5,

where

J4 = −
∫ 1

−1

w̃2
ε,0

h̄2
ε

(ψ⊥ε (tε)w̃
′
ε,0) dx (12.19)

J5 = −
∫ 1

−1

w̃2
ε,0

h̄2
ε

(ψ⊥ε (x)− ψ⊥ε (tε))w̃
′
ε,0 dx. (12.20)

The following is the key lemma.

Lemma 12.2. We have

J1 = −ε2
(

1

3

∫

R
w3 dy

)
ξ̂3
0

(
∇2

tεH(tε, tε)
)
aε

0 + o(ε2), (12.21)

J2 + J3 = o(ε2). (12.22)

Proof: Lemma 12.2 follows from the following series of lemmas. We first study the asymptotic behavior

of ψε,0.

Lemma 12.3. We have

(ψε,0 − h̄
′
ε)(t

ε) = ξ̂2
0∇tεH(tε, tε) + O(ε). (12.23)
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Proof: We compute ψε,0 − h̄
′
ε near tε:

h̄ε(x) = ξε

∫ 1

−1
G(x, z)w̄2

ε dz

= ξε

∫ +∞

−∞
KD(|z|)w̃2

ε,0(x + z)dz − ξε

∫ 1

−1
H(x, z)w̃2

ε,0 dz + O(ε).

So

h̄
′
ε(x) = ξε

∫ +∞

−∞
KD(|z|)(2w̃ε,0(x + z)w̃

′
ε,0(x + z)) dz − ξε

∫ 1

−1
∇xH(x, z)w̃2

ε,0 dz + O(ε).

Thus

(h̄
′
ε − ψε,0)(x) = −ξε

∫ 1

−1
∇xH(x, z)w̃2

ε,0(z) dz −
(
−2ξε

∫ 1

−1
H(x, z)w̃ε,0w̃

′
ε,0 dz

)
+ O(ε).

Therefore,

(h̄
′
ε − ψε,0)(t

ε) = −ξε

∫ 1

−1
∇tεH(tε, z)w̃2

ε,0(z) dz −∇z|z=tεH(tε, z)ξ̂2
0 + O(ε)

= −∇z|z=tεH(z, tε)ξ̂2
0 −∇z|z=tεH(tε, z)ξ̂2

0 + O(ε).

= −∇tεH(tε, tε)ξ̂2
0 + O(ε). (12.24)

This implies (12.23).

¤

Similar to the proof of Lemma 12.3, the following result is derived.

Lemma 12.4. We have

(ψε,0 − h̄
′
ε)(t

ε + εy)− (ψε,0 − h̄
′
ε)(t

ε) (12.25)

= εy∇2
tεH(tε, tε)ξ̂2

0 + O(ε2y2).

Next we estimate φ⊥ε . We derive

Lemma 12.5. For ε sufficiently small, we have

‖φ⊥ε ‖H2(Ωε) = O(ε2). (12.26)

Proof: As the first step in the proof of Lemma 12.5, we obtain a relation between ψ⊥ε and φ⊥ε . Note

that similar to the proof of Proposition 10.1, L̃ε is invertible from (Knew
ε )⊥ to (Cnew

ε )⊥ with uniformly
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bounded inverse for ε small enough. By (12.16), Lemma 12.3 and the fact that L̃ε is uniformly invertible,

we deduce that

‖φ⊥ε ‖H2(Ωε) = O(ε). (12.27)

Let us cut off

φ̃ε,0 =
φ⊥ε
ε

χ
(

x− tε

r0

)
. (12.28)

Then

φ⊥ε = εφ̃ε,0 + O(ε2).

Suppose that

φ̃ε,0 → φ0 in H2
N,loc(Ωε). (12.29)

Then we have by the equation for ψ⊥ε :

ψ⊥ε (tε) = 2εξε

∫ 1

−1
G(tε, z)w̄εφ̃ε,0 dz

= 2εG(tε, tε)ξ̂0

∫
R wφ0 dy∫
R w2 dy

+ O(ε2). (12.30)

This relation between ψ⊥ε and φ⊥ε will be important for the rest of the proof.

Now we substitute (12.30) into (12.16) and, using Lemma 12.3, we have that the limit φ0 satisfies

∆φ0 − φ0 + 2wφ0 − 2G(t0, t0)ξ̂0

∫
R wφ0∫
R w2

w2 +∇t0H(t0, t0)ξ̂
2
0a

0w2 = 0, (12.31)

where

a0 = lim
ε→0

aε.

Hence, using the relations

G(t0, t0)ξ̂0 = 1, ∇t0H(t0, t0) = 0,

we can apply Theorem 2.1 (3) with γ = 2, which implies that φ0 = 0.

Finally, we deduce

φ⊥ε = εφ̃ε,0 + O(ε2) = εφ0

(
x− tε

ε

)
+ O(ε2) = O(ε2), (12.32)

which implies (12.26).

¤

By (12.32), we have J2 = o(ε2).
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From Lemma 12.5 and (12.30), we have that

ψ⊥ε (tε) = O(ε2). (12.33)

Further,

ψ⊥ε (tε + εy)− ψ⊥ε (tε) = −2ε2y∇tεH(tε, tε)ξ̂0

∫
R wφ0 dy∫
R w2 dy

+ O(ε3) = O(ε3). (12.34)

This implies J4 = o(ε2) and J5 = o(ε2).

The computation of J1 follows from Lemmas 12.3 and 12.4. In fact,

J1 = −εaε
0

∫ 1

−1

w̃2
ε,0

h̄2
ε

(
ψε,0 − h̄

′
ε

)
w̃
′
ε,0 dx + o(ε2)

= −εaε
0

∫ 1

−1

w̃2
ε,0

h̄2
ε

(
ψε,0(t0)− h̄

′
ε(t0)

)
w̃
′
ε,0 dx + o(ε2)

−εaε
0

∫ 1

−1

w̃2
ε,0

h̄2
ε

(
[ψε,0(x)− h̄

′
ε(x)]− [ψε,0(t0)− h̄

′
ε(t0)]

)
w̃
′
ε,0 dx + o(ε2)

= J6 + J7.

For J6, we use Lemma 12.3 to obtain

J6 = −2

3
εaε

0

∫ 1

−1

w̃3
ε,0

h̄3
ε

h̄
′
ε

(
ψε,0(t0)− h̄

′
ε(t0)

)
dx + o(ε2)

= −2

3
ε2aε

0

(∫

R
w3 dy

)
h̄
′
ε(t

ε)ξ̂2
0∇tεH(tε, tε) + o(ε2) = o(ε2) (12.35)

since ∇tεH(tε, tε) = o(1). Finally, using Lemma 12.4, we compute the main contribution:

J7 = ε2ξ̂0

∫

R

(
yw2w

′
(y)

)
dy∇2

tεH(tε, tε)ξ̂2
0a

ε
0 + o(ε2)

= −ε2
(

1

3

∫

R
w3 dy

)
ξ̂3
0∇2

tεH(tε, tε)aε
0 + o(ε2). (12.36)

Combining (12.35), (12.36) and using (12.10), Lemma 12.3, Lemma 12.4, we obtain (12.21).

This concludes the proof of Lemma 12.2.

¤

Comparing (12.18) with (12.19) r.h.s. and using Lemma 12.2, (2.3), we obtain

− 2.4ε2ξ̂3
0

(
∇2

tεH(tε, tε)
)
aε

0 + o(ε2) = λεξ̂
2
0a

ε
01.2 (1 + o(1)). (12.37)

Equation (12.37) implies that the small eigenvalue λε of (12.7) satisfies

λε = −2ε2ξ̂0

(
∇2

tεH(tε, tε)
)

+ o(ε2).
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Arguing as in Theorem 12.1, this shows that since by (8.7)∇2
tεH(tε, tε) is positive, the small eigenvalue

λε satisfies Re(λε) ≤ −cε2 for some c > 0 which is independent of ε.

This fact, together with the results in the previous section, concludes the proof of Theorem 3.3.

¤
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